
Complexity in Numerical OptimizationP.M. Pardalos, Editorc1993 World Scienti�c Publishing Co.Some Bounds on the Complexity ofGradients, Jacobians, and Hessians �Andreas GriewankMathematics and Computer Science Division, Argonne National Laboratory,Argonne, IL 60439 USAAbstractThe evaluation or approximation of derivatives is an important part of manynonlinear computations. The cost of evaluating �rst- and second-derivative ma-trices is often assumed to grow linearly and quadratically with the number ofindependent variables, respectively. It is shown here that much tighter boundscan be achieved through the exploitation of partial function- and argument-separability in combination with the forward and reverse mode of computa-tional, or automatic, di�erentiation.The new separability concepts facilitate the reduction of chromatic numbersand maximal row lengths, which determine the complexity of the Curtis-Powell-Reid and Newsam-Ramsdell schemes for estimating sparse derivative matrices.Because of the duality between the forward and reverse modes these techniquescan be applied to Jacobians as well as their transposes and the associated row-intersection graphs. In contrast to di�erencing, computational di�erentiationyields derivative values free of truncation errors and without any parameterdependence.A key result presented in this paper is that gradients and Hessians of partiallyseparable functions can also be obtained surprisingly cheaply in the easily im-plemented forward mode as well as in the more sophisticated reverse mode ofcomputational di�erentiation.�This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38. 1



1 IntroductionMost algorithms for the numerical solution of nonlinear programming problems in-volve the gradient of the objective function, the Jacobian of the active constraints,and the Hessian of the Lagrangian function. Some of this derivative information maybe used only implicitly or in projected form. However, since optimizers are locallycharacterized by the KKT conditions in terms of objective and constrained gradients,evaluation errors in these �rst derivatives directly limit the solution accuracy. More-over, except for algebraically simple test functions and some large, sparse problems,the computational e�ort of evaluating or approximating the required derivative infor-mation may dominate the cost of the numerical linear algebra and other algorithmicoverhead.As in numerical ordinary di�erential equations and other nonlinear computational�elds, designers of optimization methods have usually assumed that derivatives arehard to come by and that their provision belongs to the realm of the user. This issometimes called the black box model [21], where the optimization algorithm reliesexclusively on a subroutine for evaluating objectives and gradients at given arguments,usually with unspeci�ed precision. Unless the user provides additional codes forgradient and Jacobian evaluation, the optimization method must either resort todivided di�erence approximations or model the optimization problem on the basis offunction values alone. The latter approach is rarely advantageous since it typicallyresults in slow and unreliable convergence.1.1 The Computational ModelIn this paper we develop complexity estimates for gradients, Jacobians, and Hessiansof functions that are de�ned by computer programs as compositions of arithmeticoperations and intrinsic functions. We will assume that these elementary functionsare performed in oating-point arithmetic with �xed precision and that their compu-tational cost is independent of the argument. This scenario applies to the majority ofpractical optimization calculations, but not to symbolic, interval, or variable-precisioncomputations. The overall temporal complexity is measured by simply counting thenumber of elementary operations and the number of random or sequential memoryaccesses. Here, it is assumed that the memory hierarchy can be split into a randomlyaccessed \core" storage and a sequentially accessed \disk" storage. Because of theincreasing lag between processor and memory speed, the distinction between variousmemory access patterns becomes increasingly important not only on supercomputersbut also on modern workstations.The process of calculating overall derivatives vectors and matrices from the \local"derivatives of the elementary functions has become known as automatic di�erentia-tion [19],[13] but might be better called computational di�erentiation. Dependingon the order in which the chain rule is applied, one obtains the forward, reverse, or2



mixed mode of computational di�erentiation. As was shown in [12], even a sophisti-cated implementation of the reverse mode of computational di�erentiation involves alogarithmic increase in the storage requirement, but the extra data can be stored andaccessed sequentially in successive forward and reverse sweeps. In contrast, this nearlyperfect data locality is lost if one tries to minimize the operations count for Jacobianevaluations by the general vertex elimination scheme described in [14]. Moreover, thecombinatorial task of �nding an elimination ordering that absolutely minimizes theoperations count is conjectured to be NP hard. Therefore, we con�ne ourselves in thispaper to sequential schemes for which the randomly accessed core memory can be apriori restricted to a small multiple of that used by the original function evaluation.Several other practical aspects of relative e�ciency are very hard to quantify, evenin an informal discussion of computational complexity. In our context this applies,for example, to the alternative of compilable derivative code versus more interpretivederivative-evaluation schemes. A related issue is the relative e�ciency of dynamicallysparse vector operations with indirect addressing versus dense vector operations oncontiguous arrays. While it is relatively easy to generate compilable code for theforward mode of automatic di�erentiation (see, e.g., [2]), all current implementationsof the reverse mode incur a large number of procedure calls or other interpretiveoverheads, unless the original evaluation source is very restricted. Therefore, wewill emphasize ways of reducing the temporal complexity of the forward mode byexploiting partial separability and other structure, even when the basic reverse modehas a lower operations count, as is the case for gradients.Fortunately, much of the excellent research that has been conducted regardingthe estimation of sparse Jacobians and Hessians by di�erencing (see, e.g., [10], [9],[18], [20]) carries over to computational di�erentiation. The main di�erence is that,instead of approximating Jacobian vector products by divided di�erences, one obtainsthem without any truncation errors by the forward mode of automatic di�erentiation.Moreover, since the reverse mode yields vector Jacobian products accurately and e�-ciently, one can exploit the sparsity structure not only columnwise but also rowwise.Therefore the well-known coloring techniques can be applied either to the column- orthe row-intersection graph. Hence our complexity bounds involve the maximal cliquesize and the chromatic number of these undirected graphs. We have delayed until thecentral section of this paper the introduction of the directed computational graph thatis associated with function evaluation programs. Until then, the results are developedin a more familiar matrix-vector notation. Concepts such as operations counts andintermediate variable will be used in an intuitive way until they are de�ned rigorouslyin Section 3.The paper is organized as follows. In the remainder of the introduction we reviewthe derivative requirements in optimization calculations and the basic properties ofthe forward and reverse modes of computational di�erentiation in combination withthe CPR (Curtis-Powell-Reid) and NR (Newsam-Ramsdell) approaches to estimatingsparse derivative matrices. In Subsections 2.1 and 2.2 we discuss whether and how3



partial function-separability and a dual concept of partial argument-separability canbe used to express the original function as contraction of larger systems, whose Ja-cobians or their transposes have shorter row lengths and lower chromatic numbers.In Subsection 2.3 we discuss the tearing of functions and arguments, which amountsto a forced function or argument separation that entails a certain duplication of in-termediate calculations. The resulting complexities are closely related to those ofdynamically sparse implementations of the forward and reverse modes. In Subsec-tion 2.4 we discuss the relation to multicoloring and in Subsection 2.5 we examinea generic binary interaction example. In Section 3 we provide a rigorous foundationand generalization of all previous developments in terms of computational graphs.In Section 4 we compile and discuss complexity bounds for the various methods anddecompositions. The paper concludes with a brief summary in Section 5.1.2 Derivative Requirements in Nonlinear OptimizationAs a focal point of our investigation we consider the constrained optimization problemmin wTx s:t: f(x) = 0 and x � x � �xwith w 2 IRn some �xed-price vector and f(x) : IRn ! IRm at least twice contin-uously di�erentiable. Without loss of generality we have assumed that the objectiveand the inequality constraints are linear; hence, all nontrivial derivatives occur in theequality constraints. As a consequence of this normalization, some components of xare likely to be slack variables; thus, the corresponding derivatives of f have a specialstructure as well. Sparsity in the Jacobian J(x) � J and the second-derivative tensorf 00 will be a major concern throughout this paper. However, we will not make useof the observation that one need not evaluate rows of J that correspond to \safely"inactive constraints because their slack variable value is very large. Similarly, onecould theoretically skip columns of J corresponding to \nonbasic" variables xi thatare certain to remain �xed at their lower or upper bound xi or �xi over the currentiteration.Typically, one step of an iterative optimization algorithm proceeds as follows.First, the scalar objective wTx and the constraint vector f(x) are evaluated at a newtrial point x, which may be assumed feasible with respect to the bound constraints.Occasionally, the combination of values (wTx; f(x)) may be deemed unacceptable,and the algorithm backtracks to a previous iterate. Otherwise, one evaluates theJacobian J(x) and computes a matrix S, whose n �m columns span the null-spaceof J(x). This is usually done by factoring J(x), for example, into the product of alower triangular or orthogonalproblem involves (besides the objective gradient w) the constraint Jacobian J andsome information about the Hessian of the LagrangianL(x; u) � wTx+ mXi=1 uifi(x):4



