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AbstractWe use the globally convergent framework proposed by Kojima, Noma, and Yoshiseto construct an infeasible-interior-point algorithm for monotone nonlinear complemen-tarity problems. Superlinear convergence is attained when the solution is nondegener-ate and also when the problem is linear. Numerical experiments con�rm the e�cacyof the proposed approach.1 IntroductionWe consider the problem of �nding a vector pair (x; y) 2 IRn � IRn such thaty = f(x); (x; y) � 0; xTy = 0; (1)where f : IRn ! IRn is continuously di�erentiable in an open set containing the nonnegativeorthant of IRn (denoted by IRn+) and monotone, that is,(x0 � x)T (f(x0)� f(x)) � 0 for all x0; x 2 IRn+:Problem (1) is a monotone nonlinear complementarity problem, abbreviated as NCP. We useS to denote the solution set for (1).Interior-point algorithms for problems of this type have been considered recently byKojima, Noma, and Yoshise [4], G�uler [3], and Potra and Ye [6]. In [4], the authors consider abroad class of infeasible-interior-point algorithms for (1) and show that, assuming continuousdi�erentiability of f , at least one of three scenarios eventually occurs: The algorithm reachesthe vicinity of a solution to (1), it reaches the vicinity of a solution to a nearby problem,or it returns an error condition that indicates that no solution of (1) exists in a certainlarge nonnegative neighborhood of (0; 0). The algorithm we propose in this paper falls into�MCS Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, U.S.A.The work of this author was based on research supported by the O�ce of Scienti�c Computing, U.S. De-partment of Energy, under Contract W-31-109-Eng-38.yDepartment of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia. Thework of this author supported by the Australian Research Council.1



the class considered in [4], and so this global convergence result holds. Under additionalassumptions on f and S, our algorithm exhibits superlinear convergence.Our algorithm is based on the one described in [9] for linear complementarity problems(for which f has the form f(x) = Ax + q for some n � n positive semide�nite matrix A).It di�ers in two main respects. First, the step generated by the algorithm of [9] dependson the entire iteration history through its use of a parameter tk, which counts the numberof fast steps taken prior to iteration k. However, in order to �t the framework of [4],the mapping from one iterate to the next must be determined completely by the currentiterate (xk; yk), so this explicit dependence on tk must be eliminated. Second, it is no longerpractical to choose the step length � to be the largest scalar in (0; 1] that satis�es certaincentral path/infeasibility conditions, since to do so would require frequent use of expensiveroot-�nding techniques applied to components of f(x). Instead, we use Armijo conditions inconjunction with a backtracking line search technique, in which the initial trial step lengthis chosen judiciously.We present some notation and de�ne the algorithm in Section 2. In Section 3, we state theresults from Kojima, Noma, and Yoshise [4] and show that the algorithm of Section 2 �ts thisframework. In Section 4, we prove the rate-of-convergence results under the assumption thatthe step lengths are of the same order as the current duality gap estimate xTy=n. We showin Section 5 that this assumption holds when the minimizer is unique and nondegenerate.Computational experience is reported in Section 6.Unless otherwise speci�ed, k � k denotes the Euclidean norm of a vector. We frequentlyuse (x; y) as shorthand for the vector (xT ; yT )T 2 IR2n. Iteration indices (usually k) appearas superscripts on vectors and matrices and as subscripts on scalars. Subscripts are used toindicate components of vectors and matrices. The notation B((�x; �y); �) is used for the closedball B((�x; �y); �) = f(x; y) 2 IRn � IRn j k(x; y)� (�x; �y)k � �g:The vector (1; 1; � � � ; 1) is denoted by e, while z+ is obtained by replacing all negative com-ponents in the vector z by zero. If (x�; y�) is a solution of (1), we can partition f1; 2; : : : ; nginto two index sets B and N , wherex�i = 0 8i 2 N; y�i = 0 8i 2 B: (2)The solution is strictly complementary if x� + y� > 0.2 The AlgorithmGiven a starting point with (x0; y0) > (0; 0), the algorithm generates a sequence of iterates(xk; yk) > (0; 0), k = 1; 2; � � �. With each vector pair (x; y) > 0 we associate the followingquantities: � = xTy=n; r = y � f(x); e = (1; 1; � � � ; 1)T ;X = diag(x1; x2; � � � ; xn); Y = diag(y1; y2; � � � ; yn):2



When (x; y) = (xk; yk), we sometimes attach a subscript or superscript k to the quantities�, r, X, Y to make the dependence on (xk; yk) explicit.The main computational operation at each iteration is solution of the 2n-dimensionallinear system " Df(x) �IY X # " �x�y # = " y � f(x)�XY e+ ~��ke # ; (3)where ~� 2 [0; :5]. The steps generated by the algorithm have the formx(�) = x+ ��x; (4a)y(�) = y + ��y + g(�); (4b)where g(�) = f(x+ ��x)� f(x)� �Df(x)�x: (5)Note that y(�)� f(x(�)) = (1� �)(y � f(x)) = (1 � �)r: (6)At each iteration, the formulae (3) and (4) are used to calculate a fast step and, if it isunsuccessful, a safe step. Safe steps ensure that desirable global convergence properties hold,while fast steps ensure rapid local convergence. These two types of steps are distinguishedby di�erent choices of the centering parameter ~� in (3), di�erent choices of the initial trialstep size for the Armijo line search, and slightly di�erent acceptance criteria for the steplength. While the formal treatment and theoretical utility of fast and safe steps are quitedi�erent, the distinction between them need not be so wide in practice. The wide latitudeallowed to the user in the choice of ~� and initial trial step size for safe steps means that safesteps can be made to perform like fast steps during the later stages of the algorithm.The overall algorithm is parametrized by a variety of positive scalar constants, which wespecify now and explain later, as they arise in subsequent discussions:� 2 (0; 1); �� 2 (0; 12); �� 2 (0; 1];� 2 (0; 1); �̂ 2 (0; 1); �0 > 0;0 < min < max � 12; � 2 (0; 12); � 2 (0;min(�1=�̂ ; 1� �)):The starting point (x0; y0) is assumed to satisfykr0k � �0�0; x0i y0i � max�0: (7)The main algorithm can now be speci�ed.for k = 0; 1; 2; � � �,if �k = 0,then terminate with solution (xk; yk);3



