
Preprint MCS-P346-0193, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., October 1993.A Deterministic Notation for Cooperating ProcessesK. Mani Chandy1California Institute of Technology, 256-80Pasadena, California 91125mani@vlsi.cs.caltech.eduIan T. Foster2Mathematics and Computer Science DivisionArgonne National Laboratory9700 South Cass AvenueArgonne, Illinois 60439itf@mcs.anl.govAbstractThis paper proposes extensions of sequential programming languages for parallelprogramming that have the following features:1. Dynamic Structures The process structure is dynamic: Processes and variablescan be created and deleted.2. Paradigm Integration The programming notation allows shared memory andmessage passing.3. Determinism Demonstrating that a program is deterministic | all executionswith the same input produce the same output | is straightforward. A programcan be written so that the compiler can verify that the program is deterministic.Nondeterministic constructs can be introduced in a sequence of re�nement stepsto obtain greater e�ciency if required.The ideas have been incorporated in an extension of Fortran, but the underlying se-quential imperative language is not central to the ideas described here.Keywords: parallel programming languages, determinism, functional pro-gramming, multicomputers, debugging1 IntroductionThis paper describes a concurrent language in which the process/communication structurecan be dynamic, and in which programs can be written in a way that allows the compilerand run-time system to verify that they are deterministic. The ideas in this paper are1Supported by NSF Center for Research in Parallel Computation Contract CCR-88096152Supported in part by NSF Center for Research in Parallel Computation Contract CCR-8809615 and bythe O�ce of Scienti�c Computing, U.S. Dept. of Energy, under DOE Contract W-31-109-Eng-381

derived from the Church-Rosser theorem about systems that obey the diamond property[6, 18] and from the concept of capabilities in operating systems [8, 7]. The ideas havebeen incorporated in an extension of Fortran because many people developing scienti�capplications use Fortran; we could, however, have chosen some other sequential imperativelanguage.1.1 Dynamic Process StructuresParallel programs with dynamic process structures have computations in which processescan be created and terminate execution; communication channels can be created, recon-nected, and deleted; and shared variables can be created and deleted. Programs for reactivesystems, programs that use sophisticated load-balancing schemes, and programs for irreg-ular scienti�c problems often have dynamic process structures. In this paper we suggestextensions to sequential notations for expressing parallel programs with dynamic processstructures. The extensions can also be used for computations with static process structuresin which there are �xed sets of processes, channels, and shared variables.1.2 Paradigm IntegrationThe notation integrates message-passing and shared-memory models thus allowing for theuse of heterogeneous networks of computers, where some nodes of the network can beshared-memory multiprocessors.1.3 DeterminismSmall changes in the value of a variable can cause an unstable numeric computation todiverge. Programmers are required to demonstrate that outputs of such programs arefunctions of their inputs, though nondeterminism in interleaved execution is acceptable.The notation presented here allows programs to be written in a way that allows the compilerand run-time system to verify that programs are deterministic.Reasoning about deterministic programs is often simpler than reasoning about nondeter-ministic programs. Also, compiler support for verifying determinacy is extremely helpfulin debugging because debugging nondeterministic programs is even more intractable thandebugging deterministic programs.A deterministic program will produce exactly the same results on a single workstation ora multicomputer; this feature allows a programmer to develop a program on a workstationand later execute the program on a network of workstations or parallel computer, knowingthat the output (for a given input) will remain unchanged.All executions of a program with the same input produce the same output. In particular,all executions of a program with the same input must produce the same error �le to aidin debugging. A runtime error causes an error message to be appended to the error �le,2

