
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439
GENERALIZATIONS OF THE TRUST REGION PROBLEMJorge J. Mor�eMathematics and Computer Science DivisionPreprint MCS-P349-0193January 1993

This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38.



ABSTRACTThe trust region problem requires the global minimum of a general quadratic functionsubject to an ellipsoidal constraint. The development of algorithms for the solution of thisproblem has found applications in nonlinear and combinatorial optimization. In this paperwe generalize the trust region problem by allowing a general quadratic constraint. Themain results are a characterization of the global minimizer of the generalized trust regionproblem, and the development of an algorithm that �nds an approximate global minimizerin a �nite number of iterations.



GENERALIZATIONS OF THE TRUST REGION PROBLEMJorge J. Mor�e1 IntroductionTrust region methods for the minimization of a function f : IRn ! IR require an approximateminimizer of a problem of the formminfq(x) : kDxk2 � �g; (1:1)where q : IRn ! IR is a quadratic model of the function in a neighborhood of the currentiterate, D is a nonsingular matrix that speci�es the scaling of the variables, and � isdetermined by the trust region method. An interesting and surprising aspect of this problemis that it is possible to obtain a characterization of the global minimizer. This result, dueto Gay [5] and Sorensen [17], is that x� is a global minimizer if and only if kDx�k � �, theKuhn-Tucker condition rq(x�) + ��DTDx� = 0is satis�ed, and the Hessian of the Lagrangianr2q(x�) + ��DTD (1:2)is positive semide�nite for some �� � 0 such that �� = 0 if kDx�k < �. The surprisingaspect of this result is that it holds for any quadratic q; there is no assumption of convexity.Gay [5] and Sorensen [17] used this characterization result to develop an algorithm for thesolution of (1.1) that paid special attention to the case where the Hessian of the Lagrangian(1.2) is nearly singular. Mor�e and Sorensen [15] developed an improved algorithm thatproduces approximate global minimizers in a �nite number of steps.The initial application of algorithms for the solution of (1.1) was to trust region meth-ods for unconstrained minimization. See, for example, Gay [6] and Mor�e and Sorensen[15]. Recent application to other problems includes that by Coleman and Hempel [2] onconstrained optimization, Ye [20] on quadratic programming, Pardalos, Ye, and Han [16] onquadratic knapsack problems, and Karmarkar, Resende, and Ramakrishnan [12] on coveringproblems.Several extensions of the basic problem (1.1) are of interest. The simplest extension isto consider the problem minfq(x) : c(x) � 0g; (1:3)Dedicated to Charles G. Broyden on the occasion of his 60th birthday. Work supported by the O�ce ofScienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.1



where q : IRn ! IR and c : IRn ! IR are quadratic functions de�ned on IRn. Several specialcases of this problem have been considered in the literature. For example, the problemwhere min fkAx� bk2 : kCx� dk2 � �g ; (1:4)arises in the regularization of ill-posed problems and in the smoothing of noisy data. Notethat this problem is a special case of (1.3) with both q and c convex. Gander [4] consideredthis problem as a special case of the problem with the equality constraint c(x) = 0, andcharacterized the solution in terms of the Lagrange multiplier. For recent work on thisproblem, see the work of Golub and von Matt [7].Critchley [3] considered (1.3) with the equality constraint c(x) = 0, with q a strictlyconvex quadratic, but c a general quadratic. His interest in problem (1.3) derived fromapplications in the statistical literature. Our interest in (1.3) is motivated by a study of thegeneral problem minfq(x) : ci(x) = 0; 1 � i � mg;where ci : IRn ! IR are quadratic functions. This generalization is important because itincludes, as a special case, integer programming problems. Indeed, if ci(x) = xi(1�xi), thenci(x) = 0 if and only if xi 2 f0; 1g. The case where m = 2 and the equality constraints arereplaced by inequalities has attracted considerable interest in connection with trust regionmethods. For recent work on this problem, see Yuan [21, 22], Mart��nez and Santos [14],Zhang [23], and Heinkenschlo� [9].Our aim in this paper is to characterize the global minimizer of problem (1.3) and todevelop an algorithm that determines approximate global minimizers in a �nite number ofsteps. In our terminology, an approximate global minimizer is a vector x 2 IRn such thatq(x) � q� + �q ; jc(x)j � �c;where �q > 0 and �c > 0 are tolerances, and q� � minfq(x) : c(x) � 0g.We approach the inequality constrained problem (1.3) by �rst studying the equalityconstrained problem minfq(x) : c(x) = 0g; (1:5)and then showing that (1.3) can be treated as a special case. We begin with a brief look ata condition that guarantees the existence of a global minimizer for (1.5) and the connectionof this condition with matrix pencils. The characterization result for a global minimizer ofproblems (1.3) and (1.5) appears in Section 3, while a uniqueness result for the minimizerx� appears in Section 4.In Section 3 we also show that if the inequality constrained problem (1.3) is well-posed,then there is a global minimizer x� such that c(x�) = 0, or there is a unique minimizerx� with r2q positive de�nite, rq(x�) = 0, and c(x�) < 0. This result shows that if we2



