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112 . lan Foster

In task-parallel programs, diverse activities can take place concurrently, and communication and

synchronization patterns are complex and not easily predictable. Previous work has identified

compositionality as an important design principle for task-parallel programs. In this paper, we

discuss alternative approaches to the realization of this principle, which holds that properties

of program components should be preserved when those components are composed in parallel

with other program components. We review two programming languages, Strand and Program

Composition Notation, that support compositionality via a small number of simple concepts,

namely monotone operations on shared objects, a uniform addressing mechanism, and parallel

composition. Both languages have been used extensively for large-scale application development,

allowing us to provide an informed assessment of their strengths and weaknesses. We observe

that while compositionality simplifies development of complex applications, the use of specialized

languages hinders reuse of existing code and tools, and the specification of domain decomposition

strategies. This suggests an alternative approach based on small extensions to existing sequential

languages. We conclude the paper with a discussion of two languages that realize this strategy.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-

tions— Concurrent, distributed, and parallel languages; D.3.3 [Programming Languages]: Lan-

guage Constructs and Features— Concurrent programming structures

General Terms: Languages

Additional Key Words and Phrases: Compositionality, Parallel Languages, Parallel Programming
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1. INTRODUCTION
Parallel programming is widely regarded as difficult: more difficult than sequential
programming, and perhaps (at least this is our view) more difficult than it needs to
be. In addition to the normal programming concerns, the parallel programmer has
to deal with the added complexity brought about by multiple threads of control:
managing their creation and destruction, and orchestrating their interactions via
synchronization and communication. Parallel programs must also manage a richer
set of resources than sequential programs, controlling, for example, the mapping
and scheduling of computation onto multiple processors.

As in sequential programming, complexity in program development can be man-
aged by providing appropriate programming language constructs. Language con-
structs can help both by supporting encapsulation, so as to prevent unwanted in-
teractions between program components, and by providing higher-level abstrac-
tions that leverage programmer effort by allowing compilers to handle mundane,
error-prone aspects of parallel program implementation. For example, the various
languages that have been developed to support data-parallel programming achieve
both these goals, albeit for a restricted class of programs [Chapman et al. 1992;
Fox et al. 1990; Koelbel et al. 1994]. Data-parallel programs exploit the parallelism

inherent in applying the same operation to all or most elements of large data struc-
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tures. Data-parallel languages avoid unwanted interactions by enforcing sequential

semantics. They use data distribution statements to provide a high-level, abstract

syntax for specifying data placement, freeing the programmer from the labor of

partitioning computation and translating between global and local addresses.

Our research goal is to develop language constructs and associated tools to sup-

port the more general class of task-parallel applications, in which multiple unrelated

activities can take place concurrently. Task parallelism arises in time-dependent

problems such as discrete-event simulation, in irregular problems such as those

involving sparse matrices, and in multidisciplinary simulations coupling multiple,

possibly data-parallel, computations. The challenge when developing language con-

structs for task-parallel programming is to provide the modularity and abstraction

needed for ease of programming while maintaining the generality needed to support

arbitrary parallel computations.

Compositionality has been proposed as a design principle for task-parallel pro-

grams [Chandy and Taylor 1991]. A compositional programming system is one in

which properties of program components are preserved when those components are

composed in parallel with other program components. That is, the behavior of the

whole is a logical combination of the behavior of the parts. One property that we

often want to be preserved in this way is determinism, so that programs constructed
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from deterministic components can themselves be guaranteed to be deterministic.
Compositionality can simplify program development by allowing program compo-
nents to be developed and tested in isolation and then reused in any environment.
However, not all parallel programming notations have this property. For example,
notations based on shared variables tend not to be compositional: two determinis-
tic procedures may be nondeterministic when executed concurrently, if both access
the same variable.

In this paper, we describe various language constructs that have been proposed
to support compositionality. We first use the examples of Strand [Foster and Taylor
1990] and PCN [Chandy and Taylor 1991] to show how the basic ideas of composi-
tional programming can be supported by using a small number of simple concepts,
namely, monotone operations on shared objects, a uniform addressing mechanism,
and parallel composition. Then, we use the large body of practical experience that
has been gained from the use of Strand and PCN to evaluate the approach. We iden-
tify specific strengths and distinguish those associated with compositionality from
those due to other language features. We also identify key weaknesses and note that
these are, for the most part, associated with the use of specialized languages. This
observation motivates us to consider extensions to existing sequential languages as
a means of providing a more flexible and accessible implementation of the ideas.
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We develop requirements that we believe such language extensions should satisfy,
and we review two languages—Compositional C++ [Chandy and Kesselman 1993]

and Fortran M [Chandy and Foster 1995]—that meet these requirements.

2. STRAND

One particularly elegant and satisfying approach to compositional task-parallel pro-
gramming is to define a simple language that provides just the essential elements
required to support this programming style [Foster et al. 1990]. This language can
be used both as a language in its own right and as a coordination language [Car-
riero and Gelernter 1989; Cole 1989; Kelly 1989; Lucco and Sharp 1991] providing
a parallel superstructure for existing sequential code. These dual roles require a

simple, uniform, highly parallel programming system in which

—the structure of the computation, the number of concurrently executing threads of
control, and the placement of these threads can vary dynamically during program

execution;

—communication and synchronization operations are introduced into a program
via high-level abstractions that can be implemented efficiently by the language

compiler;

—patterns of communication can change dynamically;
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—the functional behavior of parallel program modules is independent of the schedul-

ing or processor allocation strategy used;

—arbitrary parallel modules can be combined and will function correctly; and

—modules written in other languages can be incorporated.

