
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439
COMPUTING LARGE SPARSE JACOBIAN MATRICES USINGAUTOMATIC DIFFERENTIATIONBrett M. Averick�, Jorge J. Mor�e, Christian H. Bischof,Alan Carle�, and Andreas GriewankMathematics and Computer Science DivisionPreprint MCS-P348-0193January 1993

This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38.� Work supported in part by the Center for Research on Parallel Computation, under NSFCooperative Agreement No. CCR-8809615.

ABSTRACTThe computation of large sparse Jacobian matrices is required in many important large-scalescienti�c problems. We consider three approaches to computing such matrices: hand-coding,di�erence approximations, and automatic di�erentiation using the ADIFOR (AutomaticDi�erentiation in Fortran) tool. We compare the numerical reliability and computationale�ciency of these approaches on applications from the MINPACK-2 test problem collec-tion. Our conclusion is that automatic di�erentiation is the method of choice, leading toresults that are as accurate as hand-coded derivatives, while at the same time outperformingdi�erence approximations in both accuracy and speed.

COMPUTING LARGE SPARSE JACOBIAN MATRICES USINGAUTOMATIC DIFFERENTIATIONBrett M. Averick�, Jorge J. Mor�e, Christian H. Bischof,Alan Carle�, and Andreas Griewank1 IntroductionThe solution of large-scale nonlinear problems often requires the computation of the Jaco-bian matrix f 0(x) of a mapping f : IRn ! IRm. This computation is required, for example,in constrained optimization, parameter identi�cation, sensitivity analysis, and the solutionof systems of sti� di�erential and algebraic equations. In this paper we consider threeapproaches to computing large, sparse Jacobian matrices.The most popular approach is to use function di�erences (FD) to approximate theJacobian matrix. The i-th column of f 0(x) can be approximated by �rst-order accurateforward di�erences and by second-order accurate central di�erences,f(x+ hiei)� f(x)hi ; f(x+ hiei)� f(x� hiei)2hi ;respectively, where hi is a suitably chosen parameter and ei is the i-th unit vector. Com-puting derivatives by di�erences has the advantage that only the function is needed as ablack box; however, the accuracy of such derivative approximations is hard to assess. Thechoice of the di�erence parameter hi can be a source of di�culty for many problems, inparticular if the problem is highly nonlinear or if the function is noisy. A small step sizehi is needed to suitably approximate the derivatives yet may lead to numerical cancellationand the loss of accuracy.The potential inaccuracies of di�erence approximations can be avoided if one is ableto supply derivative code. One approach is to hand-code a subroutine to evaluate f 0(x).In addition to being accurate, hand-coding usually produces e�cient code. However, thisapproach is often time-consuming and error-prone, especially if the function is complicated.In particular, new coding e�ort is required whenever the function is modi�ed.Another way to obtain Jacobian matrices is by using symbolic manipulation packagessuch as Maple, Reduce, Macsyma, or Mathematica. Given a string describing the de�nitionof a function, symbolic manipulation packages provide algebraic expressions for derivativesexpressed in terms of the independent variables. Symbolic di�erentiation is a powerfultechnique, but quickly runs into resource limitations when applied to even moderately sizedproblems (described by 100 lines of code, say). Hence we will not consider it further.Still another way to obtain derivative code is through automatic di�erentiation (AD).Automatic di�erentiation techniques rely on the fact that every function, no matter howThis work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38.�Work supported in part by the Center for Research on Parallel Computation, under NSF CooperativeAgreement No. CCR-8809615. 1

