
FORTRAN M AS A LANGUAGE FOR BUILDINGEARTH SYSTEM MODELS�Ian FosterMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 604391. IntroductionFortran M is a small set of extensions to Fortran 77 that supports amodular or object-oriented approach to the development of parallel programs(Foster and Chandy, 1992). In this paper, I discuss the use of Fortran Mas a tool for building earth system models on massively parallel computers. Ihypothesize that the use of FortranM has software engineering advantagesand outline experiments that we are conducting to investigate this hypothe-sis.2. Earth System ModelsAn earth system model is a computer code designed to simulate the in-terrelated processes that determine the earth's weather and climate, such asatmospheric circulation, atmospheric physics, atmospheric chemistry, oceaniccirculation, and biosphere. A scientist might use a diagram similar to Fig-ure 1 to explain an earth system model. In this �gure, boxes representprocesses and arrows represent linkages between processes. This descriptionis easy to follow. It hides unnecessary detail and makes the interfaces be-tween components clear. These desirable characteristics, which have obviousvalue to the scientist, are also of value to the software engineer. In fact,they constitute the central attributes of modular or object-oriented design.Unfortunately, this natural modularity is normally lost when an earth sys-tem model is implemented as a computer program. On massively parallelcomputers, extensive reengineering can be required to combine componentmodels or to experiment with alternative mappings of computation to pro-cessors. The result is that it is di�cult both to implement these models and�This research was supported by the Atmospheric and Climate Research Division of theO�ce of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

to adapt them to changing requirements.
∆q

T
surf

∆s

T∆q∆T

T q

T∆?Figure 1: Simpli�ed schematic description of an earth system model. Boxes repre-sent component models and arrows represent data transfers between components.3. Fortran MFortran M is a small set of extensions to Fortran 77 that supports amodular or object-oriented approach to the design of message-passing par-allel programs. The following features of this language appear useful whendeveloping earth system models.Modularity. Programs are constructed by using explicitly-declared com-munication channels to plug together program modules called processes. Aprocess can encapsulate common data (called PROCESS COMMON to emphasizethat it is local to the process), subprocesses, and internal communication.Processes do not share data and can communicate only by sending and re-ceiving data on channels. Access to channels is provided via ports that arepassed to processes as arguments. Hence, a Fortran M implementationof an earth system model can preserve the modularity that is inherent inits scienti�c speci�cation. Each component can be encapsulated as a mod-ule (Figure 2) and alternative implementations can be substituted withoutmodi�cations to other program components.Safety. Operations on channels are restricted so as to guarantee determin-istic execution, even when programs execute on many processors. Channelsare typed, so a compiler can check for correct usage. Hence, the risk ofincorrect (and particularly time-dependent) errors is reduced.Architecture Independence. The mapping of processes to processors canbe speci�ed with respect to a virtual computer with size and shape di�erent

SEQUENTIAL OR
 PARALLEL PROGRAMFigure 2: A process and its interface. In this example, four in-ports and two out-ports (represented as arrows) de�ne the interface, while internal implementationdetails are hidden. These internal details can include subprocesses and internalcommunications.from that of the target computer. Mapping is speci�ed by annotations thatin
uence performance but not correctness. Hence, the programmer neednot change component programs in order to experiment with alternativecon�gurations of processors and computers.4. Building ModelsThe FortranM implementation of a simpli�ed ocean/atmosphere modelis presented for illustrative purposes. In this model, two components executeconcurrently and exchange information periodically: An ocean model pro-vides an atmosphere model with an array of sea surface temperatures (SST),and an atmosphere model provides an ocean model with two arrays con-taining components of horizontal momentum, U and V. The two models areassumed to utilize the same grid system, numerical units, and time steps;hence, data can be transferred between them without additional computa-tion. Normally, two additional components would be required to convertdata between the representations used by the two models.4.1 Sequential ModelsThe Fortran M program implements both models as processes, andde�nes an interface that allows for the exchange of SST, U, and V values.Initially, the two models are assumed to be sequential programs; hence, theinterface can consist of one channel in each direction. For example, theatmospheric model interface consists of two ports, sst i and uv o, and isde�ned as follows. Notice the type declarations for the ports: The in-portsst i can be used to receive arrays of real values representing sea surfacetemperatures, while the out-port uv o can be used to send two such arraysrepresenting U and V values.