Here the Lagrange multipliers ui are usually estimates from the previous iteration.For one-step quadratic convergence a Newton-like algorithm must know the one-sidedprojection H � r2xL(x; u)S with J S = 0 2 IRm�(n�m) :For two-step quadratic convergence it su�ces to evaluate the two-sided projectionSTH 2 IRp�p with p = n � m; but as we will show, this is not necessarily a savingwith regard to computational di�erentiation. Moreover, it is important to recognizethat the one-side projection onto the columns of S can be built into the di�erentiationprocess so that the full Hessian need never be formed. This implicitly projectedapproach is likely to be e�cient on problems with a comparatively small degree offreedom, p.1.3 Basic Properties of the Forward and Reverse ModesRather than considering f(x) just as a mathematical mapping, we will assume fromnow on that it is de�ned by a procedural (sub)program for its evaluation at any givenargument x 2 IRn. For simplicity we will exclude the possibility that the programtakes di�erent branches for various values of x or that some intrinsic function suchas square root is evaluated at a point of nondi�erentiability. Then one can by handor automatically (i.e., with the help of some software package) extend the originalprogram to a code that also evaluates the Jacobian-matrix productJ(x)S for S 2 IRn�p (1:1)\analytically," that is, without incurring any truncation error. The choice of theseed matrix S provides the user with a great deal of exibility at run time. Forexample, one might choose S = I with p = n to obtain the full Jacobian J in onesweep. Alternatively, one may have p = 1 over several sweeps and let S = [s] rangeover a sequence of column vectors s 2 IRn, possibly as part of an iterative Newton-step calculation. Under realistic assumptions on the computational model, we willestablish in Proposition 1 of Section 4 the boundsOPSff; JSg � (2 + 3p) OPSffg (1.2)RAMff; JSg � (1 + p) RAMffg : (1.3)Here, OPS denotes a conventional operations count, and RAM represents the numberof randomly accessed storage locations required by the function or derivative evalua-tion program. On a serial machine the run time will be proportional to the operationscount, and we will therefore refer to OPSff; taskg=OPSffg as the run-time ratio forsome additional computational task related to f .For p = 1 the operations count and storage requirement may grow �vefold andtwofold, respectively. This situation is somewhat troubling, since a divided di�erenceof the form [f(x + "s) � f(x)]=" yields an approximation to Js at the cost of one5



extra function evaluation and without any increase in storage. Here we have assumedthat f has already been evaluated at the base point x. Fortunately, the factor 3 in(1.2) is quite pessimistic. On the other hand, the leading constant 2 does not takeaccount of some of the overhead in the derivative code. Empirically it was found[1] that, when the forward mode is implemented as compilable code and p is in thedouble digits, then the resulting run-time ratio is typically between half and twicethe divided di�erence ratio (1 + p).The up to (1 + p)-fold increase in memory stems from the fact that a p-vectorof derivatives is associated with most or all scalar variables in the original evalua-tion program. To limit this increase, one could alternatively evaluate one or a fewderivative components at a time, but that would increase the accumulated run timesigni�cantly, since certain overhead costs are incurred repeatedly. On the other hand,when p reaches into the hundreds, it will probably be better to split the columns ofS into groups in order to reduce the number of page faults in accessing intermediate-derivative vectors. Provided these p vectors are allocated as contiguous arrays, thenumber of memory accesses in the sense of pointer dereferencing does not really grow(1 + p)-fold, but merely doubles. On the other hand, if they are stored and manip-ulated as sparse vectors, the indirect addressing overhead goes up, but the storagerequirement may be signi�cantly reduced.As a �rst approximation one may view the forward mode as truncation- andparameter-free equivalent of divided di�erences. The relationship is close enoughthat the CPR [10] and the NR [18] approaches for estimating sparse Jacobians Jfrom some product J S with p < n can be applied virtually unchanged. In the CPRapproach the rows of the seed matrix S are Cartesian p vectors, whereas in the NRapproach S is usually chosen as a Vandermonde matrix. The potential ill-conditioningof the latter choice may be of less concern here since the projected Jacobian J S isobtained essentially to working accuracy. The number p of columns required for theNR method is simply the row-length �(J), that is, the maximal number of nonzerosin any row of the Jacobian. The corresponding lower bound for the CPR approach isthe chromatic number �(J) of the column-intersection graph of the Jacobian. Thisundirected graph has one node for each column of J , with two of them being connectedby an edge exactly if the corresponding column pair shares a nonzero in at least onerow. Otherwise the two columns are said to be structurally orthogonal. The rowlength and chromatic number satisfy the trivial relation�(J) � �(J) ;which means that the seed matrix for the CPR method has at least as many columnsas the minimum needed for the NR approach. However, to improve the conditioningof the linear systems in the latter approach, one may prefer to de�ne S using complexroots of unity, which e�ectively doubles p to 2�(J).From a mathematical point of view, the reverse mode is much more interestingsince it has completely di�erent complexity properties compared with di�erencing.6



Instead of multiplying J from the right by a seed matrix S, whose columns representdirections in the domain of f , the Jacobian is now multiplied from the right by amatrix W T , whose rows represent linear functionals on the range of f . Formally, thereverse mode yields W TJ(x) for W T 2 IRq�m :At �rst sight the corresponding complexity estimates are also neatly transposed inthat, for some integer r � 1,OPSff;W TJg � (1 + r + 3q) OPSffg (1.4)RAMff;W TJg � (1 + q) RAMffg : (1.5)However, there is a crucial di�erence, namely, that the reverse mode requires theability to run the evaluation process for f step by step backward. This requirementexplains the terminology reverse mode, or top-down method, which is preferable to theterm backward di�erentiation, a label that invites confusion with a well-establishedclass of methods for the numerical solution of sti� di�erential equations. The \naive"program reversal based on a full execution trace of the forward evaluation requirestemporary storage proportional to OPSffg. Fortunately, the generation and uti-lization of the trace data occur strictly sequentially in opposite order, so that itmakes sense to quantify this storage requirement as SAM (for Sequentially AccessedMemory). Hence we obtain the basic boundSAMff; f g = O(OPSffg) ; (1:6)where  f denotes the reversal of the evaluation process for f . Because of the strictlysequential access pattern, this potentially very large data set can be stored on externalmass storage devices. When the ratiohffg � OPSffg /RAMffg (1:7)is small or of moderate size, the proportionality relation (1.6) may not be worrisome.This situation applies, for example, for any three-dimensional composite structurewithout long-range interaction between its components (e.g., static models of build-ings or mechanical devices and discretizations of di�erential operators). However,especially on explicitly time-dependent problems, the ratio hffg may be so largethat (1.6) represents an unacceptable increase in memory requirement. This severelimitation of the basic reverse mode can be remedied as follows.Rather than generating and storing the full execution trace in one piece, onecan break it into slices that are (re)generated several times from snapshots taken atjudiciously selected checkpoints. A detailed analysis of this recursive reverse mode in[12] shows that there exists a constant c such that for all integers r � 1, the reversalcosts can be limited according toOPSf f g � r OPSffg (1.8)SAMf f g = c RAMffg rqhffg : (1.9)7



As an alternative to accepting a constant increase in the operations count and analgebraic growth of the memory requirement with respect to h, one can also limitboth increases to order log h. In this paper we will use the algebraic option forthe program reversal, whose operations count (1.8) was already included in (1.4).The total complexity of this reverse mode variant is therefore described by the threeequations (1.4), (1.5), and (1.9). Despite these rather tight results, the practicalreversal of a sizable program is a di�cult problem, and no implementation achievingthese bounds is currently available.The key di�erence between (1.4) and the earlier (1.2) is that the operations countfor the reverse mode depends on the number of dependent rather than independentvariables. In particular, one obtains gradients (where m = 1 = q) at a small multipleof the cost of evaluating the underlying functions. Here, and later, we neglect theadditional SAM requirement (1.9), which grows very slowly if r is sizable (say, greaterthan 5). For vector-valued functions, f , one can apply the CPR or NR approach to therows rather than the columns of the Jacobian J , so that their respective complexitiesare determined by �(JT ) � �(JT ) :It is sometimes mistakenly concluded that Jacobians also have essentially the samecomplexity as the underlying vector function since each row is a gradient of thecorresponding function component. Applying (1.4) with q = 1 to each componentseparately, we have indeedOPSff; I Jg � 5 mXi=1OPSffig : (1:10)However, the sum of the right hand side can be almostm times larger than OPSffg, asa result of the multiple usage of common intermediates in the simultaneous evaluationof all function components. For example, this will be the case if m = n and f is ofthe form fi(x) = xi � crunch(x1; x2; : : : ; xn);with crunch(x) being a computationally very expensive scalar-valued function. Onthe other hand, the evaluation of any two components fi(x) and fj(x) may not in-volve any common intermediates, so that the right-hand side of (1.10) is indeed exactlyequal to 5OPSffg. Since this can easily happen even when J is dense, one wouldcertainly wish to do better than applying the standard forward or reverse mode. Infact, this case would be ideal for the more general elimination procedure described in[14], whose optimal application is conjectured to be an NP-hard combinatorial prob-lem. On the downside, even if greedy heuristics are used, the resulting Markowitz-likeprocedure requires RAM of order OPSffg, which appears to be a serious drawback onlarger problems. Therefore, we introduce column- and row-splitting techniques thatsometimes yield similar reductions in the operations count without ever violating thestorage bounds (1.3) or (1.5), and (1.9). 8