These goals motivate the design of the Strand, PCN, CC++, and Fortran M lan-

guages described below.

2.1 Strand Design

The Strand language integrates ideas from earlier work in parallel logic program-

ming [Clark and Gregory 1981], dataflow computing [Ackerman 1982], and im-

perative programming [Hoare 1978] to provide a simple task-parallel programming

language based on four related ideas:

—single-assignment variables,

—a global, shared namespace,

—parallel composition as the only method of program composition, and

—a foreign language interface.

Single-assignment variables provide a unified mechanism for both synchronization

and communication. All variables in Strand follow the single-assignment rule [Ack-

erman 1982]: a variable is set at most once and subsequently cannot change. Any
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attempt by a program component to read a variable before it has been assigned a

value will cause the program component to block. All synchronization operations

are implemented via reading and writing these variables. New variables can be

introduced by writing recursive procedure definitions.

Strand variables also define a global namespace. A variable can refer to any object

in the computation, even another variable. The location of the variable or object

being referenced does not matter. Thus, Strand does not require explicit communi-

cation operations; processes can communicate simply by reading and writing shared

variables.

Unlike most programming languages, which support only the sequential com-

position of program components, Strand supports only parallel composition. A

parallel composition of program components executes as a concurrent interleaving

of the components, with execution order constrained only by availability of data,

as determined by the single-assignment rule.

The combination of single-assignment variables, a global namespace, and parallel

composition means that the behavior of a Strand program is invariant to the place-

ment and scheduling of computations. One consequence of this invariance 1s that

Strand programs are compositional: a program component will function correctly

in any environment. Another consequence 1s that the specification of the location
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of a computation is orthogonal to the specification of the computation. To exploit
these features, Strand provides a mapping operator that allows the programmer to
control the placement of a computation on a parallel computer.

By allowing modules written in sequential languages to be integrated into Strand
computations, the foreign language interface supports the use of Strand as a coor-
dination language. Sequential modules that are to be integrated in this way must
implement pure functions. The interface supports communication between foreign
modules and Strand by providing routines that allow foreign language modules to

access Strand variables passed as arguments.

2.2 Strand Language

This summary of Strand language concepts is not intended to be comprehensive;
for details, see [Foster and Taylor 1990]. The syntax of Strand is similar to that of
the logic programming language Prolog. A program consists of a set of procedures,

each defined by one or more rules. A rule has the general form

H .- Gl, Gz, ceey Gm | Bl, Bz, ceey Bn m,n> 0,

where the rule head H is a function prototype consisting of a name and zero or

more arguments, the G; are guard tests, “|”

is the commit operator, and the B;

are body processes: calls to Strand, C, or Fortran procedures, or to the assignment
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” is omitted. Procedure arguments may be variables

operator “:=". If m = 0, the |
(distinguished by an initial capital letter), strings, numbers, or lists. A list is a
record structure with a head and a ta:l and is denoted [head|ta:ill.

A procedure’s rules define the actions that the process executing that procedure
can perform. The head and guard of the rule define the conditions under which an
action can take place; the body defines the actions that are to be performed. When
a procedure executes, the conditions defined by the various heads and guards are
evaluated in parallel. Nonvariable terms in a rule head must match corresponding
process arguments, and guard tests must succeed. If the conditions specified by a
single rule hold, this rule is selected for execution, and new processes are created
for the procedures in its body. If two or more rules could apply, one is selected
nondeterministically. It suffices to ensure that conditions are mutually exclusive to
avoid nondeterministic execution. If no condition holds; an error is signaled. For

example, the following procedure defines a consumer process that executes either

actionl or action2, depending on the value of variable X.

consumer(X) :- X == "msg" | actioni(X).

consumer(X) :- X =\= "msg" | action2(X).

In this procedure, X is a variable, "msg" is a string, and == and =\= represent equal-

ity and inequality tests, respectively. Notice that this procedure is deterministic.
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2.2.1 Communication and Synchronization. As noted above, all Strand variables
are single-assignment variables. A shared single-assignment variable can be used
both to communicate values and to synchronize actions. For example, consider

concurrently executing producer and consumer processes that share a variable X:

producer(X), consumer(X)

The producer may assign a value to X (e.g., "msg" ) and thus communicate this

value to the consumer:

producer(X) :— X := "msg".

As shown above, the consumer procedure may receive the value and use it in
subsequent computation. The concept of synchronization is implicit in this model.
The comparisons X == "msg" and X =\= "msg" can be made only if the variable
X is defined. Hence, execution of consumer is delayed until producer executes and
makes the value available.

The single-assignment variable would have limited utility in parallel program-
ming if 1t could be used to exchange only a single value. In fact, processes that
share a variable can use it to communicate a sequence or stream of values. This
technique is achieved as follows. A recursively defined producer process incre-

mentally constructs a list structure containing these values. A recursively defined
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consumer process incrementally reads this same structure. Figure 1 illustrates this

technique. The stream_comm procedure creates two processes, stream producer

and stream_consumer, that use the shared variable X to exchange N values. The

producer incrementally defines X to be a list comprising N occurrences of the number

10:

[10, 10, 10, ..., 10]

The statement Out := [10|0ut1], which defines the variable Out to be a list with

head 10 and tail Outil, can be thought of as sending a message on Out. The new

variable Out1 is passed to the recursive call to stream_producer, which either uses

it to communicate additional values or, if N==0, defines it to be the empty list [].

