Complexity in Numerical Optimization
P.M. Pardalos, Editor
©1993 World Scientific Publishing Co.

Some Bounds on the Complexity of
Gradients, Jacobians, and Hessians -

Andreas Griewank
Mathematics and Computer Science Division, Argonne National Laboratory,

Argonne, IL 60439 USA

Abstract

The evaluation or approximation of derivatives is an important part of many
nonlinear computations. The cost of evaluating first- and second-derivative ma-
trices is often assumed to grow linearly and quadratically with the number of
independent variables, respectively. It is shown here that much tighter bounds
can be achieved through the exploitation of partial function- and argument-
separability in combination with the forward and reverse mode of computa-
tional, or automatic, differentiation.

The new separability concepts facilitate the reduction of chromatic numbers
and maximal row lengths, which determine the complexity of the Curtis-Powell-
Reid and Newsam-Ramsdell schemes for estimating sparse derivative matrices.
Because of the duality between the forward and reverse modes these techniques
can be applied to Jacobians as well as their transposes and the associated row-
intersection graphs. In contrast to differencing, computational differentiation
yields derivative values free of truncation errors and without any parameter
dependence.

A key result presented in this paper is that gradients and Hessians of partially
separable functions can also be obtained surprisingly cheaply in the easily im-
plemented forward mode as well as in the more sophisticated reverse mode of
computational differentiation.

*This work was supported by the Office of Scientific Computing, U.S. Department of Energy,
under Contract W-31-109-Eng-38.

1 Introduction

Most algorithms for the numerical solution of nonlinear programming problems in-
volve the gradient of the objective function, the Jacobian of the active constraints,
and the Hessian of the Lagrangian function. Some of this derivative information may
be used only implicitly or in projected form. However, since optimizers are locally
characterized by the KK'T conditions in terms of objective and constrained gradients,
evaluation errors in these first derivatives directly limit the solution accuracy. More-
over, except for algebraically simple test functions and some large, sparse problems,
the computational effort of evaluating or approximating the required derivative infor-
mation may dominate the cost of the numerical linear algebra and other algorithmic
overhead.

As in numerical ordinary differential equations and other nonlinear computational
fields, designers of optimization methods have usually assumed that derivatives are
hard to come by and that their provision belongs to the realm of the user. This is
sometimes called the black box model [21], where the optimization algorithm relies
exclusively on a subroutine for evaluating objectives and gradients at given arguments,
usually with unspecified precision. Unless the user provides additional codes for
gradient and Jacobian evaluation, the optimization method must either resort to
divided difference approximations or model the optimization problem on the basis of
function values alone. The latter approach is rarely advantageous since it typically
results in slow and unreliable convergence.

1.1 The Computational Model

In this paper we develop complexity estimates for gradients, Jacobians, and Hessians
of functions that are defined by computer programs as compositions of arithmetic
operations and intrinsic functions. We will assume that these elementary functions
are performed in floating-point arithmetic with fixed precision and that their compu-
tational cost is independent of the argument. This scenario applies to the majority of
practical optimization calculations, but not to symbolic, interval, or variable-precision
computations. The overall temporal complexity is measured by simply counting the
number of elementary operations and the number of random or sequential memory
accesses. Here, it is assumed that the memory hierarchy can be split into a randomly
accessed “core” storage and a sequentially accessed “disk” storage. Because of the
increasing lag between processor and memory speed, the distinction between various
memory access patterns becomes increasingly important not only on supercomputers
but also on modern workstations.

The process of calculating overall derivatives vectors and matrices from the “local”
derivatives of the elementary functions has become known as automatic differentia-
tion [19],[13] but might be better called computational differentiation. Depending
on the order in which the chain rule is applied, one obtains the forward, reverse, or

mixed mode of computational differentiation. As was shown in [12], even a sophisti-
cated implementation of the reverse mode of computational differentiation involves a
logarithmic increase in the storage requirement, but the extra data can be stored and
accessed sequentially in successive forward and reverse sweeps. In contrast, this nearly
perfect data locality is lost if one tries to minimize the operations count for Jacobian
evaluations by the general vertex elimination scheme described in [14]. Moreover, the
combinatorial task of finding an elimination ordering that absolutely minimizes the
operations count is conjectured to be NP hard. Therefore, we confine ourselves in this
paper to sequential schemes for which the randomly accessed core memory can be a
priori restricted to a small multiple of that used by the original function evaluation.

Several other practical aspects of relative efficiency are very hard to quantify, even
in an informal discussion of computational complexity. In our context this applies,
for example, to the alternative of compilable derivative code versus more interpretive
derivative-evaluation schemes. A related issue is the relative efficiency of dynamically
sparse vector operations with indirect addressing versus dense vector operations on
contiguous arrays. While it is relatively easy to generate compilable code for the
forward mode of automatic differentiation (see, e.g., [2]), all current implementations
of the reverse mode incur a large number of procedure calls or other interpretive
overheads, unless the original evaluation source is very restricted. Therefore, we
will emphasize ways of reducing the temporal complexity of the forward mode by
exploiting partial separability and other structure, even when the basic reverse mode
has a lower operations count, as is the case for gradients.