(xk+1; yk+1) fast(xk; yk);if �k+1 > ��kthen (xk+1; yk+1) safe(xk; yk);end ifend for.Note that the fast step is taken if it produces at least a factor of � decrease in the comple-mentarity gap �. Otherwise, the algorithm reverts to the safe step. The coe�cient matrixin (3) is the same for both fast and safe steps, so only one matrix factorization is requiredper iteration.The safe step procedure is de�ned as follows.safe(x; y):choose ~� 2 [��; 12], �0 2 [��; 1];solve (3) to �nd (�x;�y);calculate ~ = min( mini=1;���;n xiyi=�; max); (8)choose � to be the �rst element in the sequence �0; ��0; �2�0; � � �,such that the following conditions are satis�ed:xi(�)yi(�) � ~ x(�)Ty(�)=n; (9a)��(1 � ~�)� � �� x(�)Ty(�)=n � ��; (9b)return (x(�); y(�)).A nonzero centering term is used, allowing us to move a nontrivial distance along the searchdirection while staying in the set de�ned byf(x; y) jxiyi � �g (10)where  = ~ (see formula (9a)). In the second acceptance condition (9b), the left inequalityensures a \su�cient decrease" in the objective function. A condition of this kind is present inmost optimization algorithms based on line searchs. The purposes of the right inequality in(9b) is to prevent improvement in the complementarity gap � from outpacing improvementin the infeasibility, measured by r. The relevant result is proved in Lemma (2.2).Fast-step calculations are a little more complicated. Since it is not permissible in theframework of [4] to maintain a counter tk of the number of fast steps taken prior to iterationk, we form an estimate ~t of its value by examining the properties of the current iterate. Theinteger ~t is in turn used to form ̂ and �̂, which are used in the acceptance criteria for thestep length �. We show in later analysis that ̂ and �̂ have essentially the same propertiesas the quantities ~ and ~� in the algorithm of [10].4



fast(x; y):solve (3) with ~� = 0 to �nd (�x;�y);calculate ~ as in (8);de�ne ̂ = min + �(~ � min);calculate ~� = �0�krk ; (11)and de�ne ~t to be the smallest positive integer such that~tYj=1(1� �j) � ~�;(with ~t = 0 if ~�k � 1);if ~t =1 then return(x; y);de�ne �̂ = �~t+1 (with �̂ = 1 if r = 0);de�ne �0 = 1� ��̂min(~ � ̂; �̂) ; (12)if �0 � 0 then return(x; y);choose � to be the �rst element in the sequence �0; ��0; �2�0; � � �,such that the following conditions are satis�ed:xi(�)yi(�) � ̂ x(�)Ty(�)=n; (13a)x(�)Ty(�) � (1� �)(1 � �̂)n�; (13b)return(x(�); y(�)).There is no centering component in this step, since ~� = 0. It is therefore necessary to relaxthe value of  in (10) from ~ to ̂ to ensure that we can move a nontrivial distance along thisdirection while staying in this set. The second acceptance criterion (13b) is again motivatedby our wish to not allow improvement in � to outpace improvement in r. There is no Armijocondition for the fast step. Instead, a \su�cient decrease" condition is enforced in the mainprogram, since the fast step is accepted only if �k+1 � ��k.We stress again that we use the subscripted notation ~k, ̂k, �̂k, ~�k, and ~tk to denote thevalues of ~, ̂, �̂, ~�, and ~t associated with the k-th iterate (xk; yk). We use �k to denote the5



value of � used by the step that is actually accepted, whether it comes from fast or safe.For the purposes of subsequent analysis, we also de�ne�k = k�1Yj=0(1� �j):From (6), we have that rk = �kr0: (14)Suppose that successful fast steps are taken at iterations k1; k2; � � �, with0 � k1 < k2 < � � � ;and that safe steps are taken at all other iterations. If we de�ne tk to be the total numberof fast steps accepted prior to iteration k, then clearlytkl = l � 1; l = 1; 2; � � � ; (15)and tk = l; k = kl + 1; � � � ; kl+1; l = 1; 2; � � � : (16)The following result relates the settings of ̂k and �̂k on each fast step to tk. Its proof israther technical and is relegated to the appendix.Lemma 2.1 If r0 6= 0, then for each iteration kl, l = 1; 2; � � �, at which a fast step is taken,we have for l = 1; 2; � � �, that the following inequalities hold.~tkl � tkl = l� 1; (17)~kl � min � �l�1(max � min); (18)~kl � ̂kl � �l�1(1� �)(max � min); (19)�̂kl � �l; (20)min(~kl � ̂kl; �̂kl) � �l(max � min): (21)If r0 = 0, the inequalities (18), (19), and (21) are satis�ed.Finally, we show that the improvement in complementarity �k=�0 cannot exceed theimprovement in feasibility krkk=kr0k, modulo a constant factor �L > 0.Lemma 2.2 If r0 6= 0, all iterates (xk; yk) satisfy�kkrkk � �L�0 ; (22)where 1 > �L = 1Yj=1(1 � �j) > e�3=2:Proof. The �rst inequality follows from (9b), (13b), and (6), with similar arguments tothose in the proof of Lemma 2.1, which we do not repeat here. The inequality �L > e�3=2 isproved in [10, Lemma 3.1]. 6



