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112 � Ian FosterIn task-parallel programs, diverse activities can take place concurrently, and communication andsynchronization patterns are complex and not easily predictable. Previous work has identi�edcompositionality as an important design principle for task-parallel programs. In this paper, wediscuss alternative approaches to the realization of this principle, which holds that propertiesof program components should be preserved when those components are composed in parallelwith other program components. We review two programming languages, Strand and ProgramComposition Notation, that support compositionality via a small number of simple concepts,namely monotone operations on shared objects, a uniform addressing mechanism, and parallelcomposition. Both languages have been used extensively for large-scale application development,allowing us to provide an informed assessment of their strengths and weaknesses. We observethat while compositionality simpli�es development of complex applications, the use of specializedlanguages hinders reuse of existing code and tools, and the speci�cation of domain decompositionstrategies. This suggests an alternative approach based on small extensions to existing sequentiallanguages. We conclude the paper with a discussion of two languages that realize this strategy.Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classi�ca-tions|Concurrent, distributed, and parallel languages; D.3.3 [Programming Languages]: Lan-guage Constructs and Features|Concurrent programming structuresGeneral Terms: LanguagesAdditional Key Words and Phrases: Compositionality, Parallel Languages, Parallel ProgrammingACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 1131. INTRODUCTIONParallel programming is widely regarded as di�cult: more di�cult than sequentialprogramming, and perhaps (at least this is our view) more di�cult than it needs tobe. In addition to the normal programming concerns, the parallel programmer hasto deal with the added complexity brought about by multiple threads of control:managing their creation and destruction, and orchestrating their interactions viasynchronization and communication. Parallel programs must also manage a richerset of resources than sequential programs, controlling, for example, the mappingand scheduling of computation onto multiple processors.As in sequential programming, complexity in program development can be man-aged by providing appropriate programming language constructs. Language con-structs can help both by supporting encapsulation, so as to prevent unwanted in-teractions between program components, and by providing higher-level abstrac-tions that leverage programmer e�ort by allowing compilers to handle mundane,error-prone aspects of parallel program implementation. For example, the variouslanguages that have been developed to support data-parallel programming achieveboth these goals, albeit for a restricted class of programs [Chapman et al. 1992;Fox et al. 1990; Koelbel et al. 1994]. Data-parallel programs exploit the parallelisminherent in applying the same operation to all or most elements of large data struc-ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



114 � Ian Fostertures. Data-parallel languages avoid unwanted interactions by enforcing sequentialsemantics. They use data distribution statements to provide a high-level, abstractsyntax for specifying data placement, freeing the programmer from the labor ofpartitioning computation and translating between global and local addresses.Our research goal is to develop language constructs and associated tools to sup-port the more general class of task-parallel applications, in which multiple unrelatedactivities can take place concurrently. Task parallelism arises in time-dependentproblems such as discrete-event simulation, in irregular problems such as thoseinvolving sparse matrices, and in multidisciplinary simulations coupling multiple,possibly data-parallel, computations. The challenge when developing language con-structs for task-parallel programming is to provide the modularity and abstractionneeded for ease of programming while maintaining the generality needed to supportarbitrary parallel computations.Compositionality has been proposed as a design principle for task-parallel pro-grams [Chandy and Taylor 1991]. A compositional programming system is one inwhich properties of program components are preserved when those components arecomposed in parallel with other program components. That is, the behavior of thewhole is a logical combination of the behavior of the parts. One property that weoften want to be preserved in this way is determinism, so that programs constructedACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 115from deterministic components can themselves be guaranteed to be deterministic.Compositionality can simplify program development by allowing program compo-nents to be developed and tested in isolation and then reused in any environment.However, not all parallel programming notations have this property. For example,notations based on shared variables tend not to be compositional: two determinis-tic procedures may be nondeterministic when executed concurrently, if both accessthe same variable.In this paper, we describe various language constructs that have been proposedto support compositionality. We �rst use the examples of Strand [Foster and Taylor1990] and PCN [Chandy and Taylor 1991] to show how the basic ideas of composi-tional programming can be supported by using a small number of simple concepts,namely, monotone operations on shared objects, a uniform addressing mechanism,and parallel composition. Then, we use the large body of practical experience thathas been gained from the use of Strand and PCN to evaluate the approach. We iden-tify speci�c strengths and distinguish those associated with compositionality fromthose due to other language features. We also identify key weaknesses and note thatthese are, for the most part, associated with the use of specialized languages. Thisobservation motivates us to consider extensions to existing sequential languages asa means of providing a more 
exible and accessible implementation of the ideas.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



116 � Ian FosterWe develop requirements that we believe such language extensions should satisfy,and we review two languages|Compositional C++ [Chandy and Kesselman 1993]and Fortran M [Chandy and Foster 1995]|that meet these requirements.2. STRANDOne particularly elegant and satisfying approach to compositional task-parallel pro-gramming is to de�ne a simple language that provides just the essential elementsrequired to support this programming style [Foster et al. 1990]. This language canbe used both as a language in its own right and as a coordination language [Car-riero and Gelernter 1989; Cole 1989; Kelly 1989; Lucco and Sharp 1991] providinga parallel superstructure for existing sequential code. These dual roles require asimple, uniform, highly parallel programming system in which|the structure of the computation, the number of concurrently executing threads ofcontrol, and the placement of these threads can vary dynamically during programexecution;|communication and synchronization operations are introduced into a programvia high-level abstractions that can be implemented e�ciently by the languagecompiler;|patterns of communication can change dynamically;ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 117|the functional behavior of parallel programmodules is independent of the schedul-ing or processor allocation strategy used;|arbitrary parallel modules can be combined and will function correctly; and|modules written in other languages can be incorporated.These goals motivate the design of the Strand, PCN, CC++, and Fortran M lan-guages described below.2.1 Strand DesignThe Strand language integrates ideas from earlier work in parallel logic program-ming [Clark and Gregory 1981], data
ow computing [Ackerman 1982], and im-perative programming [Hoare 1978] to provide a simple task-parallel programminglanguage based on four related ideas:|single-assignment variables,|a global, shared namespace,|parallel composition as the only method of program composition, and|a foreign language interface.Single-assignment variables provide a uni�ed mechanism for both synchronizationand communication. All variables in Strand follow the single-assignment rule [Ack-erman 1982]: a variable is set at most once and subsequently cannot change. AnyACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