and the statement that causes the error remains suspended while other error-free processescontinue execution. The error �le is ordered by the process ids in which the errors occur,and the scheme employed to determine process ids guarantees that a process gets the sameid in all executions of a program with the same input.1.4 ContributionThe contribution of this paper is to incorporate well-known ideas about the Church-Rossertheorem, capabilities, channels, distributed shared memory and single-assignment variablesinto a widely-used sequential language to get a parallel notation that supports dynamicprocess structures, paradigm integration, and compiler veri�cation of determinism, andthat runs on multicomputer networks or weakly-coherent shared-memory systems. A greatdeal of work has been carried out on functional (equational and applicative) languages thatguarantee that the output of a program is a function of its input. See the descriptions ofId, Haskell, Sisal and Scheme in [9], for example. The theory of such languages is based, inpart, on the Church-Rosser theorem [18].A great deal of work has also been carried out on capabilities [8, 15, 14], message-passingusing channels [13], shared-memory programming models on distributed-memory machines[16], and single-assignment variables [4, 11, 5].Our contribution is to integrate the earlier work into a simple extension of Fortran 77 toallow developers of parallel scienti�c applications to bene�t from the earlier work whileusing languages and tools with which they are familiar.2 The Central IdeaFirst, we review the central idea of the diamond property and the Church-Rosser theorem[6, 18], and later use the idea to develop constructs for a parallel extension of Fortran 77.2.1 TheoryLet G be a labeled directed graph, where each edge of the graph has a single label, and foreach vertex v and each label l there is at most one edge directed from v with label l. A pathin the graph is de�ned by the initial vertex at which the path originates, and a sequenceof labels; the path is traversed by traversing the edge from the initial vertex with the �rstlabel in the sequence, then the edge with the second label, then the edge with the thirdlabel, and so on.A terminal vertex is a vertex without outgoing edges. A maximal path is either a �nite paththat ends in a terminal vertex or an in�nite path (i.e., a path that has an in�nite numberof edges). 3

The Diamond Property We restrict attention to graphs G with the following diamondproperty. If there are edges from a vertex v with distinct labels l and r, then there arepaths l; r and r; l from v, and both paths end at the same vertex; see �gure 1.
l r

r l

v

u t

wFigure 1: The Diamond PropertyTheorem Either all maximal paths from a vertex v are �nite and end in the same terminalvertex, or all maximal paths from v are in�nite.Proof: A proof, see [6, 18], is as follows. Let P be a �nite path from v that ends in aterminal state w, and let R be any maximal path from v. Let P have n edges. We constructa sequence of paths Qk , n � k � 0, from v where (i) Qk ends in state w, all k, and (ii) the�rst k labels of Qk and R are the same.The construction is by induction on k with base case k = 0 and Q0 = P . For k > 0,obtain Qk by permuting Qk�1 as follows. If the k-th labels of Qk and R are the same,then Qk = Qk�1. Otherwise, from the diamond property and since Qk�1 ends in a terminalvertex, the k-th label of R appears after the k-th position in Qk�1; move the �rst occurrenceof this label after the k-th position to the k-th position, leaving the order of all other labelsunchanged. It follows from the diamond property, that this permutation keeps the �nalstate unchanged. Hence Qk also ends in state w.It follows from the construction, that Qn ends in state w, and the �rst n labels of Q and Rare the same. Since, there are no edges from w it follows that there are only n labels in Rand therefore R ends in state w.2.2 ApplicationA vertex represents a state in a parallel program, and an edge labeled r represents a statetransition resulting from process r taking a step. If there is an edge labeled r from a vertex4

v then process r is executable in state v, and if there is no edge labeled r from vertex vthen process r is suspended in state v. There is at most one edge labeled r from a vertexv because processes are deterministic, and a process does not choose nondeterministicallyfrom two or more transitions.In terms of state transitions, the diamond property is as follows. If distinct processes l andr are both executable in a state v, and a step by process l takes the program from statev to a state u, and a step by process r takes the program from state v to a state t, thenprocess r is executable in state u and process l is executable in state t, and the state thatobtains after process r takes a step from state u is the same as the state that obtains afterprocess l takes a step from state t.Next, we explore mechanisms by which processes can communicate so that parallel programshave the diamond property, thus guaranteeing that the �nal state is independent of theinterleaving of process computations.Single-Reader, Single-Writer Channels The �rst communication mechanism we ex-plore is message passing on channels. Associated with each channel are two tokens: a sendertoken and a receiver token. An invariant of the program is: for each channel there exists atmost one one sender token and at most one receiver token.A process can send a message on a channel if and only if it holds the sender token for thatchannel. Likewise, a process can receive a message from a channel if and only if it holdsthe receiver token for the channel. Thus the sender and receiver tokens are capabilities thatconfer certain rights to the holder of the tokens [20].The send command is nonblocking, and the receive command is blocking. The state of achannel is a queue of messages. Sending a message m on a channel appends m to the tail ofthe queue of messages in the channel. Receiving a message from a channel into a variable vwaits until the queue of messages in the channel is nonempty, makes v become the messageat the head of the queue, and then deletes the message from the queue.Processes can send sender tokens and receiver tokens to other processes. Therefore di�er-ent processes can send or receive messages on the same channel at di�erent points in acomputation.The proof that parallel programs that use this (and only this) communication mechanismhave the diamond property is straightforward. See �gure 2.A bounded-bu�er channel in which the sender is blocked while the channel is full (and withat most one sender token and at most one receiver token) also has the diamond property.Deterministic Shared Variables Next we describe constructs that allow concurrentprocesses to share variables so that parallel programs have the diamond property.Associated with each shared variable is a number of identical tokens. A process can writea shared variable at a point in a computation only if it holds all tokens associated with the5

