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ABSTRACT

The trust region problem requires the global minimum of a general quadratic function
subject to an ellipsoidal constraint. The development of algorithms for the solution of this
problem has found applications in nonlinear and combinatorial optimization. In this paper
we generalize the trust region problem by allowing a general quadratic constraint. The
main results are a characterization of the global minimizer of the generalized trust region
problem, and the development of an algorithm that finds an approximate global minimizer

in a finite number of iterations.



GENERALIZATIONS OF THE TRUST REGION PROBLEM

Jorge J. Moré

1 Introduction

Trust region methods for the minimization of a function f : IR” — R require an approximate

minimizer of a problem of the form
min{q(e) : | Dallz < A}, (1.1)

where ¢ : R — R is a quadratic model of the function in a neighborhood of the current
iterate, D is a nonsingular matrix that specifies the scaling of the variables, and A is
determined by the trust region method. An interesting and surprising aspect of this problem
is that it is possible to obtain a characterization of the global minimizer. This result, due
to Gay [5] and Sorensen [17], is that 2* is a global minimizer if and only if ||Dz*|| < A, the
Kuhn-Tucker condition

Vg(z*) + DT Da* =0
is satisfied, and the Hessian of the Lagrangian
Vig(z*)+ DT D (1.2)

is positive semidefinite for some A* > 0 such that \* = 0 if ||[D2*|| < A. The surprising
aspect of this result is that it holds for any quadratic ¢; there is no assumption of convexity.

Gay [5] and Sorensen [17] used this characterization result to develop an algorithm for the
solution of (1.1) that paid special attention to the case where the Hessian of the Lagrangian
(1.2) is nearly singular. Moré and Sorensen [15] developed an improved algorithm that
produces approximate global minimizers in a finite number of steps.

The initial application of algorithms for the solution of (1.1) was to trust region meth-
ods for unconstrained minimization. See, for example, Gay [6] and Moré and Sorensen
[15]. Recent application to other problems includes that by Coleman and Hempel [2] on
constrained optimization, Ye [20] on quadratic programming, Pardalos, Ye, and Han [16] on
quadratic knapsack problems, and Karmarkar, Resende, and Ramakrishnan [12] on covering
problems.

Several extensions of the basic problem (1.1) are of interest. The simplest extension is

to consider the problem
min{g(z) : e(z) <0}, (1.3)
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where ¢ : R™ — R and ¢: R® — R are quadratic functions defined on IR"™. Several special
cases of this problem have been considered in the literature. For example, the problem

where

min {||Az — bl|z : ||Cz — d||2 < a}, (1.4)

arises in the regularization of ill-posed problems and in the smoothing of noisy data. Note
that this problem is a special case of (1.3) with both ¢ and ¢ convex. Gander [4] considered
this problem as a special case of the problem with the equality constraint ¢(z) = 0, and
characterized the solution in terms of the Lagrange multiplier. For recent work on this
problem, see the work of Golub and von Matt [7].

Critchley [3] considered (1.3) with the equality constraint ¢(z) = 0, with ¢ a strictly
convex quadratic, but ¢ a general quadratic. His interest in problem (1.3) derived from
applications in the statistical literature. Our interest in (1.3) is motivated by a study of the
general problem

min{g(z): ¢;(z) =0, 1 <i<m},

where ¢; : R" — IR are quadratic functions. This generalization is important because it
includes, as a special case, integer programming problems. Indeed, if ¢;(z) = z;(1—x;), then
¢;(z) = 0if and only if z; € {0,1}. The case where m = 2 and the equality constraints are
replaced by inequalities has attracted considerable interest in connection with trust region
methods. For recent work on this problem, see Yuan [21, 22], Martinez and Santos [14],
Zhang [23], and Heinkenschlof [9].

Our aim in this paper is to characterize the global minimizer of problem (1.3) and to
develop an algorithm that determines approximate global minimizers in a finite number of

steps. In our terminology, an approximate global minimizer is a vector z € R"™ such that
(Z($) <q+ €g5 |C($)| < €,

where ¢, > 0 and ¢, > 0 are tolerances, and ¢* = min{g(z) : ¢(z) < 0}.
We approach the inequality constrained problem (1.3) by first studying the equality

constrained problem
min{g(z) : e(x) = 0}, (1.5)

and then showing that (1.3) can be treated as a special case. We begin with a brief look at
a condition that guarantees the existence of a global minimizer for (1.5) and the connection
of this condition with matrix pencils. The characterization result for a global minimizer of
problems (1.3) and (1.5) appears in Section 3, while a uniqueness result for the minimizer
x* appears in Section 4.

In Section 3 we also show that if the inequality constrained problem (1.3) is well-posed,
then there is a global minimizer 2* such that ¢(2*) = 0, or there is a unique minimizer
z* with V2¢ positive definite, Vg(z*) = 0, and ¢(2*) < 0. This result shows that if we



develop an algorithm for the equality constrained problem (1.5), then we can easily extend
the algorithm to the inequality constrained problem (1.3).

The essential features of an algorithm for the solution of both (1.3) and (1.5) are de-
veloped in Section 3, while Section 5 contains a discussion of the termination criteria that
guarantee an approximate global minimizer in a finite number of steps. These results extend
and unify the theory associated with problems (1.1) and (1.4) to the general problem (1.3)
and (1.5).