118 � Ian Fosterattempt by a program component to read a variable before it has been assigned avalue will cause the program component to block. All synchronization operationsare implemented via reading and writing these variables. New variables can beintroduced by writing recursive procedure de�nitions.Strand variables also de�ne a global namespace. A variable can refer to any objectin the computation, even another variable. The location of the variable or objectbeing referenced does not matter. Thus, Strand does not require explicit communi-cation operations; processes can communicate simply by reading and writing sharedvariables.Unlike most programming languages, which support only the sequential com-position of program components, Strand supports only parallel composition. Aparallel composition of program components executes as a concurrent interleavingof the components, with execution order constrained only by availability of data,as determined by the single-assignment rule.The combination of single-assignment variables, a global namespace, and parallelcomposition means that the behavior of a Strand program is invariant to the place-ment and scheduling of computations. One consequence of this invariance is thatStrand programs are compositional: a program component will function correctlyin any environment. Another consequence is that the speci�cation of the locationACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 119of a computation is orthogonal to the speci�cation of the computation. To exploitthese features, Strand provides a mapping operator that allows the programmer tocontrol the placement of a computation on a parallel computer.By allowing modules written in sequential languages to be integrated into Strandcomputations, the foreign language interface supports the use of Strand as a coor-dination language. Sequential modules that are to be integrated in this way mustimplement pure functions. The interface supports communication between foreignmodules and Strand by providing routines that allow foreign language modules toaccess Strand variables passed as arguments.2.2 Strand LanguageThis summary of Strand language concepts is not intended to be comprehensive;for details, see [Foster and Taylor 1990]. The syntax of Strand is similar to that ofthe logic programming language Prolog. A program consists of a set of procedures,each de�ned by one or more rules. A rule has the general formH :- G1; G2; :::; Gm j B1; B2; :::; Bn: m; n � 0,where the rule head H is a function prototype consisting of a name and zero ormore arguments, the Gi are guard tests, \j" is the commit operator, and the Bjare body processes: calls to Strand, C, or Fortran procedures, or to the assignmentACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



120 � Ian Fosteroperator \:=". If m = 0, the \j" is omitted. Procedure arguments may be variables(distinguished by an initial capital letter), strings, numbers, or lists. A list is arecord structure with a head and a tail and is denoted [head|tail].A procedure's rules de�ne the actions that the process executing that procedurecan perform. The head and guard of the rule de�ne the conditions under which anaction can take place; the body de�nes the actions that are to be performed. Whena procedure executes, the conditions de�ned by the various heads and guards areevaluated in parallel. Nonvariable terms in a rule head must match correspondingprocess arguments, and guard tests must succeed. If the conditions speci�ed by asingle rule hold, this rule is selected for execution, and new processes are createdfor the procedures in its body. If two or more rules could apply, one is selectednondeterministically. It su�ces to ensure that conditions are mutually exclusive toavoid nondeterministic execution. If no condition holds, an error is signaled. Forexample, the following procedure de�nes a consumer process that executes eitheraction1 or action2, depending on the value of variable X.consumer(X) :- X == "msg" | action1(X).consumer(X) :- X =\= "msg" | action2(X).In this procedure, X is a variable, "msg" is a string, and == and =\= represent equal-ity and inequality tests, respectively. Notice that this procedure is deterministic.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 1212.2.1 Communication and Synchronization. As noted above, all Strand variablesare single-assignment variables. A shared single-assignment variable can be usedboth to communicate values and to synchronize actions. For example, considerconcurrently executing producer and consumer processes that share a variable X:producer(X), consumer(X)The producer may assign a value to X (e.g., "msg" ) and thus communicate thisvalue to the consumer:producer(X) :- X := "msg".As shown above, the consumer procedure may receive the value and use it insubsequent computation. The concept of synchronization is implicit in this model.The comparisons X == "msg" and X =\= "msg" can be made only if the variableX is de�ned. Hence, execution of consumer is delayed until producer executes andmakes the value available.The single-assignment variable would have limited utility in parallel program-ming if it could be used to exchange only a single value. In fact, processes thatshare a variable can use it to communicate a sequence or stream of values. Thistechnique is achieved as follows. A recursively de�ned producer process incre-mentally constructs a list structure containing these values. A recursively de�nedACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