v

u t

w

send message w on
channel c

receive from channel c
into variable v

into variable v

send message w on

receive from channel c

channel c

channel c is nonempty

Figure 2: Channels with the Diamond Propertyvariable, at that point. A process can read a shared variable at a point in a computationonly if it holds at least one token associated with the variable, at that point. If a process pcan write a shared variable v at a point in the computation then no other process can reador write v at that point because p holds all the tokens associated with v.Processes can send tokens to each other. Therefore, at di�erent points in a computation,di�erent processes can read or write a shared variable.A process can modify the number of tokens associated with a shared variable at points inthe computation at which the process holds all the tokens associated with the variable.Programs in which processes share deterministic shared variables (and do not share anyother type of variable) satisfy the diamond property because concurrent reads can occur inarbitrary order, and no operation on a shared variable can occur concurrently with a writeto the variable.Deterministic Single-Assignment Variables A useful variant of the deterministicshared variable is the deterministic single-assignment variable (DSAV). A DSAV di�ersfrom the deterministic shared variable described in the previous section in that a DSAV isassigned a value at most once in a computation, and execution of a process reading a DSAVis suspended while the DSAV is unassigned.Associated with each DSAV is at most one writer token. A process can assign a value to aDSAV only if it holds the writer token associated with the DSAV. When a value is assignedto a DSAV, its writer token disappears; thus a DSAV can be assigned a value at most oncein a computation. 6

A pointer to a DSAV can be used to read, but not write, a DSAV. Any process can acquirea pointer to a DSAV. Execution of a read of a DSAV is suspended while the DSAV isunassigned. The writer token associated with a DSAV can be sent from process to process.Likewise, pointers can be sent between processes.The proof that the DSAV has the diamond property is straightforward.
(reads of v are suspended)

assign v to yassign v to x

assign v to xassign v to y

assign value to v

v is assigned

v is unassigned

Figure 3: Deterministic Single-Assignment VariablesThough there are other communication protocols that satisfy the diamond property, thosedescribed here appear to be adequate for many applications. Next, we describe the com-munication mechanisms in detail in the context of Fortran M [10]. The ideas described hereare, however, language-independent.3 ProcessesThe state of a program is de�ned by a four-tuple: (i) a set P of processes, (ii) a set C ofshared variables where a shared variable is a channel, a deterministic shared variable or adeterministic single-assignment variable, (iii) the state of each process in P and (iv) thestate of each variable in C.A process declaration is syntactically identical to a subroutine except that (i) the keywordprocess replaces the keyword subroutine, (ii) the arguments of a process can be tokens,(iii) all parameters other than tokens of processes are passed by value, and (iv) the bodyof a process can include statements and data types, described later, that are not in thesequential language. 7

Processes are created by executing a parallel block which has the formPROCESSESlist of process callsENDPROCESSESwhere list of process calls is a list of process calls with end of line as the separator betweensuccessive elements of the list, where a process call has the same syntax as a subroutine callexcept that the keyword PROCESSCALL is used in place of the keyword CALL. An example ofa parallel block is:PROCESSESPROCESSCALL P(V, W)PROCESSCALL Q(A, B, C): : :ENDPROCESSESwhere P, and Q, are process names, and V, W are the arguments of P, and A, B, C are thearguments of Q.The execution of a parallel block in a process t causes all the processes in its list of processcalls to be created and the states of the newly created processes are their initial states. Theprocesses created within the parallel block in a process t are called the children of process t.Execution of process t is suspended while any of its children are in execution, and executionof t is resumed when all its children terminate. A computation of a parallel block is a fairinterleaving of the computations of its constituent processes.An argument of a process can be a variable passed by value or it can be a token. A runtimeerror occurs if the same token is passed to more than one child process in a parallel block.The initial value of an uninitialized local variable is a speci�ed default value to ensure thatinitial states are deterministic.A Fortran M program is initiated as a single process executing the main program; theprogram terminates when this process terminates execution.4 ChannelsTypes A type in the extended language is a type in the underlying sequential language oris of the form outport(T) or inport(T), where T is a type in the extended language. Thevalue of a variable of type outport(T) is either a special symbol NULL or a sender tokenfor a channel of type T. Likewise, the value of a variable of type inport(T) is NULL or areceiver token for a channel of type T.Channels are typed. A message in a channel of type T is a value of type T or a specialmessage end of channel. 8