develop an algorithm for the equality constrained problem (1.5), then we can easily extendthe algorithm to the inequality constrained problem (1.3).The essential features of an algorithm for the solution of both (1.3) and (1.5) are de-veloped in Section 3, while Section 5 contains a discussion of the termination criteria thatguarantee an approximate global minimizer in a �nite number of steps. These results extendand unify the theory associated with problems (1.1) and (1.4) to the general problem (1.3)and (1.5).2 PreliminariesWe can guarantee that the minimization problemminfq(x) : c(x) = 0g; (2:1)where q : IRn ! IR and c : IRn ! IR are quadratic functions de�ned on IRn, has a globalminimizer by assuming that the Hessian of q is positive de�nite for any direction of zerocurvature of c. In this section we explore the connection of this condition with work onmatrix pencils.The de�nition of a quadratic guarantees that the Hessian matrix is constant. We usethe notation r2q = A; r2c = C;for the Hessian matrices of q and c. The following result shows that the relationship betweenA and C is crucial to the existence of a global minimizer for problem (2.1).Theorem 2.1 Let q : IRn ! IR and c : IRn ! IR be quadratics, and assume thatfx 2 IRn : c(x) = 0gis not empty. If w 6= 0; wTCw = 0 =) wTAw > 0; (2:2)then the optimization problem (2.1) has a global minimizer.Proof. A standard compactness argument shows that (2.1) has a global minimizer if weprove that limk!1 q(xk) = +1for any unbounded fxkg with c(xk) = 0. Assume, on the contrary, that q(xk) � �. Thereis no loss of generality in assuming thatlimk!1 xkkxkk = w:3



Clearly w 6= 0. Since fxkg is an unbounded sequence with c(xk) = 0,limk!1 c(xk)kxkk2 = wTCw = 0:Similarly, since fxkg is an unbounded sequence with q(xk) � �,limk!1 q(xk)kxkk2 = wTAw � 0:Thus, w contradicts assumption (2.2) on A and C. �The converse of Theorem 2.1 does not hold in general; however, in Section 3 we showthat if the optimization problem (2.1) has a global minimizer, then wTCw = 0 implies thatwTAw � 0. In the remainder of this section we consider the connection of condition (2.2)with the study of matrix pencils, that is, one-parameter families of matrices of the formA + �C.Theorem 2.2 If A 2 IRn�n and C 2 IRn�n are symmetric matrices, then A+�C is positivede�nite for some � 2 IR if and only if (2.2) holds.Theorem 2.2 is a classical result on quadratic forms. Hestenes [10, Theorem 6.1] givesan elementary, but somewhat lengthy proof of Theorem 2.2. We will give another proofof this result in Section 3. Uhlig [19] is an excellent source for additional information onresults related to Theorem 2.2.Theorem 2.2 arises in several areas. For example, in the analysis of augmented La-grangian algorithms, A is the Hessian of the Lagrangian and C is a positive semide�nitematrix associated with the active constraint normals. The proof of Theorem 2.2 when C issemide�nite is short and elementary; see, for example, Bertsekas [1, Lemma 1.25]. Theorem2.2 also arises in connection with the generalized eigenvalue problem Ax = �Cx, becauseif we can �nd �0 2 IR such that A + �0C is positive de�nite, then the eigenvalue problemAx = �Cx is equivalent to the positive de�nite eigenvalue problem(�0A� C)x = �(A+ �0C)x:This implies, in particular, that Ax = �Cx has n real eigenvalues; some of the eigenvaluesmay be at in�nity if C is singular. Golub and Van Loan [8, Section 8.7] provide additionalinformation on generalized eigenvalue problems.Theorem 2.3 Assume that A 2 IRn�n and C 2 IRn�n are symmetric matrices and that Cis inde�nite. Then wTCw = 0 =) wTAw � 0if and only if A+ �C is positive semide�nite for some � 2 IR .4



Proof. If we de�ne A� = A+ �I for � � 0, then (2.2) holds for A�, and thus Theorem 2.2guarantees that A� + ��C is positive de�nite for some �� 2 IR. In particular,��wTCw � �wT (A+ �I)wfor all w 2 IRn. This inequality shows that if �� ! +1 as � ! 0 then C is positivesemide�nite. Similarly, we can rule out that �� ! �1 as � ! 0. Since f��g is bounded,a subsequence converges to some � 2 IR, and since A�+ ��C is positive de�nite, A+�C ispositive semide�nite. �This result was established by Krein and Smuljan [13] for Hilbert spaces over the complex�eld by an entirely di�erent argument. Note that our proof is valid for real vector spaces.The assumption that C is inde�nite is necessary in Theorem 2.3. For example, letA =  1 00 �1 ! ; C =  1 11 1 ! :We can check that wTCw = 0 implies that wTAw = 0. However, A+�C is inde�nite for all� 2 IR. Also note that Theorem 2.3 does not guarantee that A+�C is positive semide�nitefor more than one value of �. For example, ifA =  1 11 1 ! ; C =  1 00 �1 ! ;then A is positive semide�nite, and thus the assumptions of Theorem 2.3 hold. However,A + �C is positive semide�nite only if � = 0.3 Global MinimizersThe main purpose of this section is to establish a characterization result for the globalminimizer of the problem minfq(x) : c(x) = 0g; (3:1)where q : IRn ! IR and c : IRn ! IR are quadratic functions de�ned on IRn. We concludewith the characterization result for the inequality constrained version of problem (3.1).We follow the notational convention of the preceding section by usingr2q = A; r2c = C;for the Hessian matrices of q and c. We do not assume that either A or C is semide�nite.Interestingly enough, we need to assume that the constraint quadratic c is not a linearfunction; that is, we assume that C 6= 0.The analysis requires that we rule out certain special cases by assuming a constraintquali�cation. For (3.1) we assume thatminfc(x) : x 2 IRng < 0 < maxfc(x) : x 2 IRng: (3:2)5