2 Preliminaries

We can guarantee that the minimization problem

min{¢(z) : e(z) = 0}, (2.1)

where ¢ : R" — R and ¢ : R" — R are quadratic functions defined on R", has a global
minimizer by assuming that the Hessian of ¢ is positive definite for any direction of zero
curvature of ¢. In this section we explore the connection of this condition with work on
matrix pencils.

The definition of a quadratic guarantees that the Hessian matrix is constant. We use

the notation

Vig=A, Vie=C,

for the Hessian matrices of ¢ and ¢. The following result shows that the relationship between

A and C'is crucial to the existence of a global minimizer for problem (2.1).
Theorem 2.1 Let g : R™ — R and ¢ : R” — R be quadratics, and assume that
{zr € R" : ¢(z) = 0}
is not empty. If
w#0, wCw=0 = wlAw>0, (2.2)

then the optimization problem (2.1) has a global minimizer.

Proof. A standard compactness argument shows that (2.1) has a global minimizer if we
prove that

klim q(zy) = 0

for any unbounded {zj} with ¢(2;) = 0. Assume, on the contrary, that ¢(z;) < 3. There

is no loss of generality in assuming that

. L
lim —— =
k—oo ||z k|



Clearly w # 0. Since {2} is an unbounded sequence with ¢(zy) = 0,

im )

_ . _
e =w" Cw=0.

Similarly, since {zx} is an unbounded sequence with ¢(zx) < 3,

lim q(xkl =w! Aw < 0.
k—oo ||z k|

Thus, w contradicts assumption (2.2) on A and C'. B

The converse of Theorem 2.1 does not hold in general; however, in Section 3 we show
that if the optimization problem (2.1) has a global minimizer, then w? Cw = 0 implies that
wl Aw > 0. In the remainder of this section we consider the connection of condition (2.2)
with the study of matrix pencils, that is, one-parameter families of matrices of the form

A+ AC.

Theorem 2.2 IfA € R™™"™ and C' € R™™" are symmetric matrices, then A+ \C' is positive
definite for some X\ € R if and only if (2.2) holds.

Theorem 2.2 is a classical result on quadratic forms. Hestenes [10, Theorem 6.1] gives
an elementary, but somewhat lengthy proof of Theorem 2.2. We will give another proof
of this result in Section 3. Uhlig [19] is an excellent source for additional information on
results related to Theorem 2.2.

Theorem 2.2 arises in several areas. For example, in the analysis of augmented La-
grangian algorithms, A is the Hessian of the Lagrangian and C' is a positive semidefinite
matrix associated with the active constraint normals. The proof of Theorem 2.2 when (' is
semidefinite is short and elementary; see, for example, Bertsekas [1, Lemma 1.25]. Theorem
2.2 also arises in connection with the generalized eigenvalue problem Az = ACz, because
if we can find Ag € R such that A 4+ A\gC' is positive definite, then the eigenvalue problem

Az = AC'z is equivalent to the positive definite eigenvalue problem
(AA —C)z =v(A+ ACO)z.

This implies, in particular, that Az = ACz has n real eigenvalues; some of the eigenvalues
may be at infinity if C' is singular. Golub and Van Loan [8, Section 8.7] provide additional

information on generalized eigenvalue problems.

Theorem 2.3 Assume that A € R"*" and C € R™*" are symmetric matrices and that C'
1s indefinite. Then
wCw=0 = wlAw>0

if and only if A+ AC' is positive semidefinite for some A € R .



Proof. If we define A, = A+ al for @ > 0, then (2.2) holds for A,, and thus Theorem 2.2
guarantees that A, + A,C is positive definite for some A, € R. In particular,

Aow Cw > —wl (A + al)w

for all w € R™. This inequality shows that if A\, — 400 as @ — 0 then C is positive
semidefinite. Similarly, we can rule out that A\, — —o0 as @ — 0. Since {\,} is bounded,
a subsequence converges to some A € R, and since A, + A,C is positive definite, A + AC' is

positive semidefinite. Wl

This result was established by Krein and Smuljan [13] for Hilbert spaces over the complex
field by an entirely different argument. Note that our proof is valid for real vector spaces.

The assumption that €' is indefinite is necessary in Theorem 2.3. For example, let

(0 %) (1)

We can check that w?C'w = 0 implies that w? Aw = 0. However, A4 AC' is indefinite for all
A € R. Also note that Theorem 2.3 does not guarantee that A+ AC'is positive semidefinite

for more than one value of A. For example, if
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then A is positive semidefinite, and thus the assumptions of Theorem 2.3 hold. However,
A + AC is positive semidefinite only if A = 0.

3 Global Minimizers

The main purpose of this section is to establish a characterization result for the global

minimizer of the problem
min{¢(z) : e(z) = 0}, (3.1)
where ¢ : R®™ — IR and ¢ : R" — R are quadratic functions defined on IR". We conclude

with the characterization result for the inequality constrained version of problem (3.1).

We follow the notational convention of the preceding section by using
Vg = A, Vie=C,

for the Hessian matrices of ¢ and ¢. We do not assume that either A or C' is semidefinite.
Interestingly enough, we need to assume that the constraint quadratic ¢ is not a linear
function; that is, we assume that C' # 0.