complicated, is executed on a computer as a (potentially very long) sequence of elemen-tary operations such as additions, multiplications, and elementary functions such as thetrigonometric and exponential functions. By applying the chain rule to the composition ofthose elementary operations, one can compute derivative information for f exactly and ina completely mechanical fashion. The perceived disadvantage of automatic di�erentiationtechniques is that they are not able to handle large problems. In particular, there seemsto be a perception that automatic di�erentiation techniques are not able to compute largesparse Jacobian matrices either accurately or e�ciently. The main purpose of this paper isto dispel this perception.In Sections 2 and 3, we review three approaches to computing sparse Jacobian matrices:hand-coding, di�erence approximations, and automatic di�erentitation using the ADIFOR(Automatic Di�erentiation of Fortran) tool. The rest of the paper uses several of theMINPACK-2 test problems to compare these approaches. The test problems are describedin Section 4, and computational results are presented in Sections 5 and 6. We conclude thatautomatic di�erentiation is the method of choice, leading to results that are as accurate ashand-coded derivatives, while at the same time outperforming di�erence approximations inboth accuracy and speed.2 Computing Sparse Jacobian MatricesComputing the Jacobian matrix f 0(x) of a mapping f : IRn ! IRm can be a very di�culttask when f 0(x) is large and sparse, particularly if a sparse data structure is used. Thedi�culty lies in the need to place elements of f 0(x) into the correct positions of the sparsedata structure once they have been computed. In this section we discuss techniques thatavoid this dependency on the data structure.We assume that code for evaluating the Jacobian-vector product f 0(x)v for any x; v 2 IRnis available; for many problems it is relatively easy to develop such code since there is nodependence on data structure. If f 0(x)v code is not available, the Jacobian-vector productcan be approximated by f 0(x)v � f(x+ hvv)� f(x)hvfor some di�erence parameter hv.Each column of f 0(x) can be obtained by choosing v to be the corresponding Cartesianbasis vector. This can be extremely ine�cient as it requires the computation of n Jacobian-vector products or in the case of a di�erence approximation, n function evaluations. Toavoid this ine�ciency, we partition the columns of f 0(x) into groups such that columnsin a group do not have nonzeros in the same row position. For example, if a functionf : IR4 ! IR4 has a Jacobian matrix f 0(x) with the structure (symbols denote nonzeros,and zeros are not shown) f 0(x) = 0BBBBB@

 34 34 24 2 1CCCCCA ;2

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90Figure 2.1: IER Jacobian Sparsity (left) and IER Compressed Sparsity (right)then columns 1 and 2 can be placed in one group, while columns 3 and 4 can be placed inanother group. This partitioning identi�es structurally orthogonal columns of f 0(x), that is,columns whose inner product is zero, independent of x.Given a partitioning of f 0(x) into p groups, each group consisting of structurally or-thogonal columns, we can determine f 0(x) with p evaluations of f 0(x)v. For each group wecompute f 0(x)v, where vi = 1 if the i-th column is in the group, and vi = 0 otherwise. Inthe above example, we would compute f 0(x)vi for v1 = e1+ e2 and v2 = e3+ e4, and obtainf 0(x)v1 = 0BBBBB@

444 1CCCCCA ; f 0(x)v2 = 0BBBBB@ 3322 1CCCCCA ;at the cost of only two evaluations of f 0(x)v (versus four for the naive approach). Becauseof the structural orthogonality property we can uniquely extract all entries of the Jacobianmatrix from the Jacobian-vector products.When Jacobian-vector products f 0(x)vi are computed by hand-coded programs, it isusually advantageous to calculate them simultaneously in order to avoid the reevaluation ofcommon expressions. This is the motivation for the compressed Jacobian approach wherewe assemble the vectors vi into an n � p matrix V and compute f 0(x)V . Clearly, theadvantages of computing the compressed Jacobian tend to increase with p. Figure 2.1illustrates the di�erence between the sparsity structure of f 0(x) and the sparsity structure ofthe compressed Jacobian f 0(x)V for the Inverse Elastic Rod problem from the MINPACK-2collection (See Section 4).Curtis, Powell, and Reid (CPR) [11] were the �rst to note that a partitioning of thecolumns into p structurally orthogonal groups allows the approximation of the Jacobian3