The consumer incrementally reads the list S, adding each value received to the

accumulator Sum and printing the total when it reaches the end of the list. The

match operation [Val|Ini] in the head of the first stream_consumer rule deter-

mines whether the variable shared with stream producer is a list and, if so, de-

composes it into a head Val and tail Inl. This operation can be thought of as

receiving the message Val and defining a new variable In1 that can be used to

receive additional messages.

2.2.2 Foreign Interface. “Foreign” procedures written in C or Fortran can be

called in the body of a rule. A foreign procedure call suspends until all argu-
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stream_comm(N) :-
stream producer(N, S), % N is number of messages
stream_consumer(0, S). % Accumulator initially 0

stream producer (N, Out) :-

N> o0 | % More to send (N > 0):

Out := [10|0uti], %  Send message “107;
N1 is N - 1, % Decrement count;
stream producer (N1, Outl). %  Recurse for more.

stream producer (0, Out) :- % Done sending (N == 0):
Out := [J. %  Terminate output.

stream_consumer (Sum, [Val|Ini]) :- % Receive message:
Suml is Sum + Val, %  Add to accumulator;
stream_consumer (Sumi, Inl). % Recurse for more.

stream_consumer (Sum, []) :- % End of list (In == [1):
print (Sum). %  Print result.

Fig. 1. Producer/Consumer Program

ments are defined and then executes atomically, without suspension. This approach

achieves a clean separation of concerns between sequential and parallel program-

ming, provides a familiar notation for sequential concepts, and enables existing

sequential code to be reused in parallel programs.

2.2.3 Mapping. The Strand compiler does not attempt to map processes to pro-

cessors automatically. Instead, the Strand language provides constructs that allow

mapping strategies to be specified by the programmer. This approach is possible

because the Strand language is designed so that mapping affects only performance,

not correctness. Hence, a programmer can first develop a program and then ex-

plore alternative mapping strategies by changing annotations. This technique is
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augcgagucuauggeuucggecauggeggacggeucauu
augcgagucuaugguuucggecauggeggacggeucauu
augcgagucuauggacuucggccauggeggacggeucagu

augcgagucaaggggeucccuugggggcaccggegeacggeucagu
(a)

augcgagucuaugge——--uucg--—-gccauggeggacggeucauu
augcgagucuauggu-—--uucg--—-gccauggeggacggeucauu
augcgagucuauggac—--uucg--—-gccauggeggacggeucagu

augcgaguc—aaggggeucccuugggggcaccggegeacggeucagu
(b)

Fig. 2. RNA Sequence Alignment

tlustrated below.

2.3 Programming Examples

We use a sequence alignment program developed by Ross Overbeek and his cowork-
ers [Butler et al. 1989] to illustrate the use of Strand. The goal is to line up RNA
sequences from separate but closely related organisms, with corresponding sections
directly above one another and with indels (dashes) representing areas in which
characters must be inserted or deleted to achieve this alignment. For example, Fig-
ure 2 shows (a) a set of four short RNA sequences and (b) an alignment of these
sequences.

Overbeek et al.’s alignment algorithm uses a divide-and-conquer strategy that, in
simplified terms, works as follows. First, “critical points”—short subsequences that

are unique within a sequence—are identified for each sequence. Second, “pins”—
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Leit | P| Rignt
Pinned II\I Pinned

Unpinned

Fig. 3. Splitting Sequences Using a Pin

critical points that are common to several sequences—are identified. Third, the
longest pin is used to partition the problem of aligning the sequences into three
smaller alignment problems, corresponding to (a) the subsequences to the left of
the pin in the pinned sequences, (b) the subsequences to the right of the pin,
and (c¢) the unpinned sequences (Figure 3). Fourth, these three subproblems are
solved by applying the alignment algorithm in a recursive fashion. Fifth, the three
subalignments are combined to produce a complete alignment.

This is a complex algorithm that happens to exhibit many opportunities for par-
allel execution. For example, critical points can be computed in parallel for each
sequence, and each alignment subproblem produced during the recursive applica-
tion of the algorithm can be solved concurrently. The challenge is to formulate this
algorithm in a way that does not obscure the basic algorithm structure and that
allows alternative parallel execution strategies to be explored without substantial

changes to the program. The Strand implementation achieves this goal. The pro-
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align _chunk(Sequences,Alignment) :-
pins(Chunks,BestPin),
divide(Sequences,BestPin,Alignment).

pins(Chunk,BestPin) :-
cps(Chunk,CpList),
c_formpins(CpList,Pinlist),
best_pin(Chunk,PinList,BestPin).

cps([Seq|Sequences],CpList) :-
CplList := [CPs|CpListi],
c_critical points(Seq,CPs),
cps(Sequences,CpListil).

cps([],CpList) :- CpList := [].

divide(Seqs,Pin,Alignment) :-

Pin =\= [] |
split(Seqs,Pin,Left,Right ,Rest),
align chunk(Left,LAlign) @ random,
align _chunk(Right ,RAlign) @ random,
align _chunk(Rest,RestAlign) @ random,
combine(LAlign,RAlign,RestAlign,Alignment).

divide(Seqs, [],Alignment) :-
c_basic_align(Seqs,Alignment).

Fig. 4. Genetic Sequence Alignment Algorithm

cedures in Figure 4 implement the top level of the algorithm. The align_chunk
procedure calls pins to compute critical points for each sequence in a set of se-
quences (a “chunk”), form a set of pins, and select the best pin. If a pin is found
(Pin =\= []), divide uses it to split the chunk into three subchunks. Recursive
calls to align chunk align the subchunks. If no pin is found (Pin == []), an
alternative procedure, c_basic_align, is executed.