122 � Ian Fosterconsumer process incrementally reads this same structure. Figure 1 illustrates thistechnique. The stream comm procedure creates two processes, stream producerand stream consumer, that use the shared variable X to exchange N values. Theproducer incrementally de�nes X to be a list comprising N occurrences of the number10: [10, 10, 10, ..., 10]The statement Out := [10jOut1], which de�nes the variable Out to be a list withhead 10 and tail Out1, can be thought of as sending a message on Out. The newvariable Out1 is passed to the recursive call to stream producer, which either usesit to communicate additional values or, if N==0, de�nes it to be the empty list [].The consumer incrementally reads the list S, adding each value received to theaccumulator Sum and printing the total when it reaches the end of the list. Thematch operation [ValjIn1] in the head of the �rst stream consumer rule deter-mines whether the variable shared with stream producer is a list and, if so, de-composes it into a head Val and tail In1. This operation can be thought of asreceiving the message Val and de�ning a new variable In1 that can be used toreceive additional messages.2.2.2 Foreign Interface. \Foreign" procedures written in C or Fortran can becalled in the body of a rule. A foreign procedure call suspends until all argu-ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 123stream comm(N) :-stream producer(N, S), % N is number of messagesstream consumer(0, S). % Accumulator initially 0stream producer(N, Out) :-N > 0 j % More to send (N > 0):Out := [10jOut1], % Send message \10";N1 is N - 1, % Decrement count;stream producer(N1, Out1). % Recurse for more.stream producer(0, Out) :- % Done sending (N == 0):Out := []. % Terminate output.stream consumer(Sum, [ValjIn1]) :- % Receive message:Sum1 is Sum + Val, % Add to accumulator;stream consumer(Sum1, In1). % Recurse for more.stream consumer(Sum, []) :- % End of list (In == []):print(Sum). % Print result.Fig. 1. Producer/Consumer Programments are de�ned and then executes atomically, without suspension. This approachachieves a clean separation of concerns between sequential and parallel program-ming, provides a familiar notation for sequential concepts, and enables existingsequential code to be reused in parallel programs.2.2.3 Mapping. The Strand compiler does not attempt to map processes to pro-cessors automatically. Instead, the Strand language provides constructs that allowmapping strategies to be speci�ed by the programmer. This approach is possiblebecause the Strand language is designed so that mapping a�ects only performance,not correctness. Hence, a programmer can �rst develop a program and then ex-plore alternative mapping strategies by changing annotations. This technique isACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



124 � Ian Fosteraugcgagucuauggcuucggccauggcggacggcucauuaugcgagucuaugguuucggccauggcggacggcucauuaugcgagucuauggacuucggccauggcggacggcucaguaugcgagucaaggggcucccuugggggcaccggcgcacggcucagu(a)augcgagucuauggc----uucg----gccauggcggacggcucauuaugcgagucuauggu----uucg----gccauggcggacggcucauuaugcgagucuauggac---uucg----gccauggcggacggcucaguaugcgaguc-aaggggcucccuugggggcaccggcgcacggcucagu(b)Fig. 2. RNA Sequence Alignmentillustrated below.2.3 Programming ExamplesWe use a sequence alignment program developed by Ross Overbeek and his cowork-ers [Butler et al. 1989] to illustrate the use of Strand. The goal is to line up RNAsequences from separate but closely related organisms, with corresponding sectionsdirectly above one another and with indels (dashes) representing areas in whichcharacters must be inserted or deleted to achieve this alignment. For example, Fig-ure 2 shows (a) a set of four short RNA sequences and (b) an alignment of thesesequences.Overbeek et al.'s alignment algorithm uses a divide-and-conquer strategy that, insimpli�ed terms, works as follows. First, \critical points"|short subsequences thatare unique within a sequence|are identi�ed for each sequence. Second, \pins"|ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 125
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UnpinnedFig. 3. Splitting Sequences Using a Pincritical points that are common to several sequences|are identi�ed. Third, thelongest pin is used to partition the problem of aligning the sequences into threesmaller alignment problems, corresponding to (a) the subsequences to the left ofthe pin in the pinned sequences, (b) the subsequences to the right of the pin,and (c) the unpinned sequences (Figure 3). Fourth, these three subproblems aresolved by applying the alignment algorithm in a recursive fashion. Fifth, the threesubalignments are combined to produce a complete alignment.This is a complex algorithm that happens to exhibit many opportunities for par-allel execution. For example, critical points can be computed in parallel for eachsequence, and each alignment subproblem produced during the recursive applica-tion of the algorithm can be solved concurrently. The challenge is to formulate thisalgorithm in a way that does not obscure the basic algorithm structure and thatallows alternative parallel execution strategies to be explored without substantialchanges to the program. The Strand implementation achieves this goal. The pro-ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