These assumptions guarantee, in particular, that the feasible set is not empty.Lemma 3.1 Let c : IRn ! IR be a quadratic function de�ned on IRn. If the feasible setfx 2 IRn : c(x) = 0g is not empty, then assumption (3.2) fails if and only if C is semide�niteand there is an x� such that c(x�) = 0 and rc(x�) = 0. Moreover, if rc(x) 6= 0 for somefeasible x 2 IRn then assumption (3.2) holds.Proof. Assume that (3.2) fails because c(x) � 0 for all x 2 IRn. Since the feasible set isnot empty, we must have minfc(x) : x 2 IRng = 0:Thus, the quadratic c is bounded below and achieves its minimum at some x�. Hence, C ispositive semide�nite, c(x�) = 0, and rc(x�) = 0. A similar argument establishes the resultif (3.2) fails because c(x) � 0 for all x 2 IRn.If rc(x) 6= 0 for some feasible x 2 IRn but (3.2) fails because c(x) � 0 for all x 2 IRnthen the above argument shows that the quadratic c achieves its minimum at an x� suchthat c(x�) = 0. Hence, c achieves its minimum at any feasible x, and thus rc(x) = 0 forany feasible x. �This result implies that if assumption (3.2) fails, then the feasible set fx 2 IRn : c(x) = 0gis a subspace of IRn with dimension less than n; if C is de�nite then only x� is feasible.Theorem 3.2 Let q : IRn ! IR and c : IRn ! IR be quadratic functions de�ned on IRn.Assume that (3.2) holds and that r2c 6= 0. A vector x� is a global minimizer of problem(3.1) if and only if c(x�) = 0 and there is a multiplier �� 2 IR such that the Kuhn-Tuckercondition rq(x�) + ��rc(x�) = 0 (3:3)is satis�ed with r2q(x�) + ��r2c(x�) (3:4)positive semide�nite.Proof. We �rst show that if x� is a global minimizer, then condition (3.3) holds and (3.4)is positive semide�nite. The proof requires consideration of two cases.If rc(x�) 6= 0, then the Kuhn-Tucker condition (3.3) holds, so we need to establish that(3.4) is positive semide�nite. In terms of the Lagrangian functionL(x; �) = q(x) + �c(x);the Kuhn-Tucker condition guarantees that rxL(x�; ��) = 0, and thusL(x; ��) = L(x�; ��) + 12(x� x�)Tr2xL(x�; ��)(x� x�):6



Since L(x; ��) = q(x) if c(x) = 0, we obtain thatc(x� + w) = 0 =) wTr2xL(x�; ��)w � 0:We use this implication to show thatr2xL(x�; ��) is positive semide�nite. The proof requiresthat we partition IRn into four di�erent sets and show thatwTr2xL(x�; ��)w � 0 (3:5)holds for vectors in each of these sets. Consider the setS1 = nw 2 IRn : rc(x�)Tw 6= 0; wTCw 6= 0o :If w 2 S1, then c(x� + �w) = 0 for some � 6= 0, and thus (3.5) holds. Similarly, ifS2 = nw 2 IRn : rc(x�)Tw = 0; wTCw = 0o ;then c(x� + w) = 0 for w 2 S2, and thus (3.5) holds. Now consider the setS3 = nw 2 IRn : rc(x�)Tw = 0; wTCw 6= 0o :If w 2 S3, de�ne w� = w+�v, where rc(x�)Tv 6= 0. The existence of the vector v is guaran-teed by the assumption that rc(x�) 6= 0. A short computation shows that rc(x�)Tw� 6= 0and that wT�Cw� 6= 0 for all � 6= 0 su�ciently small. Hence w� 2 S1, and thuswT�r2xL(x�; ��)w� � 0: (3:6)Since fw�g converges to w as � converges to zero, (3.5) holds for w 2 S3. A similar argumentshow that (3.5) holds if w belongs to the setS4 = nw 2 IRn : rc(x�)Tw 6= 0; wTCw = 0o :If w 2 S4, we now de�ne w� = w + �v, where vTCv 6= 0. In this case the existence ofthe vector v is guaranteed by the assumption that r2c 6= 0, since we can choose v to bean eigenvector of C corresponding to a nonzero eigenvalue. A computation shows thatw� 2 S1 for all � 6= 0 su�ciently small, and thus (3.6) holds. Since fw�g converges to w as� converges to zero, (3.5) holds for w 2 S4.We have shown that (3.5) holds for all w 2 IRn, and thus (3.3) holds if rc(x�) 6= 0.Note that assumptions (3.2) have not been needed so far in the proof.The proof for the case where rc(x�) = 0 requires that we �rst show that rq(x�) = 0.We �rst claim that q(x� + �w) � q(x�) for all � and w 2 IRn such that wTCw = 0. Thisclaim is easy to establish because c(x�) = 0 and rc(x�) = 0 implies thatc(x� + �w) = 12�2wTCw = 0:7