matrix by function di�erences with p function evaluations. In the CPR algorithm thegroups are formed one at a time by scanning the columns in the natural order and includinga column in the current group if it has not been included in a previous group and if it doesnot have a nonzero in the same row position as another column already in the group.Coleman and Mor�e [10] showed that the partitioning problem could be analyzed as agraph coloring problem and that, by looking at the problem from the graph coloring pointof view, it is possible to improve the CPR algorithm by scanning the columns in a carefullyselected order. Coleman, Garbow, and Mor�e [9, 8] describes software for the partitioningproblem. Given a representation of the sparsity structure of f 0(x), these algorithms producea partitioning of the columns of f 0(x) into p structurally orthogonal groups. For manysparsity patterns, p is small and independent of n. For example, if the sparsity structurehas bandwidth �, then p � �. We also note that discretization of an in�nite-dimensionalproblem also leads to sparsity patterns where p is independent of the mesh size.3 Automatic Di�erentiation and the ADIFOR ToolAutomatic di�erentiation [17] is a chain-rule-based technique for evaluating the derivativesof functions de�ned by computer programs with respect to their input variables. There aretwo basic modes of automatic di�erentiation, which are usually referred to as forward andreverse. As discussed in [12], the reverse mode is closely related to adjoint methods and hasa very low operation count for gradients. However, its potentially large memory requirementhas been a serious impediment to its application in large-scale scienti�c computing. Whenthere are several independent and dependent variables, the operation count for evaluatingthe Jacobian matrix may be lowest for certain mixed strategies [15] rather than for theforward or reverse mode. AD can also be extended to the accurate evaluation of secondand higher derivatives [13, 7, 3]. A comprehensive collection on the theory, implementation,and some earlier applications can be found in [14].In contrast to the approximation of derivatives by function di�erences, AD incurs notruncation error. Hence, at least for noniterative and branch-free codes, the resulting deriva-tive values are usually obtained with the working accuracy of the original function evalu-ation. In contrast to fully symbolic di�erentiation, both operations count and storagerequirement can be a priori bounded in terms of the complexity of the original functioncode.The ADIFOR (Automatic Di�erentiation in Fortran) tool [2, 5, 4] provides automaticdi�erentiation of programs written in Fortran 77. Given a Fortran subroutine (or collectionof subroutines) describing a function, and an indication of which variables in parameterlists or common blocks correspond to independent and dependent variables with respectto di�erentiation, ADIFOR produces Fortran 77 code that allows the computation of thederivatives of the dependent variables with respect to the independent variables. ADIFORemploys a hybrid of the forward and reverse modes of automatic di�erentiation. The result-ing decrease in complexity compared with an implementation based entirely on the forwardmode is usually substantial.In contrast to some earlier AD implementations [16], the source translator ADIFOR wasdesigned from the outset with large-scale codes in mind. The facilities of the ParaScopeFortran environment [6] control
ow and data dependence
ow information. ADIFOR4

produces portable Fortran 77 code and accepts almost all of Fortran 77|in particular,arbitrary calling sequences, nested subroutines, common blocks, and equivalences. TheADIFOR-generated code tries to preserve vectorization and parallelism in the original code.It also employs a consistent subroutine naming scheme that allows for code tuning, the useof domain-speci�c knowledge, and the exploitation of vendor-supplied libraries. It should bestressed that ADIFOR uses data
ow analysis information to determine the set of variablesthat require derivative information in addition to the dependent and independent ones. Thisapproach allows for an intuitive interface, and greatly reduces the storage requirements ofthe derivative code.ADIFOR produces code to compute the Jacobian-vector product f 0(x)v or the com-pressed Jacobian matrix f 0(x)V . The directional derivative f 0(x)v can be evaluated withoutforming the Jacobian matrix explicitly and thus potentially at a much lower computationalcost. The operations count for this calculation is bounded by three times that of f ; actualruntime ratios vary depending on the implementation, the computing platform and thenature of f . The compressed Jacobian matrices can be computed by exploiting the samegraph coloring techniques discussed in Section 2. As already pointed out, the advantagesof computing the compressed Jacobian matrix increase with p because it allows the reuseof expressions. ADIFOR-generated code reuses these expressions automatically; this is notpossible with di�erence approximations, and may not be done in a hand-coded subroutineto evaluate f 0(x)V .4 Test ProblemsIn this section we describe the problems used in comparing the di�erent approaches forcomputing a sparse Jacobian matrix. The descriptions are brief since the problems arepart of the MINPACK-2 test problem collection; the current version of this collection isdescribed by Averick, Carter, Mor�e, and Xue [1]. For each problem, the MINPACK-2 testcollection contains subroutines that de�ne the sparsity pattern of f 0(x) and evaluate f(x)and f 0(x)V for any V 2 IRn�p.These problems are representative of computational problems found in applications.Collocation and �nite di�erences are used to discretize these problems so as to obtainsystems of nonlinear equations f(x) = 0, where f : IRn ! IRn is a nonlinear mapping witha sparse Jacobian matrix f 0(x).Flow in a Channel (FIC). The analysis of
uid injection through one side of a longvertical channel leads to the boundary value problemu0000 = R[u0u00 � uu000]; 0 � t � 1;u(0) = u0(0) = 0; u(1) = 1; u0(1) = 0;where u is the potential function, u0 is the tangential velocity, and R is the Reynolds numberof the
uid.Discretization of this problem by a k-stage collocation method, with k = 4, leads toa system of n = 8nh equations, where nh is the number of subintervals in the collocationscheme. In this problem there is a maximum of 9 nonzeros per row, independent of nh.5