126 � Ian Fosteralign chunk(Sequences,Alignment) :-pins(Chunks,BestPin),divide(Sequences,BestPin,Alignment).pins(Chunk,BestPin) :-cps(Chunk,CpList),c form pins(CpList,PinList),best pin(Chunk,PinList,BestPin).cps([SeqjSequences],CpList) :-CpList := [CPsjCpList1],c critical points(Seq,CPs),cps(Sequences,CpList1).cps([],CpList) :- CpList := [].divide(Seqs,Pin,Alignment) :-Pin =\= [] |split(Seqs,Pin,Left,Right,Rest),align chunk(Left,LAlign) @ random,align chunk(Right,RAlign) @ random,align chunk(Rest,RestAlign) @ random,combine(LAlign,RAlign,RestAlign,Alignment).divide(Seqs,[],Alignment) :-c basic align(Seqs,Alignment).Fig. 4. Genetic Sequence Alignment Algorithmcedures in Figure 4 implement the top level of the algorithm. The align chunkprocedure calls pins to compute critical points for each sequence in a set of se-quences (a \chunk"), form a set of pins, and select the best pin. If a pin is found(Pin =\= []), divide uses it to split the chunk into three subchunks. Recursivecalls to align chunk align the subchunks. If no pin is found (Pin == []), analternative procedure, c basic align, is executed.This example illustrates three important characteristics of the Strand language.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 127First, programs can exploit high-level logic programming features to simplify thespeci�cation of complex algorithms. These features include the use of list structuresto manage collections of data and a rule-based syntax that provides a declarativereading for program components. Second, programs can call routines written insequential languages to perform operations that are most naturally expressed interms of imperative operations on arrays. In the example, three C-language proce-dures (distinguished here by a \c " pre�x) are called in this way. This multilingualprogramming style permits rapid prototyping of algorithms without compromisingperformance. (The absence of an array data type means that code for manipulatingarrays would be both clumsy and ine�cient if written in Strand.) Third, alterna-tive parallel implementation strategies can be explored simply by annotating theprogram text with di�erent process mapping directives. For example, in Figure 4annotations @ random are placed on the recursive calls to align to specify that thesecalls are to execute on randomly selected processors. Alternatively, annotations @elsewhere could be used to specify that these calls are to be scheduled to idleprocessors by using a load-balancing strategy. As communication and synchroniza-tion are speci�ed in terms of operations on shared single-assignment variables, noother change to the program text is required: the Strand compiler translates theseoperations into either low-level message-passing or shared-data access operations,ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



128 � Ian Fosteras required.A second example illustrates the use of Strand to implement distributed algo-rithms. Figure 5 provides a complete implementation of a manager/worker load-balancing scheduler. As illustrated in Figure 6, request streams from di�erent\worker" processes (W) are combined by a special process called a merger to yielda single stream. (The merger is Strand's second nondeterministic construct, the�rst being guards that are not mutually exclusive.) Each worker repeatedly sendsa request for a task, waits for a response, executes the task that it receives, andterminates when no more tasks are available. A \manager" process (M) matchesrequests with tasks received on a separate stream, and signals termination when alltasks have been scheduled.Mapping constructs are used to control the placement of worker processes onphysical processors. The �rst statement in the program indicates that the program-mer wants to think of the computer as a virtual ring. The ring virtual computersupports mapping annotations @ fwd and @ bwd, which specify that a process is toexecute on the \next" or \previous" node in this ring, respectively. In the exam-ple, the recursive call in the workers procedure is annotated so that the workerprocesses are placed on successive virtual processors.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 129-machine(ring). % Virtual computer.scheduler(NumWorkers, Tasks) :- % Create processes:manager(Tasks, Requests), % Manager;merger(Reqs,Requests), % Merger;workers(Reqs). % Workers.manager([TaskjTasks], [ReqjRequests]) :- % Serve request.Req := Task, manager(Tasks,Requests).manager([], [ReqjRequests]) :- % Signal done.Req := "halt", manager([],Requests).manager([],[]). % Terminate.workers(NumWorkers,Reqs) :- % Create workers, eachNumWorkers > 0 j % on di�erent node.NumWorkers1 is NumWorkers - 1,Reqs := [merge(R)jReqs1], % Register with merger.worker(R), % Create worker; thenworkers(NumWorkers1,Reqs1) @ fwd. % move to next node.workers(0,Reqs) :- Reqs := [].worker(Reqs) :- % Worker:Reqs := [RequestjReqs1], % Request task;worker1(Reqs1,Request,"done"). % Process task.worker1(Reqs,Request,"done") :- % Process task.Request =\= "halt" j % Not halt; so:Reqs := [NewReqjReqs1], % Request next task;execute(Request,Done), % Execute task;worker1(Reqs1,NewReq,Done). % Repeat process.worker1(Reqs,"halt","done") :- Reqs := [].Fig. 5. Load-Balancing LibraryACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



130 � Ian Foster
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RequestsFig. 6. Manager/Worker Scheduler Structure2.4 Strand ToolkitA small toolkit provides the essential utilities required for parallel application de-velopment. This comprises a compiler and runtime system, a linker for foreigncode, a debugger, a parallel I/O library, and a performance pro�ler.The compiler translates Strand programs into the instruction set of an abstractmachine. A runtime system implements this abstract machine and provides com-munication, thread management, and memory management functions. Its imple-mentation is designed for portability and is easily retargeted to new computers.The compiler and runtime system are designed to optimize the performance ofprograms that create many lightweight processes and that communicate by usingrecursive stream structures. For example, tail-recursion optimizations are appliedto translate recursion into iteration and to reuse storage occupied by list cells,ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 131hence avoiding the need for garbage collection in certain common cases. A garbagecollector is nevertheless required in the general case. On distributed-memory com-puters, a shared variable is represented by a single occurrence and one or moreremote references [Taylor 1989]; read and write operations on remote references aretranslated into communication operations. The garbage collector must also tracethese interprocessor references; however, individual processors can reclaim storageindependently, hence avoiding a need for global synchronization [Foster 1989].The foreign code linker allows the programmer to de�ne the data conversions thatare to be performed when moving data between Strand, C, and Fortran; the linkergenerates the necessary conversion code. The debugger allows the programmerto trace program execution and to examine suspended processes in the event ofdeadlock.Performance monitoring functions are integrated into the compiler and program-ming system [Kesselman 1991]. These functions allow information such as totalprocedure execution time, procedure execution frequencies, and communicationvolumes to be obtained on a per-processor basis. This information is collected byadditional instructions inserted by the compiler; the cost of these instructions isalmost always much less than 1 percent of total execution time [Kesselman 1991].Since pro�ling is based on counters, rather than the logging of events, the amountACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