For now, assume that processes communicate only by sending and receiving messages onchannels, and that processes do not share any other type of variable. (This restriction willbe relaxed later.) Therefore, all variables of a process are either local variables of the processor arguments of the process.Statements that Operate on Channels Next we describe the four additional state-ments in the extended language dealing with message-passing. The statements for commu-nication are designed to be similar to statements in Fortran for operations on �les.In the following, keywords are capitalized, variable names are italicized, oport is variable oftype outport(T) and iport is a variable of type inport(T) for some T, v is a variable, andls is a statement label.1. CHANNEL(OUT=oport, IN = iport)This statement creates a channel of type T, and makes oport become the sender tokenassociated with the channel and iport become the receiver token associated with thechannel.2. SEND(PORT = oport) vThe value of oport is a sender token or NULL. If oport = NULL when the send is executed,an error occurs. If oport is a sender token, a message with value v is sent on the channelcorresponding to the token. If the message itself is a token, (i.e., if the value of v is atoken), then after the message is sent, v becomes NULL because the sender no longerholds the token after the token is sent.3. ENDCHANNEL(PORT = oport)If oport = NULL when the statement is executed, an error occurs. If the oport is asender token, then an end of channel message is sent on the channel correspondingto oport and then oport becomes NULL. Making oport NULL destroys the sender tokencorresponding to the channel; thus, no further messages can be sent on the channel.4. RECEIVE(PORT = iport, END = ls) vIf iport = NULL an error occurs. If iport is a receiver token, then a message is receivedinto variable v from the channel corresponding to the token if the message is notend of channel. If the next message is end of channel, then v remains unchanged,iport becomes NULL (which destroys the receiver token for the channel), and executioncontinues from the statement labeled ls.Example We describe a process sieve that is used in a prime number sieve program.The speci�cation ofsieve(myprime,relatively prime in,primes out)is as follows. 9

1. The value of inport variable relatively prime in is a receiver token for a channel oftype integer. The message sequence received on this channel is the sequence of positiveintegers, in increasing order, that are less than or equal to n, for some arbitrary n,and are relatively prime to the �rst k primes, for some k, and where myprime is thek+1-th prime.2. The sequence of messages sent by the process on the channel with sender tokenprimes out is the sequence of primes that exceed the k-th prime and are less than orequal to n.PROCESS sieve(myprime,relatively prime in,primes out)c declare parameters of the processINTEGER myprimeINPORT(INTEGER) relatively prime inOUTPORT(INTEGER) primes outc declare local variablesINTEGER msgc declare ports for internal channelsOUTPORT(INTEGER) filter outINPORT(INTEGER) filter inc Send myprime on primes outSEND(PORT=primes out) myprimec Discard incoming messages that are divisible byc myprime until either the end-of-channel message isc received, or a message is indivisible by myprimeRECEIVE(PORT=relatively prime in, END=20) msgDO WHILE(divisible(msg,myprime))RECEIVE(PORT=relatively prime in, END=20) msgENDDOc Since msg is not relatively prime to myprime create ac network consisting of processes sieve and �lter with anc internal channel from �lter to sieve. Process �lterc sends on incoming messages not divisible by myprime.CHANNEL(OUT = filter out, IN = filter in)PROCESSESPROCESSCALL filter(myprime,relatively prime in,filter out)PROCESSCALL sieve(msg,filter in,primes out)ENDPROCESSESreturn 10