The analysis requires that we rule out certain special cases by assuming a constraint

qualification. For (3.1) we assume that

min{c(z): 2z € R"} < 0 < max{e(z): 2 € R"}. (3.2)



These assumptions guarantee, in particular, that the feasible set is not empty.

Lemma 3.1 Let ¢ : R® — R be a quadratic function defined on R™. If the feasible set
{z € R" : ¢(2) = 0} is not empty, then assumption (3.2) fails if and only if C' is semidefinite
and there is an z* such that ¢(z*) = 0 and Ve(z*) = 0. Moreover, if Ve(z) # 0 for some
feasible x € R™ then assumption (3.2) holds.

Proof. Assume that (3.2) fails because ¢(z) > 0 for all z € R". Since the feasible set is
not empty, we must have
min{c(z): 2 € R"} =0

Thus, the quadratic ¢ is bounded below and achieves its minimum at some z*. Hence, (' is
positive semidefinite, ¢(2*) = 0, and Ve(2*) = 0. A similar argument establishes the result
if (3.2) fails because ¢(z) < 0 for all z € R™.

If Ve(z) # 0 for some feasible 2 € R™ but (3.2) fails because ¢(z) > 0 for all z € R"
then the above argument shows that the quadratic ¢ achieves its minimum at an z* such
that ¢(2*) = 0. Hence, ¢ achieves its minimum at any feasible z, and thus Ve(z) = 0 for

any feasible z. W

This result implies that if assumption (3.2) fails, then the feasible set {# € R" : ¢(2) = 0}

is a subspace of IR with dimension less than n; if C' is definite then only z* is feasible.

Theorem 3.2 Let ¢ : R® — R and ¢ : R" — R be quadratic functions defined on IR™.
Assume that (3.2) holds and that V?c # 0. A vector a* is a global minimizer of problem
(3.1) if and only if c(z*) = 0 and there is a multiplier \* € R such that the Kuhn-Tucker

condition

Vg(z™)+ A*Ve(z™) =0 (3.3)

is satisfied with
V3g(x™) + \*Vie(a™) (3.4)

positive semidefinite.

Proof. We first show that if 2* is a global minimizer, then condition (3.3) holds and (3.4)
is positive semidefinite. The proof requires consideration of two cases.
If Ve(z*) # 0, then the Kuhn-Tucker condition (3.3) holds, so we need to establish that

(3.4) is positive semidefinite. In terms of the Lagrangian function
£(2,7) = 4(@) + Ac(a),
the Kuhn-Tucker condition guarantees that V,£(z*, A*) = 0, and thus

L(x, )= L(2",\)+ Lz — e )IVEL (2%, ) (x — 2¥).



Since L(z,X*) = ¢(z) if ¢(z) = 0, we obtain that
(e +w)=0 = w!VIL(E",\)w > 0.

We use this implication to show that V2£(z*, A*) is positive semidefinite. The proof requires

that we partition R"™ into four different sets and show that
wIV2EL(2*, A w >0 (3.5)

holds for vectors in each of these sets. Consider the set

S = {w eR": Ve(z)w #0, wlCuw # 0}.
If w € 51, then ¢(2* + aw) = 0 for some a # 0, and thus (3.5) holds. Similarly, if

Sy = {w eR":Ve(z ) 'w =0, w'Cw= 0},
then ¢(2* + w) = 0 for w € 55, and thus (3.5) holds. Now consider the set

Sz = {w eR":Ve(z Y w =0, wl Cw # 0}.

If w € 93, define w, = w+av, where Ve(2*)Tv # 0. The existence of the vector v is guaran-
teed by the assumption that Ve(z*) # 0. A short computation shows that Ve(z*)Tw,, # 0
and that wl Cw, # 0 for all a # 0 sufficiently small. Hence w,, € S, and thus

wlV2L(2", N )w, > 0. (3.6)

Since {w, } converges to w as o converges to zero, (3.5) holds for w € S5. A similar argument
show that (3.5) holds if w belongs to the set

Sy = {w e R": Ve(z*)w # 0, wlCw = 0}.

If w € 54, we now define w, = w + av, where vI'Cv # 0. In this case the existence of
the vector v is guaranteed by the assumption that V¢ # 0, since we can choose v to be
an eigenvector of C' corresponding to a nonzero eigenvalue. A computation shows that
wy € 57 for all a # 0 sufficiently small, and thus (3.6) holds. Since {w,} converges to w as
a converges to zero, (3.5) holds for w € 4.

We have shown that (3.5) holds for all w € R”, and thus (3.3) holds if Ve(2*) # 0.
Note that assumptions (3.2) have not been needed so far in the proof.

The proof for the case where Ve(z*) = 0 requires that we first show that Vg(z*) = 0.
We first claim that ¢(2* + aw) > ¢(2*) for all @ and w € R™ such that w!'Cw = 0. This
claim is easy to establish because ¢(2*) = 0 and Ve(2*) = 0 implies that

c(z* 4+ aw) = ta?w Cw = 0.



Hence, 2* + aw is feasible, and thus ¢(2* 4+ aw) > ¢(2*) because z* is a global minimizer.

Since ¢(z* + aw) > ¢(z*) for all @ and w € R™, we must have Vq(z*)T
wlCw = 0. We now show that Vg(z*)Tv = 0 for all eigenvectors v of C. Note that since
2™ satisfies ¢(2*) = 0 and Ve(2*) = 0, assumptions (3.2) imply that C' is indefinite.