132 � Ian Fosterof data collected is independent of program execution time. Communication isrequired only upon program termination, to dump pro�le data collected on eachprocessor. A graphical analysis tool called Gauge permits interactive explorationof this data.2.5 Strand CritiqueUnlike many parallel programming systems developed in a research environment,Strand has been used extensively for application development in areas as diverseas computational biology [Butler et al. 1989], discrete event simulation [Xu andTurner 1990], telephone exchange control [Armstrong and Virding 1989], auto-mated theorem proving, and weather modeling. This work provides a broad baseof practical experience on which we can draw when evaluating the strengths andweaknesses of the Strand approach. Analysis of this experience indicates threeparticular strengths of the Strand constructs:|The use of parallel composition and a high-level, uniform communication ab-straction simpli�es development of task-parallel applications featuring dynamiccreation and deletion of threads, complex scheduling algorithms, and dynamiccommunication patterns. Complex distributed algorithms can often be expressedin a few lines of code using Strand constructs.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 133|Parallel composition and single-assignment variables also enforce and expose thebene�ts of a compositional programming model. Program development, testing,and debugging, and the reuse of program components are simpli�ed.|The recursively de�ned data structures and rule-based syntax that Strand bor-rows from logic programming are useful when implementing symbolic applica-tions, for example in computational biology.This same analysis also reveals four signi�cant weaknesses that limit the utilityof the Strand system, particularly for larger scienti�c and engineering applications.|While the use of a separate coordination language for parallel computation isconceptually economical, it is not universally popular. Writing even a simpleprogram requires that a programmer learn a completely new language, and thelogic-based syntax is unfamiliar to many.|The foreign language interface is often too restrictive for programmers intenton reusing existing sequential code in a parallel framework. In particular, it isdi�cult to convert sequential code into single program/multiple data (SPMD)libraries, since this typically requires the ability to embed parallel constructs inexisting sequential code, something that Strand does not support. As a conse-quence, combining existing program modules with Strand can require signi�cantrestructuring of those modules.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



134 � Ian Foster|The Strand abstractions provide little assistance to the programmer applying do-main decomposition techniques to regular data structures. In these applications,the principal di�culties facing the programmer are not thread management orscheduling, but translating between local and global addresses, problems thathave been addressed in data-parallel languages.|The use of a new language means that program development tools such as debug-gers and execution pro�lers have to be developed from scratch; it also hinders theapplication of existing sequential development tools to sequential code modules.3. PROGRAM COMPOSITION NOTATIONMotivated in part by experiences with Strand, Program Composition Notation(PCN) was developed at Caltech and Argonne [Chandy and Taylor 1991; Fos-ter et al. 1992]. This second-generation compositional language extends the basicStrand ideas of lightweight processes, logical variables, declarative programming,and multilingual programming in three ways. First, it integrates declarative andimperative programming without compromising compositional properties. Second,it provides a richer and more 
exible syntax. Third, it supports the implementationand use of reusable parallel modules.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 1353.1 PCN LanguagePCN syntax is similar to that of the C programming language. A program is a setof procedures, each with the following general form (k; l � 0).name(arg1,...,argk)declaration1; ...; declarationl;blockA block is a call to a PCN procedure (or to a procedure in a sequential languagesuch as Fortran or C), a composition, or a primitive operation such as assignment.A composition is written fop block1, ..., blockmg, m > 0, where op is one of\jj" (parallel), \;" (sequential), or \?" (choice), indicating that the blocks block1,..., blockm are to be executed concurrently, in sequence, or as a set of guardedcommands, respectively. In the latter case, each block is a choice with the formguard -> block, where guard is a conjunction of boolean tests and block can beexecuted only if guard evaluates to true. If two or more guards evaluate to true,one is selected nondeterministically, as in Strand.A parallel composition speci�es opportunities for parallel execution but does notindicate how the composed blocks (which can be thought of as lightweight processes)are to be mapped to processors. As in Strand, mapping is speci�ed by annotations.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



136 � Ian Fosterstream comm(n)fjj stream producer(n,x), % Execute in parallelstream consumer(x)gstream producer(n,out)f ? n > 0 -> % If n > 0:fjj out = [10jout1], % Send message;stream producer(n-1, out1) % Recurse for more.g,n == 0 -> out = [] % If n == 0: stopgstream consumer(sum, in)f ? in ?= [val|in1] -> % If message: receive;stream consumer(sum+val,in1), % Recurse for more.in ?= [] -> % If done:stdio:printf("Sum=%d\n",fsumg, ) % Print sum.g Fig. 7. PCN Producer/ConsumerIn PCN, annotations can name arbitrary user-de�ned functions.Any Strand program can be rewritten directly as a PCN program that uses onlyparallel composition, choice composition, and single-assignment variables and thatuses PCN's de�nition statement (\=") in place of Strand's assignment statement(\:="). For example, Figures 7 and 8 are direct translations of Figures 1 and 4.3.1.1 Imperative Constructs. PCN programs can also use imperative constructs.Conventional, ormutable, scalar and array variables of type integer, double-precisionreal, and character can be created. (These are distinguished from single-assignmentvariables by the fact that they are explicitly declared; single-assignment variablesACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 137align_chunk(sequences,alignment){|| pins(chunks,bestpin),divide(sequences,bestpin,alignment)}pins(chunk,bestpin){|| cps(chunk,cplist),c_form_pins(cplist,pinlist),best_pin(chunk,pinlist,bestpin)}cps(sequences,cplist){ ? sequences ?= [seq|sequences1] ->{|| cplist = [cps|cplist1],c_critical_points(seq,cps),cps(sequences1,cplist1)},sequences ?= [] -> cplist = []}divide(seqs,pin,alignment){ ? pin != [] ->{|| split(seqs,pin,left,right,rest),align_chunk(left,lalign),align_chunk(right,ralign),align_chunk(rest,restalign),combine(lalign,ralign,restalign,alignment)},pin == [] ->c_basic_align(seqs,alignment)} Fig. 8. PCN Version of Figure 4ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