c Close channel corresponding to primes out and terminate20 ENDCHANNEL(PORT=primes out)ENDc completes de�nition of process5 Deterministic Shared VariablesOperations The syntax for declaring deterministic shared variables is similar to that forpointers in Fortran 90.REAL, POINTER :: xREAL, DETERMINISTIC SHARED VARIABLE :: yIn Fortran 90, x is of type pointer to a real value. Likewise, y is of type deterministic sharedreal variable.A variable y of type T, DETERMINISTIC SHARED VARIABLE is a reference to a data structureof type T or a special symbol NULL. In addition two inquiry functions (de�ned in Fortran90)return attributes of the deterministic shared variable:1. TOTAL TOKENS(y) is the total number of tokens associated with deterministic sharedvariable y.2. TOKENS HELD(y) is the number of tokens associated with y held by the process inwhich the function call is made.An invariant of a process p is: TOKENS HELD(y) = 0 in p if and only if y = NULL in p.All operations on a deterministic shared variable y other than SEND, RECEIVE, ALLOCATEand MOVE (described later), and parameter passing to processes, are operations on y itself,and not on the tokens associated with y. The operations SEND, RECEIVE, ALLOCATE, andMOVE, are operations on the tokens associated with y and do not modify the value of y.Dynamic Storage Allocation of Shared Variables Statements for dynamic storageallocation are similar to allocation statements in Fortran90.c declare variablesREAL, POINTER :: xREAL, DETERMINISTIC SHARED VARIABLE :: yc allocate variables 11

ALLOCATE(x)ALLOCATE(y)The �rst allocate statement is a Fortran90 statement that allocates storage for a new dataitem of type REAL and makes x become a pointer to it. Likewise, the second allocate state-ment allocates storage for a new data item y of type REAL DETERMINISTIC SHARED VARIABLE.Exactly one token is associated with a deterministic shared variable immediately after it iscreated. Hence TOTAL TOKENS(y)= 1 immediately after y is allocated, and TOKENS HELD(y)= 1 in the process in which the allocate statement is executed, immediately after executionof the statement.Modifying the Number of Tokens The statementSET TOKEN COUNT(y,n)where y is a deterministic shared variable, and n is an integer, can be executed if and onlyif the process in which the statement is executed holds all the tokens associated with y,and n is a positive value. A postcondition of this statement is that the number of tokensassociated with y is n.Deallocation of Deterministic Shared Variables A statementDEALLOCATE(y)where y is a deterministic shared variable can be executed at a point in a computationif and only if the process in which the statement appears holds all the tokens associatedwith y at that point; the statement deallocates the space associated with the variable (asin Fortran90).Sending Tokens Execution of:SEND(PORT = op) y(COUNT=k)sends k tokens associated with variable y. Therefore, ifTOKENS HELD(y) = mbefore the send, where m � k, then after the send:TOKENS HELD(y) = m - k. 12

An error is posted if m < k before the send because a process cannot send more tokensthan it holds.For convenience, if COUNT does not appear explicitly in the send statement, a default ofCOUNT = 1 is used; so,SEND(PORT = op) y(COUNT=1) and SEND(PORT = op) yare equivalent.Receiving Tokens The execution ofRECEIVE(PORT = ip) ysuspends until a message arrives and receives a message from the channel corresponding toinput port ip into y in the following way.Let the message received be MSG.1. An error is posted if y is nonnull, and y and MSG reference di�erent data items becauseall the tokens associated with y must reference the same data item.2. If y is nonnull, and y and MSG reference the same data item, then the number of tokensheld by the receiver corresponding to y is increased by the number of tokens in themessage.3. If y is NULL before the receive, then after the receive y references the same dataitem as MSG, and the number of tokens corresponding to y held by the receiver is thenumber of tokens in the message.Moving Tokens A move statement has the formMOVE(y(COUNT = k), z)where y and z are deterministic shared variables in the same process, and k is a positiveinteger; execution of the statment has the same e�ect as sending y(COUNT=k) and thenreceiving that message into z.Tokens as Process Parameters Tokens are passed to processes as parameters in exactlythe same way as sends and receives; the number of tokens held by the caller is decreasedand the number held by the called routine is increased by the number speci�ed in the call.13