This example illustrates three important characteristics of the Strand language.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages . 127

First, programs can exploit high-level logic programming features to simplify the
specification of complex algorithms. These features include the use of list structures
to manage collections of data and a rule-based syntax that provides a declarative
reading for program components. Second, programs can call routines written in
sequential languages to perform operations that are most naturally expressed in
terms of imperative operations on arrays. In the example, three C-language proce-
dures (distinguished here by a “c_” prefix) are called in this way. This multilingual
programming style permits rapid prototyping of algorithms without compromising
performance. (The absence of an array data type means that code for manipulating
arrays would be both clumsy and inefficient if written in Strand.) Third, alterna-
tive parallel implementation strategies can be explored simply by annotating the
program text with different process mapping directives. For example, in Figure 4
annotations @ random are placed on the recursive calls to align to specify that these
calls are to execute on randomly selected processors. Alternatively, annotations @
elsewhere could be used to specify that these calls are to be scheduled to idle
processors by using a load-balancing strategy. As communication and synchroniza-
tion are specified in terms of operations on shared single-assignment variables; no
other change to the program text is required: the Strand compiler translates these
operations into either low-level message-passing or shared-data access operations,
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as required.

A second example illustrates the use of Strand to implement distributed algo-
rithms. Figure 5 provides a complete implementation of a manager/worker load-
balancing scheduler. As illustrated in Figure 6, request streams from different
“worker” processes (W) are combined by a special process called a merger to yield
a single stream. (The merger is Strand’s second nondeterministic construct, the
first being guards that are not mutually exclusive.) Each worker repeatedly sends
a request for a task, waits for a response, executes the task that it receives, and
terminates when no more tasks are available. A “manager” process (M) matches
requests with tasks received on a separate stream, and signals termination when all
tasks have been scheduled.

Mapping constructs are used to control the placement of worker processes on
physical processors. The first statement in the program indicates that the program-
mer wants to think of the computer as a virtual ring. The ring virtual computer
supports mapping annotations @ fwd and @ bwd, which specify that a process 1s to
execute on the “next” or “previous” node in this ring, respectively. In the exam-
ple, the recursive call in the workers procedure is annotated so that the worker

processes are placed on successive virtual processors.
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-machine(ring).

scheduler (NumWorkers, Tasks) :-—
manager (Tasks, Requests),
merger (Reqs,Requests),
workers(Reqs) .

manager ( [Task|Tasks], [Reg|Requests])

Req := Task, manager(Tasks,Requests).

manager ([1, [Req|Requests]) :-

Req := "halt", manager([],Requests).

manager ([1,[]).

workers (NumWorkers,Reqs) :-
NumWorkers > 0
NumWorkers1i is NumWorkers - 1,
Reqs := [merge(R)|Regsi],
worker(R),

workers (HumWorkersi,Reqsl) @ fwd.

workers(0,Reqs) :- Regqs := [].

worker (Reqs) :-
Reqs := [Request|Reqsi],
worker1(Reqs1,Request,"done").

worker1(Reqs,Request,'"done") :-
Request =\= "halt" |
Reqs := [NewReq|Regsi],
execute(Request,Done),

% Virtual computer.

% Create processes:

%  Manager;
%  Merger;
%  Workers.

% Serve request.
% Signal done.

% Terminate.

% Create workers, each
% on different node.

% Register with merger.
% Create worker; then
% move to next node.

% Worker:
%  Request task;
% Process task.

% Process task.

%  Not halt; so:

%  Request next task;
%  Execute task;

worker1(Reqs1,NewReq,Done). %  Repeat process.

worker1(Reqs,"halt",'done") :- Reqs := [].

Fig. 5. Load-Balancing Library

ACM Transactions on Programming Languages and Systems, Vol. 8 No. 1, January 1999.



130 . lan Foster

Fig. 6. Manager/Worker Scheduler Structure

2.4 Strand Toolkit

A small toolkit provides the essential utilities required for parallel application de-

velopment. This comprises a compiler and runtime system, a linker for foreign

code, a debugger, a parallel 1/O library, and a performance profiler.

The compiler translates Strand programs into the instruction set of an abstract

machine. A runtime system implements this abstract machine and provides com-

munication, thread management, and memory management functions. Its imple-

mentation is designed for portability and is easily retargeted to new computers.

The compiler and runtime system are designed to optimize the performance of

programs that create many lightweight processes and that communicate by using

recursive stream structures. For example, tail-recursion optimizations are applied

to translate recursion into iteration and to reuse storage occupied by list cells,
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hence avoiding the need for garbage collection in certain common cases. A garbage
collector is nevertheless required in the general case. On distributed-memory com-
puters, a shared variable is represented by a single occurrence and one or more
remote references [Taylor 1989]; read and write operations on remote references are
translated into communication operations. The garbage collector must also trace
these interprocessor references; however, individual processors can reclaim storage
independently, hence avoiding a need for global synchronization [Foster 1989].

The foreign code linker allows the programmer to define the data conversions that
are to be performed when moving data between Strand, C, and Fortran; the linker
generates the necessary conversion code. The debugger allows the programmer
to trace program execution and to examine suspended processes in the event of
deadlock.

Performance monitoring functions are integrated into the compiler and program-
ming system [Kesselman 1991]. These functions allow information such as total
procedure execution time, procedure execution frequencies, and communication
volumes to be obtained on a per-processor basis. This information 1s collected by
additional instructions inserted by the compiler; the cost of these instructions is
almost always much less than 1 percent of total execution time [Kesselman 1991].
Since profiling is based on counters, rather than the logging of events, the amount
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of data collected is independent of program execution time. Communication is

required only upon program termination, to dump profile data collected on each

processor. A graphical analysis tool called Gauge permits interactive exploration

of this data.