Swirling Flow between Disks (SFD). The analysis of steady
ow of a viscous,incompressible, axisymmetric
uid between two rotating, in�nite coaxial disks, located att = 0 and t = 1, yields the boundary value problem�f 0000 + ff 000 + gg0 = 0; �g00 + fg0 + f 0g = 0; 0 � t � 1;f(0) = f 0(0) = f(1) = f 0(1) = 0; g(0) =
0; g(1) =
1;where f 0 is radial velocity, g is angular velocity (
0 and
1 are the angular velocities of thein�nite disks), and 0 � �� 1 is a viscosity parameter.Discretization of this problem by a k-stage collocation method, with k = 4, leads to asystem of n = 14nh equations, where nh is the number of subintervals in the collocationscheme. In this problem there is a maximum of 14 nonzeros per row, independent of nh.Incompressible Elastic Rods (IER). The shape of a thin incompressible elastic rod,or elastica, clamped at the origin and acted on by a vertical force Q, a horizontal force P ,and torque M is described by the solution of the boundary value problem�0(s) = Qx(s)� Py(s) +M; x0(s) = cos[�(s)]; y0(s) = sin[�(s)];x(0) = y(0) = �(0) = 0;where � is the local angle of inclination, and s is the arc length along the elastica. We needto determine Q, P , and M such that x(�); y(�), and �(�) solve this boundary value problemand satisfy the boundary conditions x(1) = a, y(1) = b, �(1) = c.Discretization by a k-stage collocation method, with k = 4, leads to a system of n =15nh + 3 equations, where nh is the number of subintervals in the collocation scheme. Thesparsity structure of the Jacobian and compressed Jacobian matrix for nh = 6 are shownin Figure 2.1. The nonzeros in the last 3 columns correspond to the variables Q, P , andM . In this problem there is a maximum of 17 nonzeros per row, independent of nh. Sincethere are 17 columns in the compressed Jacobian matrix, the coloring is optimal.Solid Fuel Ignition (SFI). This problem arises in the analysis of a thermal reactionprocess dependent upon a balance between chemically generated heat addition and heattransfer by conduction, in a rigid material. A steady-state model of solid fuel ignition canbe described in terms of the solution u� of the boundary value problem��u(x) = � exp[u(x)]; x 2
; u(x) = 0; x 2 @
;where � is the Laplace operator,
 is a domain in IR2 with boundary @
, and � 2 IR.Discretization of this problem by �nite di�erences on the unit square leads to a systemof n = nxny equations, where nx and ny are the number of interior gridpoints in thecoordinate directions, respectively. For this problem there is a maximum of 5 nonzeros perrow, independent of nx and ny .Flow in a Driven Cavity (FDC). The steady
ow of a viscous incompressible
uid ina planar region
 is described in terms of a stream function by the boundary value problem�2 � Rh(@y)(@x�)� (@x)(@y�)i = 0; (�1; �2) = @x (�1; �2) = 0; @y (�1; �2) = (1 if �2 = 10 if 0 � �2 < 1:6