2 Generalizations of Partial SeparabilityRather than applying computational di�erentiation techniques to calculate the Jaco-bian J directly, we can �rst strip it of linear premultiplier and postmultipliers in orderto obtain an even sparser central part that contains all nonlinearities. For the pur-poses of computational di�erentiation, the aim is to reduce the maximal number ofzeros per row or column and the chromatic number of the row- or column-intersectiongraphs, which determine the cost of the forward and reverse mode, respectively. Es-pecially for large-scale problems, one can expect that not only the Jacobian J butespecially the derivative tensor f 00 2 IRm�n�n is quite sparse. As observed in [15], anyscalar function h 2 C(IRn) whose Hessian is sparse can be decomposed into a sumh(x) = Xk hk(Pkx) ;where the projection Pk picks out the subset of components in x on which hk dependsin a nontrivial fashion. Whenever a Hessian entry @2h=@xi@xj vanishes identically,each Pk annihilates one of the Cartesian basis vectors ei and ej or both.It is very important to understand that this partial separability property does notimply that h is best evaluated by evaluating each additive term hk separately. Forexample, we could have a function of the formh1(x1; : : : ; xn�1) = x1 � crunch(x2; : : : ; xn�1)h2(x2; : : : ; xn) = crunch(x2; : : : ; xn�1) � xn;with crunch(x2; : : : ; xn�1) a computationally intensive and nonseparable common in-termediate. Then h = h1+h2 is partially separable because x1 and xn do not interactin a nonlinear fashion, so that the (1; n) and (n; 1) entries of the Hessian vanish.However, evaluating h1 and h2 separately is clearly not a good idea since it wouldentail computing crunch(x2; : : : ; xn�1) twice. Instead one should rewrite h(x) ash(x) = (1; 1)H(x) with H(x) � (h1(x); h2(x))T ;so that the gradient of h is given byrh(x) = (1; 1) H 0(x) :The Jacobian of the vector function H : IRn ! IR2 is sparse and can therefore beevaluated at reduced cost. More generally, we can use the following generalization ofpartial separability.2.1 Partial Function Separability and Row SplittingWe will call the vector function f partially function-separable whenever one of itscomponents is partially separable in the usual sense and can therefore be split into9



two. The corresponding row of the Jacobian is then also split into two so that thenumber of nonzeros in either of the new rows cannot be greater than the number ofnonzeros in the original row. On the other hand, unless the new rows are structurallyorthogonal, there is at least one column in which the number of nonzeros grows byone, whereas it is nondecreasing in all others. Hence we �nd that row splitting is likelyto decrease the row length but increase the column length. Similarly, the number ofedges in the column-intersection graph cannot grow, whereas the number of nodesand edges in the row-intersection graph must go up. However, the chromatic numberof the row intersection can go down, as can be seen in the following example.Consider a vector function f : IR3 ! IR3 whose Jacobian has a vanishing diagonaland whose �rst component function is partially separable. Then the �rst componentcan be split into two, and we obtain an vector function f̂ : IR3 ! IR4 such that theJacobians J and Ĵ � f̂ 0 have the sparsity patternJ = 264 0 � �� 0 �� � 0 375 ) Ĵ = 26664 0 � 00 0 �� 0 �� � 0 37775 :The associated row-intersection graphs take the following simple forms:mm mmmm ���SSS���1 23 0 123The column-intersection graphs are both identical to the row-intersection graph of J ,so that �(Ĵ) = 2 < 3 = �(J) = �(JT) = �(ĴT ) :In this example, row splitting makes no di�erence for the forward mode but is ben-e�cial for the CPR approach in the reverse mode. The corresponding weight matrixwould be simply W T = " 1 0 1 00 1 0 1 # :We will see later that the dual process of column splitting is sometimes bene�cial forthe CPR approach in the forward mode.If the row-splitting process is carried out as far as possible, one obtains a repre-sentation of the formf(x) = Bf̂(x) with f̂ : IRm ! IRm̂ and OPSff̂g = OPSffg ; (2:1)where each column of the matrix B 2 IRm�m̂ is a Cartesian basis vector. Here andthroughout the paper we consider the computational cost of merging the components10



of f̂ to those of f by addition as negligible. Applying the arguments given above, byinduction one �nds that�(Ĵ) � �(J) ; �(Ĵ) � �(J) ; �(ĴT ) � �(JT ) : (2:2)If the �rst two inequalities hold strictly, it is advantageous in the forward mode �rstto evaluate Ĵ and then to multiply it by B in order to obtain J = BĴ . It is naturalto ask whether one can split o� a similar linear factor on the right in order to makethe column- rather than the row-incidence graph sparser. In the next subsection, weshow how to do this by splitting independent variables, or arguments, rather thandependent variables, or functions. First, however, we will end this subsection with anobservation that will be useful regarding the complexity of second derivatives.For Ĵ to be nonseparable it is necessary that the nonzeros in the Hessians ofeach component function f̂i form a dense square block. Otherwise, f̂i would still bepartially separable and could be split in at least two smaller component functions(increasing m̂ by one in the process). Hence we have the following lemma.Lemma 1 If f̂(x) : IRn ! IRm̂ is not partially function-separable, its column-intersectiongraph is identical to the incidence graph G of the symmetric Hessian r2x[ûT f̂(x)] fora generic multiplier vector û 2 IRm̂.Using the terminology of Coleman and Cai [6], we �nd for the path and cyclicchromatic numbers ��(G) and �0(G)�(Ĵ) = �(G) � �0(G) � ��(G) � �(G2) : (2:3)Here G2 is the column-intersection graph of the Hessian, which does not reect itssymmetry. The chromatic numbers ��(G) and �0(G) determine how many gradientevaluations are required to estimate the Hessian by di�erencing with direct and indi-rect substitution, respectively. The same techniques have been applied in combinationwith computational di�erentiation, which yields Hessian vector products without anytruncation errors. Again one may employ either the purely forward mode or a com-bination with the reverse mode, which has a lower operations count but requiresmore storage, as shown in Proposition 2 of Subsection 4.2. In any case it is possibleto obtain second-derivative information directly from the evaluation program for f ,without asking the user to supply a gradient code.2.2 Partial Argument-Separability and Column SplittingThe row splitting described above proceeded by identifying one dependent variableyk = fk(x) and a corresponding set of independent variables fxigi2I that do notinteract nonlinearly in the evaluation of yk. By not interacting nonlinearly we meanthat @yk=@xi 6� 0 for all i 2 I but that@ jIjyk,Yi2I @xi � 0 ;11



where jSj denotes the cardinality of a set S. This e�ect must occur in particular whenyk is calculated as a sum of intermediate values each of which is constant with respectto at least one xi with i 2 I. In the simplest case two independent variables xi; xjand the dependent variable yk form a triplet (xi; xj; yk) that is disconnected in thesense that at least one of the three dependencies between them and any intermediatevariable is trivial. kk k k kkkk �. . . . . I .....6... I ..... �. . . . .6...DependentsIntermediatesIndependentsTwo triplets that are connected by some intermediate variable zx i zyk x j y yj z kx iSimilarly, there may be triplets (xi; yj; yk) consisting of one independent xi and twodependent variables yj; yk that are disconnected in the sense that no intermediate thatdepends on xi can impact both yj and yk. Then we may create a duplicate xi�1=2 ofxi and replace for all intermediates that impact yk their functional dependence on xiby exactly the same dependence on xi�1=2. For example, if exp(xi) enters into theevaluation of yj, and sin(xi) enters into the evaluation of yk but not yj we can replacethe de�nition of the second intermediate by sin(xi�1=2). Thus we have increased thenumber of independents by one and obtained a function�f(x1; x2; : : : ; xi�1; xi�1=2; xi; : : : ; xn) : IRn+1 ! IRnso that f(x) = �f(~Iix) and OPSf �fg = OPSffg ;where ~Ii 2 IR(n+1)�n is obtained from the (n+1)� (n+1) identity matrix by addingthe i-th and (i + 1)-st column together. The operations count for �f is the same asthat for f even if the value for xi�1=2 is chosen di�erently from xi. This follows fromthe assumed disconnectedness of the triplet (xi; yj; yk). For example, in the situationdiscussed above, exp and sin are no longer necessarily evaluated at the same argument,but the kind and number of such intrinsic functions remain exactly unchanged. Sinceby the chain rule J(x) = �J(Iix) ~Ii with �J = ( �f)0;we see that the i-th column of J has indeed been split.More generally, we will call xi separable and f partially argument-separable, ifthere exists a subset of dependent variables fykgk2K such that @yk=@xi 6� 0 for allk 2 K but each intermediate that depends on xi impacts only a proper subset ofthe fykgk2K. For each of these subsets we may then make a copy of xi and rede�nethe dependencies accordingly. The process of column splitting can be continued until12



none of the independents is separable any more. The resulting decomposition has theform f(x) = �f(Ax) with �f : IR�n ! IRn and OPSf �fg = OPSffg ;where all rows of the matrix A 2 IR�n�n are Cartesian basis vectors.Comparing the relation J = Ĵ Awith (1.1), we see that column splitting is formallythe opposite process of the Jacobian compression used in the CPR approach. As exacttransposition of (2.2) we �nd�( �JT ) � �(JT ) ; �( �JT) � �(JT ) ; �( �J) � �(J) ; (2:4)but there is no general relationship between �( �J) and �(J). Hence one might generallyexpect that column splitting improves the situation primarily for the reverse mode.However, as discussed in the Subsection 2.4 the splitting of independents may also beused to implement CPR with so-called multicoloring in the forward mode. But �rst,let us conclude this section by looking at an ideal situation for column splitting withregard to the reverse mode.Consider a vector function f where each component fk is evaluated by a separatecomputation so that the ratio�ffg = " mXk=1OPSffkg#,OPSffg (2:5)is exactly equal to one. This situation occurs frequently in ordinary di�erential equa-tions when the right hand side is given as a set of algebraic expressions. Suppose thek-th of these right hand sides depends nontrivially on nk � n of the variables. Thenwe can de�ne �f : IR�n ! IRm with �n = nXi=1 niby making for all component functions fk one replica of each xi that they depend on.The resulting extended Jacobian has the form�J = 2666666664 � � � � � � 0 � � � 0 � � � � � � � � � 0 � � � � �0 0 � 00 � � � � 0 � � � � � � � � � � � � � � 0 � � � � �0 0 � 0� � � � � � � � � � � � � � � � � � � � � � � � � �� � � �0 � � � � 0 0 � � � 0 � � � � � � � � � � � � � � �� 0 � 00 � � � � 0| {z }n1 0 � � � 0| {z }n2 � � � � � � � � � 0 � � � � �0| {z }nm�1 � � �| {z }nm 3777777775 : (2:6)The nonzeros in �J are exactly the same as the nonvanishing entries of J , but nowonly one nontrivial entry occurs in each column, so that�( �JT ) = 1 = �( �JT) :13