Hence, x� + �w is feasible, and thus q(x� + �w) � q(x�) because x� is a global minimizer.Since q(x� + �w) � q(x�) for all � and w 2 IRn, we must have rq(x�)Tw = 0 wheneverwTCw = 0. We now show that rq(x�)T v = 0 for all eigenvectors v of C. Note that sincex� satis�es c(x�) = 0 and rc(x�) = 0, assumptions (3.2) imply that C is inde�nite.If v is an eigenvector of C corresponding to a zero eigenvalue, then vTCv = 0, and thusrq(x�)Tv = 0. Let v1 and v2 be eigenvectors of C corresponding to positive and negativeeigenvalues, respectively. We choose the directions of v1 and v2 so that rq(x�)T vi � 0 fori = 1; 2, and we choose an � < 0 so that(v1 � �v2)TC(v1 � �v2) = 0:Hence, rq(x�)T (v1 � �v2) = 0, and since rq(x�)Tvi � 0 and � < 0, we must haverq(x�)Tvi = 0 for i = 1; 2. We have shown that rq(x�)T v = 0 for all eigenvectors vof C. Since C has a complete set of eigenvectors, rq(x�) = 0.We now show that wTCw = 0 implies that wTAw � 0. If wTCw = 0, thenc(x� + w) = c(x�) +rc(x�)Tw + 12wTCw = 0;since c(x�) = 0 and rc(x�) = 0. Hence, x� + w is feasible, and since rq(x�) = 0 and x� isthe global minimizer, q(x� + w)� q(x�) = 12wTAw � 0:Thus, we have shown that wTCw = 0 implies that wTAw � 0. Theorem 2.3 now shows thatA+��C is positive semide�nite for some �� 2 IR, that is, r2xL(x�; ��) is positive semide�nite.Moreover, the pair (x�; ��) trivially satis�es the Kuhn-Tucker condition because rq(x�) = 0and rc(x�) = 0.The converse is easy to prove. If c(x�) = 0 and there is a multiplier �� 2 IR such that(3.3) holds and (3.4) is positive semide�nite, then the Kuhn-Tucker condition guaranteesthat rxL(x�; ��) = 0, and thusL(x; ��) = L(x�; ��) + 12(x� x�)Tr2xL(x�; ��)(x� x�) � L(x�; ��):Since L(x; ��) = q(x) if c(x) = 0, we obtain that q(x�) � q(x) if c(x) = 0. Thus, x� is aglobal minimizer. �The assumption that r2c 6= 0 in Theorem 3.2 is necessary. For example, the problemminf�21 � �22 : �2 = 0ghas x� = (0; 0) for a global minimizer and �� = 0 as the unique multiplier. However,r2xL(x�; ��) =  2 00 �2 !8



is not positive semide�nite. Also note that assumption (3.2) is necessary. For example, theproblem minf�21 + �2 : �22 = 0ghas x� = (0; 0) for a global minimizer, but the Kuhn-Tucker condition (3.3) does not holdfor any �� 2 IR.An interesting aspect of the proof of Theorem 3.2 is that it can be used to give a shortproof of Theorem 2.2. We need the part of the proof where it is assumed that rc(x�) 6= 0.For this proof, �rst note that if (2.2) holds, then there is an � > 0 such thatw 6= 0; wTCw = 0 =) wTAw � �kwk2:If we consider the optimization problemminfxT (A� 12�I)x : xTCx = xT0 Cx0g;for some x0 2 IRn such that xT0Cx0 6= 0, then Theorem 2.1 shows that this problem has aglobal minimizer x�. Moreover, if c(x) = xTCx�xT0 Cx0, it is clear thatrc(x�) = 2Cx� 6= 0.Hence, the proof of Theorem 3.2 shows that there is a multiplier �� such thatA� 12�I + ��Cis positive semide�nite. Hence, A+ ��C is positive de�nite as desired.We have obtained Theorem 3.2 under minimal assumptions. Algorithmic developments,however, require the stability assumption that the set IPD de�ned byIPD = f� 2 IR : A+ �C positive de�nite g (3:7)is not empty. We justify this assumption by proving that if IPD is empty, then a small per-turbation of problem (3.1) leads to a similar problem without a global minimizer. Theorem2.2 shows that if IPD is empty, then there is a w 2 IRn such thatw 6= 0; wTCw = 0; wTAw � 0:Now consider the minimization problemminfq�(x) : c(x) = 0g;where q�(x) = q(x)� 12�(vTx)2for any vector v 2 IRn such that vTw 6= 0, and any � > 0. The Hessian of the Lagrangian ofthis problem is not positive semide�nite, and thus Theorem 3.2 implies that this problemdoes not have a global minimizer. Since r2q� is arbitrarily close to r2q, this proves our9