Deterministic Shared Arrays A deterministic shared array is a single object and not anarray of deterministic shared elements; therefore, a deterministic shared array has a singleset of tokens associated with the entire array. A process that holds a token correspondingto a deterministic shared array can read the entire array, and a process that holds all tokenscorresponding to the array can write the entire array.Implementation on Distributed Memory The deterministic shared variable is anarchitecture-independent programming construct that can be implemented particularly ef-�ciently on even weakly coherent shared-memory architectures. Next, we describe an im-plementation on distributed memory.Associated with each shared variable is a master copy. Each token corresponding to thevariable contains a pointer to the process and location at which the master copy is storedand the number of tokens associated with the variable.A process that acquires the right to read, but not modify, a variable is given a read-onlycopy of the variable. Writes to the read-only copy cause an error to be posted. When aprocess relinquishes its right to read (and not modify) the variable by sending all its tokenscorresponding to the variable, the read-only copy is discarded.A process that acquires the right to modify a variable is given a read-write copy of thevariable. When a process relinquishes the right to modify the variable, by sending away atleast one token, its read-write copy is copied into the master copy; then its read-write copybecomes a read-only copy if the process continues to hold at least one token correspondingto the variable, and its read-write copy is discarded if the process no longer holds any tokencorresponding to the variable.In a straightforward implementation, the location of the master copy remains unchanged,though in a sophisticated implementation the location can change as computation proceeds.Copies do not have to be made in a shared-memory system. In a heterogeneous system,such as a network of shared-memory multiprocessors, copies are made if the process thatacquires the right to access a shared variable is in an address space that is di�erent fromthat of the master copy.ExampleSpeci�cation Next, we present a very simple example of concurrent processes with sharedmemory. The example is a 3-dimensional mesh computation. Let n be the dimension of themesh in some direction, and and let T be the time horizon.Let xti, for 0 � i � n and 0 � t � T be the value of the i-th slice of the mesh at time t (wherea slice of a three-dimensional mesh is a two-dimensional mesh). The program computes xti,for 0 < i < n, and 0 < t � T , given the boundary values x0i for all i, and xt0 and xtn for all14

t, using the formula: xti = f(xt�1i�1; xt�1i ; xt�1i+1)The function f is given.Program The program uses processes indexed i where 0 < i < n. Each process has twovariables that it modi�es: current and previous where on the t-th step of process i, forall i and t > 0: previous = xt�1i and the value of current computed on the t-th step byprocess i is xti. Each process has two variables that it reads (but does not modify), andthese are left value and right value. On the t-step of process i:left value = xt�1iright value = xt�1i+1There are 3 tokens associated with current and previous for each process. At the begin-ning of step t, process i holds one token corresponding to each of left value, right valueand previous, and it holds all three tokens of current; therefore it can read (but notmodify) xt�1i�1, xt�1i , xt�1i+1 and it computes xti.The code for the steps of process i, other than the boundary processes at either end of themesh, is: DO t = 1, Tc holds 3 tokens of current and 1 token of previousc holds 1 token of left value and 1 token of right valuec left value = xt�1i�1, previous = xt�1i , right value = xt�1i+1CALL F(left value, previous, right value,current)c current = f(left value, previous, right value)c current = xtic send one token each of left value and current to leftSEND(PORT = to left) left value, currentc send one token each of right value and current to rightSEND(PORT = to right) right value, currentc receive one token each of left value and previous from leftRECEIVE(PORT = from left) previous, left valuec left value = xti�1c receive one token each of right value and previous from rightRECEIVE(PORT = from right) previous, right valuec right value = xti+1 15

c process holds one token each of left value, right valuec process holds one token of current and 3 of previousCALL interchange(current, previous)ENDDO6 Deterministic Single-Assignment VariablesWe describe deterministic single-assignment variables (DSAV) in Fortran M briey. Associ-ated with each DSAV is at most one writer token and an arbitrary number of reader tokens.We use reader tokens rather than pointers because pointers in Fortran 90 can be used toread and write, and we want to emphasize that a reader token provides the limited capabil-ity of reading but not writing. A DSAV is created (i.e., allocated in Fortran 90 terms) witha single writer token and a single reader token. Reader tokens can be duplicated whereaswriter tokens cannot be duplicated. Assigning a value to a DSAV destroys the writer tokenassociated with it.The syntax for declaring writer and reader tokens and for allocating DSAVs is as follows:c declare variablesREAL, WRITER :: wREAL, READER :: rc allocate variablesALLOCATE((WRITER = w, READER = r))Execution of a statement that reads r such as x = r+5 is suspended while the DSAVcorresponding to r is unassigned, and when the DSAV becomes assigned the statement isexecuted. Reader and writer tokens can be passed along channels in the usual way. Areader token r0 is duplicated to obtain a duplicate r1 as follows:DUPLICATE(r0,r1)The proof that these constructs are deterministic is straightforward.We do not give examples of single-assignment programs. There are several languages thatuse single-assignment and execute on distributed-memory machines such as Sisal [4], Strand[11], and PCN [5].7 NondeterminismA programmer may want to allow potential nondeterminism to improve e�ciency or tomake programs simpler. For instance, a programmer may want to design a process p to16