Consequently, one reverse sweep with q = 1 yields �J and thus its row contraction,J . In other words, we consider each component function separately and evaluate itsgradient in the scalar reverse mode. Obviously, this ideal example has an extremedegree of argument separability. Nevertheless, one can expect that signi�cant savingsare still possible if many arguments can be split with respect to most of the functions.For example, it can be seen that, if fi and fj share common intermediates only if ji�jjis less than some width b, then �f can be de�ned such that �( �JT ) � b.2.3 Decomposition by Tearing of Rows and ColumnsOne may ask whether the complete splitting described above cannot be applied evenwhen the ratio �ffg de�ned in (2.5) is greater than one. This will be the case if andonly if certain intermediate values are shared in the joint computation of f and musttherefore be calculated repeatedly if its components fk are evaluated separately. Toindicate that this process involves some losses in e�ciency, we will refer to it as tearingof columns or rows. To emphasize the contrast, we will sometimes refer to the rowand column splittings discussed in Subsections 2.1 and 2.2 as exact. If each columnis torn into as many copies as it contains nonzeros, we obtain a function �F withOPSf �Fg=OPSffg = �ffg, as de�ned in (2.5), and a Jacobian of the structure (2.6).This complete column tearing of f amounts to considering each of its component as acompletely separate function, and we have J = �F 0A with AT = (I; : : : ; I) 2 IRn�n�n.Then the reverse mode yields �F 0 with the operations countOPSfI �F 0g � (r + 4)OPSf �Fg= (r + 4) � ffgOPSffg� (r + 4) �f �JTgOPSffg ;where the last inequality follows from the relation �ffg � �f �JTg, which will beestablished in Lemma 3 of Section 3.3. By comparison with (1.4) for q � �fJTgwe see that complete column tearing can theoretically not be worse and is likely tohave a lower operations count than the reverse NR approach applied directly to �J.Moreover, there may also be a bene�t for the CPR approach in the forward mode.In contrast to exact argument splitting, complete column tearing keeps the numberof nonzeros in all rows constant. Moreover, the column-intersection graph becomesthe union ofm disconnected cliques, which contain at most �(J) = maxfnkg elements.Hence we have �( �F 0) = �( �F 0) = �(J) � �(J) ;so that in the forward CPR approachOPSf �F 0Ig � [1 + 3�( �F 0)]OPSf �Fg= �ffg [1 + 3�(J)]OPSffg� [�(JT ) + 3 �(JT )�(J)]OPSffg :14



If the gap between �(J) and �(J) is su�ciently large, this approach may be moree�cient than straightforward CRP. However, in practice it may be hard to extractfrom the evaluation program for f exactly those calculations needed to obtain oneparticular dependent value yk without carrying out any unnecessary calculations. Aswe will see, essentially the same operations count can be obtained by a dynamicallysparse version of the reverse mode.The \transposed" concept of row tearing is somewhat less intuitive, and the re-sulting vector function depends in particular on the current argument. Suppose wede�ne for each xi the univariate functionf (i)x � f(�x1; : : : ; �xi�1; xi; �xi+1 : : : ; �xn) ; (2:7)where �xj represents xj held constant at its current value. Let mi � m be the numberof component functions that depend nontrivially on xi in that @fk=@xi 6� 0. Then wemay omit the m �mi constant components so that f (i)x : IR ! IRmi. For each i wemay theoretically evaluate and store all intermediates occurring in the evaluation off that do not depend on xi. These operations need not be counted in the e�ort forsubsequently evaluating f (i)x , so we obtain a generally lower complexityOPSff (i)x g � OPSffg :This is exactly the complexity that would arise during di�erencing if f(x+ "ei) couldbe evaluated without redoing the parts of the evaluation at the base points x thatare una�ected by the increment " in xi. If each fk is fully separable (i.e., the sum ofunivariate scalar functions), then the ratiôffg = " nXi=1OPSff (i)x g#,OPSffg � n (2:8)is equal to one. In the presence of joint intermediates, ̂ffg may be any numberbetween 1 and n. In any case we can combine the f (i) to the functionF̂ � [(f (1))T ; (f (2))T ; : : : ; (f (n))T ]T : IRn ! IRm̂ ;where m̂ = Pimi. The associated Jacobian F̂ 0 has the transposed structure of (2.6),so that now �(F̂ 0) = 1 = �(Ĵ) :Hence the forward mode yields J with the complexityOPSfF̂ 0eg � 5OPSfF̂g= 5 ̂ffgOPSffg� 5 �fĴgOPSffg ;where the last inequality follows from the relation ̂ffg � �(Ĵ), which will be estab-lished in Section 3.3. 15



The superscripts were chosen such that going from f to f̂ by row splitting andon to F̂ by tearing is generally bene�cial for the forward mode, whereas successivelyincreasing the number of columns by going from f to �f and �F is generally bene�cialfor the reverse mode. The superscripts of the corresponding ratios ̂ and � can alsobe memorized as representing the average size of predecessor sets and successor setsin the computational graph, respectively. This relation is established in Subsection3.3. In view of the Jacobian structure (2.6), we may also refer to �f and �F as hori-zontal expansions of f . Analogously f̂ and F̂ may be called vertical expansions of f .Conversely we may refer to f as horizontal and vertical contraction of �f and �F or f̂and F̂ , respectively.2.4 Relation to MulticoloringIt has often been observed [20] that for a partitioned vector functionf(x) = " f (1)(x)f (2)(x) # : IRn ! IRm1+m2the partial Jacobians J (i) = �f (i)�0 for i = 1; 2 may satisfy�(J) > �(J (1)) + �(J (2)) :Then the CPR approach should be applied to obtain J (1) and J (2) separately, whichis more economical even ifOPSffg � OPSff (i)g for i = 1; 2because of the presence of many common intermediates in evaluating f (1) and f (2) .Formally, this can be interpreted as tearing all columns of J into two copies so that�F  x(1)x(2) ! = " f (1)(x(1))f (2)(x(2)) # : IR2n ! IRmwith x(1) and x(2) duplicates of x. Hence we have the representationf(x) = �F (Ax) with AT = [I; I]T 2 IRn�2n :The extended Jacobian takes the form�F 0 = " J (1) 00 J (2) # ;an expansion that has also been considered in [20]. Since the column-intersectiongraph for �J is the disconnected union of the two graphs associated with J (1) and J (2),its chromatic number is given by�( �J) = maxf�(J (1)); �(J (2))g :16



Hence the CPR approach yields �J and thus J at a total cost not exceeding�(J (1))OPSff (1)g+ �(J (2))OPSff (2)g � maxf�(J (1)); �(J (2))g[OPSff (1)g+OPSff (2)g] :In general, one has to split f into more than two subvectors in order to get theindividual �(J (i)) down to a small number. It then becomes important to ask howthe sum of the complexities OPSff (i)g grows with the number of parts. If there arenone or few common intermediates, it will be essentially equal to OPSffg; but if mostintermediates are shared by all dependents, the ratio (2.5) can grow proportionallyto the number of partitions.For the NR approach in the forward mode, row partitioning makes no sense sincethe maximal row length satis�es�(J) = maxf�(J (1)); �(J (2))gand therefore cannot be reduced at all.2.5 A Binary Interaction ExampleSuppose we have an unconstrained problem with an objective function of the formf(x) � X1�i<j�n fij(xi; xj);where all element functions fij : IR2 ! IR are nonseparable. For example, the variablesxi could represent the coordinates of atoms that are aligned along one coordinateaxis. The energy of such an arrangement is often modeled as the sum of n(n+ 1)=2pairwise interactions fij . This situation has alos been examined in some detail as theexponential example in [20].Now suppose we wish to compute the gradient of f , given a computer programfor its evaluation. To illustrate the crucial role of common intermediates, we writeeach fij in the form fij(xi; xj) = ~fij(prepi(xi); prepj(xj)) ;where ~fij : IR2! IR like fij, and the n univariate functions prepi somehow prepare thevariables xi for their involvement in the fij. Since m = 1 = �(JT ), the reverse modeyields the gradient of f at no more than r + 4 times the operations count of f itself.However, suppose we wish to evaluate the gradient and Hessian in the forward mode,possibly to avoid the increase in memory requirement and interpretive overhead, orsimply because no suitable software for the reverse mode is available.Using the obvious partial separability, we may rewritef(x) = eT f̂(x) with f̂ (x) = (fij(x))1�i<j�n;17