claim that if IPD is empty, then a small perturbation of problem (3.1) leads to a similarproblem without a global minimizer.The analogous stability assumption for the inequality constrained version of problem(3.1) is that w 6= 0; wTCw � 0 =) wTAw > 0: (3:8)We do not elaborate on this assumption; we need (3.8) only to show that the inequalityconstrained version is essentially a special case of (3.1).Theorem 3.3 Let q : IRn ! IR and c : IRn ! IR be quadratic functions de�ned on IRn, andassume that (3.8) holds. If the problemminfq(x) : c(x) � 0g (3:9)is feasible, then there is a global minimizer x� such that c(x�) = 0, or there is a uniqueminimizer x� with A positive de�nite, rq(x�) = 0, and c(x�) < 0.Proof. A minor modi�cation of the proof of Theorem 2.1 shows that if (3.8) holds, thenthe optimization problem (3.9) has a global minimizer. If no global minimizer x� satis�esc(x�) = 0, then there must be a global minimizer x� with c(x�) < 0. Hence, rq(x�) = 0and A must be positive semide�nite. If, on the contrary, A is not positive de�nite, thenthere is a v 6= 0 with Av = 0. Thus, q(x� + �v) = q(x�) for all � 2 IR. We complete theproof by showing that c(x� + �v) = 0 for some � 2 IR. Since vTAv = 0 and (3.8) holds,we must have vTCv > 0. Thus, c(x� + �v) ! +1 as � ! 1. The continuity of c andthe assumption that c(x�) < 0 now show that there is some � 2 IR with c(x� + �v) = 0, asdesired. �Theorem 3.3 shows that if we develop an algorithm for the equality constrained problem(3.1), then we can easily extend the algorithm to the inequality constrained problem (3.9).We conclude this section with the characterization result for (3.9).Theorem 3.4 Let q : IRn ! IR and c : IRn ! IR be quadratic functions de�ned on IRn, andassume that minfc(x) : x 2 IRng < 0 (3:10)and that r2c 6= 0. A vector x� is a global minimizer of (3.9) if and only if c(x�) � 0, theKuhn-Tucker condition (3.3) is satis�ed, and the Hessian of the Lagrangian (3.4) is positivesemide�nite for some �� � 0 with �� = 0 if c(x�) < 0.Proof. First of all, note that (3.2) can fail only if c(x) � 0 for all x 2 IRn. However, in thiscase the optimization problem is unconstrained, and the result holds.10



If x� is a global minimizer and c(x�) < 0, then x� is an unconstrained minimizer,and thus r2q(x�) is positive semide�nite as desired. If c(x�) = 0, the result follows fromTheorem 3.2.The converse follows as in Theorem 3.2. If (3.3) holds and (3.4) is positive semide�nitefor some �� � 0, then rxL(x�; ��) = 0 andL(x; ��) = L(x�; ��) + 12(x� x�)Tr2xL(x�; ��)(x� x�) � L(x�; ��):Since �� � 0, this implies thatq(x) � q(x) + ��c(x) = L(x; ��) � L(x�; ��) = q(x�)for all x such that c(x) � 0. Thus, x� is a global minimizer of problem (3.9). �4 UniquenessWe only consider conditions that guarantee the uniqueness of x� since the uniqueness of ��is not needed for the developments that follow.Theorem 4.1 Let q : IRn ! IR and c : IRn ! IR be quadratic functions de�ned on IRn,and assume that the Kuhn-Tucker condition (3.3) is satis�ed and that the Hessian of theLagrangian (3.4) is positive de�nite. If c(x�) = 0, then x� is the unique global minimizer ofproblem (3.1). If �� � 0 and c(x�) � 0, then x� is the unique global minimizer of problem(3.9).Proof. We only prove this result for problem (3.9) since the proof for problem (3.1) issimilar. If (3.3) holds, then rxL(x�; ��) = 0. Thus, since (3.4) is positive de�nite,L(x; ��) = L(x�; ��) + 12(x� x�)Tr2xL(x�; ��)(x� x�) > L(x�; ��)for all x 6= x�. Now use the assumptions that �� � 0 and that c(x�) � 0 to obtain thatq(x) � q(x) + ��c(x) = L(x; ��) > L(x�; ��) = q(x�)for all x 6= x� such that c(x) � 0. Thus, x� is the unique global minimizer of problem (3.9).�5 AlgorithmsWe propose an algorithm for the solution of the optimization problem (3.1) that requiresthe solution of a sequence of positive de�nite systems of linear equations. The algorithm isbased on a search for the Lagrange multiplier �� guaranteed by Theorem 3.2.11



Consider the optimization problem (3.1) where q : IRn ! IR and c : IRn ! IR arequadratic functions de�ned on IRn. For algorithmic purposes, we assume that the quadraticsq and c are de�ned byq(x) = 12xTAx+ bTx; c(x) = 12xTCx+ dTx� �: (5:1)We also assume that the set IPD de�ned by (3.7) is not empty. This is a reasonableassumption because the argument in Section 3 showed that if IPD was empty, then theoptimization problem (3.1) was not well-posed.Given � 2 IPD, we de�ne x(�) 2 IRn as the solution to the system of linear equationsrq[x(�)] + �rc[x(�)] = 0: (5:2)In terms of the Lagrangian function, x(�) is the unique solution of rxL[x(�); �] = 0; inview of (5.1) we can also think of x(�) as the solution of the system of linear equations(A+ �C)x(�) = �(b+ �d):The algorithm that we propose in this section is based on �nding � 2 IPD such thatc[x(�)] = 0:Theorem 3.2 shows that if this is possible, then x(�) is the global minimizer of the opti-mization problem (3.1).Theorem 5.1 If A 2 IRn�n and C 2 IRn�n are symmetric matrices, then IPD is an interval.Proof. We show that IPD is convex and thus an interval. Assume that �1 and �2 belongto IPD and that �1 < �2. Since wT (A+ �C)w is linear in � for any w 2 IRn,wT (A+ �C)w � minfwT (A+ �i)w : i = 1; 2g; � 2 (�1; �2);and thus A+ �C is positive de�nite. Hence, � 2 IPD as desired. �Theorem 2.2 gives necessary and su�cient conditions for IPD to be nonempty. Underthese conditions Theorem 5.1 shows that IPD is a nonempty open interval. IPD is a �niteinterval (�l; �u) if C is inde�nite. We can see this by noting that�wTCw � �wTAw; w 2 IRnfor � 2 IPD. In a similar manner we can prove that IPD is of the form (�l;+1) if C ispositive de�nite, while IPD = (�1; �u) if C is negative de�nite.For several of our results it will be important to note that each component of x(�) is arational function for � 2 IPD. This result can be established by �rst recalling the classical12