Table 5.1: Accuracy of ADIFOR and Function Di�erencesAbsolute Error Relative ErrorProblem N FD ADIFOR FD ADIFORFIC 96 2:9� 10�6 1:4� 10�14 5:6� 10�1 9:5� 10�16SFD 98 2:5� 10�8 0:0 1:0 0:0IER 93 4:4� 10�8 0:0 1:6� 10�1 0:0SFI 100 9:7� 10�8 0:0 3:8� 10�8 0:0FDC 100 3:2� 10�6 3:5� 10�14 5:6� 10�6 5:4� 10�14Discretization by �nite di�erences on the unit square leads to a system of n = nxny equa-tions, where nx and ny are the number of interior gridpoints in the coordinate directions,respectively. The Jacobian matrix has a maximum of 13 nonzeros per row independent ofnx and ny .5 AccuracyWe �rst compare the accuracy of the Jacobian matrix produced by ADIFOR, with theaccuracy of the function di�erence approximation. As the standard we take the Jacobianmatrix included with the MINPACK-2 test problem collection. We measure both the ab-solute error and the relative error,maxij fj@i;jf(x)� aij(x)jg ; maxij (j@i;jf(x)� aij(x)jmaxfj@i;jf(x)j; jaij(x)jg) ;respectively, where @i;jf(x) is the derivative produced by the MINPACK-2 software, andai;j(x) is either the di�erence approximation or the ADIFOR Jacobian matrix.The results presented in Table 5.1 were obtained on a Solbourne 5E/902 in double-precision IEEE arithmetic. For these results we evaluated the Jacobian matrices at a randomvector with elements in the interval [0,1] and used a value of hi = 10�8 for all the variables.We do not claim that this choice is optimal, but for these problems this choice producesreasonably accurate results. In general, the accuracy of an approximation with di�erencesof function values depends on the choice of the di�erence parameters hi, but even with anoptimal choice of di�erence parameter, we can expect a di�erence approximation that isaccurate only up to half the number of possible signi�cant digits.The results in Table 5.1 clearly indicate the superior accuracy of automatic di�eren-tiation as compared with function di�erences. In terms of absolute error, ADIFOR andhand-coded Jacobians agree up to 16 signi�cant digits, while function di�erences o�er atmost half that accuracy.The same type of observation can be made for the relative error. However, relative errorcan be misleading if the Jacobian elements are su�ciently small. For FIC and IER, therelative error is usually of order 10�7, but for small Jacobian entries, it may be of order10�1. In the case of SFD, function di�erences show a relative error of 1. This is due to7