where eT = A is the vector of n(n + 1)=2 ones and the ordering of the componentsin f̂ does not matter. Because any two columns of Ĵ share nonzeros in (exactly) onerow, the column intersection graph is a clique and therefore only allows the trivialcoloring with �(Ĵ) = n. Hence the CPR technique for estimating the gradient of fvia the Jacobian of f̂ would require n full evaluations of f̂ .To avoid this unacceptable complexity, we consider a complete column tearing,where each contribution fij is considered as an independent function from all theothers. Then the work ratio de�ned in (2.5) is given by�ff̂g = P1�i<j�n hOPSf ~fijg + OPSfprepig+OPSfprepjgiP1�i�n OPSfprepig + P1�i<j�n OPSf ~fijg= 1 + (n� 2)P1�i�n OPSfprepigP1�i�n OPSfprepig + P1�i<j�n OPSf ~fijg :If the preparatory functions are mere identities predi(xi) = xi, then f̂ is fully argu-ment separable, and we have ̂ff̂g = 1. The complete tearing is still advantageous ifthe preparatory functions prepi are cheap compared to the actual binary interactions~fij. On the other hand, if these univariate transformations are expensive, then onemay get an n-fold increase in complexity, which amounts to the same as di�erencingthe gradient of each fij separately.One can also apply a complete row tearing to f̂ . Since each independent impacts(n� 2) components of f̂ the ratio ̂ de�ned in (2.8) is given bŷff̂g = P1�i�n hOPSfprepig+Pj 6=iOPSf ~fijgiP1�i�nOPSfprepig + P1�i<j�n OPSf ~fijg= 1 + P1�i<j�n OPSf ~fijgP1�i�nOPSfprepig + P1�i<j�n OPSf ~fijg :The row tearing is e�cient if the preparatory functions prepi dominate the computa-tional cost, in which case the column tearing is not so advantageous. If these costs aresigni�cant but not dominant both tearings may result in an unacceptable complexityfor the CPR approach in the forward mode. In this particular example one may thenutilize a mixture between the two in the following way.First one can order the components of f̂ such that the top quarter correspondsto element functions fij with 1 � i < j � n=2 and the second quarter to those withn=2 < i < j � n. Then the rows in the remaining bottom half correspond to elementfunctions fij with 1 � i � n=2 < j � n. The chromatic number of this (n2=2)� n or(n2�1)=2�n matrix is 2, since the �rst n=2 and the last n�n=2 columns form groupsthat are pairwise structurally orthogonal. Hence we can estimate the bottom partusing two function evaluations or, equivalently, Jacobian-vector products. The two18



top quarters represent copies of the original problem with the number of independentscut in half. Hence they can be decomposed recursively in the same way; and sincethe corresponding columns are structurally orthogonal, each evaluation for the topquarter can be combined with an evaluation for the second quarter. In this way thewhole Jacobian can be computed by using only 2 log2 n Jacobian-vector evaluations.Using the method of Newsam and Ramsdell [18], one can do even better. Let sbe any n-vector whose components �i are all di�erent from each other. Then the twoJacobian-vector products@f̂(x+ �e+ �s)@(�; �) ������=0=� = Ĵ(x)[e; s] 2 IRm̂�2completely determine Ĵ(x) since the nonzeros in the row corresponding to fij form asmall vector-matrix product of the form@fij(x+ �e+ �s)@(�; �) ������=0=� = "@fij@xi ; @fij@xj #  1 �k1 �l !for some index pair k 6= l. Since by assumption �k 6= �l, each 2�2 matrix is invertible,and the two nonzero components of rfij can thus be easily recovered. While uni-formly spaced �k would be acceptable in this case, more sophisticated choices such asroots of unity may be required to make the linear systems reasonably well conditionedwhen the maximal row length is larger.Di�erentiating once more, one obtains with x(�; �) � x+ �e+ �s24 @2@�2fij(x(�; �)) @2@�@�fij(x(�; �))@2@�@�fij(x(�; �)) @2@�2fij(x(�; �)) 350 =  1 1�k �l !264 @2fij@x2i @2fij@xi@xj@2fij@xj@xi @2fij@x2j 375 1 �k1 �l ! :Thus we see that all Hessians r2fij can be computed from the n � 2 � 2 derivativetensor of f(x+ �e+ �s) with respect to � and �.It is often optimistically assumed that for most square sparsity patterns, not onlythe di�cult to compute chromatic number itself but also a heuristically computedcoloring number lies within a factor of two of the maximal row length. It seemsunlikely that this property holds for the vertical expansions of partially separablefunctions, which may have very long columns and thus highly connected intersectiongraphs. Therefore we presume that the method of Newsam and Ramsdell deservesfurther investigation in this context. Also, one might hope that sometimes the columnintersection graph of the transposed Ĵ is less connected, even though it is likely tohave more nodes. However, on the scalar example above, each column has exactlyn�1 nonzero entries so that the reverse mode is not cheaper if one wishes to calculatethe whole Jacobian J . Nevertheless, it is very e�cient for calculating the accumulatedgradient rf(x) = eT Ĵ(x) ;19



or the gradient of a Lagrangian, where the vector of ones e would be replaced by avector of Lagrange multipliers.3 The Evaluation Program and Its ComplexityIn this third section we will describe the computational graph for a given vector func-tion f and develop several complexity estimates at the elemental level. We will alsode�ne the following key characteristics of f and its Jacobian J .RAMffg Bound on the the maximal number of live variables.OPSffg Sum of all elemental operations counts.�(Ĵ) Chromatic number of the incidence graph of the generic Lagrangian.�(J) Maximal number of independents that impact any dependent variable.�(Ĵ) Maximal number of independents that impact any intermediate variable.̂ffg Average number of independents on which an intermediate depends.�(JT ) Maximal number of dependent variables impacted by any independent.�( �JT ) Maximal number of dependent variables impacted by any intermediate.�ffg Average number of dependents impacted by an intermediate variable.In computational practice, a vector function f : IRn ! IRm is evaluated by asequence of scalar assignments vj = 'i(vi)i!j ; (3:1)where the variables vj may be real or complex. The relation i ! j between integerindices means that vj depends directly on vi because the latter is an argument of theelementary function 'j 2 C2. We will assume that the partial ordering induced bythis dependency relation is compatible with the natural ordering of the integers, sothat j ! i =) j < i : (3:2)Obviously there may be several such topological orderings of the computational graphwith the vertices vj. The edges are de�ned by the dependence relation !, and thevertices can be labeled with the elementary function 'j. Without loss of generality wemay require that the �rst n variables vi represent the independent variables and thelast m represent the dependent variables. Then the function y = f(x) can evaluatedby executing the elementary assignments (3.1) in one big loop with j ranging from1 to o + m. Here the nonnegative integer o represents the number of intermediatevariables, which we expect to be much larger than both n andm for seriously nonlinearproblems. Thus we can combine the variables vi into the three vectors20



x � (v1�n; ::: :::; v�1; v0) (independent)z � (v1; v2; ::: ::; vo) (intermediate)y � (vo+1; ::: :::; vo+m) (dependent) ;so that xi � vi�n and yk � vo+k. The independent and dependent variables representthe roots and leaves of the computational graph. To make partial function-separabilityas de�ned in Subsection 2.1 a special case of partial separability in the usual sense, wehave to impose a �nal summation condition, which can always be achieved by minormodi�cations of the graph. We state this requirement formally.Final Summation ConditionElementary function of the additive formvj = 'j(vi)i!j = Xi!j vi (3:3)must occur for all i > o but cannot occur for any j with vj ! yk for somek � m. The cost of the �nal summations is considered negligible.In other words, each �nal elementary function must be a (possibly unary) addition,but none of the immediate predecessors may be obtained as a sum. When a �nalelementary function 'o+k is multivariate and nonadditive, we may simply relabel vo+kas an intermediate and use a unary summation to make copy that serves as the k-thdependent variable. On the other hand, immediate predecessors of dependents thatare themselves obtained as sums can be eliminated by merging the two summations.The \transposed" condition on the independent variables is that no identical copiesare made so that none of the 'j with xi ! vj for some xi may be the identity function.3.1 Counting Contemporaries, Ancestors, and DescendantsThe vj considered here are mathematical variables rather than memory locations onthe computer. Since the storage requirement would otherwise be at least o, we mustallow that vj overwrites some vi, provided it is certain thati! k =) k < j ; (3:4)which means that vi can no longer occur as an argument once vj has been computed.In the remainder we will denote by RAMffg an upper bound on the number of livevariables vj that must be in storage at any one time during the evaluation process.For Fortran programs, a suitable bound can be determined at compile time sincethere is no dynamic storage allocation. 21