2.5 Strand Critique

Unlike many parallel programming systems developed in a research environment,

Strand has been used extensively for application development in areas as diverse

as computational biology [Butler et al. 1989], discrete event simulation [Xu and

Turner 1990], telephone exchange control [Armstrong and Virding 1989], auto-

mated theorem proving, and weather modeling. This work provides a broad base

of practical experience on which we can draw when evaluating the strengths and

weaknesses of the Strand approach. Analysis of this experience indicates three

particular strengths of the Strand constructs:

—The use of parallel composition and a high-level, uniform communication ab-

straction simplifies development of task-parallel applications featuring dynamic

creation and deletion of threads, complex scheduling algorithms, and dynamic

communication patterns. Complex distributed algorithms can often be expressed

in a few lines of code using Strand constructs.
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—Parallel composition and single-assignment variables also enforce and expose the
benefits of a compositional programming model. Program development, testing,

and debugging, and the reuse of program components are simplified.

—The recursively defined data structures and rule-based syntax that Strand bor-
rows from logic programming are useful when implementing symbolic applica-

tions, for example in computational biology.

This same analysis also reveals four significant weaknesses that limit the utility

of the Strand system, particularly for larger scientific and engineering applications.

—While the use of a separate coordination language for parallel computation is
conceptually economical, it is not universally popular. Writing even a simple
program requires that a programmer learn a completely new language, and the

logic-based syntax is unfamiliar to many.

—The foreign language interface is often too restrictive for programmers intent
on reusing existing sequential code in a parallel framework. In particular, it is
difficult to convert sequential code into single program/multiple data (SPMD)
libraries, since this typically requires the ability to embed parallel constructs in
existing sequential code, something that Strand does not support. As a conse-
quence, combining existing program modules with Strand can require significant

restructuring of those modules.
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—The Strand abstractions provide little assistance to the programmer applying do-
main decomposition techniques to regular data structures. In these applications,
the principal difficulties facing the programmer are not thread management or
scheduling, but translating between local and global addresses, problems that

have been addressed in data-parallel languages.

—The use of a new language means that program development tools such as debug-
gers and execution profilers have to be developed from scratch; it also hinders the

application of existing sequential development tools to sequential code modules.

3. PROGRAM COMPOSITION NOTATION

Motivated in part by experiences with Strand, Program Composition Notation
(PCN) was developed at Caltech and Argonne [Chandy and Taylor 1991; Fos-
ter et al. 1992]. This second-generation compositional language extends the basic
Strand ideas of lightweight processes, logical variables, declarative programming,
and multilingual programming in three ways. First, it integrates declarative and
imperative programming without compromising compositional properties. Second,
it provides a richer and more flexible syntax. Third, it supports the implementation

and use of reusable parallel modules.
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3.1 PCN Language
PCN syntax is similar to that of the C programming language. A program is a set
of procedures, each with the following general form (k, !> 0).
name(arg;,...,argg)
declarationy; ...; declaration;

block

A block is a call to a PCN procedure (or to a procedure in a sequential language
such as Fortran or C), a composition, or a primitive operation such as assignment.
A composition is written {op block;, ..., block,}, m > 0, where op is one of
“II” (parallel), “” (sequential), or “?” (choice), indicating that the blocks blocky,
..., block,, are to be executed concurrently, in sequence, or as a set of guarded
commands, respectively. In the latter case, each block is a choice with the form
guard —-> block, where guard is a conjunction of boolean tests and block can be
executed only if guard evaluates to true. If two or more guards evaluate to true,
one is selected nondeterministically, as in Strand.

A parallel composition specifies opportunities for parallel execution but does not
indicate how the composed blocks (which can be thought of as lightweight processes)

are to be mapped to processors. As in Strand, mapping is specified by annotations.
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stream_comm(n)
{|| streamproducer(n,x), % Execute in parallel
stream_consumer (x)

stream producer(n,out)

{?n>0 > % Ifn > 0:
{|| out = [10]outi], % Send message;
stream_producer(n-1, outl) % Recurse for more.

}s

n == 0 -> out = [] % If n == 0: stop

1

stream_consumer (sum, in)

{ ? in ?= [vallinl] -> % If message: receive;
stream_consumer (sum+val,inl), % Recurse for more.
in 7= [1 —> % If done:
stdio:printf ("Sum=Y%d\n",{sum},.) % Print sum.

Fig. 7. PCN Producer/Consumer

In PCN, annotations can name arbitrary user-defined functions.

Any Strand program can be rewritten directly as a PCN program that uses only
parallel composition, choice composition, and single-assignment variables and that
uses PCN’s definition statement (“=”) in place of Strand’s assignment statement

(“:="). For example, Figures 7 and 8 are direct translations of Figures 1 and 4.