process atmosphere(sst_i,uv_o)parameter(NLAT=128,NLON=256)inport (real x(NLAT,NLON)) sst_ioutport (real x(NLAT,NLON), real y(NLAT,NLON)) uv_oThe following code shows the atmosphere model process in its entirety. Ituses SEND and RECEIVE statements to repeatedly send U and V data on theport uv o, receive SST data from the port sst i, and call the atmospheremodel proper. A total of TMAX messages are sent and received. Note the useof process common to hold the sst, u, and v arrays.process atmosphere(sst i,uv o)parameter(NLAT=128, NLON=256, TMAX=100)C The ports sst i and uv o are the external interface.inport (real x(NLAT,NLON)) sst ioutport (real x(NLAT,NLON), real y(NLAT,NLON)) uv oC Process common variables.process common /state/ sst, u, vreal sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)call atm initC Repeat TMAX times: send U & V, recv SST, update U & V.do 10 i=1,TMAXsend(uv o) u,vreceive(sst i) sstcall atm compute10 continueendThe ocean model might be as follows. This repeatedly sends SST dataon the out-port sst o and receives U and V data on the in-port uv i.process ocean(uv i,sst o)parameter(NLAT=128, NLON=256, TMAX=100)C The ports uv i and sst o are the external interface.inport (real x(NLAT,NLON), real y(NLAT,NLON)) uv ioutport (real x(NLAT,NLON)) sst oC Process common variables.process common /state/ sst, u, vreal sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)call ocn init

C Repeat TMAX times: send SST, recv U & V, compute SST.do 10 i=1,TMAXsend(sst o) sstreceive(uv i) u,vcall ocn compute10 continueendThe implementation of the ocean/atmosphere model is completed by amain program that invokes the two processes in a parallel block (delineatedby PROCESSES and ENDPROCESSES statements) and creates two channels, onefor communicating SST values and the other for communicating U and Vvalues. This structure is illustrated in Figure 3 and is created by the followingprogram. The program creates two channels, spawns the atmosphere andocean processes, and waits until these processes terminate.program modelparameter(NLAT=128, NLON=256)C Local port variables.inport (real x(NLAT,NLON)) sstioutport (real x(NLAT,NLON)) sstoinport (real x(NLAT,NLON), real y(NLAT,NLON)) uvioutport (real x(NLAT,NLON), real y(NLAT,NLON)) uvoC Create channels and de�ne ports.channel(out=ssto,in=ssti)channel(out=uvo,in=uvi)C Call two models with ports as arguments.processescall atmosphere(ssti,uvo)call ocean(uvi,ssto)endprocessesendThe values of the four port variables declared in this code fragment areinitially unde�ned. The CHANNEL statements each create a channel and de�netheir two port variable arguments to be references to this channel. These portvariables are passed as arguments to the concurrently executing atmosphereand ocean processes, establishing the connections shown in Figure 3.We now have a complete parallel program which can be executed on asequential or parallel computer. This program can be executed on one pro-cessor or two without any change to its component modules: these di�erent

A T M O C N

channel(ssti, ssto)