We will use the notation i ; j or vi ; vjto indicate that vj depends on vi either directly in that i ! j or indirectly throughintermediates. In graph theoretical terms i; j means that a directed path connectsthe vertices vi and vj. For independent and dependent variables we will often writexi ; vj and vj ; ykin lieu of i; (j � n) or j ; (o+ k), respectively. For all vj we may de�ne the setsX(vj) � fxi : xi ; vjg and Y (vj) � fyk : vj ; ykg (3:5)of independent ancestors and dependent descendants, respectively. By subsumingconstants into the de�nition of elementary functions and eliminating unnecessarycalculations, one can ensure that the sets X(vj) and Y (vj) are nonempty for allintermediates. In other words, all intermediates lie on a path from an independentto a dependent variable, so that for all 1 � j � oxi; vj ; yk for some xi and yk : (3:6)The set X(yk) contains exactly the independent variables on which yk may benontrivially dependent. Similarly, Y (xi) contains exactly those dependent variablesthat are nontrivially dependent on xi. Denoting by jSj the cardinality of a set S one�nds that the maximal row and column lengths of the Jacobian J are given by�fJg = maxk�m jX(yk)j and �fJTg = maxi�n jY (xi)j : (3:7)The concepts of function- and argument-separability used in Subsections 2.1 and 2.2can now be reintroduced rigorously as follows.3.2 Function and Argument Splitting on the GraphFunction separabilityA dependent variable yk is called separable if for all 1 � j � ovj ; yk ) xi 6; vj for some xi ; yk ;in which case f is called partially function-separable.This condition is equivalent to the propertyvj ! yk ) X(vj) � X(yk) ; (3:8)22



where the symbol � excludes equality. Now let Xk l for l = 1; : : : ; �l be a numberingof all �l distinct subsets of the form X(vj) with vj ! yk. Then we can split yk into �lcopies yk l de�ned by yk l = XXk l=X(vj) vj : (3:9)After renumbering some vertices and updating the dependencies accordingly, one hasnow obtained a computational graph for a function f̂ : IRn ! IRm̂ with m̂ = m+�l�1as originally introduced in Section 2.1. From now on we will assume that f̂ is maximal,that is, that it has been obtained from f by performing all possible function splittings.Argument separabilityAn independent variable xi is called separable if for all 1 � j � oxi ; vj ) vj 6; yk for some xi ; yk ;in which case f is called partially argument-separable.This condition is equivalent to the propertyxi ! vj ) Y (vj) � Y (xi) ; (3:10)where the symbol� still excludes equality. In exact analogy to the function-separablecase discussed above we may now number �l sets Yi l = Y (vj) for some vj  xi andreplace the original assignment vj = �j(: : : ; xi�1; xi; xi+1 : : :) byvj � �j(: : : ; xi�1; xk l; xi+1; : : :) if Yi l = Y (vj) : (3:11)Whenever all xi l = xi the values of the direct successors vj  xi as well as all laterintermediates are obviously the same. Therefore, the horizontal expansion �f : IR�n !IRm de�ned by the new graph with �n = n + �l � 1 has the properties described inSection 2.2. From now on we will assume that �f is maximal, that is, that it has beenobtained from f by performing all possible argument splittings.Now we can characterize the row and column lengths of the Jacobians f̂ and �fdirectly in terms of the computational graph.Lemma 2Under the �nal summation condition we have for the maximal expansions f̂ and �f�(Ĵ) = max1�j�o jX(vj)j � �(J) ;�f �JTg = max1�j�o jY (vj)j � �(JT ) ;where the X(vj) and Y (vj) are de�ned in (3.5).23



Proof. Since we have assumed that all intermediates impact at least one dependentof f , the same is true for f̂ . Excluding the possibility of accidental cancellation,we must therefore have �fĴg � jX(vj j for all 1 � j � o. Now suppose that thegradient rŷk of some component ŷk of f̂ has more nonzeros than any of the precedingintermediates vj. Then that ŷk is in fact separable, which contradicts the de�nition off̂ . Thus we must have equality as asserted, and the bound by �(J) is an immediateconsequence of (3.7). The second assertion follows analogously.Finally, we note that the row- and column splitting processes reinforce ratherthan obstruct each other. More speci�cally, when some independent xi is split, allseparable dependents yk maintain that property even if X(yk) contains xi and maytherefore be enlarged. Similarly, row splittings cannot reduce the number of separablearguments, which can be used for subsequent column splittings. Hence, there mustbe a function f� : IR�n ! IR �msuch that f(x) = Bf�(Ax) and OPSff�g = OPSffg ;where A 2 IRn ! IR�n and B 2 IRm ! IRm̂ as before. We can identify the previouslydiscussed vertical and horizontal expansions of f asf̂(x) = f�(Ax) and �f (�x) = Bf�(�x) ;where �x 2 IR�n is the replicated variable vector. Obviously the only di�erence betweenthe computational graphs for f̂ ; �f; f�, and the original f is in the leaves, roots andthe way the �rst layers of intermediates vj (with xi ! vj for some i) are de�nedas elementary functions of the intermediates. Without ambiguity we may thereforedenote the dependents of f̂ and f� by ŷ = (ŷk)1�k�m̂ and the independents of �f andf� by �x = (�xi)1�i�n̂, respectively. The relation between these vectors and the originalindependents and dependents is simply y = Bŷ and �x = Ax. The de�nition of the�rst layer will be clear from the context.Generally speaking, we can expect that the Jacobian of f� is much larger andsparser than that of the original f . Because of (2.2) and (2.4) it is clear that the NRapproach in the forward and reverse modes is best applied to the f̂ and �f , respectively.This is no longer true when the factors A and B are allowed to be general lineartransformations. Such further generalization is useful in cases where the evaluationof f involves linear functionals like the average eTx of the independent or dependentvariables. 24



3.3 Elemental Complexity AssumptionsOur main restriction on the elementary functions 'i is that the partial derivativescij � � @'i=@vj if j ! i0 if j 6! iand cijk � � @2'i=@vj@vk if j ! i and k ! i0 if j 6! i or k 6! iare well de�ned and easily evaluated at all arguments of interest. This is certainlythe case when the evaluation program is written in a standard high-level languagesuch as Fortran or C. Then the compiler breaks down the evaluation into a sequenceof arithmetic operations and intrinsic function calls.For some purposes it is advantageous to view more complex computational unitsas elementary building blocks. This approach has the advantage of reducing the in-terpretive overhead and facilitates some local preaccumulation of derivatives. For ex-ample, in the source translator ADIFOR, right-hand sides of assignments are treatedas elementary functions, whose gradients are computed by the reverse mode in theform of compilable code. This compile-time di�erentiation can be easily generalizedto function and subroutines, especially if their code is tight in that it does not containvariable dimensions or loop lengths. It has proven very e�cient for the evaluationof �rst derivatives. Unfortunately, the trade-o�s are more complicated, if one alsowishes to compute second or higher derivatives. However, it is clear that linear orbilinear vector-vector and matrix-vector operations should be treated as elementaryfunctions, since their �rst and higher derivatives are easy to store and manipulate,with many of them vanishing altogether. For notational simplicity we will continueto assume that all elementary functions are scalar valued, but we allow the numberof local independents jfi : i! jgj to be arbitrarily large.Our key assumption is that the cost for computing the �rst and second derivativesof each 'j is no more than twice that of computing �j by itself, so thatOPSf'j;r'j;r2'jg � 2OPSf'jg : (3:12)In fact, this bound is quite pessimistic, since for all linear and bilinear operationsthe derivatives come virtually for free, and for most intrinsic functions the �rst twoderivatives are easily obtained from the function itself. For sinusoidal functions thebound appears to be sharp, but even there sin and cos are often evaluated in pairsanyway, in which case no extra derivative evaluations are required in theory. Inpractice, such savings could be realized only if the automatic di�erentiation tool didsome compiler-like dependency analysis and optimization.The temporal complexity measure OPSfg may account not only for arithmeticoperations but also for memory accesses. Naturally, we cannot distinguish the access25



costs to di�erent levels of the memory hierarchy and will assume exact additivity sothat (at least on a serial machine)OPSffg � oXj=1OPSf'jg ; (3:13)where we have again assumed that the cost of the �nal summations 'o+k for k =1 : : :m is negligible. Apart from generating the derivatives r'j and r2'j, we mustalso consider the cost of incorporating them into the chain rule. The elementaryoperations addition and subtraction play a special role, because all �rst derivatives are1 or -1 and all second derivatives vanish identically. In these cases no multiplicationsare required to multiply the local gradients or Hessians by vectors or matrices. Ingeneral, we assume that the e�ort of forming an inner product of the gradient r'jwith a compatible vector, or multiplying the Hessian r2'j from the left and rightby two vectors, or incrementing a given vector by a multiple of r'j, is boundedaccording tomaxnOPSf(r'j)Twg;OPSfuTr2'jwg;OPSf+!r'jgo � 3OPSf'jg ; (3.14)where the + sign indicates that adding the result to a give vector is considered anintegral part of the calculation. If a multiplication is no more expensive than anaddition, the bound is sharp for the multiplication operator vj = 'j(v1; v2) = v1 � v2,where (r'j)Tw = v2w1 + v1w2 and uTr2�w = u1w2 + u2w1.Let us �nally perform individual operations counts for the component functionsfk and the univariate functions f (i)x de�ned in Subsection 2.3. After discounting allelementary functions 'j that have no impact on a given fk, we obtain the operationscount OPSffkg = Xj;kOPSf'jg : (3:15)Similarly, the (re)evaluation of f (i)x requires only the calculation of the elementaryfunctions that depend on xi, so thatOPSff (i)x g = Xi;jOPSf'jg ; (3:16)where the subscript x indicates that the de�nition of f (i)x depends on the \current"point x viewed as a constant. Substituting these expressions into the de�nitions (2.8)and (2.5), we obtain the following result.Lemma 3 The complexity ratios de�ned in (2.5) and (2.8) satisfy�ffg � �( �JT ) and ̂ffg � �(Ĵ) :26