If v is an eigenvector of C' corresponding to a zero eigenvalue, then »* C'v = 0, and thus

w = 0 whenever

Vq(z*)T"v = 0. Let v; and vy be eigenvectors of C' corresponding to positive and negative
eigenvalues, respectively. We choose the directions of »; and v, so that Vq(x*)Tvi > 0 for

1= 1,2, and we choose an a < 0 so that
(01 — avy)TC (v — avy) = 0.

Hence, Vq(2*)T(v; — avy) = 0, and since Vg(z*)Tv; > 0 and a < 0, we must have
Vg(z*)Tv; = 0 for i = 1,2. We have shown that Vg(2*)Tv = 0 for all eigenvectors v
of C'. Since C has a complete set of eigenvectors, Vg(z*) = 0.

We now show that w? Cw = 0 implies that w? Aw > 0. If w' Cw = 0, then

c(z* + w) = ¢(a*) + Ve(a™)Tw + 2w Cw =0,

since ¢(z*) = 0 and Ve(2*) = 0. Hence, 2* + w is feasible, and since Vg(2*) = 0 and z* is
the global minimizer,
g(a™ + w) —q(z”™) = %wTAw > 0.

Thus, we have shown that w? Cw = 0 implies that w? Aw > 0. Theorem 2.3 now shows that
A+A*C is positive semidefinite for some A* € R, that is, V2£(2*, \*) is positive semidefinite.
Moreover, the pair (z*, A*) trivially satisfies the Kuhn-Tucker condition because Vg(z*) = 0
and Ve(z*) = 0.

The converse is easy to prove. If ¢(2*) = 0 and there is a multiplier A* € R such that

(3.3) holds and (3.4) is positive semidefinite, then the Kuhn-Tucker condition guarantees
that V,£(z*,A*) = 0, and thus

L(2, ) = L™, A7) + Lo — 2 V2L(", M) (2 — 2%) > L(a™, A7),

Since L(xz,A*) = ¢(z) if ¢(z) = 0, we obtain that ¢(z*) < ¢(z) if ¢(2) = 0. Thus, 2% is a

global minimizer. W

The assumption that VZ¢ # 0 in Theorem 3.2 is necessary. For example, the problem
min{¢f — & : & = 0}

has z* = (0,0) for a global minimizer and A* = 0 as the unique multiplier. However,

2 * *Y 2 0



is not positive semidefinite. Also note that assumption (3.2) is necessary. For example, the

problem
min{&} + &3 : €5 = 0}

has 2* = (0,0) for a global minimizer, but the Kuhn-Tucker condition (3.3) does not hold
for any A* € R.

An interesting aspect of the proof of Theorem 3.2 is that it can be used to give a short
proof of Theorem 2.2. We need the part of the proof where it is assumed that Ve(a*) # 0.
For this proof, first note that if (2.2) holds, then there is an ¢ > 0 such that

w#0, w'Cw=0 = wlAw>uv|?
If we consider the optimization problem
min{zT (A - tel)a 2T Cr = a2l Caol,

for some x¢ € R" such that z Czo # 0, then Theorem 2.1 shows that this problem has a
global minimizer 2*. Moreover, if ¢(z) = 2T Cz—al Cxy, it is clear that Ve(z*) = 2C2* # 0.

Hence, the proof of Theorem 3.2 shows that there is a multiplier A* such that
A— %d + A*C

is positive semidefinite. Hence, A + A*C is positive definite as desired.
We have obtained Theorem 3.2 under minimal assumptions. Algorithmic developments,

however, require the stability assumption that the set Ipp defined by
Ipp = {X € R : A + AC positive definite } (3.7)

is not empty. We justify this assumption by proving that if Ipp is empty, then a small per-
turbation of problem (3.1) leads to a similar problem without a global minimizer. Theorem
2.2 shows that if Ipp is empty, then there is a w € IR™ such that

w # 0, w'Cw=0, wlAw<O0.
Now consider the minimization problem

min{g.() : e(z) = 03,

where

qe(x) = q(x) — Fe(v"2)?

for any vector v € R™ such that v"w # 0, and any € > 0. The Hessian of the Lagrangian of
this problem is not positive semidefinite, and thus Theorem 3.2 implies that this problem

does not have a global minimizer. Since VZ2q, is arbitrarily close to V2¢, this proves our



claim that if Ipp is empty, then a small perturbation of problem (3.1) leads to a similar
problem without a global minimizer.
The analogous stability assumption for the inequality constrained version of problem
(3.1) is that
w#0, wlCw<0 = wlAw>0. (3.8)

We do not elaborate on this assumption; we need (3.8) only to show that the inequality

constrained version is essentially a special case of (3.1).

Theorem 3.3 Let ¢ :IR"™ — R and ¢ : R" — R be quadratic functions defined on R™, and
assume that (3.8) holds. If the problem

min{¢(z) : e(z) <0} (3.9)

is feasible, then there is a global minimizer x* such that ¢(z*) = 0, or there is a unique

minimizer * with A positive definite, Vq(2*) =0, and ¢(z*) < 0.