3 Global ConvergenceKojima, Noma, and Yoshise [4, Section 4.1] analyze an algorithm that would be equivalentto our algorithm if we allowed only safe steps to be taken. They show that it �ts into theframework that allows their global convergence result to hold. We show in this section thatthe use of fast steps does not disqualify our algorithm from the framework of [4], and so themain global convergence result of that paper holds.Throughout the section we assume only that f is continuously di�erentiable and mono-tone.The model algorithm of Kojima, Noma, and Yoshise consists of three fundamental com-ponents:� An admissible set 
 � (IRn++ � IRn++) [ S (where IRn++ is the strictly positive orthantin IRn) to which all iterates are con�ned. In our case,
 = n(x; y) � 0 j ky � f(x)k � (�0=�L)(xTy=n); xiyi � �(xTy=n); i = 1; � � � ; no :� A merit function  (x; y), which in our case is simply  (x; y) = xTy = n�.� An algorithmic mapping A that produces a new point (x+; y+) 2 
 from a given(x; y) 2 
. In our case, A is the fast step calculation whenever it produces a decreasefactor of at least � in �; otherwise, A is the safe-step calculation.The main result of [4] is obtained if the following condition is satis�ed. (Note that the itemsin this condition are obtained by combining Conditions 2.1 and 2.3 of [4].)Condition 1 The admissible set 
, merit function  , and algorithmic mapping A satisfythe following conditions:(i) (x0; y0) 2 
;(ii) 
 = 
++ [ 
S is a subset of (IRn++ � IRn++) [ S and is closed in (IRn � IRn), where
++ = 
 \ (IRn++ � IRn++); 
S = 
 \ S;(iii)  is a real-valued and continuous function on 
++;(iv) A is a point-to-set mapping from 
 into the collection of nonempty subsets of 
.For every (�x; �y) 2 
++, there exist positive numbers � and � such that if (x; y) 2B((�x; �y); �) \ 
 and (x+; y+) 2 A(x; y), then either(x+; y+) 2 
Sor (x+; y+) 2 
++ and  (x+; y+) �  (x; y)� �;7



(v) supfxTy j (x; y) 2 
++;  (x; y) � Tg <1 for every su�ciently large T 2 IR ;(vi) if (x+; y+) 2 A(x; y), then y+ � f(x+) = (1� �)(y � f(x));for some � 2 (0; 1].It is immediately clear from our de�nition of 
,  , and A that our algorithm satis�es Con-dition 1(i), (ii), (iii), (v), and (vi). The following two lemmas show that the remainingcondition, (iv), is also satis�ed. The �rst of these lemmas essentially shows that the require-ments (9) on the step length �k in a safe-step calculation are satis�ed for all �k su�cientlysmall. In keeping with the de�nition of the generic algorithm of [4], in which the mappingA does not depend explicitly on the iteration history, we state the result without referenceto the iteration counter k. The proof of the �rst result can be found in the appendix.Lemma 3.1 Suppose that (�x; �y) 2 
++. Then there exist �̂ > 0 and �̂ 2 (0; 1] such that forany (x; y) 2 B((�x; �y); �̂)\
, the calculations (3), (4), and (5) applied to the point (x; y) with~� 2 [��; 1=2] will yield (x(�); y(�)) satisfying the conditions (9) for all � 2 [0; �̂].Lemma 3.2 Given any (�x; �y) 2 
++, there are constants � > 0 and � > 0 such that if onestep of the algorithm is applied to any point (x; y) 2 B((�x; �y); �) [ 
, the new point (x+; y+)generated by this process has (x+)Ty+ � xTy � �. Hence Condition 1(iv) is satis�ed.Proof. It is easy to check that the result (x+; y+) of any fast or safe step satis�es theconditions for membership in 
, so we need only �nd an � > 0 that satis�es the decreasecondition.Let �̂ and �̂ be as de�ned in Lemma 3.1. We can clearly choose a � � �̂ and C2 > 0 suchthat xTy � C2 8(x; y) 2 B((�x; �y); �̂):If a safe step is calculated from the point (x; y), then from Lemma 3.1 we have that (9) aresatis�ed for all � 2 [0; �̂]. Because of the backtracking nature of the step length procedure, itis easy to see that the step length parameter � actually generated by the safe-step proceduresatis�es � � min(��̂; ��);where �� is the lower bound on the initial trial step length. Setting �(1) = (�=2)C2min(��̂; ��),we have from (9b) that(x+)Ty+ = x(�)Ty(�) � xTy � �(1� ~�)�xTy � xTy � �(1=2)C2min(��̂; ��) = xTy � �(1):The other algorithmic possibility is that a successful fast step is taken from (x; y). Becauseof the acceptance criterion associated with such a step, we have that(x+)Ty+ � �xTy = xTy � (1� �)xTy � xTy � �(2);8



where we have de�ned �(2) = (1� �)C2.The result of the lemma follows by taking � = min(�(1); �(2)).Having shown that Condition 1 holds in our case, we can state the main results, both ofwhich follow immediately from results in Kojima, Noma, and Yoshise [4]. The �rst result isessentially [4, Lemma 2.2].Theorem 3.3 The sequence (xk; yk) behaves in one of the following three ways.(A) (xk; yk) 2 S for some k <1.(B) The sequence f(xk; yk)g is bounded, and every limiting point of the sequence belongs toS \ 
.(C) The sequence f(xk; yk)g is unbounded.The second result follows immediately from [4, Theorem 2.5].Theorem 3.4 Let � be any small positive number and M be any positive number. Thenthere exists a �nite integer p such that at least one of the following three alternatives occurs.(A 0) (xp)Typ < � and �pkr0k < �.(B 0) r0 6= 0, and �pkr0k < �.(C 0) r0 6= 0, �pkr0k � �, and �p(r0)Txp � (xp)Typ � �pM .In the case (C 0), the setT (M) = f(x; y) 2 (IRn+ � IRn+) j (r0)Tx �Mgcontains no solutions of (1).4 Superlinear Local ConvergenceWe show here that if the algorithm does not terminate �nitely or diverge (that is, if alter-native (B) of Theorem 3.3 occurs), then the complementarity gap converges superlinearlyto zero, under certain assumptions. The Q-order of convergence is at least 1 + �̂ , where�̂ 2 (0; 1) is the user-de�ned parameter in the main algorithm. The analysis in this section issimilar to that of Wright [11], which deals with the case of linear f , but there are a numberof complications because of the nonlinearity of f and the simpler line search procedure.We de�ne a near-solution subset of 
++ by
++(~�) = f(x; y) 2 
++ jdist((x; y);S) � ~�g;where dist((x; y);S) 4= minfk(x�; y�)� (x; y)k j (x�; y�) 2 Sg:9