138 � Ian Fosterare not. Hence, a variable declaration serves not only to indicate the type of thevariable, but also the fact that the variable is mutable.) Mutable variables, likevariables in C or Fortran, have an initial arbitrary value that can be modi�ed manytimes by using an assignment statement (\:="). For example, Figure 9 shows PCN,C, and Fortran programs for computing the inner product of two double-precisionarrays array1 and array2. All assume that their arguments are passed by referenceand use an iteration statement to accumulate the values array1[i]*array2[i] inthe mutable variable sum.The three procedures in Figure 9 can be called interchangeably by PCN programs.PCN semantics ensure that updates to mutable variables within inner product donot result in race conditions in a parallel program. In particular, they prohibitupdates to mutable variables shared by processes in a parallel block, and requirethe compiler to copy the value of mutables and de�nitions when they occur on theright-hand side of de�nition and assignment statements, respectively. In this way,the two worlds of parallel/declarative and sequential/imperative programming areable to coexist without the possibility of nondeterministic interactions [Chandy andTaylor 1991].Figure 10 shows a program that receives arrays of double-precision values a1 anda2 on two input streams in1 and in2, calls one of the inner product routinesACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.
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inner_product(n,array1,array2,sum)double sum;{ ; sum := 0.0,{ ; i over 0..n-1 ::sum := sum + array1[i]*array2[i]}}inner_product(n,array1,array2,sum)int *n;double array1[], array2[], *sum;{ int i;*sum = 0.0;for(i=0; i<*n; i++)*sum = *sum + array1[i]*array2[i];}SUBROUTINE INNER_PRODUCT(N,ARRAY1,ARRAY2,SUM)INTEGER NDOUBLE PRECISION ARRAY1(N), ARRAY2(N), SUMINTEGER ISUM = 0.0DO I=1,NSUM = SUM + ARRAY1(I)*ARRAY2(I)ENDDOEND Fig. 9. Inner Product in PCN, C, and Fortran
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



140 � Ian Fosterf(in1,in2,out)double sum;{ ? in1 ?= [a1|in1a], in2 ?= [a2|in2a] ->{ ? length(a1) == length(a2) ->{ ; inner_product(length(a1),a1,a2,sum),out = [sum|out1],f(in1a,in2a,out1)},default ->{|| out = ["error"|out1],f(in1a,in2a,out1)}},default -> out = []} Fig. 10. PCN Program That Calls Inner Productto compute the inner product, and sends the result (sum) on an output streamout. Notice that the mutable variable sum is used only within a sequential block.Furthermore, the compiler makes a copy of sum when creating the list structure[sum|out1], hence ensuring that the process that receives the message out sees asingle-assignment value.3.1.2 Modules and Templates. PCN supports the application of modular pro-gramming techniques. A PCN process can encapsulate subprocesses and internalcommunication channels but need not encapsulate processor numbers or other phys-ical names. Hence, a process can be thought of as a module and can be reused easilyin di�erent circumstances. A module may also be parameterized with the code ex-ecuted at each node in a parallel structure, in which case we call it a template.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 141A distributed array of single-assignment variables (declared as an array of type\port") can be used as an interface, avoiding the contention that would occur ifprocesses interacted via a centralized data structure [Foster et al. 1992]. PCN pro-grammers regularly reuse modules and templates implementing parallel programstructures such as pipelines and butter
ies, distributed data structures such asarrays and dictionaries, and load balancing algorithms.The PCN procedure module example in Figure 11 composes a ring-pipeline tem-plate (ring), a reduction module (maximum), and an output module (display).Each module is parameterized with the number of processors on which it is to exe-cute (n) and de�nes its own internal process and communication structure. As illus-trated in Figure 12, the modules interact via distributed arrays of single-assignmentvariables p1 and p2.Figure 11 also shows an implementation of the ring template and a functionprototype for the ringnode procedure invoked by this template in module example.The syntax \{|| i over 0..n-1 ::" is a parallel enumerator, used here to createn instances of the process with name given by the variable op (the backquotes denotea higher-order call). As in Strand, a mapping annotation (@ node(i)) is used toindicate the processor on which each process is to execute. Each process is passed�ve variables as arguments: a threshold value and communication streams from theACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



142 � Ian Fostermodule\_example(n, threshold)port p1[n], p2[n];{|| maximum(n, p1),ring(n, ringnode(), threshold, p1, p2),display(n, p2)}ring(n, op, threshold, I, O)port S[n], I[], O[];{|| i over 0..n-1 ::`op`(threshold,S[i], S[(i+1)%n], I[i], O[i]) @ node(i)}ringnode(threshold, fr_nbr, to_nbr, in, out){|| ... } Fig. 11. Template Use and De�nition
port p1[4], p2[4];
{|| maximum(4, p1),     ring(4, ... p1, p2), display(4, p2) }