Proof. A minor modification of the proof of Theorem 2.1 shows that if (3.8) holds, then
the optimization problem (3.9) has a global minimizer. If no global minimizer z* satisfies
c(z*) = 0, then there must be a global minimizer * with ¢(2*) < 0. Hence, Vg(2*) = 0
and A must be positive semidefinite. If, on the contrary, A is not positive definite, then
there is a v # 0 with Av = 0. Thus, ¢(2* 4+ av) = ¢(z*) for all @ € R. We complete the
proof by showing that ¢(z* 4+ av) = 0 for some a € R. Since vT Av = 0 and (3.8) holds,
we must have vICv > 0. Thus, ¢(z* + av) — 400 as @ — oo. The continuity of ¢ and

the assumption that ¢(2*) < 0 now show that there is some o € R with ¢(2* 4+ av) = 0, as

desired. W

Theorem 3.3 shows that if we develop an algorithm for the equality constrained problem
(3.1), then we can easily extend the algorithm to the inequality constrained problem (3.9).

We conclude this section with the characterization result for (3.9).

Theorem 3.4 Let ¢ :IR" — R and ¢ : R" — R be quadratic functions defined on R"™, and
assume that

min{c(z): 2z € R"} <0 (3.10)

and that V*c # 0. A vector z* is a global minimizer of (3.9) if and only if c(z*) < 0, the
Kuhn-Tucker condition (3.3) is satisfied, and the Hessian of the Lagrangian (3.4) is positive
semidefinite for some \* > 0 with \* = 0 if ¢(2*) < 0.

Proof. First of all, note that (3.2) can fail only if ¢(2) < 0 for all 2 € R™. However, in this

case the optimization problem is unconstrained, and the result holds.
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If 2* is a global minimizer and ¢(z*) < 0, then z* is an unconstrained minimizer,
and thus VZq(z*) is positive semidefinite as desired. If ¢(2*) = 0, the result follows from
Theorem 3.2.

The converse follows as in Theorem 3.2. If (3.3) holds and (3.4) is positive semidefinite
for some A* > 0, then V,£(2*,A*) = 0 and

Lz, \") = L(z",\") + %(w — x*)TV?UE(x*, AN —a™) > L(x™, \7).
Since A* > 0, this implies that
g(z) > q(z)+ Xe(z) = L(z,\*) > L(z*,\) = ¢(z7)

for all  such that ¢(2) < 0. Thus, 2* is a global minimizer of problem (3.9). B

4 Uniqueness

We only consider conditions that guarantee the uniqueness of ™ since the uniqueness of A*

is not needed for the developments that follow.

Theorem 4.1 Let ¢ : R” — R and ¢ : R" — R be quadratic functions defined on IR",
and assume that the Kuhn-Tucker condition (3.3) is satisfied and that the Hessian of the
Lagrangian (3.4) is positive definite. If ¢(z*) = 0, then a* is the unique global minimizer of
problem (3.1). If \* > 0 and c(a*) < 0, then a* is the unique global minimizer of problem
(3.9).

Proof. We only prove this result for problem (3.9) since the proof for problem (3.1) is
similar. If (3.3) holds, then V,L(2*, A*) = 0. Thus, since (3.4) is positive definite,

L(z, A7) = L(a", M) + 2z —2)IVIL(2" N)(z — %) > L(z™, A7)
for all 2 # 2*. Now use the assumptions that A* > 0 and that ¢(2*) < 0 to obtain that
g(z) > q(z)+ Ae(z) = L(z, A7) > L(2™, A7) = ¢(27)

for all « # 2* such that ¢(z) < 0. Thus, 2* is the unique global minimizer of problem (3.9).
[

5 Algorithms

We propose an algorithm for the solution of the optimization problem (3.1) that requires
the solution of a sequence of positive definite systems of linear equations. The algorithm is

based on a search for the Lagrange multiplier A* guaranteed by Theorem 3.2.
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Consider the optimization problem (3.1) where ¢ : R" — IR and ¢ : R" — IR are
quadratic functions defined on IR"™. For algorithmic purposes, we assume that the quadratics

¢ and c are defined by
q(z) = %xTAgc + b2, c(z) = %xTC’w +dTx — 6. (5.1)

We also assume that the set Ipp defined by (3.7) is not empty. This is a reasonable
assumption because the argument in Section 3 showed that if Ipp was empty, then the
optimization problem (3.1) was not well-posed.

Given A € Ipp, we define 2(A) € R™ as the solution to the system of linear equations
V[z(N)]+ AVe[z(A)] = 0. (5.2)

In terms of the Lagrangian function, z(\) is the unique solution of V L[z(A),A] = 0; in

view of (5.1) we can also think of z(A) as the solution of the system of linear equations
(A4 XC)z(N) = —(b+ Ad).
The algorithm that we propose in this section is based on finding A € Ipp such that
cfz(N)] = 0.

Theorem 3.2 shows that if this is possible, then z(\) is the global minimizer of the opti-

mization problem (3.1).
Theorem 5.1 IfA € R"*" and C € R™*" are symmetric matrices, then Ipp is an interval.