Proof. Summing (3.15) and (3.16) over k and i, we obtain with Y (vj) and X(vj) asde�ned in (3.5) by changing the order of summation:�ffgOPSffg = oXj=1 0@ Xj;kOPSf'jg1A= oXj=1 jY (vj)j OPSf'jg � �( �JT )OPSffg ;where the last inequality follows from (3.7). By interchanging rows and columns we�nd similarlŷffgOPSffg = oXj=1 Xi;jOPSf'jg= oXj=1 jX(vj)j OPSf'jg � �(Ĵ)OPSffg ;which completes the proof.In this thirs section we have shown that there exist constant matrices B 2 IRm�m̂and A 2 IRn̂�n (whose rows and columns are Cartesian basis vectors, respectively)such that f(x) = Bf̂(x) = �f (Ax) = Bf�(Ax)and consequently J(x) = B Ĵ(x) = �J(Ax)A = B J�(Ax)A :Since pre- and post-multiplication by A and B involve only additions, we neglectthese costs and assume thatOPSffg = OPSf �fg = OPSff̂g = OPSff�gand OPSfJg � minnOPSf �Jg;OPSfĴg;OPSfJ�go :In other words, we view J as a free by-product of any method for calculating Ĵ ; �J, orJ�. The same assumption will be made regarding the evaluation of second-derivativematrices or tensors.4 Results and DiscussionIn this �nal section we formulate rigorous bounds on the complexity of evaluating�rst and second derivatives of a vector function f in various ways. Similar boundshave been derived repeatedly in the automatic di�erentiation literature (see, e.g., [16],[17], and [4] as recent references). 27



4.1 First and Second Derivatives in the Forward ModeSuppose the independent variables x are considered as linear functionsx(d) � x+ Sdof the di�erentiation parameter vector d 2 IRp. We will refer to S 2 IRn�p as the seedmatrix, which may vary from the n�n identity to a single-direction vector. Then allintermediates vj have associated gradients and HessiansrSvj 2 IRp and r2Svj 2 IRp�p :Starting fromrSxi = eTi S and r2Sxi = 0, one can propagate these derivatives forwardby the chain rules rSvj = Xi!j cjirSvi (4:1)and r2Svj = Xi!j 24cjir2Svi +rSvi Xk!j cjik(rSvk)T35 : (4:2)At the end one obtains the reduced gradientsrS ŷk = @fk(x+ Sd)@d �����d=0 = rf̂k(x)Sand the two-sided projected Hessianr2Syk = @2f̂k(x+ Sd)@d2 = STr2f̂kS :Now we obtain from the elemental complexity assumptions in the preceding sectionthe following result.Proposition 1 The forward propagation of �rst and second derivatives with respectto p di�erentiation parameters can be achieved withOPSff; Ĵ Sg � (2 + 3p)OPSffgOPSff; Ĵ S; ST f̂ 00kS for k = 1 : : : m̂g � [2 + 3p(p + 1)]OPSffgoperations. The corresponding memory requirement is bounded byRAMff; Ĵ Sg � (1 + p)RAMffgRAMff; Ĵ S; ST f̂ 00i S for k = 1 : : : m̂g � (1 + p)(2 + p)=2RAMffg :28



Proof. First let us note that the bounds on the randomly accessed memory reectthe fact that the p vector rS'j and possibly also the symmetric p � p matrix r2S'jmust be kept for each scalar variable vj. These gradient and Hessian objects can alsobe overwritten when vj itself is overwritten by a new value.Equation (4.1) can be interpreted as the multiplication of the row vector r'j bya matrix with p columns from the right. Hence the computational e�ort consists ofexactly p inner products betweenr'j and a generally dense vector w. Thus we derivefrom (3.12), (3.14) and (4.1)OPSff; Ĵ Sg = oXj=1 hOPSf'j;r'jg+ pOPSf(r'j)Twgi (4.3)� oXj=1(2 + 3p)OPSf'jg = (2 + 3p)OPSffg : (4.4)Similarly we see that (4.2) requires the computation of p(p + 1)=2 inner products inr'j and exactly the same number of quadratic forms, uTr2'jw, so that by (4.2) andagain (3.14)OPSff; Ĵ S; ST f̂ 00k S k � m̂g= oXj=1 �OPSf'j;r'j;r2'jg+ 12p(p + 1) �OPSf(r'j)Twg+OPSfuTr2'jwg��� oXj=1[2 + 3p(p + 1)]OPSf'jg = [2 + 3p(p + 1)]OPSffg ;which completes the proof.A key advantage of the forward mode is that no extra sequentiallly accessed storage(SAM) is required and that sweeps of various order can be carried out simultaneouslywith the function evaluation by compilable code. If J and J 0 are dense, they canbe calculated from one forward sweep with p = n parameters. Alternatively, onecan use slicing to obtain the Jacobian f 0 or the collection of Hessians f 00 over severalsweeps with S obtained from a partitioning of the identity matrix. For Jacobians thetemporal complexity is strictly additive, but for Hessians the operations count maygrow by a factor of two as a result of slicing [3]. In the constrained optimization case,one only needs projections of the objective and constraint Hessians to the range spaceof S anyway.Even when f is neither function- nor argument-separable and J is dense, it isquite likely that the ratio ̂ de�ned in (2.8) is signi�cantly smaller than n. Then theJacobian J could theoretically be calculated more e�ciently as a contraction of thevertically expanded Jacobian F̂ 0. The di�culty with this approach is that one can, ingeneral, not easily separate the calculations for (re)evaluating the various functions29



f (i) by themselves. A similar e�ect is achieved if one performs the recursion (4.1)with S = I and hence p = n, but with rSvj and r2Svj stored and manipulatedas sparse vectors and matrices, respectively. Since each rSvj has at most jX(vj)jnonzero entries, we obtain the following corollary.Corollary 1If the forward propagation of �rst and second derivatives is carried out using thesparsity of the gradients rSvj and Hessians r2Svj, then the operations count isOPSff; Ĵg � (2 + 3̂ffg)OPSffgOPSff; Ĵ; f̂ 00k for k = 1 : : : m̂g � [2 + 3̂ffg(�(Ĵ) + 1)]OPSffg ;and the corresponding RAM requirements are bounded as in Prop. 1 with p = �(Ĵ).Proof. The �rst inequality follows by de�nition of ̂ from (4.3) with p on the right-hand side replaced by jX(vj)j. To prove the second inequality, we �rst note that thenonzeros of each Hessian r2Svj form a nonzero square submatrix of order jX(vj)j,so that on the right-hand side of (4.5) the factor p can also be replaced by jX(vj)j.Hence we have insteadOPSff; J S; ST f̂ 00k S; k � m̂g = oXj=1[2 + 3 jX(vj)j(jX(vj)j+ 1)]OPSf'jg� h2 + 3̂ffg(�(Ĵ) + 1)i OPSffg ;where we have used Lemma 3 to bound the second factor jX(vj)j.Since ̂ � �(Ĵ) � �(Ĵ), it is clear that the sparse forward mode yields the lowestoperations count followed by NR where we may choose p = �(Ĵ) and CPR withp � �(Ĵ). However, the NR and CPR methods may actually have a lower run-time,since on most computing platforms, vectors of �xed length p can be accessed andmanipulated much faster than dynamically sparse vectors with a comparable numberof nonzeros on average. In comparing the NR and CPR methods, we have so farignored the fact that the former scheme requires the solution of m̂ linear Vandermondesystems. According to [11] this addsm̂Xk=1 2:5m̂ jX(ŷk)j2 � 2:5m̂�(Ĵ)2oating-point operations to complexity. As pointed out in [18], the conditioning ofthese linear systems can be improved by de�ning the Vandermonde matrix S usingonly �(Ĵ) distinct real abscissas or de�ning them as complex roots of unity if thechromatic number is still too large. In the latter case, since all rSvj are complex,the arithmetic cost exactly doubles, because no complex multiplications or divisionsare required. 30



4.2 First Derivatives in the Reverse ModeIn this subsection we �rst consider the complexity bounds for evaluating �rst deriva-tives in the reverse mode. Given the weight matrix W T 2 IRq�n, we may associatewith each intermediate variable vj the adjoint vector�Wvj � @W Ty@vj = W T @y@vj 2 IRq ; (4:5)where all vk with vj 6; vk are held constant with respect to the di�erentiation. It iswell known that the �Wvj satisfy the backward recurrence�Wvj = Xvj;vk ckj �Wvk ; (4:6)which can be executed only if the elementary partials ckj = @�k=@xj can be providedin reverse order, namely, for k = o; o� 1; : : : ; 1. As we have mentioned in Subsection1.3, it was shown in [12] that this program reversal can be performed at the computa-tional costs (1.8) and (1.9) for some integer r, which determines a trade-o� betweentemporal and spatial complexity. At the end of the reverse computation one obtainsthe adjoint vectors �W �xi = W T @ �f(�x)@�xi = W T Ĵei :The complexity of this reverse sweep is bounded by the following resultProposition 2The reverse di�erentiation of the q functions W T �f : IR�n ! IRq with respect to theexpanded independents �x can be achieved at the costsOPSff;W T �Jg � (r + 1 + 3q)OPSffgRAMff;W T �Jg � (1 + q)RAMffgSAMff;W T �Jg � cRAMffg rqhffg ;where hffg � OPSffg=RAMffg as before.Proof. The RAM requirement follows from the need to store an adjoint q-vector�Wvj for each variable that is live during the reverse sweep. Using the third inequalityimplicit in (3.14), we �nd that the backward propagation of the q vectors �Wvjaccording to (4.6) requires also no more than 3qOPSf'kg operations per intermediatenode. Together with the cost for evaluating r'j and that for reversing the programas described in [12], this yields the operations count as well as the SAM requirement.If one wishes to obtain the whole Jacobian �J in order to compute J = A �J , onemay use the NR approach with q = �( �JT ) and W a Vandermonde matrix or the31