Fig. 12. An illustration of the program structures involved in the ring-pipeline example describedin the text. Three modules, each comprising four processes, are composed. The circles representprocesses and the squares the single-assignment variables comprising the interfaces between themodules.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 143left neighbor, to the right neighbor, and to and from the interface, respectively.3.2 PCN CritiquePCN has also been used in a broad range of substantial application projects. Inmany cases, these have been numeric problems involving irregular, adaptive compu-tation, distributed data structures, or reactive (data-driven) computations [Fosteret al. 1992; Harrar et al. 1991]. Again, these experiences provide a solid basis forevaluation.PCN's major contribution from a language design viewpoint was to show howa programming model based on single-assignment variables and concurrent com-position could be integrated with the conventional world of \multiple-assignment"variables and sequential composition. At the implementation level, this integrationwas also pursued aggressively, with the result that PCN's foreign language interfacewas signi�cantly more sophisticated and seamless than that used in Strand.These various innovations certainly made the language easier to use, particularlyfor programming problems involving multiple languages. However, our analysis isthat while PCN addressed some Strand de�ciencies, these were probably not theimportant ones. PCN still su�ers from the four essential weaknesses identi�ed inSection 2.5.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



144 � Ian Foster4. LANGUAGE EXTENSIONS: CC++ AND FMStrand and PCN have proven to be useful parallel programming languages, particu-larly for applications that can exploit their unique mix of declarative and imperativecapabilities. As discussed above, their weaknesses appear to derive in large partfrom the use of a new language to express parallel computation. This observationsuggests an alternative approach to compositional programming in which tradi-tional languages, such as C++ and Fortran, are extended in ways that providescompositionality and high-level speci�cation of communication and synchroniza-tion. (Support for symbolic applications appears less fundamental.) In principle,these language extensions can address Strand and PCN's weaknesses by provid-ing a common framework for parallel and sequential programming and simplifyingthe integration of existing code. It would also be desirable for these extensions tosupport the speci�cation of SPMD computations.The design of a language extension that supports compositional parallel pro-gramming requires some analysis of what makes a programming language \compo-sitional." Compositionality in Strand and PCN is achieved by using three mecha-nisms. Single-assignment variables provide both an interaction mechanism based onmonotonic operations on shared state, and a uniform address space; parallel com-position provides a concurrent interleaving. (State changes on single-assignmentACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 145variables are monotonic in that the value of a variable cannot be changed oncewritten [Chandy and Kesselman 1992].) Together, these mechanisms ensure thatneither the order in which program components execute nor the location of thisexecution a�ect the result computed. Other mechanisms can provide the samecapabilities. For example, nonblocking send and blocking receive operations on avirtual channel data type are also monotonic and can form the basis for a compo-sitional programming language [Chandy and Foster 1995].These various consideration lead to the following additional design goals for com-positional programming languages; these supplement those developed in Section 2.|A language should de�ne just a small set of new language constructs; these newconstructs should be compatible with the basic concepts of the sequential baselanguage.|The new constructs should provide monotonic operations on shared programstate, so as to support compositionality.|The new constructs should be easily embedded in existing sequential code, so asto facilitate the development of parallel SPMD libraries.|The language should retain support for 
exible communication and synchroniza-tion structures, and a data-driven execution model.|The language should support interoperability, both with other compositionalACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



146 � Ian Fosterlanguages and with data-parallel languages.In the following, we brie
y review two parallel languages that adopt this languageextension approach to compositional programming.4.1 Compositional C++Chandy and Kesselman's Compositional C++ (CC++) [Chandy and Kesselman1993] is a general-purpose parallel programming language that extends C++ withsix new keywords. It is not a purely compositional programming language. Inorder to guarantee compositionality, unacceptable restrictions would have to bemade on the C++ constructs that are available in CC++. Thus, CC++ providesconstructs that enable rather than guarantee the construction of compositionalmodules. In most cases, compositional modules can be obtained by following simpleprogramming conventions [Chandy and Kesselman 1992].CC++ provides three di�erent mechanisms for creating threads of control: theparallel block, the parallel loop, and spawned functions. The �rst two have aparbegin/parend semantics, while the spawned function creates an independentthread.As in Strand and PCN, single-assignment variables are used for synchronization.In CC++, a single-assignment variable is called a synchronization, or sync variable,ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 147and is distinguished by the type modi�er sync. A CC++ program can contain bothsync and regular C++ variables. Programs that contain only sync variables arecompositional. To support the development of compositional programs containingregular C++ variables, CC++ introduces atomic functions. Within an instance ofa given C++ class, only one atomic function is allowed to execute at a time. Theoperations speci�ed in the body of an atomic function execute without interference.Thus, an atomic function is like a monitor [Hoare 1974]. If all accesses to a sharedC++ variable takes place within the body of an atomic function, then the resultingprogram is compositional.The remaining aspects of C++ deal with the methods used to map computationto processors and to access data on di�erent processors. The problem of dealingwith global and static data is addressed by introducing a structure called a processorobject, a virtual processor containing a private copy of all global and static data.Like other C++ objects, a processor object has a type declared by a class de�nition,encapsulates functions and data, and can be dynamically created and destroyed.Each instance of a processor object contains an address space from which regularobjects can be allocated. As in Strand and PCN, the functional behavior of theprogram is independent of where processor objects are placed.CC++ distinguishes between interprocessor object and intraprocessor object ref-ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