3.1.1 Imperative Constructs. PCN programs can also use imperative constructs.
Conventional, or mutable, scalar and array variables of type integer, double-precision
real, and character can be created. (These are distinguished from single-assignment

variables by the fact that they are explicitly declared; single-assignment variables
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align_chunk(sequences,alignment)
{I| pins(chunks,bestpin),
divide(sequences,bestpin,alignment)

}

pins(chunk,bestpin)

{ll cps(chunk,cplist),
c_form_pins(cplist,pinlist),
best_pin(chunk,pinlist,bestpin)

}

cps(sequences,cplist)
{ ? sequences 7= [seqlsequencesi] ->
{Il cplist = [cpslcplisti],
c_critical_points(seq,cps),
cps(sequencesi,cplistl)
},
sequences 7= [] -> cplist = []

}

divide(seqs,pin,alignment)
{7 pin =1 -

{Il split(seqgs,pin,left,right,rest),
align_chunk(left,lalign),
align_chunk(right,ralign),
align_chunk(rest,restalign),
combine(lalign,ralign,restalign,alignment)

3,

pin == [1 ->
c_basic_align(seqs,alignment)

Fig. 8. PCN Version of Figure 4
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are not. Hence, a variable declaration serves not only to indicate the type of the
variable, but also the fact that the variable is mutable.) Mutable variables, like
variables in C or Fortran, have an initial arbitrary value that can be modified many
times by using an assignment statement (“:="). For example, Figure 9 shows PCN,
C, and Fortran programs for computing the inner product of two double-precision
arrays arrayl and array2. All assume that their arguments are passed by reference
and use an iteration statement to accumulate the values array1[i]*array2[i] in
the mutable variable sum.

The three procedures in Figure 9 can be called interchangeably by PCN programs.
PCN semantics ensure that updates to mutable variables within inner _product do
not result in race conditions in a parallel program. In particular, they prohibit
updates to mutable variables shared by processes in a parallel block, and require
the compiler to copy the value of mutables and definitions when they occur on the
right-hand side of definition and assignment statements, respectively. In this way,
the two worlds of parallel/declarative and sequential /imperative programming are
able to coexist without the possibility of nondeterministic interactions [Chandy and
Taylor 1991].

Figure 10 shows a program that receives arrays of double-precision values al and
a2 on two input streams inl and in2, calls one of the inner _product routines
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inner_product(n,arrayl,array2, sum)
double sum;
{; sum := 0.0,
{; i over 0..n-1
sum := sum + arrayl[i]*array2[i]
}
}

inner_product(n,arrayl,array2, sum)
int *n;
double arrayi[], array2[], *sum;
{ int i;
*sum = 0.0;
for(i=0; i<*n; i++)
*sum = *sum + arrayl[i]*array2[i];

}

SUBROUTINE INNER_PRODUCT(N,ARRAY1,ARRAY2,SUM)
INTEGER N
DOUBLE PRECISION ARRAY1(N), ARRAY2(N), SUM
INTEGER I
SUM = 0.0
DO I=1,N
SUM = SUM + ARRAY1(I)*ARRAY2(I)
ENDDO
END

Fig. 9. Inner Product in PCN, C, and Fortran
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f(in1,in2,o0ut)
double sum;
{ ? in1 7= [allinlal, in2 ?= [a2|in2a] ->
{ ? length(al) == length(a2) ->
{ ; inner_product(length(al),al,a2,sum),
out = [sumlouti],
f(inla,in2a,outl)

1,

default ->

{ll out = ["error"louti],
f(inla,in2a,outl)

¥

},
default -> out = []

Fig. 10. PCN Program That Calls Inner Product

to compute the inner product, and sends the result (sum) on an output stream
out. Notice that the mutable variable sum i1s used only within a sequential block.
Furthermore, the compiler makes a copy of sum when creating the list structure
[sum|out1], hence ensuring that the process that receives the message out sees a

single-assignment value.

3.1.2 Modules and Templates. PCN supports the application of modular pro-
gramming techniques. A PCN process can encapsulate subprocesses and internal
communication channels but need not encapsulate processor numbers or other phys-
ical names. Hence, a process can be thought of as a module and can be reused easily
in different circumstances. A module may also be parameterized with the code ex-

ecuted at each node in a parallel structure, in which case we call it a template.
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A distributed array of single-assignment variables (declared as an array of type
“port”) can be used as an interface, avoiding the contention that would occur if
processes interacted via a centralized data structure [Foster et al. 1992]. PCN pro-
grammers regularly reuse modules and templates implementing parallel program
structures such as pipelines and butterflies, distributed data structures such as
arrays and dictionaries, and load balancing algorithms.

The PCN procedure module_example in Figure 11 composes a ring-pipeline tem-
plate (ring), a reduction module (maximum), and an output module (display).
Each module is parameterized with the number of processors on which it is to exe-
cute (n) and defines its own internal process and communication structure. As illus-
trated in Figure 12, the modules interact via distributed arrays of single-assignment
variables p1 and p2.

Figure 11 also shows an implementation of the ring template and a function
prototype for the ringnode procedure invoked by this template in module_example.

The syntax “{|| i over 0..n-1 ::”

is a parallel enumerator, used here to create
ninstances of the process with name given by the variable op (the backquotes denote
a higher-order call). As in Strand, a mapping annotation (@ node(i)) is used to
indicate the processor on which each process is to execute. Each process i1s passed

five variables as arguments: a threshold value and communication streams from the
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module\_example(n, threshold)

port pilnl, p2[nl;

{Il maximum(n, p1),
ring(n, ringnode(), threshold, pi1, p2),
display(n, p2)

}

ring(n, op, threshold, I, 0)
port S[nl, I[1, O[];
{Il 1 over 0..n-1
‘op‘(threshold,
S[il, s[(i+1)%nl, I[il, O[i]
) @ node(i)
¥

ringnode(threshold, fr_nbr, to_nbr, in, out)

{0

Fig. 11. Template Use and Definition

port pl[4], p2[4]
{Il maxi mun(4, pl), ring(4, ... pl, p2), display(4, p2) }

Fig. 12. An illustration of the program structures involved in the ring-pipeline example described
in the text. Three modules, each comprising four processes, are composed. The circles represent
processes and the squares the single-assignment variables comprising the interfaces between the
modules.
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left neighbor, to the right neighbor, and to and from the interface, respectively.