Assumption 1 The sequence generated by the algorithm is bounded and does not terminate�nitely. Moreover, there is ~� > 0 such that(i) for all (x; y) 2 
++(~�) there is a constant C3 > 0 such that a fast step (�x;�y)calculated via (3) with ~� = 0 satis�es k(�x;�y)k � C3�;(ii) Df(�) is Lipschitz continuous on the set fx j (x; y) 2 
++(~�) for some yg.We show in Wright [11] that this assumption and therefore the conclusions of this sectionhold when f is linear and S contains a strictly complementary solution (not necessarilyunique).In our �rst result, we show that the initial step length in the fast steps (12) approaches1, giving the possibility of substantial progress. The result is a consequence of Assumption1 and Theorem 3.3.Lemma 4.1 If Assumption 1 holds, then(i) �k # 0;(ii) ��̂k=�tk # 0;(iii) ��̂k=min(~k � ̂k; �̂k)! 0.Proof. Assumption 1 implies that alternative (B) of Theorem 3.3 holds, and so all limitpoints of f(xk; yk)g are in S \ 
. Since � = 0 for all (x; y) 2 S \ 
 and since f�kg is adecreasing sequence, (i) follows.For (ii), we consider the e�ect of iteration k � 1 on the value of tk. If a safe step wastaken at iteration k � 1, then we have tk = tk�1 and �k < �k�1, so certainly��̂k�tk < ��̂k�1�tk�1 :If a fast step is taken, then tk = tk�1 + 1 and �k � ��k�1. Hence, by the de�nition of � wehave ��̂k�tk � ��̂��̂k�1��tk�1 < ���̂k�1��tk�1 = ��̂k�1�tk�1 : (23)Hence, the sequence ��̂k=�tk is decreasing. To see that it decreases to zero, consider twocases. First, if only a �nite number of fast steps are taken, we have that tk is constant forall k su�ciently large, while �k # 0, so we obtain the result in this case. Second, if there arean in�nite number of fast steps, we have from (23) that ��̂k=�tk decreases by a factor of atleast ��̂=� < 1 on each such step. Hence, the subsequence corresponding to the fast stepsdecreases geometrically to zero, so by monotonicity the whole sequence converges to zero,and (ii) holds in this case also.For (iii), we note from (17) and (21) that��̂kmin(~k � ̂k; �̂k) � ��̂k�tk+2 ;10



and hence the sequence in question is majorized by a sequence that is decreasing monotoni-cally to zero, giving the desired result.If Assumption 1 holds, then we can de�ne positive constants C4 and C5 such that for thefast steps (�x;�y) we have j�xi�yij � C4�2; i = 1; � � � ; n; (24)and k�xk � C5� (25)for all k su�ciently large. De�ning �� = � + C5�0, where �0 = (x0)Ty0=n, we have under theprevailing assumption that kx+ ��xk � ��: (26)The next result show that the initial step length (12) eventually satis�es the acceptancecriteria (13a) and (13b), making reduction of the step length unnecessary.Lemma 4.2 Suppose that Assumption 1 holds. De�ne the constant C6 byC6 = 2(C4 + ��LC25): (27)Then provided that (x; y) 2 
++(~�) and C6�min(�̂; ~ � ̂) � 1;where �̂, ~, and ̂ are de�ned in fast, the conditions (13a) and (13b) are satis�ed for all� 2 "0; 1 � C6�min(�̂; ~ � ̂)# : (28)Proof. We start with the condition (13a). Using (3), (4), (5), (8), (24), (25), (26), andAssumption 1, we have for � 2 [0; 1] thatxi(�)yi(�)= (xi + ��xi)(yi + ��yi + fi(x+ ��x)� fi(x)� �Dfi(x)�x)� xiyi + �(�xiyi) + �2�xi�yi + �(xi + ��xi) Z 10 [Dfi(x+ ���x)�Dfi(x)]�x d�� ~�(1 � �)� �2C4�2 � �kx+ ��xk sup�2(0;1)kDf(x + ���x)�Df(x)kk�xk� ~�(1 � �)� �2C4�2 � �2��Lk�xk2� ~�(1 � �)� C4�2 � ��LC25�2: (29)11



Meanwhile, from the right-hand side of (13a), we havex(�)Ty(�)= (x+ ��x)T (y + ��y + f(x+ ��x)� f(x)� �Df(x)�x)= xTy(1� �) + �2�xT�y + �(x+ ��x)T Z 10 [Df(x + ���x)�Df(x)] �x d�� xTy(1� �) + �2C4n�2 + �2��Lk�xk2� xTy(1� �) + C4n�2 + ��LC25�2: (30)Combining (29) and (30), we see that (13a) will hold provided that~�(1� �) �C4�2 � ��LC25�2 � ̂�(1� �) + ̂C4�2 + (̂=n)��LC25�2: (31)By replacing ̂ by 1 in the last term and rearranging, we see that (31) holds if(~ � ̂)�(1 � �) � 2C4�2 � 2��LC25�2 � 0 () 1� � � 2(C4�+ ��LC25�)(~ � ̂) :From (27) we see that this inequality is equivalent to1 � � � C6�(~ � ̂) ; (32)and, since (32) holds for all � in the range of (28), the condition (13a) also holds for all � inthis range.Turning now to (13b), we can perform a similar calculation to (30) (but this time seekinga lower bound) to obtainx(�)Ty(�) � xTy(1� �) �C4n�2 � ��LC25�2: (33)From (27) and (33) we deduce thatx(�)Ty(�) � xTy �1 � � � C4� � ��LC25�=n� � xTy(1� �� C6�):Therefore a su�cient condition for (13b) is thatxTy(1� �� C6�) � (1 � �)(1� �̂)xTy () 1� � � C6��̂ : (34)Condition (34) is certainly satis�ed for all � in the range (28), so we obtain the desiredresult.We now give some threshold conditions on � that ensure that the initial trial step length�0 is accepted not only by the conditions (13a), (13b), but also by the outer loop, that is, ityields a reduction factor of at least � in the complementarity �.12