CPR approach with q � �( �JT ) and W a 0 � 1 matrix. Similarly, one can alsoemploy a dynamically sparse reverse mode with W = I for which q is e�ectivelyreplaced by �ffg as de�ned (2.5). The advantages and disadvantages of these threealternatives are essentially the same as in the forward mode. Again the operationscount is highest for CPR and lowest for the dynamically sparse procedure, whichdoes, however, involve more overhead. The NR approach may again su�er from poorconditioning unless the matrix W is chosen carefully, possibly using a coloring orcomplex roots of unity.4.3 Combinations of Forward and Reverse SweepsIn Proposition 1 we have shown that the full second-derivative tensor, f̂ 00, and thusits contraction, f 00, can be obtained at a complexity that grows quadratically withp = �(Ĵ) or p = �(Ĵ), depending on whether one uses the NR or CPR approach. It isinteresting to note that, if one were to use CPR in the forward mode to evaluate thegradient of a scalar function f and then to use directional derivatives of this vectorfunction rf in an indirect substitution method as described and analyzed in [6], thenby (2.3) the complexity would be proportional to OPSffg times�(G)�0(G) � �2(G) = �2(Ĵ);where G is the incidence graph of r2f , which coincides by Lemma 1 with the column-intersection graph of the expanded Jacobian Ĵ . Consequently, even indirect substi-tution on a gradient that is evaluated in the forward mode is likely to be less e�cientthan the calculation of the Hessian by di�erentiating f̂ twice in the forward mode.Even lower complexities can be achieved if the forward and reverse modes are com-bined (see, for example, [5]). By combining Propositions 1 and 2 we obtain our �nalresult.Corollary 2With f : IRn ! IRm as before, u 2 IRm a vector of Lagrange multipliers, and S 2 IRn�pthe one-sided projection r2L(x)S = m̂Xi=1 ûir2f̂iScan be calculated as the complexityOPSfr2L(x)Sg � (4 + r)(2 + 3p)OPSffgRAMfr2L(x)Sg � 2(1 + p)RAMffgSAMfr2L(x)Sg � c (1 + p)RAMffg rqhffg ;where c may be larger by a factor of 3 compared with Proposition 2.32



Proof. This result can be achieved by �rst evaluating the vector function g(x) �J(x)S : IRn ! IRp. According to Proposition 1 the forward mode yields these valueswith an operations count no greater than (2 + 3p)OPSffg and a RAM requirementno greater than (1 + p)RAMffg. Hence the ratio between the operations count andthe RAM requirement grows by a factor less than 3. Applying Proposition 2 to thiscalculation withW = u and q = 1, we pick up another factor of r+4 for the operationscount, a factor of 2 for the RAM requirement, and a factor less than (1 + p) rp3 forthe SAM requirement.Since the number n of independents does not occur in the bounds of Corollary 2, wesee that the complexity of the one-sided projected Hessian of the Lagrangian dependsonly on the degrees of freedom p = n � m in a constrained optimization problem.It also appears that the cheapest way of obtaining the two-sided projection is tomultiply the one-sided projection by S. Further cost reductions might be achievableif one exploits sparsity of r2LS. The columns of S must span the null-space of J andare often de�ned on the basis of an LU or QR factorization of J . It would appearthat these choices may be far from optimal regarding the sparsity of r2LS, since theytend to introduce dense rows into S and consequently r2LS. This question deservesfurther investigation.5 Summary and ConclusionIn this paper we have shown how function separability and the new concept of argu-ment separability can be exploited to yield �rst and second derivatives by the forwardor reverse mode of computational di�erentiation with surprisingly low complexity.The ideal case of function separability is that of a partially separable objectivefunction f , whose gradient and Hessian can be obtained in the forward mode at acomplexity of �(Ĵ) and �2(Ĵ), respectively. Here �(Ĵ) represents the maximal numberof variables that are truly intertwined in a nonlinear fashion during the evaluationof f . The ideal case of argument separability is that of a vector function f , whosecomponents fk are evaluated completely separately from each other. Then one mayapply the reverse mode to the horizontal expansion �f and obtain the full JacobianJ = �J A at no more than �ve times the cost of evaluating f itself. It is likelythat substantial savings can be realized in mixed cases, but the implementation in acomputational di�erentiation tool is a nontrivial task.Rather than just considering additive decompositions with 0-1 matrices A andB, one can generalize the separability concepts, so that arbitrary linear pre-factorsB and post-factors A are removed from the given vector functions to facilitate moree�cient di�erentiation on the remaining nonlinear part.33



AcknowledgmentsThe author had the bene�t of extended discussions with Jorge Mor�e and BrettAverick, and he is greatly indebted to Christian Bischof and Paul Plassmann fortheir careful reading of the �rst draft.References[1] B. M. Averick, J. J. Mor�e, C. H. Bischof, A. Carle, and A.Griewank, Computing large sparse Jacobian matrices using automatic di�eren-tiation, Preprint MCS-P348-0193, Mathematics and Computer Science Division,Argonne National Laboratory, Argonne, Illinois, 1993.[2] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland,ADIFOR: Generating derivative codes from Fortran programs, Scienti�c Pro-gramming, 1 (1992), pp. 1{29.[3] C. Bischof, G. Corliss, and A. Griewank, Computing second- and higher-order derivatives through univariate Taylor series, Preprint MCS-P296-0392,Mathematics and Computer Science Division, Argonne National Laboratory, Ar-gonne, Illinois, 1992.[4] B. Christianson, Automatic Hessians by reverse accumulation, IMA J. of Nu-merical Analysis, 12 (1992) pp. 135{150 .[5] B. Christianson, Reverse accumulation and accurate rounding error estimatesfor Taylor series coe�cients, Optimization Methods and Software, 1 (1992),pp. 81{94.[6] T. F. Coleman and Jin-Yi Cai, The cyclic coloring problem and estimationof sparse Hessain matrices, SIAM J. Alg. Disc. Meth., 7 (1986), pp. 221-235.[7] T. F. Coleman, B. S. Garbow, and J. J. Mor�e, Fortran subroutines forestimating sparse Jacobian matrices, ACM Trans. Math. Software, 10 (1984),pp. 346{347.[8] , Software for estimating sparse Jacobian matrices, ACM Trans. Math. Soft-ware, 10 (1984), pp. 329{345.[9] T. F. Coleman and J. J. Mor�e, Estimation of sparse Jacobian matrices andgraph coloring problems, SIAM J. Numer. Anal., 20 (1983), pp. 187{209.[10] A. R. Curtis, M. J. D. Powell, and J. K. Reid, On the estimation ofsparse Jacobian matrices, J. Inst. Math. Appl., 13 (1974), pp. 117{119.34



[11] G. H. Golub, and C. F. Van Loan, Matrix Computations, second edition,The Johns Hopkins University Press, Baltimore (1988)[12] A. Griewank, Achieving logarithmic growth of temporal and spatial complex-ity in reverse automatic di�erentiation, Optimization Methods and Software, 1(1992), pp. 35{54.[13] A. Griewank and G. F. Corliss, eds., Automatic Di�erentiation of Algo-rithms: Theory, Implementation, and Application, SIAM, Philadelphia, 1991.[14] A. Griewank and S. Reese, On the calculation of Jacobian matrices by theMarkowitz rule, in Automatic Di�erentiation of Algorithms: Theory, Im-plementation, and Application (A. Griewank and G. Corliss, eds.), SIAM,Philadelphia, 1991, pp. 126{135.[15] A. Griewank and Ph.L. Toint On the unconstrained optimization of par-tially separable objective functions, in Nonlinear Optimization 1981 (M. J.D. Powell, ed.), Academic Press, London, 1981, pp. 301{312.[16] Masao Iri, History of automatic di�erentiation and rounding estimation, inAutomatic Di�erentiation of Algorithms: Theory, Implementation, and Appli-cation, A. Griewank and G. Corliss, eds., SIAM, Philadelphia, 1991, pp. 1{16.[17] R. D. Neidinger, An e�cient method for the numerical evaluation of partialderivatives of arbitrary order, ACM Trans. Math. Software, 18(1992), pp. 159{173 .[18] G. N. Newsam and J. D. Ramsdell, Estimation of sparse Jacobian matrices,SIAM J. Alg. Disc. Meth., 4 (1983), pp. 404{417 .[19] L. B. Rall, Automatic Di�erentiation: Techniques and Applications, LectureNotes in Computer Science, Vol. 120, Springer-Verlag, Berlin, 1981.[20] Trond Steihaug and A. K. M. Shahadat Hossain, Graph coloring andthe estimation of sparse Jacobian matrices using row and column partitioning,Report 72, Department of Informatics, University of Bergen, 1992.[21] Stephen A. Vavasis, Nonlinear Optimization, Complexity Issues, Oxford Uni-versity Press, Oxford, 1991. 35