result that since IPD is not empty, there is a nonsingular similarity transformation thatdiagonalizes A and C. For a proof of this result, see Horn and Johnson [11, Theorem 7.6.1].Thus, there is a nonsingular P 2 IRn�n such thatPTAP = Da; PTCP = Dc;where both Da and Dc are diagonal matrices. If we use P to change variables, thenx(�) = P�T (Da + �Dc)�1 PT (b+ �d):It is now clear that each component of x(�) is a rational function for � 2 IPD.Theorem 5.2 Let q : IRn ! IR and c : IRn ! IR be the quadratic functions de�ned on IRnby (5.1), and assume that IPD is not empty. If x(�) 2 IRn is the solution of (5.2), and ifthe function � : IR! IR is de�ned on IPD by�(�) = c[x(�)];then � is strictly decreasing on IPD unless x(�) is constant on IPD withrq[x(�)] = 0; rc[x(�)] = 0;for all � in IPD.Proof. We �rst need expressions for �0(�) and x0(�). The expression�0(�) = rc[x(�)]Tx0(�)for �0(�) follows from the de�nition of �, while an expression for x0(�) is obtained by notingthat since x(�) satis�es (5.2), (A+ �C)x0(�) = �rc[x(�)]: (5:3)Thus, using the expression for �0(�), we obtain that�0(�) = �x0(�)T (A+ �C)x0(�):Hence, �0(�) � 0 for � 2 IPD. If � is not strictly decreasing on IPD, then �0(�) = 0 for � insome subinterval I if IPD. The above expression for �0(�) then shows that x0(�) = 0 on I .We now wish to conclude that x0(�) � 0 on IPD. The easiest way to prove this is to notethat since each component of x(�) is a rational function for � 2 IPD, we can have x0(�) = 0on a subinterval I of IPD only if x0(�) � 0 on IPD.We have shown that x(�) is constant on IPD. Hence, (5.3) shows that rc[x(�)] = 0 onIPD, and thus (5.2) yields that rq[x(�)] = 0 on IPD. �13



The possibility in Theorem 5.2 that x(�) is constant on IPD cannot be ruled out. Forexample, if A and C are two matrices such that IPD is not empty, and we de�ne b and d byAx0 = �b; Cx0 = �dfor some x0 2 IRn, then x(�) � x0 for � 2 IPD. We can reverse this construction becauseif x(�) � x0 for � 2 IPD, then x0 satis�es Ax0 = �b and Cx0 = �d. This argument showsthat small perturbations on the data that de�nes q and c lead to a case where x(�) is notconstant.Theorem 5.2 can be used to �nd a global minimizer x� of (3.1) in the case where A+��Cis positive de�nite because in this case �� 2 IPD is a solution of �(�) = 0. We now outlinean algorithm for �nding �� in this case.In the search for �� we �rst need to decide whether IPD is empty or determine �0 2 IPD.We start with bounds �l and �u such that IPD � (�l; �u). For example, the bounds�l = max(�ai;ici;i : ci;i > 0) ; �u = min(�ai;ici;i : ci;i < 0) ;could be used, where �l = �1 if ci;i � 0 for all i, and �u =1 if ci;i � 0 for all i. We nowshow how to update (�l; �u) given �0 2 (�l; �u).If �0 =2 IPD, then A+ �0C is not positive de�nite, and thus we can compute an x 2 IRnsuch that xT (A+ �0C)x � 0; x 6= 0: (5:4)A vector x that satis�es (5.4) can be computed, as in the algorithms of Gay [5] and Mor�e andSorensen [15], by noting that during the Cholesky decomposition of A+ �0C it is possibleto �nd � � 0 such that the leading submatrix of order l � n ofA+ �0C + �eleTlis singular, and x 2 IRn such that (A+ �0C + �eleTl )x = 0 with xl = 1 and xi = 0 for i > l.Clearly, x satis�es (5.4).Given a vector x 2 IRn that satis�es (5.4), note that if xTCx < 0, thenxT (A+ �C)x � xT (A+ �0C)x � 0for � > �0. Thus we can set �u = �0. Similarly, if xTCx > 0, then �l = �0. Given atolerance � > 0, we can use this updating procedure to reduce the length of (�l; �u) untilwe determine some �0 2 IPD, or we determine that the length of IPD is less than �.Once we determine �0 2 IPD, we can continue to isolate �� by updating �l and �u suchthat �� 2 (�l; �u). This is easily done because if �0 2 IPD and �(�0) < 0, then we set�u = �0, but if �(�0) > 0, then �l = �0. This procedure is valid even if x(�) is constant for� 2 IPD. 14