Proof. We show that Ipp is convex and thus an interval. Assume that Ay and Ay belong
to Ipp and that Ay < Ag. Since wT(A + 6C)w is linear in @ for any w € R",

wl(A+0C)w > min{wl (A + X\)w:i=1,2}, 8¢ (A, N\),

and thus A + 0C is positive definite. Hence, 8 € Ipp as desired. B

Theorem 2.2 gives necessary and sufficient conditions for Ipp to be nonempty. Under
these conditions Theorem 5.1 shows that Ipp is a nonempty open interval. [Ipp is a finite
interval (A7, A,) if C' is indefinite. We can see this by noting that

Al Cw > —wl Aw, weR”

for A € Ipp. In a similar manner we can prove that Ipp is of the form (A;, +o0) if C' is
positive definite, while Ipp = (=00, A,) if C' is negative definite.
For several of our results it will be important to note that each component of z(-) is a

rational function for A € Ipp. This result can be established by first recalling the classical

12



result that since Ipp is not empty, there is a nonsingular similarity transformation that
diagonalizes A and C'. For a proof of this result, see Horn and Johnson [11, Theorem 7.6.1].
Thus, there is a nonsingular P € R™*" such that

PTAP = D,, PTcP=D,,
where both D, and D, are diagonal matrices. If we use P to change variables, then
2(N) = P T (Dy + XD PT(b + \d).
It is now clear that each component of z(-) is a rational function for A € Ipp.

Theorem 5.2 Let g: R" — R and ¢ : R" — R be the quadratic functions defined on R™
by (5.1), and assume that Ipp is not empty. If x(A) € R is the solution of (5.2), and if
the function ¢ : R — R is defined on Ipp by

for all X in Ipp.

Proof. We first need expressions for ¢'(A) and 2'(\). The expression
¢'(A) = Vele(N]'2' ()

for ¢'(A) follows from the definition of ¢, while an expression for 2’(\) is obtained by noting
that since x(\) satisfies (5.2),

(A4 AC)a'(N) = =V[z(N)]. (5.3)
Thus, using the expression for ¢’(\), we obtain that
F(N) = ' (VT (A+AC)(N).

Hence, ¢'(A\) < 0 for A € Ipp. If ¢ is not strictly decreasing on Ipp, then ¢/(A) =0 for A in
some subinterval I if Ipp. The above expression for ¢'(A) then shows that 2'(A) = 0 on I.
We now wish to conclude that 2’(A) = 0 on Ipp. The easiest way to prove this is to note
that since each component of z(-) is a rational function for A\ € Ipp, we can have z/(A) = 0
on a subinterval I of Ipp only if 2/(A) = 0 on Ipp.
We have shown that z(-) is constant on Ipp. Hence, (5.3) shows that Ve[z(A)] = 0 on
Ipp, and thus (5.2) yields that V¢[z(A)] =0 on Ipp. A

13



The possibility in Theorem 5.2 that z(-) is constant on Ipp cannot be ruled out. For
example, if A and €' are two matrices such that Ipp is not empty, and we define b and d by

A$0 = —b, C$0 = —d

for some 29 € R", then z(\) = 2o for A € Ipp. We can reverse this construction because
if 2(\) = ¢ for A € Ipp, then xq satisfies Azg = —b and Czg = —d. This argument shows
that small perturbations on the data that defines ¢ and ¢ lead to a case where z(-) is not
constant.

Theorem 5.2 can be used to find a global minimizer 2* of (3.1) in the case where A+ A\*C
is positive definite because in this case A\* € Ipp is a solution of ¢(A) = 0. We now outline
an algorithm for finding A* in this case.

In the search for A* we first need to decide whether Ipp is empty or determine Ay € Ipp.
We start with bounds A; and A, such that Ipp C (A;, A,). For example, the bounds

a; . ;g
Al = max< — "' DG > 0., Ay = min< — "' 1 < 0,,
Cii Cii

could be used, where \; = —o0 if ¢;; <0 for all 7, and A, = oc if ¢;; > 0 for all 7. We now
show how to update (A, A,) given Ag € (A, Ay).

If A\p ¢ Ipp, then A + A\oC is not positive definite, and thus we can compute an 2 € R”
such that

eT(A+ MOz <0,  z#0. (5.4)

A vector z that satisfies (5.4) can be computed, as in the algorithms of Gay [5] and Moré and
Sorensen [15], by noting that during the Cholesky decomposition of A + AgC' it is possible
to find 6 > 0 such that the leading submatrix of order [ < n of

A+ NC 4+ beref

is singular, and @ € R™ such that (A + AoC + 66162[)96 =0 with z; = 1 and z; = 0 for 7 > [.
Clearly, = satisfies (5.4).
Given a vector z € R™ that satisfies (5.4), note that if 27 Cz < 0, then

dT(A+AC)z < 2T (A + XC)z <0

for A > XAo. Thus we can set A\, = Ag. Similarly, if 27Cz > 0, then A; = Ag. Given a
tolerance € > 0, we can use this updating procedure to reduce the length of (A, A,) until
we determine some Ag € Ipp, or we determine that the length of Ipp is less than e.

Once we determine Ay € Ipp, we can continue to isolate A* by updating A; and A, such
that \* € (A, Ay). This is easily done because if Ao € Ipp and ¢(Ng) < 0, then we set
Au = Ao, but if ¢(Ag) > 0, then A\; = Ag. This procedure is valid even if z(-) is constant for
A€ Ipp.

14



The algorithm that we have outlined can be used to generate a sequence {A;} that
converges to A*. Moreover, if A+ A*C'is positive definite, then {z(Ag)} converges to z(A*)
with ¢(A*) = 0. Hence, z(X*) is the global solution of (3.1).