3.2 PCN Critique

PCN has also been used in a broad range of substantial application projects. In
many cases, these have been numeric problems involving irregular, adaptive compu-
tation, distributed data structures, or reactive (data-driven) computations [Foster
et al. 1992; Harrar et al. 1991]. Again, these experiences provide a solid basis for
evaluation.

PCN’s major contribution from a language design viewpoint was to show how
a programming model based on single-assignment variables and concurrent com-
position could be integrated with the conventional world of “multiple-assignment”
variables and sequential composition. At the implementation level, this integration
was also pursued aggressively, with the result that PCN’s foreign language interface
was significantly more sophisticated and seamless than that used in Strand.

These various innovations certainly made the language easier to use, particularly
for programming problems involving multiple languages. However, our analysis is
that while PCN addressed some Strand deficiencies, these were probably not the
important ones. PCN still suffers from the four essential weaknesses identified in

Section 2.5.
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4. LANGUAGE EXTENSIONS: CC++ AND FM

Strand and PCN have proven to be useful parallel programming languages, particu-
larly for applications that can exploit their unique mix of declarative and imperative
capabilities. As discussed above, their weaknesses appear to derive in large part
from the use of a new language to express parallel computation. This observation
suggests an alternative approach to compositional programming in which tradi-
tional languages, such as C++ and Fortran, are extended in ways that provides
compositionality and high-level specification of communication and synchroniza-
tion. (Support for symbolic applications appears less fundamental.) In principle,
these language extensions can address Strand and PCN’s weaknesses by provid-
ing a common framework for parallel and sequential programming and simplifying
the integration of existing code. It would also be desirable for these extensions to
support the specification of SPMD computations.

The design of a language extension that supports compositional parallel pro-
gramming requires some analysis of what makes a programming language “compo-
sitional.” Compositionality in Strand and PCN is achieved by using three mecha-
nisms. Single-assignment variables provide both an interaction mechanism based on
monotonic operations on shared state, and a uniform address space; parallel com-

position provides a concurrent interleaving. (State changes on single-assignment
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variables are monotonic in that the value of a variable cannot be changed once
written [Chandy and Kesselman 1992].) Together, these mechanisms ensure that
neither the order in which program components execute nor the location of this
execution affect the result computed. Other mechanisms can provide the same
capabilities. For example, nonblocking send and blocking receive operations on a
virtual channel data type are also monotonic and can form the basis for a compo-
sitional programming language [Chandy and Foster 1995].

These various consideration lead to the following additional design goals for com-

positional programming languages; these supplement those developed in Section 2.

—A language should define just a small set of new language constructs; these new

constructs should be compatible with the basic concepts of the sequential base

language.

—The new constructs should provide monotonic operations on shared program

state, so as to support compositionality.

—The new constructs should be easily embedded in existing sequential code, so as

to facilitate the development of parallel SPMD libraries.

—The language should retain support for flexible communication and synchroniza-

tion structures, and a data-driven execution model.

—The language should support interoperability, both with other compositional
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languages and with data-parallel languages.

In the following, we briefly review two parallel languages that adopt this language

extension approach to compositional programming.

4.1 Compositional C++

Chandy and Kesselman’s Compositional C++ (CC++) [Chandy and Kesselman
1993] is a general-purpose parallel programming language that extends C++ with
six new keywords. It is not a purely compositional programming language. In
order to guarantee compositionality, unacceptable restrictions would have to be
made on the C++ constructs that are available in CC++. Thus, CC++ provides
constructs that enable rather than guarantee the construction of compositional
modules. In most cases, compositional modules can be obtained by following simple
programming conventions [Chandy and Kesselman 1992].

CCH+ provides three different mechanisms for creating threads of control: the
parallel block, the parallel loop, and spawned functions. The first two have a
parbegin/parend semantics, while the spawned function creates an independent
thread.

As in Strand and PCN) single-assignment variables are used for synchronization.

In CC++, a single-assignment variable is called a synchronization, or sync variable,
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and is distinguished by the type modifier sync. A CC++ program can contain both

sync and regular C++ variables. Programs that contain only sync variables are

compositional. To support the development of compositional programs containing

regular C++ variables, CC++ introduces atomic functions. Within an instance of

a given C++ class, only one atomic function is allowed to execute at a time. The

operations specified in the body of an atomic function execute without interference.

Thus, an atomic function is like a monitor [Hoare 1974]. If all accesses to a shared

C++ variable takes place within the body of an atomic function, then the resulting

program is compositional.

The remaining aspects of C++ deal with the methods used to map computation

to processors and to access data on different processors. The problem of dealing

with global and static data is addressed by introducing a structure called a processor

object, a virtual processor containing a private copy of all global and static data.

Like other C++ objects, a processor object has a type declared by a class definition,

encapsulates functions and data, and can be dynamically created and destroyed.

Each instance of a processor object contains an address space from which regular

objects can be allocated. As in Strand and PCN, the functional behavior of the

program is independent of where processor objects are placed.

CC++ distinguishes between interprocessor object and intraprocessor object ref-
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erences: a pointer that can refer to an object in another processor object must be
declared to be global. Global pointers provide CC++ with a global name space,
as in Strand and PCN, while also providing a two-level locality model that can
be manipulated directly by a program. Dereferencing a global pointer causes an
operation to take place in the processor object referenced by that global pointer.
Thus in CC++, communication abstractions are provided by operations on global
pointers, while synchronization abstractions are provided by sync pointers.

In summary, CC++ integrates parallel composition with sequential execution. It
uses global pointers to provide a uniform global address space and sync variables
and atomic functions to implement compositional interactions between program

components.

