
A Review of MATLAB 4.0SIAM News 26, #2, March 1993Man Kam KwongMathematicianMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439-4844Email: kwongmcs.anl.gov1. IntroductionMATLAB 4.0 is a welcome upgrade of the popular MATLAB software (the lastrelease was 3.5) marketed by the MathWorks, Inc. This article reviews the new fea-tures of MATLAB 4.0 and shares my experience in using the new package. Upwardincompatibilities will be discussed for the bene�t of those who may be worryingabout how much e�ort it takes to make the transition. More details on productinformation can be found in the excellent documentation \New Features Guide"provided by MathWorks.I wrote a MATLAB wish list in Matlab Digest, May 1991. It stimulated severalresponses from other users. I am glad to see that the majority of our wishes havecome true in this new release of MATLAB. I started experimenting with a betaversion about a year before the product was commercially available this September.My work is done on a Sparc II workstation in an X-window environment.According to the documentation, the source code for MATLAB has been re-designed and rewritten. Fortunately, the basic rules for using the software have notchanged. A user does not have to learn a new language, other than a few changesin the usage of some commands. There are simply more commands available, andthe package works more e�ciently.The major categories of new commands are graphics, sparse matrix functions,low-level I/O, external interface, debugging, and on-line help.1

2. New Features | Graphics, User Interface Controls, and SoundI found the new graphics capabilities, especially the \3-D scienti�c visualization,"most impressive and exciting. The \Images and Color Maps" section under democontains ten extremely sophisticated images, including a photo of six famous peopleat the 1984 Gatlinburg meeting, a picture of Durer's etching, an aerial view of CapeCod, and the face of a mandrill. Although it requires real experts and advancedequipment to produce these images, it is reassuring that MATLAB 4.0 has thecapability of rendering them.For the average user, creating 3-D graphics is just as simple as using the com-mand mesh in MATLAB 3.5. Let x and y be vectors of lengthsm and n, respectively,and z be a matrix of size m � n. Then surf(x,y,z) plots the color-shaded sur-face having height z(i,j) at the point (x(i),y(j)); x and y are used to label thehorizontal axes. The presence in MATLAB 4.0 of 3-D graphs is a big improvementover the old mesh command. When x and y are not speci�ed, surf(z) uses 1:m and1:n as the default to label the axes. With equal ease, surfc(z), surfl(z), andcontour3(z) give a combination surface/contour plot, a surface plot with lighting,and a 3-D contour plot, respectively. A user can alter the viewpoint (view), shadingstyle (shading), and color map (caxis and colormap) by issuing the appropriatecommand. Points and lines can be plotted in 3-D space with plot3. More primitiveobjects can be created with the commands line, surface, and patch. Filled 2-Dand 3-D polygons are drawn with fill and fill3, respectively. The commandssphere and cylinder generate a cylinder and a sphere.A useful feature allows the user to make movies, composed of frames of graphs.After each frame is created by using the appropriate graphics commands, the state-ment M(:,j) = getframe stores the graph in the jth column of the matrix M. Thesequence of frames can then be played back in rapid succession by the commandmovie(M). The speed of playback is controlled by an optional argument. I have suc-cessfully recorded movies of 100 frames each and was able to maintain three moviesconcurrently within one MATLAB session. The limitation is the amount of storagetaken up by the huge matrices that hold the movie frames; it takes several minutesjust to save or load them into/from a �le When such a large matrix is involved, theonly apparent, albeit minor, disappointment is that movie(M) spends a substantialinitial period of time to process the entire matrix M before any action is seen onthe screen. In my application, the speed of playback is not required to be high. Igot around the initial waiting by using a loop to movie each column of M one afteranother: for j=1:100, movie(M(:,j)), end. The resulting animated motion isa bit jerky, but bearable.MATLAB 4.0 graphics have been redesigned to take advantage of object-orientedprogramming. Another new concept is the immediate action mode for commands2