Lemma 4.3 Suppose that Assumption 1 holds and that (x; y) 2 
++(~�) with� � � 1C6�1=(1��̂) (35)and ��̂min(~ � ̂; �̂) � �2 : (36)Then the initial step length �0 for the fast step de�ned by (12) satis�es the acceptance criteria(13), and the fast step is accepted by the main algorithm.Proof. Note from (35) that �1��̂ � 1C6 ) ��̂ � C6�:Using (21) and (36), we have C6�min(�̂; ~ � ̂) � ��̂min(�̂; ~ � ̂) � �2 � 1: (37)We can use Lemma 4.2 and the �rst inequality in (37) to deduce that �0 lies in the range(28) and hence satis�es (13).To demonstrate acceptance of the fast step by the main algorithm, we need to show thatx(�0)Ty(�0) � �xTy:Using (30) again, we havex(�)Ty(�) � xTy(1� �) + C4(xTy)�+ ��LC25 (xTy=n)� � xTy(1� �+ C6�): (38)From this expression, we deduce that the fast step (with � = �0) is accepted by the mainalgorithm if 1 � �0 + C6� � �: (39)Note from (36) that 1 � �0 = ��̂min(~ � ̂; �̂) � �2 :Using both (35) and (36), we haveC6� � C6�1��̂��̂ � ��̂ � ��̂min(~ � ̂; �̂) � �2 :The bound (39) clearly follows from these expressions, so the fast step is accepted.We are ready for the main superlinear convergence result.13



Theorem 4.4 Suppose that Assumption 1 holds. Then the algorithm eventually always takesfast steps, and(i) the sequence f�kg converges superlinearly to zero with Q-order at least 1 + �̂ , and(ii) the sequence f�kg converges superlinearly to zero with R-order at least 1 + �̂ .Proof. Because of Lemma 4.1, the threshold conditions (35), (36) will be satis�ed for allsu�ciently large k, so fast steps will eventually always be taken.For the rate-of-convergence result, note from (12), (30), and �̂ 2 (0; 1) that there is aconstant C10 such that �k+1 � C10 �1+�̂kmin(~ � ̂; �̂) � C10 �1+�̂k�tk+2 ; (40)for all fast iterates k for k su�ciently large. Superlinear convergence of �k with Q-orderat least 1 + �̂ follows by standard arguments; see Wright [9, Theorem 6.3] and Wright andZhang [12, Theorem 5.2]. For (ii), we have from (22) that�k = krkkkr0k � �0�Lkr0k�k;so f�kg is majorized by a sequence that converges with Q-order at least 1 + �̂ , giving theresult.5 Nondegenerate ProblemsWe have already noted that Assumption 1 holds if f is linear and S contains a strictlycomplementary solution. In this section, we consider nonlinear f . We show that if (1) hasa unique, nondegenerate solution, and if there is a vector �x > 0 for which f(�x) > 0, thenAssumption 1 is satis�ed.Assumption 2 (i) The solution set S contains the single vector pair (x�; y�), where x�+y� > 0;(ii) There is a point �x 2 IRn such that (�x; f(�x)) > 0;(iii) The submatrix [Df(x�)ij ]i2B; j2B(with B de�ned in (2)) is nonsingular, and Df(�) is Lipschitz continuous in a neigh-borhood of x�.We start by showing boundedness of the iteration sequence.Lemma 5.1 Suppose that Assumption 2 holds. Then the sequence f(xk; yk)g is bounded.14



Proof. De�ne �� > 0 by �� = 12 mini=1;���;n fi(�x) > 0;and choose M > 0 large enough that (r0)Tx� < M . Then case (C0) of Theorem 3.4 cannotoccur, so there is a �nite integer K such that we have that �Kkr0k < ��. Since the sequencef�kg is decreasing, we have �kkr0k < �� for all k � K.By monotonicity of f , we have(xk � �x)T (f(xk)� f(�x)) � 0: (41)Hence, using (14) and the inequalities �x > 0, yk > 0, and (xk)Tyk < (x0)Ty0, we have(xk)T [f(�x)� f(xk)] � �xTf(�x)� �xTf(xk)) (xk)T [f(�x) + rk] � �xTf(�x) + �xTrk � �xTyk + (xk)Tyk) (xk)T [f(�x) + �kr0] � �xTf(�x) + �k�xTr0 + (x0)Ty0: (42)For k � K we have from (42) that��eTxk � (xk)T [f(�x)� ��e] � (xk)T [f(�x) + �kr0] � �xTf(�x) + ��eT �x+ (x0)Ty0:Hence, since �� > 0 and xk > 0, it follows that fxkg is bounded.Boundedness of fykg follows fromkykk = kf(xk) + rkk � kf(xk)k+ kr0k:Because of boundedness, case (C) of Theorem 3.3 does not occur, so the sequence eitherterminates �nitely or converges to (x�; y�). An estimate of the size of the step from (3) canalso be easily obtained.Lemma 5.2 Suppose that Assumption 2 holds. Then there is ~� > 0 such that for all (x; y) 2
++(~�), the step calculated from (3) satis�esk(�x;�y)k = O(�): (43)Proof. Consider the nonlinear system of equations F (x; y) = (0; 0) de�ned byF (x; y) = " f(x)� yXY e # ;and note that F (x�; y�) = (0; 0) with nonsingular JacobianDF (x�; y�) = " Df(x�) �IY � X� # :15