0 2 4 6 8 10 12 14 16

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Problem size

F
in

it
e
 D

if
fe

re
n
c
e
s

/
A

D
IF

O
R

DFIC, p = 9

DSFI, p = 7

DSFD, p = 14

DFDC, p = 19

DIER, p = 18

0 2 4 6 8 10 12 14 16

x 10
4

1

1.5

2

2.5

3

3.5

4

Problem Size

F
in

it
e

D

if
fe

re
n
c
e
s

/
A

D
IF

O
R

DSFD, p = 14

DFDC, p = 19

DFIC, p = 9

DIER, p = 18

DSFI, p = 7Figure 6.1: FD vs. ADIFOR Timings on the Solbourne (left) and the IBM (right)entries where the derivative value is of order 10�13 but function di�erences yield zero. Note,however, that ADIFOR accurately computes these small elements.6 TimingWe now compare the time required to compute a sparse Jacobian matrix by all threeapproaches. The timing information was obtained for double-precision computations on aSolbourne 5E/902 and an IBM RS6000/580 workstation. Since we are interested in largeproblems, we used problems with n variables where n ranges between 14; 000 and 160; 000.Similar results were obtained on smaller problems.Figure 6.1 shows the ratio of the run times for di�erence approximations to the Jaco-bian matrix to ADIFOR-generated derivative code. These results clearly show that theADIFOR-generated code is faster than the di�erence approximations in all cases and thatthe performance advantage is more pronounced on the IBM than on the Solbourne. Thiscan be explained by noting that the Solbourne has a true scalar processor, whereas theIBM employs a pipelined superscalar chip that performs well on the vector operations thatconstitute the bulk of the ADIFOR-generated derivative code.In general we expect ADIFOR to perform best if the number of groups p is large becausethe advantages of computing the compressed Jacobian matrix increase with p. This isborne out by our results. The performance of ADIFOR for small p tends to depend on theparticular problem.Note that the runtime ratios in Figure 6.1 are independent of n. This can be explainedby noting that the runtime is proportional to the number of groups p associated with thesparsity structure; for these problems p does not depend on the size n of the Jacobianmatrix.The timing comparison of the ADIFOR-generated code with the hand-coded Jacobianmatrix appears in Figure 6.2. We see that the ADIFOR-generated Jacobian code performssomewhat worse than the hand-coded Jacobian matrix, but not by a margin of more than8

0 2 4 6 8 10 12 14 16

x 10
4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Problem size

A
D

IF
O

R
 /

 H
a
n
d
 C

o
d
e
d

DFIC, p = 9

DSFI, p = 7

DSFD, p = 14

DFDC, p = 19

DIER, p = 18

0 2 4 6 8 10 12 14 16

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Problem Size

A
D

IF
O

R
 /

 H
a
n
d
 C

o
d
e
d

DSFD, p = 14

DFDC, p = 19

DFIC, p = 9

DIER, p = 18

DSFI, p = 7

Figure 6.2: ADIFOR vs. Hand-Code Timings on the Solbourne (left) and the IBM (right)roughly 2:5.Lastly, Table 6.1 puts these these timings in perspective by comparing the time forcomputing the Jacobian matrices (FD, ADIFOR, and MINPACK) with the time requiredto partition the columns into structurally orthogonal groups (DSM), and the time requiredto convert the compressed Jacobian matrix into a sparse matrix format (FDJS). Subroutinesfor these tasks are described by Coleman, Garbow, and Mor�e [9, 8]. Subroutine dsm takesthe sparsity pattern of the Jacobian matrix and produces a partitioning of the columns off 0(x) into p structurally orthogonal groups, while subroutine fdjs converts the compressedJacobian matrix into a sparse matrix format. Columns N, NNZ, and P show the dimension,number of nonzeros in the Jacobian, and number of groups, respectively, for each of theproblems. Table 6.1: Detailed Solbourne Timings.Time (Seconds)Problem N NNZ P DSM FD ADIFOR MINPACK FDJSSFI 14884 73932 7 2.38 1.35 0.93 0.59 .19FIC 16000 123987 9 2.62 5.23 2.55 1.46 .35SFD 14000 154981 14 3.79 5.48 2.69 2.08 .43IER 15003 158000 18 6.14 7.43 2.77 3.16 .48FDC 14884 191056 19 9.11 11.71 6.53 6.50 .54Table 6.1 shows that the time required by dsm is signi�cant when compared with the timerequired to compute a Jacobian matrix by either ADIFOR or the hand-coded MINPACKsubroutines. This is justi�ed for most problems because dsm needs to be called only once foreach sparsity pattern. Moreover, the runtime of dsm only depends on the sparsity pattern,9