like axis or view that change the look of an existing graph immediately. The ma-jority of upward incompatibilities between MATLAB 4.0 and MATLAB 3.5 involvesuch commands (see Section 6).MATLAB 4.0 supports multiwindow graphics. A user can create new a windowwith the command figure(N), where N is an integer that identi�es the windownumber. A \graph" is made up of objects and subobjects, and a user has direct con-trol over many properties of each object/subobject. One can regard the root objectof a graph as the �gure (graph window) itself (which is treated by MATLAB 4.0 as asubobject, or a child of the command window, the ultimate root object of the entireMATLAB session). Among the properties of a window that one can set are size,position, title, paper position, and color. An axis is a child of a �gure. An axis canbe set anywhere in the window, with custom tick-marks and other attributes, if onedoes not care for the defaults. A �gure can have more than one axis as in the caseof subplots. Children of axes include graphics objects created by individual plottingcommands (such as a line, a curve, or a surface), text labels, axis labels, and thetitle. Each object/subobject has a handle, a real number that serves as its ID. Thehandle of the �gure is simply the window number. The handle of the current �gureand current axis can be obtained by using the commands gcf and gca, respectively.The handles of other objects are usually returned at the time of creation by the ap-propriate plotting statements. Alternatively, the command get(gca,'children')lists the handles of the children of the current axis. An object can then be examined(get), modi�ed (set), and deleted (delete) by referring to its handle.There is a new class of graphics objects called user interface controls, to be cre-ated as children of a �gure. It includes push buttons, check boxes, popup menus,radio buttons, sliders, and editable text. These allow a user to build very sophisti-cated menu-driven systems as demos, experiments, teaching aids, etc. I found thatthe easiest way to learn how to use these controls is to mimic existing programs(besides consulting the manual). A good way to start is to type out the text ofthe M-�les demo.m, menu.m, and choices.m. Look for other M-�les mentioned indemo.m that use interface controls.On a Sparc station or a Macintosh, one can create some realistic sound e�ects,samples of which can be heard in the demo.Users can set their own pace to acquire the skill of using these powerful features.In the meantime, the old-fashioned graphics commands work mostly as before, albeitfaster. I note, however, that MATLAB 4.0 graphics behaves di�erently when newobjects are plotted on an existing graph, when hold is on. To certain people,this new behavior may be undesirable. In older versions, when a new curve issuperimposed on an existing graph, the latter stays displayed on the screen, whereasin MATLAB 4.0, the graph window blacks out for a short moment and then thenew graph, with the added object, is displayed. This feature makes it di�cult to3

simulate animation by drawing and erasing objects; the continual
ashing of thegraph can be very annoying. It is mentioned in the \New Features Guide," p. 18,that \animation can be performed � � � with clever use of the EraseMode propertyof line objects." But the manual explanation of EraseMode under line does notcontain enough information on how this can be achieved. One can look into thedemos lorenz and life to see how it is done.3. New Features | Sparse Matrix FunctionsSparse matrices abound in numerical analysis. Special numerical methods havebeen developed to take advantage of their structure to conserve memory and to gainspeed. However, it is usually not a simple job for a nonspecialist to �nd the correctsoftware for a particular purpose and for a particular sparsity type. MATLAB 4.0comes to the rescue. It has a new data structure for storing sparse matrices and hasa new command sparse for creating a matrix that is sparse. A user gives only thelocations and values of the nonzero entries. Once such a matrix is de�ned, the usercan pretty much forget that it is sparse, because it can be manipulated and used inexactly the same way as any other ordinary matrix. For instance, to �nd the LUfactors of a matrix A, one uses the usual command [L,U]=LU(A) no matter whetherA is full or sparse. MATLAB 4.0 will automatically pick the optimal algorithm togive the answer. Full and sparse matrices can be mixed in expressions.The command spy(A), displays the sparsity structure of A graphically. It is use-ful in visualizing the change in sparsity structure when matrices are being manip-ulated. Other commands particularly meant for sparse matrices include reorderingalgorithms, number of nonzero entries (nnz), allocated memory for nonzero entries(nzmax), test for sparsity (issparse), and 1-norm and 2-norm estimates.For further details of MATLAB 4.0's rich sparse matrix capabilities see thearticle J. R. Gilbert, C. B. Moler and R. S. Schreiber, Sparse matrices in MATLAB:Design and implementation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333{356.4. New Features | File I/O FunctionsFile I/O functions are low-level functions modeled on the corresponding C state-ments. A user can now open (fopen returns an integer to be used as an ID whenreferring to the �le) and close (fclose) a �le, for reading, writing, or appending.Unformatted (binary) data can be read from (fread) or written to (fwrite) anopened �le quickly, thus enabling fast communication between MATLAB and ex-ternal programs. In the past, MATLAB could communicate with external programsonly through formatted ascii �les (slow access time) or .mat �les (complicated for4