We can choose constants M > 0 and ~� > 0 such that(x; y) 2 B((x�; y�); ~�) =) (DF (x�; y�))�1 �M:Also, we know from the de�nition of 
 that(x; y) 2 
++ =) k(y � f(x);XY e)k = O(�):Combining these estimates with (3), we have for (x; y) 2 
++(~�) thatk(�x;�y)k �Mk(y � f(x);XY e� ~�e)k = O(�);giving the result.We can now state the main result of this section.Theorem 5.3 Suppose that Assumption 2 holds and that �nite termination of the algorithmat the solution point (x�; y�) does not occur. Then Assumption 1 is satis�ed.6 Computational ResultsThe method described here has been implemented and tested on some small NCPs from thecollection of Dirkse [2] and some larger extended linear-quadratic programming problemsfrom Zhu and Rockafellar [13]. The following parameter settings are used in our code:� = :9; �� = :01; �� = :95; � = :1; � = :5;min = 10�4; max = 10�2; �̂ = :9; � = 0:2:We modify the algorithm slightly to use a di�erent value for the reduction factor � for thefast steps. This value, �fast, is set to 0:98. The value of sigma is chosen at each safe iterationaccording to the formula � = max(��;min(�; �max));where we used �max = :25. We also avoid calculation of fast steps when they are not likelyto succeed. In our implementation, the fast step is not calculated as long as �k > 0:1; thesafe step is always taken when this condition holds.Successful termination is declared when the criteriakrkk � nmax(TOL; 10�9); �k � TOLare both satis�ed, where TOL = 10�10 in our examples.We experimented with three nonlinear problems from Dirkse [2]. We omit the details ofthese problems here, but refer the reader to [2] and the references therein for further details.Briey, the problems arenash: Nash equilibrium problem, with n = 10;16



Table 1: Performance of the algorithm on small NCP test problemsProblem nash josephy colvncpStarting Point x0 = e x0 = 10e x0 = e x0 = 10e x0 = e x0 = 10e�0 .16(+3) .21(+5) .10(+2) .73(+4) .59(+2) .28(+5)kr0k1 .30(+4) .18(+5) .12(+2) .75(+3) .65(+3) .31(+5)Iterations 43 15 9 17 17 24Solves 47 19 13 22 26 34Trial steps 702 17 10 17 26 35Fast steps 2 2 2 3 7 8josephy: Four-variable problem due to Josephy;colvncp: A convex programming problem, formulated as an NCP with n = 15.Two starting points, both of which are distant from the solution, are used for each problem.They are x0 = e; y0 = max(1; kf(x0)k1)e;and x0 = 10e; y0 = max(1; kf(x0)k1)e:Table 1 summarizes the performance of our code on these problems. The entries for �0 andkr0k1 are self-explanatory; they indicate that our starting point was distant from the solutionfor each of the problems. The number of \iterations" equals the number of evaluations ofthe Jacobian Df(�) and also the number of matrix factorizations. The number of \solves"indicates the number of times the factors were used to compute a (safe or fast) step. Thenumber of solves typically exceeds the number of iterations because both a safe step and afast step are computed on some iterations. The \trial steps" entry is the total number ofcandidate step lengths �k that were tried during the entire algorithm. This number is equalto the total number of evaluations of the function vector f .The results in the table represent good performance of the method, with the exceptionof the Nash problem from the �rst starting point. The large number of unsuccessful trialvalues of �k is due to the lack of sophistication of our Armijo line search, which wouldcertainly be replaced by a safeguarded polynomial interpolation scheme in a more practicalimplementation of the algorithm. When � is changed from :9 to a more conservative :5,the number of trial steps for this case decreases to 139, without a�ecting the number offactorizations.Our second set of test problems is quite di�erent from the �rst. They are large, mixedlinear complementarity problems, in which, given an index set I � f1; � � � ; ng and its com-plement �I = f1; � � � ; ngnI, we aim to �nd a vector pair (x; y) such thaty =Mx+ q; (xI; yI) � 0; xTI yI = 0; y�I = 0; (44)17



where the coe�cient matrix M is positive semide�nite. A few obvious modi�cations tothe algorithm are required to take account of the mixed nature of the problem, and we donot discuss these here. We obtain the problems by reformulating the stagewise extendedlinear-quadratic programming (ELQP) problems considered by Rockafellar [7] and Zhu andRockafellar [13]. The motivation for these stagewise problems comes from optimal control,and we refer the reader to the cited references for more details. Stagewise ELQPs are quitecomplicated to state. They are de�ned in terms of the quadratic functionJ(u0; � � � ; uN ; v1; � � � ; vN+1) = NXi=1 hpTi ui + qTi vi + 12uTi Piui � 12vTi Qivi � vTi Diuii+pT0 u0 + qTN+1vN+1 + 12uT0P0u0 � 12vTN+1QN+1vN+1 � N+1Xi=1 [CTi vi + ci]Txi�1;where the intermediate variables (x0; � � � ; xN) satisfyx0 = B0u0 + b0; xi = Aixi�1 +Biui + bi; i = 1; � � � ; N:The matrices Pi and Qi are all positive semide�nite. The problem is to �nd a saddle pointof J(u0; � � � ; uN ; v1; � � � ; vN+1) subject to ui 2 Ui, i = 0; � � � ; N , and vi 2 Vi, i = 1; � � � ; N +1,where each Ui and Vi is a polyhedral subset of IRni and IRmi, respectively. Associated withthe ELQP is a primal problem min(u0;���;uN )2U0�����UN f(u0; � � � ; uN);where f(u0; � � � ; uN) = max(v1;���;vN+1)2V1�����VN+1 J(u0; � � � ; uN ; v1; � � � ; vN+1);and a dual problem max(v1;���;vN+1)2V1�����VN+1 g(v1; � � � ; vN+1);where g(v1; � � � ; vN+1) = min(u0;���;uN )2U0�����UN J(u0; � � � ; uN ; v1; � � � ; vN+1):By introducing explicit representations of the polyhedral sets Ui and Vi, and introducingintermediate and slack variables, we can formulate the ELQP as a mixed monotone linearcomplementarity problem of the form (44). Moreover, by a \stagewise" ordering of thevariables, we can ensure that the coe�cient matrix M is banded, where the bandwidthis independent of N . It is the bandedness that makes the complementarity formulationpractical, since the time taken to factor and solve the linear system at each iteration ofour algorithm is O(N), rather than the O(N3) that would be obtained by a more naiveformulation. In our code, the LAPACK band solve routines DGBTRF and DGBTRS [1] areused to solve this linear system.We tested our algorithm on modi�cations of the random stagewise ELQPs that are de-scribed in Section 6 of Zhu and Rockafellar [13]. The problems are obtained by discretizing18