4.2 Fortran M

Fortran M (FM) [Chandy and Foster 1995] is a small set of extensions to Fortran 77
for task-parallel programming. Although simple, the FM extensions provide the es-
sential mechanisms required for compositional programming. Program components
can encapsulate arbitrary concurrent computations and can be reused in any envi-
ronment.

Concepts such as pointers and dynamic memory allocation are foreign to For-

tran 77. Hence, the FM design bases its communication and synchronization con-
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structs on an existing concept: file I/O. FM programs can dynamically create and
destroy processes, single-reader/single-writer virtual files (channels), and multiple-
writer, single-reader virtual files (mergers). Processes can encapsulate state and
communicate by sending and receiving messages on channels and mergers; refer-
ences to channels, called ports, can be passed as arguments or transferred between
processes in messages, providing a restricted global address space.

FM processes are created by process block and process do-loop constructs with
parbegin/parend semantics. Arguments passed to a process are copied in on call and
back on return; common blocks are local to each process. A channel is a typed, first-
in/first-out message queue with a single sender and a single receiver; the merger
1s similar but allows for multiple senders. FM constructs allow the programmer
to control process placement by specifying the mapping of processes to wirtual
computers: arrays of virtual processors. Mapping decisions do not affect program
semantics. Even complex programs can be guaranteed to be deterministic [Chandy
and Foster 1995].

In summary, FM integrates parallel composition with sequential execution. It
uses channels both to provide a simple form of uniform global address space and

to implement compositional interactions between program components.
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5. RELATED WORK

The Strand design builds on work in concurrent logic programming at Imperial Col-
lege [Clark and Gregory 1981; Gregory 1987; Ringwood 1988], the Weizmann Insti-
tute [Mierowsky et al. 1985; Shapiro 1987; Taylor 1989], and elsewhere. Concurrent
logic programming itself has intellectual roots in logic programming [Clocksin and
Mellish 1981; Kowalski 1979], functional programming [Kahn and MacQueen 1977;
McLennan 1990], guarded commands [Dijkstra 1975], and CSP [Hoare 1978]. How-
ever, Strand omits many characteristic features of logic programming languages,
such as unification and backtracking, in order to focus on issues relevant to par-
allel programming. This strategy yields a dramatically simplified language that
can be implemented efficiently on sequential and parallel computers. Strand’s sim-
plicity enables numerous compiler optimizations. In addition, Strand introduces
constructs that support multilingual programming, allowing its use as a coordina-
tion language.

A promising alternative approach to achieving compositionality and determinism
in parallel programs is to exploit parallelism while preserving sequential semantics.
This approach is taken in parallel dataflow, logic, and functional languages, which
exploit parallelism implicit in declarative specifications [Cann et al. 1990; Lusk

et al. 1988; McLennan 1990]; in data-parallel languages, which exploit the paral-
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lelism available when the same operation is applied to many elements of a data
structure [Fox et al. 1990; Koelbel et al. 1994]; and in Jade, which allows pro-
grammers to identify statements that are independent and hence can be executed
concurrently [Rinard et al. 1993]. Adherence to sequential semantics has important
software engineering advantages. However, not all parallel algorithms are easily ex-
pressed in sequential terms. For example, the load-balancing algorithm of Figure 6
is an explicitly parallel algorithm, with no sequential equivalent.

Other explicitly parallel approaches include Linda and message-passing libraries
such as p4, PVM, and MPI. Linda extends sequential languages with operations
for creating processes and for manipulating a shared associative store called tuple
space [Carriero and Gelernter 1989]. Like Strand and PCN, Linda utilizes a data-
driven execution model in which the actions of “sending” and “receiving” data are
decoupled and processes execute when data are available. A significant advantage of
Linda is that the programmer need learn only a small set of tuple space operations.
On the other hand, the global tuple space makes it difficult to develop modules that
encapsulate internal communication operations: Linda is not “compositional.”

The p4 [Butler and Lusk 1994] and PVM [Sunderam 1990] libraries extend se-
quential languages with functions for sending and receiving messages. Advantages
include simplicity and portability, and the efficiency that can be achieved by ac-

ACM Transactions on Programming Languages and Systems, Vol. 8 No. 1, January 1999.



152 . lan Foster

cessing directly the low-level communication mechanisms of a message-passing com-
puter. These features make them well suited for scientific and engineering appli-
cations, particularly when communication costs dominate performance. In other
classes of problems, the low-level nature of these libraries can be a disadvantage.
Applications that communicate complex data structures or that use dynamic pro-
cess and communication structures are more easily expressed by using higher-level
languages such as Strand and PCN. MPI [Gropp et al. 1995] provides a similar
model and also introduces support for the modular construction of parallel pro-

grams.

6. SUMMARY

We have reviewed and evaluated several different approaches to the realization of
the concept of “compositionality” in parallel programming languages. In Strand
and PCN, concurrent composition and single-assignment variables are integrated
into simple new languages that can be used either alone or as coordination languages
for sequential languages. Experience with large-scale applications show that both
systems have important strengths, but that the use of a specialized language can
be a significant weakness. Conceptually hard things (such as specifying complex
distributed algorithms or building reusable parallel modules) often become very

eagy in the compositional framework, but apparently easy things (such as imple-
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menting SPMD programs, or generating a profile) become surprisingly difficult in
the context of specialized languages.

Compositional C++ and Fortran M represent an alternative approach to com-
positional programming based on simple extensions to sequential languages. The
resulting languages are considerably richer and more complex than Strand and

PCN, but retain important compositional properties.
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