accept messages from either process q or process r, in arbitrary order. Fortran M has twonondeterministic constructs: MERGER and PROBE for such situations. In addition, FortranM uses the INTENT(IN), INTENT(OUT) mechanism of Fortran 90 to pass parameters toprocesses; this parameter-passing mechanism is potentially nondeterministic because thesame variable may be read and modi�ed by concurrent processes.A method for designing parallel scienti�c applications is to �rst develop and debug theapplication using a language with compiler support for veri�cation of determinism, andlater add nondeterministic constructs (if necessary) to improve e�ciency.MERGER A MERGER is similar to a channel except that it can have more arbitrary(positive) number of output ports; like a channel, a MERGER has a single input port. Astatement: MERGER(OUT = op1, OUT = op2, IN = ip)creates a merger linking output ports op1 and op2 with input port ip. The sequence ofmessages delivered to input port ip is a fair merging of the sequences of messages sent onoutput ports op1 and op2.PROBE The command:PROBE(PORT = ip, EMPTY = v)where ip is an input port, and v is a boolean variable, sets v to false only if there is amessage in the channel corresponding to input port ip [17]. Variable v can be set to trueby the command, even if there is a message in the channel (because the message is still intransit and has not yet arrived at the input port ip). All messages sent arrive at the inputport eventually, and therefore, the following loop will terminate if there is a message in thechannel associated with input port ip:v = .TRUE.WHILE(v) DO....PROBE(PORT = ip, EMPTY = v)ENDDO8 Earlier WorkThe contribution of this paper is to incorporate well-known ideas about the Church-Rossertheorem, capabilities, channels, distributed shared memory and single-assignment variablesinto a widely-used sequential language to get a parallel notation that supports (i) dynamic17

process structures, (ii) paradigm integration and (iii) compiler veri�cation of determinism,and that runs on multicomputer networks or (weakly-coherent) shared-memory systems.Nondeterministic constructs can be included, if required.A comparison of Fortran M with data-parallel languages [22, 12, 1] and high-level languages[4] highlights some of the weaknesses and strengths of Fortran M. Fortran M employsprocesses explicitly, and uses explicit exchange of tokens between processes. Care must betaken by the Fortran M programmer to avoid starvation: processes waiting for tokens thatnever arrive. Our experiments with writing libraries suggest that avoiding starvation is notdi�cult in Fortran M because if there exists any computation in which processes do notstarve, then processes do not starve in all computations; so, we merely need to demonstrateone correct computation, and that is often easy to do by showing that the communicationof tokens and messages in the Fortran M program corresponds to data ow in the sequentialprogram. Some of this work could be handled automatically by a compiler using data-owtechnology. Data-parallel languages [22, 12] and applicative languages [4] do not requirethe programmer to deal with processes, messages or tokens.Applications such as multidisciplinary design require task-parallel coupling of data-parallelprograms. Fortran M can be used to provide such coupling. Data-parallel communica-tions on arrays of channels provide a simple mechanism for coupling multiple data-parallelprograms.A weakness of Fortran M is that it is a small extension of Fortran, a sequential imperativelanguage, whereas high-level languages such as Id and Sisal are designed from the outsetto be functional. On the other hand, Fortran M uses theory from functional languagesto provide a deterministic parallel extension to a language that is widely used by scienti�capplication programmers. Since FortranM compiles to Fortran, powerful Fortran optimizingcompilers available on most platforms can be used to advantage. Furthermore, the centralideas of this paper can be used with other sequential imperative languages.A comparison of Fortran M with parallel programs using message-passing libraries such asP4 [3] or PVM [21] is also instructive. A focus of Fortran M is the development of reliableprograms by (i) separating deterministic and nondeterministic components (and allowingsimpler reasoning and debugging for the deterministic parts) and (ii) type-checking messages(since channels are typed). Also, Fortran M allows dynamic process structures, and canbe used to integrate shared-memory, distributed-memory and data-parallel paradigms. Li-braries, by their very nature, provide no compile-time type checking and are not guaranteedto be deterministic. Also, libraries do not (generally) support dynamic process structures.Users of libraries can, however, continue to use the sequential language and compiler withwhich they are familiar, whereas Fortran M users have to learn the extensions to Fortranand use the Fortran M compiler. The extensions are simple, and the time required to learnthe extensions is of the same order as the time required to learn a message-passing library.Debugging Fortran M programs is simpler than debugging parallel programs that use mes-sage libraries because replaying Fortran M programs requires only that nondeterministicchoices made at the MERGER and PROBE constructs be recorded in a computation to obtaina replay of that computation. Replay of programs that do not use MERGER or PROBE require18