Table 2: Performance of the algorithm on smaller ELQP problemsni = 10, mi = 10, N = 64, dimension = 2600Data Set 1 3 5 7 9�0 .19(+4) .11(+6) .15(+4) .43(+4) .18(+4)Iterations 15 19 15 23 18Solves 20 24 18 35 24Trial steps 16 24 19 35 24Fast steps 3 4 5 3 5CPU time (sec) 26.1 33.3 25.4 41.2 31.5continuous generalized optimal control problems, where the data for the continuous prob-lems is generated randomly. The matrices Pi and Qi are chosen to be diagonal and positivesemide�nite, while the remaining matrices and vectors in the problem are dense. The poly-hedra Ui and Vi are rectangles, that is, Cartesian products of intervals on the real line. In[13], the matrices Qi and Pi are all strictly positive de�nite, but we modify them here bysetting Qi � 0. As discussed in Rockafellar [7], this choice corresponds to \hard" constraintson the primal variables ui; in fact, the primal problem above reduces to a quadratic pro-gram. The algorithms described by Rockafellar [8] and Zhu and Rockafellar [13] tend not toperform well in this important case, however. They lend themselves better to fully quadraticproblems in which Pi and Qi are all positive de�nite. On the other hand, our interior-pointalgorithm seems indi�erent to this property.The code for our algorithm does not take advantage of the linear nature of these problems,even though the Armijo line search could be replaced easily by an exact determination of themaximal �k. Our aim is to demonstrate that the algorithm that we analyze in this paper isquite e�ective for both linear and nonlinear problems.We use the code discussed in [13] to generate the data and starting points for our testproblems. Besides resetting each Qi to 0, we modify the starting points slightly to ensurestrict interiority. We use the odd-numbered data sets from the problem generator, whichaccounts for our numbering scheme for the test problems. Tables 2 and 3 contain a summaryof our results. The �rst line of each table contains the dimensions of the problem accordingto the notation above. The total dimension of the linear system to be solved at each iterationdepends not only on the total number of components in (u0; � � � ; uN) and (v1; � � � ; vN+1) butalso on the number of intermediate and slack variables. Some components of the linearsystem can be eliminated conveniently, leaving a subproblem whose size is the \dimension"indicated in Tables 2 and 3. The numbers of iterations, solves, and trial step lengths are asin Table 1. The last row contains CPU times on a Sun SPARCstation IPX.The results indicate good performance, with between 15 and 28 iterations performed foreach problem. These results could have been improved by �ner tuning of the user-de�nedparameters, but they substantiate our claim that a single set of parameters can give goodperformance on very di�erent problems (large and small, linear and nonlinear). Note that theaverage number of iterations is slightly higher in Table 3, reecting the oft-made observation19



Table 3: Performance of the algorithm on larger ELQP problemsni = 20, mi = 20, N = 128, dimension = 10320Data Set 1 3 5 7 9�0 .28(+4) .11(+6) .14(+5) .18(+5) .10(+5)Iterations 21 26 20 28 22Solves 29 38 25 45 32Trial steps 34 48 31 52 36Fast steps 6 4 6 1 4CPU time (sec) 435. 548. 406. 592. 452.that this number grows slowly with problem size in most interior-point methods. Note, too,that a number of fast steps were taken at the tail of the iteration sequence, and rapid localconvergence was observed.7 ConclusionsThe local convergence results represent a natural extension of those presented in [11] for thecase of linear f . In this case, we require only existence of a strictly complementary solution fork(�x;�y)k = O(�) to hold. Monteiro and Wright [5] show that the strict complementarityassumption is necessary for superlinear convergence of methods that behave like Newton'smethod near the solution. There is a considerable gap between the weak assumption of thelinear case and the stronger assumptions of Section 5 for nonlinear f , and current researchis aimed at bridging this gap as far as possible.Our results can be extended easily to the case of H�older continuous Df(�), that is,kDf(x1)�Df(x2)k � Lkx1 � x2k� for some � 2 (0; 1] and x1, x2 in a neighborhood of x�.When � > (p5 � 1)=2, we can show local convergence with Q-order 1 + �̂ , provided that �̂lies in the range (0; � 2+ � � 1). The algorithm can be modi�ed to allow reduction of �̂ afterfailed fast iterations, so that that the inclusion �̂ 2 (0; � 2+ � � 1), and therefore superlinearconvergence, eventually occurs. Knowledge of � is not necessary. In the case of Df(�) merelycontinuous near x�, we still have global convergence, from the analysis of Section 3.AcknowledgmentsWe are grateful to Ciyou Zhu for numerous discussions of ELQPs and for providing the codefor the algorithm described in [13]. 20



AppendixProof of Lemma 2.1. We deal only with the case of r0 6= 0, since the proofs for the case ofr0 = 0 are simple specializations.We prove (17) and (18) by induction on l. Taking l = 1, we know that safe steps aretaken for k = 0; 1; � � � ; k1 � 1. Therefore, from (9b), we have�k1=�0 � k1�1Yj=1 (1 � �j) = �k1 ;while, from (14), rk1 = �k1r0:Therefore, by (11), we have ~�k1 � 1 and ~tk1 = 0 = tk1, yielding (17). For (18), we note thatby choice of (x0; y0) and (8), we have ~0 = max:Since safe steps are taken for k = 0; 1; � � � ; k1 � 1, we have by repeated application of (9a)and (8) that max = ~0 = ~1 = � � � = ~k1 :Hence, ~k1 � min = max � min;so (18) is satis�ed for l = 1.We now assume that (17) and (18) are satis�ed for k1; k2; � � � ; kl and prove that theycontinue to be true at kl+1. From (11) and (14), we have that�kl=�0 � �kl ~�kl � �kl ~tklYj=1(1� �j):Applying (13b) to the fast step that is taken at iteration kl, we have that�kl+1=�0 � (1 � �kl)(1 � �̂kl)(�kl=�0)� (1 � �kl)(1 � �̂kl)�kl ~�kl= �kl+1(1 � �̂kl) ~�kl= �kl+1(1 � �~tkl+1) ~�kl� �kl+1 ~tkl+1Yj=1 (1� �j):Since safe steps are taken at iterations kl + 1; � � � ; kl+1 � 1, we have from (9b) that the ratio(�k=�k) is nondecreasing for k = kl + 1; � � � ; kl+1. In particular,�kl+1=�0 � �kl+1 ~tkl+1Yj=1 (1� �j);21