The algorithm that we have outlined can be used to generate a sequence f�kg thatconverges to ��. Moreover, if A+ ��C is positive de�nite, then fx(�k)g converges to x(��)with �(��) = 0. Hence, x(��) is the global solution of (3.1).We have not speci�ed any particular algorithm to generate the sequence f�kg. If C ispositive (negative) semide�nite, it is not di�cult to show that � is convex (concave) onIPD, and thus a safeguarded version of Newton's method is a reasonable choice. This is theapproach used by Gay [5] and Mor�e and Sorensen [15]. If C is inde�nite, then � may notbe convex or concave, so extra care is needed. For example, ifA =  1 00 1 ! ; C =  1 00 �1 ! ; b =  11 ! ; d = 0;then IPD = (�1; 1), but �00 changes sign in (�1; 1).The situation where A+��C is singular is more delicate. In this case �(�) = 0 may nothave a solution in IPD, and fx(�k)g may not converge to the solution of (3.1); this is thereason why Mor�e and Sorensen [15], in their study of the problem with C = I , called thiscase the hard case.Theorem 5.3 Let A and C be symmetric matrices, and assume that IPD is not empty. Ifan endpoint �� of IPD is �nite, then A+��C is positive semide�nite and singular. Moreover,if IPD = (��l ; ��u), then[��l ; ��u] = IPSD � f� 2 IR : A+ �C positive semide�nite g :Proof. If �� is an endpoint of I , then it is clear that A + ��C is positive semide�nite.If A + ��C is not singular, then it must be positive de�nite. However, then A + �C isalso positive de�nite in a neighborhood of ��. This conclusion is not possible because itcontradicts the de�nition of IPD.We now show that if IPD = (��l ; ��u), then IPSD = [��l ; ��u]. Clearly, IPD � IPSD.Moreover, just as in Theorem 5.1, we can prove that IPSD is an interval. Thus, if IPSD 6=[��l ; ��u], then A + �C must be positive semide�nite and singular on a nontrivial interval.This conclusion implies that the polynomialp(�) = det(A+ �C)vanishes in a nontrivial interval. Hence, p(�) � 0, and thus A + �C is singular for all �,contradicting the assumption that IPD is not empty. �Theorem 5.3 shows that if A+��C is singular, then �� must be an endpoint of IPD. Wenow prove that �� is an endpoint of IPD such that the limitlim�!�� �(�)15



exists. We are certainly guaranteed the existence of this limit for one of the endpoints ofIPD. In fact, since we are assuming that �(�) = 0 does not have a solution in IPD, thefunction � does not change sign in IPD. Hence, if �(�) > 0 on IPD, thenlim�!��u �(�) = inff�(�) : ��l < � < ��ug;because � is decreasing in IPD. Similarly, if �(�) < 0 on IPD, thenlim�!��l �(�) = supf�(�) : ��l < � < ��ug:These calculations suggest that �� = ��u if �(�) > 0 on IPD, and that �� = ��l if �(�) < 0on IPD. We need the following result to establish this claim.Theorem 5.4 Let A and C be symmetric matrices, and assume that IPD is not empty. Ifan endpoint �� of IPD is �nite and the limitlim�!�� �(�) (5:5)exists, then the limit lim�!�� x(�)also exists.Proof. We have already noted that the function x(�) is a rational function for � 2 IPD sowe need to show that fx(�k)g is bounded when f�kg is any sequence in IPD converging to��; that is, we need to show that x(�) does not have a pole at ��. Assume, on the contrary,that fkx(�k)kg is unbounded, and de�nezk = x(�k)kx(�k)k :Then kzkk = 1, so that we can assume, without loss of generality, that fzkg converges tosome vector z with kzk = 1.Since f�(�k)g is bounded and �(�k) = c[x(�k)], we obtain that zTCz = 0. Moreover,since (A+ �kC)zk = �(b+ �kd)kx(�k)k ;we also obtain that (A+ ��C)z = 0. We have already shown that zTCz = 0, so this yieldsthat zTAz = 0. However, this is not possible if IPD is not empty. �We now prove that �� = ��u if �(�) > 0 on IPD, and that �� = ��l if �(�) < 0 on IPD.We have already shown that the limit (5.5) exists for this choice of ��, and thus Theorem5.4 shows that lim�!�� x(�) = x�16



for some x� 2 IRn, and hence (A+ ��C)x� = �(b+ ��d):Although we also have that A+��C is positive semide�nite, x� is not necessarily the solutionof (3.1) because we cannot guarantee that c(x�) = 0. However, we claim that if z� is chosenso that (A+ ��C)z� = 0; z� 6= 0;then x� + ��z� solves (3.1) for some �� 2 IR.First of all, note that we can obtain z� because A+��C is singular. Now assume, to bede�nite, that �(�) < 0 on IPD, and thus �� = ��l is the smallest endpoint of IPD. Sincec(x� + �z�) = c(x�) + �rc(x�)Tz� + 12�2zT� Cz�;it is clear that there is an �� 2 IR such that c(x�+ ��z�) = 0 if we can show that c(x�) � 0and that zT� Cz� > 0. Since �(�) < 0 on IPD, and fx(�)g converges to x�, it is clear thatc(x�) � 0. If, on the contrary, zT� Cz� � 0, thenzT� (A+ �C)z� = zT� (A+ ��C)z� + (�� ��)zT� Cz� � 0for � > �� = ��l . This is not possible because A + �C is positive de�nite for � 2 (��l ; ��u).Hence, zT� Cz� > 0 as desired.6 Approximate Global MinimizersThe results in Section 5 show how to generate a sequence f�kg in IPD that converges to theLagrange multiplier �� of the optimization problem (3.1). Moreover, if A+ ��C is positivede�nite then fx(�k)g converges to the solution x� of (3.1), while if A + ��C is positivesemide�nite and singular, then fx(�k)g also converges to some x�, but now a solution of(3.1) is obtained by computing x� + ��z�, where(A+ ��C)z� = 0; z� 6= 0;and �� 2 IR satis�es c[x� + ��z�] = 0. In this section we address the question of how todetermine approximate global minimizers x 2 IRn such that, given tolerances �q > 0 and�c > 0, q(x) � q� + �q ; jc(x)j � �c; (6:1)where q� � minfq(x) : c(x) = 0g:We �rst analyze the case where A + ��C is positive de�nite.17