We have not specified any particular algorithm to generate the sequence {A;}. If C is
positive (negative) semidefinite, it is not difficult to show that ¢ is convex (concave) on
Irp, and thus a safeguarded version of Newton’s method is a reasonable choice. This is the
approach used by Gay [5] and Moré and Sorensen [15]. If (' is indefinite, then ¢ may not

be convex or concave, so extra care is needed. For example, if

10 10 1
clt)em(ah) ee(h) e

then Ipp = (—1,1), but ¢” changes sign in (=1, 1).

The situation where A+ A*C'is singular is more delicate. In this case ¢(A) = 0 may not
have a solution in Ipp, and {z(A;)} may not converge to the solution of (3.1); this is the
reason why Moré and Sorensen [15], in their study of the problem with C' = I, called this

case the hard case.

Theorem 5.3 Let A and C' be symmetric matrices, and assume that Ipp is not empty. If

an endpoint A* of Ipp is finite, then A+ X*C' is positive semidefinite and singular. Moreover,
if Ipp = (A}, AY), then

AT, A%] = Ipsp = {X € R : A+ A\C positive semidefinite } .

Proof. If A* is an endpoint of I, then it is clear that A + A*C' is positive semidefinite.
If A+ A*C is not singular, then it must be positive definite. However, then A + AC' is
also positive definite in a neighborhood of A*. This conclusion is not possible because it
contradicts the definition of Ipp.

We now show that if Ipp = (A7, A%), then Ipsp = [A;,A5]. Clearly, Ipp C Ipsp.
Moreover, just as in Theorem 5.1, we can prove that Ipgp is an interval. Thus, if Ipsp #
[Af, A%], then A 4+ AC must be positive semidefinite and singular on a nontrivial interval.

This conclusion implies that the polynomial
p(A) = det(A+ AC)

vanishes in a nontrivial interval. Hence, p(A) = 0, and thus A + AC' is singular for all A,

contradicting the assumption that Ipp is not empty. H

Theorem 5.3 shows that if A4+ A*C is singular, then A* must be an endpoint of Ipp. We
now prove that A* is an endpoint of Ipp such that the limit

lim ¢(A)

A—A*
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exists. We are certainly guaranteed the existence of this limit for one of the endpoints of
Ipp. In fact, since we are assuming that ¢(A) = 0 does not have a solution in Ipp, the

function ¢ does not change sign in Ipp. Hence, if ¢(\) > 0 on Ipp, then
Alim;l* A(A) =inf{d(A) : A\ < A< AL},
because ¢ is decreasing in Ipp. Similarly, if ¢(A) < 0 on Ipp, then

Alim;l* O(A) =sup{o(N) : AT < A < AL}

A

These calculations suggest that A* = A% if ¢(A) > 0 on Ipp, and that \* = A7 if ¢(A) < 0
on Ipp. We need the following result to establish this claim.

Theorem 5.4 Let A and C' be symmetric matrices, and assume that Ipp is not empty. If
an endpoint A* of Ipp is finite and the limit

Jim ¢(A) (5.5)

exists, then the limit

i, #(A)

also exists.

Proof. We have already noted that the function z(-) is a rational function for A € Ipp so
we need to show that {z(Ag)} is bounded when {A;} is any sequence in Ipp converging to
A*; that is, we need to show that z(-) does not have a pole at A\*. Assume, on the contrary,

that {||z(Ag)||} is unbounded, and define

_ ()
Zp = ——t
[l (Al
Then ||zx|| = 1, so that we can assume, without loss of generality, that {z;} converges to

some vector z with ||z|] = 1.
Since {#(Ag)} is bounded and ¢(Ay) = c[z(A)], we obtain that 2T C» = 0. Moreover,
since (b + Aed)
(A4 MOz = =
(ARl
we also obtain that (A 4+ A*C')z = 0. We have already shown that 2T'Cz =0, so this yields

that 27 Az = 0. However, this is not possible if Ipp is not empty. H

We now prove that A* = A% if ¢(A) > 0 on Ipp, and that A* = A} if ¢(A) < 0 on Ipp.
We have already shown that the limit (5.5) exists for this choice of A*, and thus Theorem
5.4 shows that

Alg&l* (N ==z
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for some 2* € R", and hence
(A4 A"C)hz" = —(b+ \*d).

Although we also have that A4+ A*C'is positive semidefinite, 2* is not necessarily the solution
of (3.1) because we cannot guarantee that ¢(z*) = 0. However, we claim that if z, is chosen
so that

(A4 XC)z. =0, Ze £ 0,

then 2* + a*z, solves (3.1) for some a* € R.
First of all, note that we can obtain z, because A 4+ A*(' is singular. Now assume, to be
definite, that ¢(A) < 0 on Ipp, and thus A* = AT is the smallest endpoint of Ipp. Since

c(z* + az) = c(z®) + aVe(a™) 2 + %azngz*,

it is clear that there is an o* € R such that ¢(2* 4 a*z,) = 0 if we can show that ¢(2*) <0
and that 27 Cz, > 0. Since ¢(\) < 0 on Ipp, and {z(\)} converges to z*, it is clear that
c(x*) < 0. If, on the contrary, 21 Cz, <0, then

A+ A2 = 2T (A+ Xz + (A= 22002 <0

for A > A* = AF. This is not possible because A + AC' is positive definite for A € (A}, A%).
Hence, 21'C'z. > 0 as desired.