channel(uvi, uvo)
uviuvo

ssti sstoFigure 3: Ocean/atmosphere model. Two concurrently executing processes areconnected by two single-producer, single-consumer channels.behaviors are speci�ed by annotations to the process calls in the main pro-gram. The execution order of the concurrently executing atmosphere andocean processes is determined only by availability of messages on channels.The computed result does not depend on the order in which the processesexecute. That is, the program is deterministic.4.2 Parallel ModelsThe example in the preceding section shows how Fortran M is usedto combine sequential models. Similar techniques can be used to combineparallel models. A parallel model implemented in FortranM creates manyprocesses (typically one per processor); these execute in parallel and exchangedata by channels that are local to the parallel model. When de�ning an in-terface between two such models, it is not in general su�cient to utilize asingle channel as this is likely to constitute a bottleneck. Instead, we de�nea parallel interface consisting of an array of channels. For example, assumethat we have parallel versions of our ocean and atmosphere models, eachdesigned to execute on NP�NP processors. We decompose two channels usedto connect the sequential programs to obtain two arrays of NP�NP channels.While a channel in the sequential program was used to communicate arraysof size NLAT�NLON, each channel in the parallel program is used to commu-nicate arrays of size (NLAT/NP)�(NLON/NP). The code used to combine thetwo parallel models is as follows.program modelparameter(NLAT=128,NLON=256,NP=16,PLON=NLON/NP,PLAT=NLAT/NP)inport (real x(PLAT,PLON)) SstI(NP,NP)outport (real x(PLAT,PLON)) SstO(NP,NP)inport (real x(PLAT,PLON), real y(PLAT,PLON)) UvI(NP,NP)outport (real x(PLAT,PLON), real y(PLAT,PLON)) UvO(NP,NP)

...C Create NP�NP channels.do 10 i=1,NPdo 11 j=1,NPchannel(out=SstO(i,j),in=SstI(i,j))channel(out=UvO(i,j),in=UvI(i,j))11 continue10 continue...C Pass port arrays to parallel models.processescall par atmosphere(SstI,UvO)call par ocean(SstO,UvI)endprocessesend5. DiscussionAs the simple examples presented in this paper show, the use of For-tran M allows earth system models to be developed in a modular fashion.I hypothesize that this modularity can reduce software engineering costs inat least four ways. First, existing programs can be integrated into earthsystem models without the need for extensive reengineering. Second, alter-native implementations of components can be substituted without changesto other parts of a system. Third, reusable modules can be de�ned thatimplement such commonly-used functions as interpolation and parallel I/O.Fourth, models can be adapted to run on di�erent computers or to use di�er-ent processor con�gurations, without changes to the component programs.These hypothetical bene�ts must be con�rmed by empirical investigationsin larger systems. These investigations need to focus on issues of compati-bility, performance, and modularity. I discuss these issues brie
y here andoutline how we are addressing them.Compatibility. Development of an earth system model would be easy ifall parallel codes that were to be integrated into an earth system model werewritten in Fortran M. However, in practice we must be able to deal withcodes developed with other technologies. In the short term, these will beprimarily message-passing libraries such as p4/PARMACS, PICL, Express,and PVM. In the medium term, High Performance Fortran is also likelyto be important. As it will not in general be feasible to rewrite message-

passing or HPF programs in Fortran M, we plan to develop compatabilitylibraries that allow message-passing and HPF programs to be integrated intoFortran M programs in a seamless fashion.Performance. A program developed in the modular fashion advocated inthis paper may incur overheads that would not be incurred if it were imple-mented as a monolithic program. Primary sources of overhead are additionalcopying due to the use of channels for data transfer between processes andprocess switching when multiple processes execute on the same processor.These costs must be carefully evaluated and weighed against the bene�ts ofmodular design, ease of modi�cation, ease of reuse, and portability. We planto conduct experiments to quantify these costs.Modularity. The modular programming style encouraged by FortranMis expected to allow the development of generic, reusable modules for suchcommonly used functions as interpolation between grid systems and parallelI/O. However, it is possible that the complexities of di�erent grid systems,data representations, etc., will frustrate such attempts. In order to investi-gate this issue, we are developing prototype parallel versions of generic datatransfer modules developed at GFDL by Ron Pacanowski and his colleagues.We have recently completed implementation of a prototype Fortran Mcompiler (send electronic mail to fortran-m@mcs.anl.gov for details) whichwe plan to use for these investigations.AcknowledgmentsFortran M is joint work with Mani Chandy of the California Instituteof Technology and is supported in part by the National Science Foundation'sCenter for Research in Parallel Computation, under Contract CCR-8809615.Robert Olson has made major contributions to the development of the com-piler. I am grateful to Ron Pacanowski of GFDL for discussions on modularconstruction of climate models.ReferencesI. Foster and K. M. Chandy, 1992: Fortran M: A Language for ModularParallel Programming, Preprint MCS-P327-0992, Argonne NationalLaboratory, Argonne, Ill.

