
Glassy Motion of an Elastic StringHans G. Kaper, Gary K. Leaf, David M. Levine, and Valerii M. VinokurArgonne National Laboratory, Argonne, IL 60439Revised { October 18, 1993AbstractNumerical simulations of a driven elastic string in a quenched random poten-tial at �nite temperatures support the existence of glassy motion for su�cientlyweak driving forces. Avalanche-like string motion is observed in the transitionregion.The dynamics of an elastic string in a random medium provides an excellent modelfor the description of a variety of interesting phenomena|including uctuations ofdomain walls in random magnets [1], surface growth in a random environment [2],and directed polymer growth [3]. It is also extremely useful for the description ofvortex motion in high-Tc superconductors. The elastic-string model is exact for vor-tex dynamics at moderate temperatures and magnetic �elds, when the characteristicpinning barriers for isolated vortex motion exceed the energy associated with vortex-vortex interactions [4]. Moreover, when vortex-vortex interactions are signi�cant, theideas of elastic-string dynamics [5] can be generalized to describe the collectivemotionof vortex bundles [6].In this communication we present some results of numerical simulations of themotion of an elastic string in random quenched disorder. The string is driven by aconstant force and subject to thermal noise. The inclusion of both quenched randomdisorder and thermal noise distinguishes our model from those considered in interfacedynamics, where the disorder is modeled with either thermal-like noise [2, 3, 7] orquenched random disorder [8]. Another distinction is that we consider motion underthe inuence of a random potential, rather than a random force. In a random potential,1



the uctuations of the string energy are determined by the instantaneous position ofthe string; in the presence of a random force, the uctuations are determined by theentire area swept by the string during its motion. Because the energy of a materialdefect is the same before and after interaction with a vortex, a description in termsof a random potential is appropriate for vortex dynamics in high-Tc superconductors.The dynamics of an elastic string subject to quenched disorder at �nite temperaturehas recently been used for a numerical study of the behavior of the critical current [9].We consider the motion of an overdamped elastic string of length L (L � 1),which is constrained to lie in a plane in physical space (1+ 1-dimensional case). Theposition of a point on the string is given by the pair of coordinates (x; u), where x isthe coordinate along the string at rest (0 < x < L) and u the transverse displacement;u is a single-valued function of position x and time t. We assume that the string isextended periodically to the entire interval �1 < x <1 at all times. The motion ofthe string is governed by a Langevin equation, �@tu = ��H=�u+ f , where H is theHamiltonian and f the thermal force per unit length acting on the string; � is thedamping coe�cient. We render the problem dimensionless by taking the coherencelength � of a pinning center as the unit of length and a reference energy E0 as theunit of energy, measuring time in units of ��2=E0, temperatures in units of �E0=kB,and forces in units of E0=�. Thus, the equation of motion of the string is@tu = C@2xu� @uV + F + f; 0 < x < L; t > 0: (1)Here, C is the coe�cient of linear tension, F the (constant) driving force per unitlength, and V the potential due to quenched disorder. We assume that the pinningcenters that contribute to the potential V are identical and distributed randomlythroughout the plane with a speci�ed density �. Each pinning center is characterizedby a radially symmetric potential with maximal strength Up at the center. We takef to be Gaussian with zero average and temperature T ,< f(x; t) > = 0; < f(x; t); f(x0; t0) > = 2T�(x� x0)�(t� t0): (2)The quantity of interest is the average string velocity (i.e., the ensemble average ofthe local normal velocity averaged over the length of the string) at large times. If wereplace the ensemble average by a time average, this quantity is given byv = limt!1 1t Z t0 1L Z L0 @su(x; s) dx ds: (3)In particular, we are interested in the functional dependence of v on the drivingforce F . If the elastic string models vortices in a high-Tc superconductor, then thecomputation of the graph of v vs. F corresponds to an experimental measurement of2