6 Approximate Global Minimizers

The results in Section 5 show how to generate a sequence {\;} in Ipp that converges to the
Lagrange multiplier A* of the optimization problem (3.1). Moreover, if A + A*C'is positive
definite then {z(Ag)} converges to the solution z* of (3.1), while if A + A*C' is positive
semidefinite and singular, then {#(Ag)} also converges to some z*, but now a solution of

(3.1) is obtained by computing z* + a*z,, where
(A4 XC)z. =0, Ze £ 0,

and o* € R satisfies ¢[z* + a*z.] = 0. In this section we address the question of how to
determine approximate global minimizers z € IR"™ such that, given tolerances ¢, > 0 and
€. > 0,

(@) Sq"+e, (@) <<, (6.1)

where
¢* = min{q(z) : ¢(z) = 0}.

We first analyze the case where A + A*(C' is positive definite.
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Theorem 6.1 If A € Ipp, then
(M) + Az (V)] € 7"

Proof. The proof is simple; just note that (5.2) implies that z(\) is the global minimizer
of the quadratic ¢ + Ac¢, and thus

glz(N)] + Aclz(N)] = min{g(z) + Ae(z) : 2 € R"} < min{q(z):c(z) =0} = ¢".
[ |

If A4+ X*C is positive definite, then we can compute A € Ipp such that ¢(A) = c[z(A)]is
small. Theorem 6.1 shows that z(\) satisfies the termination criteria (6.1) if we determine
A € Ipp such that

AN <6y efz(A)]] < e

These inequalities are satisfied for all A € Ipp sufficiently close to A*.

Theorem 6.2 If A € Ipp and
cle(A)+arz] =0,
then
¢ < gla(\)+ axn] < ¢+ 303z (A + A0)z.

Proof. The first inequality follows from the assumption that c¢[z(A)+ayzy] = 0 and from the
definition of ¢*. The proof of the second inequality is obtained in terms of the Lagrangian

function
£(20) = a(e) + Ae(e).
Since the pair (2(A), A) satisfies (5.2), V,L[z(A), A] = 0, and thus

Llz(A) + arzy, A = Llz(A), A+ 2ad 2] (A + AC)z.
We now make use of the assumption that c[z(A) + ay2)] = 0 to obtain
o0+ arar] = ale (W] + Acle(V)] + a3 =T (4 + AC)z.

The result now follows from Theorem 6.1. W

Theorem 6.2 is applicable if A is sufficiently close to A* and A+ A*C' is positive semidef-
inite and singular. However, Theorem 6.2 is also applicable if we find A € Ipp and z)
such that %z;(A + AC)z, is smaller than ¢;. Thus, if there is an a) € IR such that
c[z(A) 4 arz\] = 0, then the termination criteria (6.1) are satisfied for any ¢, > 0.

The theorems of this section extend results of Moré and Sorensen [15] to the case where
the quadratic function ¢ is arbitrary. Theorem 6.2 is an extension of Lemma 3.4 in that

paper, while Theorem 6.1 is a generalization of Lemma 3.13.

18



7 Concluding Remarks

During the final stages of the preparation of this manuscript I attended the Panamerican
Workshop on Applied and Computational Mathematics (Universidad Simon Bolivar, Cara-
cas, January 10-15, 1993), where Henry Wolkowicz gave me a copy of his recently completed
manuscript [18] with Ronald Stern on the problem

min{q(z) : e; < 27Cx < e}, (7.1)

and on the application of this problem to nonsymmetric eigenvalue perturbations. Although
the two manuscripts are related, there are several differences in our approach and results.

If we consider the one-sided case of (7.1), then it is clear that (7.1) is a special case of
(1.3); however, note that if VZ¢ = (' is nonsingular, then a change of variables transforms
(1.3) into (7.1).

The characterization result in [18] assumes that Ve(a*) # 0, or that ¢; < 0 < ¢,. As
pointed out in Section 3, this assumption is stronger than (3.2) for the equality constrained
case where ¢; = ¢,. Note, in particular, that if C' is indefinite, then (3.2) is automatically
satisfied, but that this is not the case for the assumptions in [18]. Similar remarks apply to
the inequality constrained case where ¢; = —o0.

The introduction of the two-sided bounds in (7.1) is an interesting variation. We can

handle this variation, and the more general problem
min{g(z) : ¢; < e(x) < eyl

with the material in Sections 5 and 6. The main difference is that instead of looking for a
solution of ¢(A) = 0, we would search for either a solution A* > 0 in Ipp of ¢(A*) = ¢, or
a solution A* < 0in Ipp of ¢(A*) = ¢;. Since ¢ is either constant or strictly decreasing, we
can update the interval (A;, A,) of Section 5 and isolate the appropriate solution.

Our treatments of the algorithm also differ. Stern and Wolkowicz [18] follow the de-
velopment of Moré and Sorensen [15] and outline an algorithm that exploits the Cholesky
factorization of A + AC', while our treatment in Sections 5 and 6 is independent of the
method used to determine the solution z() of the linear system (5.2). We also note that
the application of their algorithm to (1.3) requires a change of variables to reduce the

problem to the standard form (7.1). In our approach this change of variables is not needed.
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