ordinary users to create). Other �le-handling commands are ferror, fseek, ftell,and frewind.I have successfully used these commands to import data continuously from anexternal program for plotting in MATLAB. More speci�cally, the project involvessolving the time-dependent Ginzburg-Landau equations, the solution being com-puted at equally spaced time steps. The aim is to plot the solution at each stepin real time as the data are being computed. In practice, the equations are solvedby an external C or Fortran program (for speed, the program is run on a separatemachine and perhaps with parallelization), and the data are sent to an output �lein binary form in time-step installments. The MATLAB program looks for this �leand, when its presence is detected, renames the �le, freads the data, and displaysit. The renaming step is needed so that MATLAB does not read the same �le twice;the next time the presence of the output �le is detected, it has to contain data fromthe next time step. The use of binary �les has two advantages. The �rst is speed.The second is that the external program does not have to know that the data is tobe used by MATLAB, and so it does not have to be modi�ed to conform to anyspeci�c MATLAB formats.For additional
exibility in formatted output, MATLAB 4.0 has the C-stylecommands fscanf, fprintf, fgetl, fgets, sprintf, and fscanf.The procedures to write dynamically linked MEX-�les and data MAT-�les havebeen revised. There are new include �les and extensive C and Fortran interfacelibraries. The user should consult the manual volume \External Interface Guide."5. Other New FeaturesA user can now debug a function M-�le by setting breakpoints in the �le. Debuggingfor script M-�le is not available, however. The statement dbstop at 9 in FILE(issued in the command window) sets a breakpoint at (actually just before) line 9in the M-�le FILE.m. This means that when the function FILE is invoked, executionwill stop prior to execution of line 9. A user can then examine variables in the localworkspace. Values of variables in workspaces of parent calling function M-�les canalso be accessed by moving through the ancestral tree with dbup and dbdown. Thecommand dbstack yields information on who calls whom. Execution of the M-�lecan be resumed with dbcont, or stepped through with dbstep, or terminated withdbquit. Current breakpoints can be listed with dbstatus and, when debugging isdone, cleared with dbclear.I found the new smart command-recalling feature very convenient. Typing one ormore characters before pressing the (upward or downward) arrow keys recalls fromthe history stack the nearest command that starts with the speci�ed characters.5

The online help facility has been improved. Help information is organized bydirectory | a user can provide a table-of-contents �le in each directory, or else the�rst line of each M-�le in the directory is displayed. A new command lookforKEYWORD prints the �rst line of all M-�les that contain KEYWORD. Another command,which COM, prints the full pathname of the M-�le COM.m that is being used. This isuseful when there are con
icting M-�le names in di�erent directories and the userwishes to make sure that the correct one is being invoked. The command more onturns on a pager for long output (similar to the DOS command more).The search path for M-�les can now be set and modi�ed within MATLAB byusing the path command. This feature is useful to a user who needs to vary the pathenvironment for projects organized in di�erent directories. He/she simply includesan appropriate path statement in the startup.m �le in the directory concerned.MATLAB 4.0 provides an alternative way to invoke a function when all thearguments are string constants:fun s1 s2 ... is equivalent to fun('s1','s2',...).The new way resembles a MATLAB command with arguments, and thus enables auser to create MATLAB-type commands.By browsing through the manual volume \Reference Guide," one can �nd manynew functions that extend the computational capabilities of MATLAB.6. Upward IncompatibilitiesEveryone who contemplates switching to MATLAB 4.0 from MATLAB 3.5 has thisquestion in mind: Will my old programs still run in the new system? If you donot use graphics and global variables, the chances are that 95% of them will runwithout change. Some may run with warning messages that certain commands orthe usage of certain commands is obsolete. These commands (examples are ones,eye, rand, meta, sc2dc, and dc2sc), or particular uses of them, still work now butmay be eliminated in future versions.How much e�ort is needed to convert those programs that do not run underMATLAB 4.0? Not too much, according to my own experience.If one uses global variables, one must now declare each global variable in eachfunction M-�le that uses it, in addition to a declaration in the base workspace(unless the variable is meant to be shared only among functions and not with thebase workspace). See also Section 7 for changes necessitated by a bug rather thanincompatibility.Line continuation now requires three periods instead of two. Inside a function,matrices are no longer initialized to be empty, and they must therefore be explicitly6