the I{V curve of a superconducting sample; F is proportional to the applied current I,v to the resulting voltage V .The statistical mechanics of a 1 + 1-dimensional elastic manifold in a randommedium is now well understood. Rigorous results have been obtained for disorder-induced roughening [1, 10]; in particular, the wandering exponent � in the scalingrelation � (u(x; t)� u(0; t))2 � � x2� is � = 2=3. (The double brackets indicateaverages over all thermodynamic states and disorder con�gurations.) This scalingrelation, which describes the spatial distribution of the low-lying metastable states,is the starting point for the theory of creep-type dynamics for elastic manifolds de-veloped in [5].The dynamics of the driven string falls into two major regimes, depending on themagnitude of the driving force F . At very large driving forces, the string is in theviscous-ow regime, and the e�ect of the pinning centers is very weak. Perturbationtheory with respect to weak disorder applies, and disorder results in a renormalizationof the damping constant [11]. The deviation of the velocity from purely viscousow, �v = v � F , scales as �v � F�1=2. Pinning becomes more e�ective as thedriving force decreases. At zero temperature, the string becomes pinned at somecritical force Fc, and the average string velocity is zero for all F < Fc [12]; in type-IIsuperconductors, this critical force corresponds to the critical current. The quantityFc has been estimated [5, 6], Fc = cf(�U2p )2=3C�1=3, where cf is a numerical factor. At�nite temperatures, the transition from the unpinned to the pinned regime is blurred,and the string moves even at very small forces. The string spends most of its time inthe low-lying metastable states induced by the disorder, and string motion occurs via asequence of thermally activated elementary jumps of string segments into neighboringmetastable states favored by the applied force. A temperature-dependent criticalforce Fc(T ) can be de�ned conceptually by the equality j�v(Fc(T ))j = v(Fc(T )) [13].According to [5, 6], Fc(T ) is slowly varying, Fc(T ) � Fc(0), for 0 < T < Tdp, butFc(T ) drops dramatically as T increases above Tdp. The characteristic depinningtemperature Tdp is given by Tdp = ct(�U2pC)1=3, where ct is a numerical factor.The motion of the string for F � Fc(T ) has been analyzed by Io�e and Vi-nokur [5]. The activation barriers diverge as U(F ) � Tdp(Fc=F )�, and the stringvelocity depends strongly nonlinearly upon the driving force,v = ( v0 exp [�cv(Tdp=T )(Fc=F )�] ; T < Tdp;v0 exp [�cv(Fc(T )=F )�] ; T > Tdp: (4)Here, cv is a positive constant. Central to the analysis in [5] is the assumptionthat there is a unique scale for disorder-induced energy uctuations. Energy barriersbetween metastable states then scale in the same manner as uctuations in the free3



energy between the low-lying states, and one �nds that � = 1=4. One of our objectiveswas to corroborate this assumption in some large-scale computational experiments.In the computational experiments, we assumed that the string is generally ori-ented in the x direction and moves in the positive y direction. We used a regularsquare lattice of unit spacing with L mesh points in both directions. The lattice isseeded with identical Gaussian pinning potentials at randomly selected sites, with aprescribed density �; the seeded lattice is extended periodically in the x direction.The discretization of the thermal uctuations was accomplished by means of a modeldeveloped by Schneider and Stoll [14]; the temperature was calibrated by simulatingBrownian motion.The following results were all obtained with the parameter values C = 3:0, Up =0:3, and � = 0:3. This choice puts us in the regime of weak pinning (�C � Up). Inmost cases, we took L = 1024; for some experiments, we went as high as L = 2048.In general, extremely long run times are necessary for reliable statistics, especially inthe regime of very small applied forces.Figure 1 shows the variation of the average string velocity v with the drivingforce F for T = 0:3. One clearly distinguishes the viscous-ow regime (large F ), atransition regime (intermediate F ), and a strongly nonlinear regime (small F ). Inthe viscous-ow regime, we �nd that �v � F�1=2, as predicted by theory. In thetransition regime, we observe a remarkable stepwise behavior of v. The steps reectan avalanche-like motion of the string near the depinning transition. Large segmentsof the string are getting stuck in regions where the pinning forces roughly balancethe driving force. As the driving force tends to a critical value, the size of the regionswhere the string is coherently pinned becomes comparable to the length of the string.Local thermal uctuations then trigger jumps of large sections of the string towardregions of high defect densities, where the potential is strong enough to pin thesesegments. In simulations at zero temperature, Dong et al. [12] also observed thatlarge segments of the string are pinned when the pinning forces roughly balancethe driving force. As the driving force decreases further below a critical value, thestring transits into the pinned (glassy) state, where its motion is determined by thethermally activated jumps of relatively small string segments between neighboringmetastable states. For very small driving forces, theory [5] predicts a formula of theform (4). The choice � = 1=4 provides a very good �t for the data of Figure 1,see Figure 2. However, other values of the exponent (for example, � = 1=3) give analmost equally good �t, so the best we can say is that the results of our computationalexperiments are consistent with theoretical predictions. Unfortunately, the availabledata are insu�cient to determine the constant cv in the exponent in (4) or to verifythe temperature dependence of the slope of the log v vs. 1=F � graph for �xed �.4