and therefore ~�kl+1 � ~tkl+1Yj=1 (1 � �j): (45)From (45), the de�nition of ~tkl+1 , and the inductive hypothesis for (17), we have~tkl+1 � ~tkl + 1 � tkl + 1 = l = tkl+1;so (17) continues to hold at kl+1.Combining (13a) at k = kl with (8) at k = kl + 1, we have that ~kl+1 � ̂kl . In fact, asobserved earlier, ~k is nondecreasing over the safe iterations k = kl + 1; � � � ; kl+1 � 1, and so~kl+1 � � � � � ~kl+1 � ̂kl:Hence, by using the de�nition of ̂k and the inductive hypothesis for (18), we have that~kl+1 � min � ̂kl � min = �(~kl � min) � �l(max � min):Therefore (18) continues to hold at iteration kl+1. We conclude that (17) and (18) hold forall l = 1; 2; � � �.To prove (19), we note by (18) and the de�nition of ̂kl that~kl � ̂kl = ~kl � [min + �(~kl � min)] = (1� �)(~kl � min) � (1 � �)�l�1(max � min);as required.For (20), we need only note that�̂kl = �~tkl+1 � �(l�1)+1 = �l:The �nal inequality (21) follows immediately from (19) and (20), if we note that 1�� � �.Proof of Lemma 3.1. De�nê� = 12 mini=1;���;n (min(�xi; �yi)) > 0;and choose positive constants C3 and C2 such thatxTy � C2 and k(x; y)k � C3 for all (x; y) 2 B((�x; �y); �̂):Note that the coe�cient matrix " Df(x) �IY X #is nonsingular at (�x; �y) and continuous in an open set containing B((�x; �y); �̂) � (IRn+ � IRn+).The right-hand side of (3) is also continuous with respect to both (x; y) and ~�. Thereforewe can de�ne a constant C1 > 0 such thatk(�x;�y)k � C122



for all (x; y) 2 B((�x; �y); �̂) and ~� 2 [��; 1=2].Taking � 2 [0; 1] and (x; y) 2 B((�x; �y); �̂), we havex(�)Ty(�)= (x+ ��x)T (y + ��y + f(x + ��x)� f(x)� �Df(x)�x)= xTy � �(1 � ~�)xTy + �2�xT�y + � Z 10 (x+ ��x)T [Df(x+ ���x)�Df(x)]�x d�� xTy[1� �(1 � ~�)] + �2C21 + �C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k: (46)Hence the left inequality in (9b) is certainly satis�ed if�2C21 + �C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k � (1 � �)�(1 � ~�)xTy: (47)By continuity of Df , we can make the following assertion: for each (x; y) 2 B((�x; �y); �̂),there is �1(x) > 0 such thatkDf(x + d)�Df(x)k � (1 � �)C24C1(C3 + C1)for all d with kdk � �1(x). Since B((�x; �y); �̂) is compact, we have that��1 4= inf(x;y)2B((�x;�y);�̂)\
 �1(x) > 0:Therefore, setting �̂(1) = min (1� �)C24C21 ; ��1C1! ;we have for (x; y) 2 B((�x; �y); �̂), ~� 2 [��; 1=2], and � 2 [0; �̂(1)] that�2C21 + �C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k� ��̂(1)C21 + �C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k� �(1 � �)(C2=4) + �C1(C3 + C1)(1 � �)(C2=4)=(C1(C3 + C1))� (1� �)�(C2=2)� (1� �)�(1 � ~�)xTy: (48)Hence (47) is satis�ed, yielding the left inequality in (9b).We now show that (9a) holds. For any i = 1; � � � ; n, (x; y) 2 B((�x; �y); �̂), and � 2 [0; �̂(1)],we havexi(�)yi(�) 23



= (xi + ��xi)(yi + ��yi + fi(x+ ��x)� fi(x)� �Dfi(x)�x)� xiyi + �[�xiyi + ~�(xTy)=n]� �2C21 � �C1(C3 + C1) sup�2(0;1)kDfi(x+ ���x)�Dfi(x)k� xiyi(1 � �) + ~��(xTy)=n� �2C21 � �C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k� ~(xTy=n)(1� �) + ~��(xTy=n)� �2C21 (49)��C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k:Meanwhile, we have as in (46) thatx(�)Ty(�) � xTy[1� �(1� ~�)] + �2C21 + �C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k:By combining the last two expressions, we �nd that (9a) will be satis�ed if(xTy=n)�~�(1 � ~)� 2�2C21 � 2�C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k � 0;which in turn is true if(C2=n)��(1� max)� 2�C21 � 2C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k � 0: (50)Just as we chose ��1 above, we can �nd ��2 such thatkDf(x + d)�Df(x)k � (C2=n)��(1� max)4C1(C3 + C1)for all (x; y) 2 B((�x; �y); �̂) and kdk � ��2. Hence, if we choose�̂(2) = min �̂(1); ��2C1 ; (C2=n)��(1 � 2�)4C21 ! ;a calculation similar to (48) shows that (50) (and hence (9a)) is satis�ed for all � 2 [0; �̂(2)]and (x; y) 2 B((�x; �y); �̂).For the remaining inequality, we have as in (46) thatx(�)Ty(�) � xTy[1� �(1 � ~�)]� �2C21 � �C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k:Therefore, the right inequality in (9b) holds if�~�xTy � �2C21 � �C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k � 0;which in turn is satis�ed if��C2 � �C21 �C1(C3 + C1) sup�2(0;1)kDf(x + ���x)�Df(x)k � 0: (51)24
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