not on the expense of evaluating the function or Jacobian matrix.We also note that the runtime of fdjs is small compared with the other times in Table6.1 and is proportional to the number of nonzeros in the Jacobian. This was to be expectedbecause fdjs converts the compressed Jacobian matrix into a column-oriented sparse matrixformat but does not perform any arithmetic operations. We also note that the time requiredby fdjs becomes less signi�cant as the number of groups p increases.7 ConclusionsWe conclude that ADIFOR-derived derivatives are certainly superior to di�erence approx-imations. Not only does the automatic di�erentiation approach not su�er from truncationerror, but its ADIFOR incarnation delivers code that outperforms divided di�erences by afactor of up to 3.5. The other attraction of ADIFOR is that one can generate derivativecode at the touch of the button, whereas the development of a derivative code by handis tedious and time-consuming. Whether the e�ort involved in computing a Jacobian byhand is worth the modest speedup that we have observed here obviously depends on theapplication, but from our perspective it is not.AcknowledgementsWe would like to thank Richard Carter for many stimulating discussions and Jack Dongarrafor the use of the IBM RS-6000.References[1] B. M. Averick, R. G. Carter, J. J. Mor�e, and G.-L. Xue, The MINPACK-2 testproblem collection, Preprint MCS-P153-0692, Argonne National Laboratory, Argonne,Illinois, 1992.[2] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR:Generating derivative codes from Fortran programs, Scienti�c Programming, 1 (1992),pp. 1{29.[3] C. Bischof, G. Corliss, and A. Griewank, Computing second- and higher-orderderivatives through univariate Taylor series, Preprint MCS-P296-0392, Mathematicsand Computer Science Division, Argonne National Laboratory, 1992.[4] C. Bischof and A. Griewank, ADIFOR: A Fortran system for portable automaticdi�erentiation, in Proceedings of the 4th Symposium on Multidisciplinary Analysis andOptimization, AIAA Paper 92-4744, American Institute of Aeronautics and Astronau-tics, 1992, pp. 433{441.[5] C. Bischof and P. Hovland, Using ADIFOR to compute dense and sparse Ja-cobians, Tech. Report MCS-TM-158, Mathematics and Computer Science Division,Argonne National Laboratory, 1991. 10

[6] A. Carle, K. D. Cooper, R. T. Hood, K. Kennedy, L. Torczon, and S. K.Warren, A practical environment for scienti�c programming, IEEE Computer, 20(1987), pp. 75{89.[7] B. Christianson, Reverse accumulation and accurate rounding error estimates forTaylor series coe�cients, Optimization Methods and Software, 1 (1992), pp. 81{94.[8] T. F. Coleman, B. S. Garbow, and J. J. Mor�e, Fortran subroutines for estimatingsparse Jacobian matrices, ACM Trans. Math. Software, 10 (1984), pp. 346{347.[9] , Software for estimating sparse Jacobian matrices, ACM Trans. Math. Software,10 (1984), pp. 329{345.[10] T. F. Coleman and J. J. Mor�e, Estimation of sparse Jacobian matrices and graphcoloring problems, SIAM J. Numer. Anal., 20 (1983), pp. 187{209.[11] A. R. Curtis, M. J. D. Powell, and J. K. Reid, On the estimation of sparseJacobian matrices, J. Inst. Math. Appl., 13 (1974), pp. 117{119.[12] A. Griewank, On automatic di�erentiation, in Mathematical Programming: RecentDevelopments and Applications, M. Iri and K. Tanabe, eds., Kluwer Academic Pub-lishers, 1989, pp. 83 { 108.[13] , Automatic evaluation of �rst- and higher-derivative vectors, in Proceedings ofthe Conference at W�urzburg, Aug. 1990, Bifurcation and Chaos: Analysis, Algorithms,Applications, R. Seydel, F. W. Schneider, T. K�upper, and H. Troger, eds., vol. 97,Birkh�auser Verlag, Basel, Switzerland, 1991, pp. 135 { 148.[14] A. Griewank and G. F. Corliss, eds., Automatic Di�erentiation of Algorithms:Theory, Implementation, and Application, SIAM, Philadelphia, 1991.[15] A. Griewank and S. Reese, On the calculation of Jacobian matrices by theMarkowitz rule, in Automatic Di�erentiation of Algorithms: Theory, Implementation,and Application, A. Griewank and G. Corliss, eds., SIAM, Philadelphia, 1991, pp. 126{135.[16] D. Juedes, A taxonomy of automatic di�erentiation tools, in Automatic Di�erentiationof Algorithms: Theory, Implementation, and Application, A. Griewank and G. Corliss,eds., SIAM, Philadelphia, 1991, pp. 315{329.[17] L. B. Rall, Automatic Di�erentiation: Techniques and Applications, vol. 120 of Lec-ture Notes in Computer Science, Springer-Verlag, Berlin, 1981.
11