Theorem 6.1 If � 2 IPD, then q[x(�)] + �c[x(�)]� q�:Proof. The proof is simple; just note that (5.2) implies that x(�) is the global minimizerof the quadratic q + �c, and thusq[x(�)] + �c[x(�)] = minfq(x) + �c(x) : x 2 IRng � minfq(x) : c(x) = 0g = q�:� If A+��C is positive de�nite, then we can compute � 2 IPD such that �(�) = c[x(�)] issmall. Theorem 6.1 shows that x(�) satis�es the termination criteria (6.1) if we determine� 2 IPD such that ��c[x(�)]� �q ; jc[x(�)]j � �c:These inequalities are satis�ed for all � 2 IPD su�ciently close to ��.Theorem 6.2 If � 2 IPD and c[x(�) + ��z�] = 0;then q� � q[x(�) + ��z�] � q� + 12�2�zT� (A+ �C)z�:Proof. The �rst inequality follows from the assumption that c[x(�)+��z�] = 0 and from thede�nition of q�. The proof of the second inequality is obtained in terms of the Lagrangianfunction L(x; �) = q(x) + �c(x):Since the pair (x(�); �) satis�es (5.2), rxL[x(�); �] = 0, and thusL[x(�) + ��z�; �] = L[x(�); �]+ 12�2�zT� (A+ �C)z�:We now make use of the assumption that c[x(�) + ��z�] = 0 to obtainq[x(�) + ��z�] = q[x(�)] + �c[x(�)]+ 12�2�zT� (A+ �C)z�:The result now follows from Theorem 6.1. �Theorem 6.2 is applicable if � is su�ciently close to �� and A+��C is positive semidef-inite and singular. However, Theorem 6.2 is also applicable if we �nd � 2 IPD and z�such that 12zT� (A + �C)z� is smaller than �q . Thus, if there is an �� 2 IR such thatc[x(�) + ��z�] = 0, then the termination criteria (6.1) are satis�ed for any �c > 0.The theorems of this section extend results of Mor�e and Sorensen [15] to the case wherethe quadratic function c is arbitrary. Theorem 6.2 is an extension of Lemma 3.4 in thatpaper, while Theorem 6.1 is a generalization of Lemma 3.13.18



7 Concluding RemarksDuring the �nal stages of the preparation of this manuscript I attended the PanamericanWorkshop on Applied and Computational Mathematics (Universidad Simon Bolivar, Cara-cas, January 10{15, 1993), where Henry Wolkowicz gave me a copy of his recently completedmanuscript [18] with Ronald Stern on the problemminfq(x) : cl � xTCx � cug; (7:1)and on the application of this problem to nonsymmetric eigenvalue perturbations. Althoughthe two manuscripts are related, there are several di�erences in our approach and results.If we consider the one-sided case of (7.1), then it is clear that (7.1) is a special case of(1.3); however, note that if r2c = C is nonsingular, then a change of variables transforms(1.3) into (7.1).The characterization result in [18] assumes that rc(x�) 6= 0, or that cl < 0 < cu. Aspointed out in Section 3, this assumption is stronger than (3.2) for the equality constrainedcase where cl = cu. Note, in particular, that if C is inde�nite, then (3.2) is automaticallysatis�ed, but that this is not the case for the assumptions in [18]. Similar remarks apply tothe inequality constrained case where cl = �1.The introduction of the two-sided bounds in (7.1) is an interesting variation. We canhandle this variation, and the more general problemminfq(x) : cl � c(x) � cug;with the material in Sections 5 and 6. The main di�erence is that instead of looking for asolution of �(�) = 0, we would search for either a solution �� � 0 in IPD of �(��) = cu, ora solution �� � 0 in IPD of �(��) = cl. Since � is either constant or strictly decreasing, wecan update the interval (�l; �u) of Section 5 and isolate the appropriate solution.Our treatments of the algorithm also di�er. Stern and Wolkowicz [18] follow the de-velopment of Mor�e and Sorensen [15] and outline an algorithm that exploits the Choleskyfactorization of A + �C, while our treatment in Sections 5 and 6 is independent of themethod used to determine the solution x(�) of the linear system (5.2). We also note thatthe application of their algorithm to (1.3) requires a change of variables to reduce theproblem to the standard form (7.1). In our approach this change of variables is not needed.Acknowledgments. My enjoyable discussions with Henry Wolkowicz at the PanamericanWorkshop on Applied and Computational Mathematics are gratefully acknowledged. GailPieper deserves special thanks for her careful reading of the manuscript.References[1] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Aca-demic Press, 1982. 19
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