148 � Ian Fostererences: a pointer that can refer to an object in another processor object must bedeclared to be global. Global pointers provide CC++ with a global name space,as in Strand and PCN, while also providing a two-level locality model that canbe manipulated directly by a program. Dereferencing a global pointer causes anoperation to take place in the processor object referenced by that global pointer.Thus in CC++, communication abstractions are provided by operations on globalpointers, while synchronization abstractions are provided by sync pointers.In summary, CC++ integrates parallel composition with sequential execution. Ituses global pointers to provide a uniform global address space and sync variablesand atomic functions to implement compositional interactions between programcomponents.4.2 Fortran MFortran M (FM) [Chandy and Foster 1995] is a small set of extensions to Fortran 77for task-parallel programming. Although simple, the FM extensions provide the es-sential mechanisms required for compositional programming. Program componentscan encapsulate arbitrary concurrent computations and can be reused in any envi-ronment.Concepts such as pointers and dynamic memory allocation are foreign to For-tran 77. Hence, the FM design bases its communication and synchronization con-ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 149structs on an existing concept: �le I/O. FM programs can dynamically create anddestroy processes, single-reader/single-writer virtual �les (channels), and multiple-writer, single-reader virtual �les (mergers). Processes can encapsulate state andcommunicate by sending and receiving messages on channels and mergers; refer-ences to channels, called ports, can be passed as arguments or transferred betweenprocesses in messages, providing a restricted global address space.FM processes are created by process block and process do-loop constructs withparbegin/parend semantics. Arguments passed to a process are copied in on call andback on return; commonblocks are local to each process. A channel is a typed, �rst-in/�rst-out message queue with a single sender and a single receiver; the mergeris similar but allows for multiple senders. FM constructs allow the programmerto control process placement by specifying the mapping of processes to virtualcomputers: arrays of virtual processors. Mapping decisions do not a�ect programsemantics. Even complex programs can be guaranteed to be deterministic [Chandyand Foster 1995].In summary, FM integrates parallel composition with sequential execution. Ituses channels both to provide a simple form of uniform global address space andto implement compositional interactions between program components.ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



150 � Ian Foster5. RELATED WORKThe Strand design builds on work in concurrent logic programming at Imperial Col-lege [Clark and Gregory 1981; Gregory 1987; Ringwood 1988], the Weizmann Insti-tute [Mierowsky et al. 1985; Shapiro 1987; Taylor 1989], and elsewhere. Concurrentlogic programming itself has intellectual roots in logic programming [Clocksin andMellish 1981; Kowalski 1979], functional programming [Kahn and MacQueen 1977;McLennan 1990], guarded commands [Dijkstra 1975], and CSP [Hoare 1978]. How-ever, Strand omits many characteristic features of logic programming languages,such as uni�cation and backtracking, in order to focus on issues relevant to par-allel programming. This strategy yields a dramatically simpli�ed language thatcan be implemented e�ciently on sequential and parallel computers. Strand's sim-plicity enables numerous compiler optimizations. In addition, Strand introducesconstructs that support multilingual programming, allowing its use as a coordina-tion language.A promising alternative approach to achieving compositionality and determinismin parallel programs is to exploit parallelism while preserving sequential semantics.This approach is taken in parallel data
ow, logic, and functional languages, whichexploit parallelism implicit in declarative speci�cations [Cann et al. 1990; Lusket al. 1988; McLennan 1990]; in data-parallel languages, which exploit the paral-ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



Compositional Parallel Programming Languages � 151lelism available when the same operation is applied to many elements of a datastructure [Fox et al. 1990; Koelbel et al. 1994]; and in Jade, which allows pro-grammers to identify statements that are independent and hence can be executedconcurrently [Rinard et al. 1993]. Adherence to sequential semantics has importantsoftware engineering advantages. However, not all parallel algorithms are easily ex-pressed in sequential terms. For example, the load-balancing algorithm of Figure 6is an explicitly parallel algorithm, with no sequential equivalent.Other explicitly parallel approaches include Linda and message-passing librariessuch as p4, PVM, and MPI. Linda extends sequential languages with operationsfor creating processes and for manipulating a shared associative store called tuplespace [Carriero and Gelernter 1989]. Like Strand and PCN, Linda utilizes a data-driven execution model in which the actions of \sending" and \receiving" data aredecoupled and processes execute when data are available. A signi�cant advantage ofLinda is that the programmer need learn only a small set of tuple space operations.On the other hand, the global tuple space makes it di�cult to develop modules thatencapsulate internal communication operations: Linda is not \compositional."The p4 [Butler and Lusk 1994] and PVM [Sunderam 1990] libraries extend se-quential languages with functions for sending and receiving messages. Advantagesinclude simplicity and portability, and the e�ciency that can be achieved by ac-ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



152 � Ian Fostercessing directly the low-level communicationmechanisms of a message-passing com-puter. These features make them well suited for scienti�c and engineering appli-cations, particularly when communication costs dominate performance. In otherclasses of problems, the low-level nature of these libraries can be a disadvantage.Applications that communicate complex data structures or that use dynamic pro-cess and communication structures are more easily expressed by using higher-levellanguages such as Strand and PCN. MPI [Gropp et al. 1995] provides a similarmodel and also introduces support for the modular construction of parallel pro-grams.6. SUMMARYWe have reviewed and evaluated several di�erent approaches to the realization ofthe concept of \compositionality" in parallel programming languages. In Strandand PCN, concurrent composition and single-assignment variables are integratedinto simple new languages that can be used either alone or as coordination languagesfor sequential languages. Experience with large-scale applications show that bothsystems have important strengths, but that the use of a specialized language canbe a signi�cant weakness. Conceptually hard things (such as specifying complexdistributed algorithms or building reusable parallel modules) often become veryeasy in the compositional framework, but apparently easy things (such as imple-ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.
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