From the data we infer that the preexponential factor v0 in (4) varies linearlywith F . We can therefore cross check the value of the exponent � by plottinglog(j log(v=F )j) vs. logF ; Figure 3 shows the result, again for T = 0:3. The linearpart at small forces corresponds to glassy motion. One observes a sharp transition,separating the (linear) glassy regime from a viscous regime at large forces. From alinear least-squares �t we �nd the slope of the linear part, � = 0:248�0:016, in excel-lent agreement with the predicted value, � = 1=4. Nevertheless, we do not considerthis result as conclusive to con�rm the validity of (4). The value of � was found onthe basis of a rather narrow range of F (about one decade). Furthermore, none ofthe computations penetrated really deeply into the glassy regime (F � Fc).We identify the value of F indicated by the vertical line in Figure 3, where thesystem transits from glassy to viscous behavior, with the critical force Fc(T ). Itsvariation with temperature is shown in Figure 4. Note the low-temperature region,where Fc is almost independent of the temperature: Fc(T ) = 0:101 � 0:003, ingood agreement with the value 0:105 � 0:003 found from independent simulations atT = 0. We also �nd a sharply de�ned value of the depinning temperature, where Fcbegins to drop rapidly: Tdp = 0:068 � 0:008. The least-squares �t of the formulaFc(T ) ' T�� to the data of Figure 4 in the region where Fc varies strongly with Tgives � = 0:095 � 0:003. This value disagrees with the predicted value � = 7 [5] .Given the analytical expressions Fc(0) = cf (�U2p )2=3C�1=3 and Tdp = ct(�CU2p )1=3obtained in [5], we deduce the following values for the constants cf and ct from ournumerical simulations: cf � 1:6 � 0:2 and ct � 0:16 � 0:02.The dynamical roughening is measured by w(l) = < (u(l; t)� u(0; t))2 >1=2. As-suming that w(l) � l�, we �nd � � 0:7 � 0:05 below and near the transition regime,at least at intermediate length scales (l � 50 { 100). This result is close to the staticexponent �s = 2=3 and con�rms the qualitative understanding of glassy motion asa sequence of rare jumps between static metastable states. At large length scales,Horvath et al. have reported a crossover to � = 0:5 in experiments on the interfacesbetween two liquids in a porous medium [15]. We �nd that, for F � Fc, � crosses overto a smaller value � � 0:5 � 0:05, which is characteristic for the roughening inducedby thermal noise. This result is in agreement with [7], where the KPZ model was usedto �nd the fast viscous motion of the string, and with previous results for T = 0 [12].In the unpinned region, quenched disorder is e�ectively reduced to thermal noise [7].In summary: (i) The elastic string shows glassy behavior at small driving forces.Our data for the average string velocity are consistent with (4), where � is close tothe predicted value � = 1=4. The critical force Fc varies with temperature like T��,where � = 0:095 � 0:003. (ii) The results for F � Fc show excellent agreement5



with the predictions of perturbation theory. (iii) In the transition region between theviscous and thermally activated regimes, the string motion is governed by avalanche-like processes. (iv) The roughening of the string agrees with the qualitative pictureof glassy motion if F � Fc and with the asymptotic results for the KPZ model ifF � Fc. (v) Although the observed dependence of v on F is consistent with thepredictions of the theory of nucleation motion, the data are insu�cient to concludethat there is a unique scale of disorder-induced energy uctuations|the fundamentalassumption underlying the derivation of (4).It is a pleasure to thank D. Fisher, M. Kardar, A. Middleton, and O. Narayan forilluminating discussions, and C. Marchetti and the anonymous referees for advice anda critical reading of the manuscript. The authors thank O. Narayan and D. Fisherfor communicating their results [8] prior to publication.This work was supported by the O�ce of Scienti�c Computing, U.S. Departmentof Energy, under Contract W-31-109-Eng-38.
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FIGURE CAPTIONS1Figure 1. Average string velocity v against the driving force F at T = 0:3.Figure 2. Linear variation of log v with (1=F )� for T = 0:3. The solid linerepresents a least-squares �t for � = 1=4; the r.m.s. error of the data (marked by �)is 0.018. The value (1=Fc(0))1=4 = 1:774 is beyond the left margin.Figure 3. Demonstration of glassy dynamics; log(j log(v=F )j) against logF forT = 0:3. The slope of the dashed line is �0:248. The vertical line indicates theposition of Fc(0:3).Figure 4. Temperature dependence of the critical force Fc.
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