nothing special, because such programs are deterministic. Subtle race conditions can occurin processes communicating using message libraries, and replay requires recording everyresolution of a potential race condition in a computation.A major di�erence between Fortran M and actor-based languages [19, 2] is the Fortran Mfocus on separating deterministic and nondeterministic constructs.An implementation of Fortran M (with channels but without shared variables) is availablefrom anonymous ftp server info.mcs.anl.gov (directory /pub/fortran-m) at ArgonneNational Laboratories.Fortran M has been used to develop libraries of parallel programs in linear algebra, spec-tral methods, mesh computations, computational chemistry, computational biology, and toexplore the integration of task-parallel and data-parallel programming.References[1] Bagrodia, R., and S. Mathur, \E�cient Implementation of High-Level Parallel Pro-grams," Proc. ASPLOS-IV, April, 1991.[2] Bagrodia, R. and W. Liao, \Maisie User Manual," Tech. Report, Computer Science,UCLA, Los Angeles, Calif., 1990.[3] Boyle, J., R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Patterson, and R.Stevens, Portable Programs for Parallel Processors, Holt, Rinehart and Winston, 1987.[4] Cann, D. C., J. T. Feo, and T. M. DeBoni, \Sisal 1,2: High Performance ApplicativeComputing," Proc. Symp. Parallel and Distributed Processing, IEEE CS Press, LosAlamitos, Calif., 1990, pp. 612{616.[5] Chandy, K. M. and S. Taylor, An Introduction to Parallel Programming, Jones andBartlett, 1991.[6] Church, A. and J. B. Rosser, Some Properties of Conversion, Trans. American Math.Soc., 39, 1936, pp. 472{482.[7] Cohen, E. and D. Je�erson, \Protection in the Hydra Operating System," Proc. 5thSymp. Operating Systems Principles, ACM, 1975, pp. 141{150.[8] Dennis, J. B., and E. C. Van Horn, \Programming Semantics for MultiprogrammedComputations," Comm. ACM, 9, Mar. 1993, pp. 143{155.[9] Feo, J. T. ed., A Comparative Study of Parallel Programming Languages: The SalishanProblems, Special Topics in Supercomputing, Vol. 6, Elsevier Science Publishers B.V.,The Netherlands.[10] Foster, I. and K. M. Chandy, \Fortran M: A Language for Modular Parallel Pro-gramming," Preprint MCS-P327-0992, Mathematics and Computer Science Division,Argonne National Laboratory, Argonne Ill. 60439, 1992.19

[11] Foster, I. and S. Taylor, Strand: New Concepts in Parallel Programming, Prentice-Hall,1989.[12] Fox, G., S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, M. Wu,\Fortran D Language Speci�cation," Technical Report TR90-141, Computer Science,Rice Univ., Houston, Tex., 1990.[13] Hoare, C. A. R., Communicating Sequential Processes, CACM, 21(8), 1969, pp. 666{677.[14] Jones, A. K., \Protection in Programmed Systems," Ph.D. Thesis, Computer Science,Carnegie-Mellon University, 1973.[15] Lampson, B. W., \Protection," Proc. 5th Annual Princeton Conf. on InformationScience Systems, 1971, pp. 437{443.[16] Li, K., and P. Hudak, \Memory Coherence in Shared Virtual Memory Systems," ACMTrans. Comp. Systems, 7(4), Nov. 1989, pp. 321{359.[17] Martin, A. J., \The Probe: An Addition to Communication Primitives," InformationProcessing Letters, 20, April 1985, pp. 125{130.[18] McLennan, B. J., Functional Programming: Practice and Theory, Addison-Wesley,Reading, Mass., 1990.[19] Seitz, C. L., \Multicomputers," in Developments in Concurrency and Communication,ed. C. A. R. Hoare, Addison-Wesley, Reading, Mass., 1991.[20] Silberschatz, A., J. Peterson and P. Galvin, Operating Systems Concepts, Addison-Wesley, Reading, Mass., 1991.[21] Sunderam, V., \PVM: A Framework for Parallel Distributed Computing," ConcurrencyPractice and Experience, 2, 1990, pp. 315{339.[22] Thinking Machines Corporation, CM Fortran Reference Manual, Thinking Machines,Cambridge, Mass., 1989.
20