initialized. Scripts called within a function now use the local workspace rather thanthe base workspace.When issued within an M-�le, a plotting statement does not lead to immediatedisplay on the screen. It takes e�ect only when a pause statement or the end of theM-�le is encountered. If there is more than one plotting statement before pause orthe end of �le, only the result from the last statement is displayed. To force an im-mediate display, one must add a drawnow command after each plotting statement.The same is true for plotting statements embedded in a composite interactive com-mand issued in the command window. For example, for i=1:10, plot(...), enddisplays only the last graph. To display all ten graphs in succession, one usesfor i=1:10, plot(...), drawnow, end.The command axis(v), where v is a vector specifying the four axis limits, nowtakes immediate e�ect and redraws an existing graph with the new axis limits.Furthermore, the command has no e�ect on the next plotting command. In olderversions, axis a�ects all subsequent plots while an existing plot stays put on thescreen. In order to produce the same e�ect, an axis(v) statement in a 3.5 programshould be taken out, and a copy of the statement inserted right after each subsequentplotting command before the next axis command. Personally, I like the immediatemode of axis but I miss the convenience of not having to specify the axis limits foreach subsequent plot. Perhaps in a future version, MATLAB will have a commandfaxis(v) that freezes the axis for subsequent plots until instructed otherwise.In 3.5, axis, with no argument, toggles the axis state of auto or frozen limits.In 4.0, if hold is not on, there is no frozen-limit state, and so 4.0 has eliminatedthis usage of axis; axis now only returns the value of the current axis limits.The command hold lets subsequent plots be added to the current graph. Unlikeits predecessor in 3.5, it does not freeze the axis limits to those of the current plot.When new objects are added, the axis limits are autoscaled to accommodate theentirety of all new objects. Frozen limits can be requested by issuing the commandaxis(v) under hold. To freeze the axis limits at the current settings, one usesaxis(axis) after hold on. To resume autoscaling but still retaining hold, oneuses axis('auto').Subplots are creating as before by using the statement subplot(m,n,p), whichchooses the pth subplots from a lattice of m�n subplots in the current �gure window.In 3.5, once a graph is drawn in a subplot, the next subplot automatically becomesthe current subplot. In 4.0, this is no longer true; the chosen current subplot remainsin e�ect until a new subplot statement is issued. Thus, explicit subplot statementsmust be inserted in old programs where the choice of current subplot is decided byautocycling.A few commands, including contour and mesh, show the plot upside down7

compared to MATLAB 3.5 . One can correct these by
ipping the matrices involvedwith flipud or use the command axis ij to
ip the axis and its labels. Also, theordering of the argument list for contour has been changed from contour(z,n,x,y)to contour(x,y,z,n) and from contour(z,v,x,y) to contour(x,y,z,v).The meta and !gpp commands for saving and printing a graph are now replacedby print, which can send a graph directly to the printer or to a �le (either inpostscript or encapsulated postscript form).7. BugsBugs for new products are unavoidable. So far I have encountered three (there arecertainly a few more that I have not found yet). MathWorks has informed me thata �x is either available or will be soon.Two of the bugs occur rarely. They concern respectively the creation of a MEX-�le from a C program and the confusion of a local variable name with an existingfunction name when an eval command is used inside a function M-�le.The third concerns global variables in a function M-�le. If a global variableappears at the beginning of an arithmetic expression, it is handled properly. If itappears elsewhere in an expression, however, its value sometimes is inadvertentlytaken to be the empty matrix. Until the bug has been eliminated, if a global variablemust used in the middle of an expression, one should replace it with a temporaryvariable and insert before that statement a command which assigns the value of theglobal variable to the temporary variable.Acknowledgment. This work was supported by the Applied MathematicalSciences subprogram of the O�ce of Energy Research, U.S. Department of Energy,under Contract W-31-109-Eng-38.
8

width
length

de
ns

ity

Density of super electrons

0
1

2
3

4
5

0

0.5

1

1.5

2

2.5

3
0

0.05

0.1

0.15

0.2

0.25

9