Fortunately, much of the excellent research that has been conducted regarding
the estimation of sparse Jacobians and Hessians by differencing (see, e.g., [10], [9],
[18], [20]) carries over to computational differentiation. The main difference is that,
instead of approximating Jacobian vector products by divided differences, one obtains
them without any truncation errors by the forward mode of automatic differentiation.
Moreover, since the reverse mode yields vector Jacobian products accurately and effi-
ciently, one can exploit the sparsity structure not only columnwise but also rowwise.
Therefore the well-known coloring techniques can be applied either to the column- or
the row-intersection graph. Hence our complexity bounds involve the maximal clique
size and the chromatic number of these undirected graphs. We have delayed until the
central section of this paper the introduction of the directed computational graph that
is associated with function evaluation programs. Until then, the results are developed
in a more familiar matrix-vector notation. Concepts such as operations counts and
intermediate variable will be used in an intuitive way until they are defined rigorously
in Section 3.

The paper is organized as follows. In the remainder of the introduction we review
the derivative requirements in optimization calculations and the basic properties of
the forward and reverse modes of computational differentiation in combination with
the CPR (Curtis-Powell-Reid) and NR (Newsam-Ramsdell) approaches to estimating

sparse derivative matrices. In Subsections 2.1 and 2.2 we discuss whether and how

partial function-separability and a dual concept of partial argument-separability can
be used to express the original function as contraction of larger systems, whose Ja-
cobians or their transposes have shorter row lengths and lower chromatic numbers.
In Subsection 2.3 we discuss the tearing of functions and arguments, which amounts
to a forced function or argument separation that entails a certain duplication of in-
termediate calculations. The resulting complexities are closely related to those of
dynamically sparse implementations of the forward and reverse modes. In Subsec-
tion 2.4 we discuss the relation to multicoloring and in Subsection 2.5 we examine
a generic binary interaction example. In Section 3 we provide a rigorous foundation
and generalization of all previous developments in terms of computational graphs.
In Section 4 we compile and discuss complexity bounds for the various methods and
decompositions. The paper concludes with a brief summary in Section 5.

1.2 Derivative Requirements in Nonlinear Optimization
As a focal point of our investigation we consider the constrained optimization problem
minwlz s.t. fl2)=0 and z<az<z

with w € R" some fixed-price vector and f(x) : R"™ — R™ at least twice contin-
uously differentiable. Without loss of generality we have assumed that the objective
and the inequality constraints are linear; hence, all nontrivial derivatives occur in the
equality constraints. As a consequence of this normalization, some components of x
are likely to be slack variables; thus, the corresponding derivatives of f have a special
structure as well. Sparsity in the Jacobian J(x) = J and the second-derivative tensor
f" will be a major concern throughout this paper. However, we will not make use
of the observation that one need not evaluate rows of J that correspond to “safely”
inactive constraints because their slack variable value is very large. Similarly, one
could theoretically skip columns of J corresponding to “nonbasic” variables z; that
are certain to remain fixed at their lower or upper bound z; or z; over the current
iteration.

Typically, one step of an iterative optimization algorithm proceeds as follows.
First, the scalar objective w”
trial point x, which may be assumed feasible with respect to the bound constraints.
Occasionally, the combination of values (w?z, f(z)) may be deemed unacceptable,

x and the constraint vector f(x) are evaluated at a new

and the algorithm backtracks to a previous iterate. Otherwise, one evaluates the
Jacobian J(z) and computes a matrix S, whose n — m columns span the null-space
of J(x). This is usually done by factoring J(z), for example, into the product of a
lower triangular or orthogonal

problem involves (besides the objective gradient w) the constraint Jacobian J and
some information about the Hessian of the Lagrangian

m

L(z,u) = wha+ > uifi(w).

=1

Here the Lagrange multipliers u; are usually estimates from the previous iteration.
For one-step quadratic convergence a Newton-like algorithm must know the one-sided
projection

H=V2L(z,u)S with JS=0eR"™"m

For two-step quadratic convergence it suffices to evaluate the two-sided projection
STH € RP*? with p = n — m; but as we will show, this is not necessarily a saving
with regard to computational differentiation. Moreover, it is important to recognize
that the one-side projection onto the columns of S can be built into the differentiation
process so that the full Hessian need never be formed. This implicitly projected
approach is likely to be efficient on problems with a comparatively small degree of
freedom, p.

1.3 Basic Properties of the Forward and Reverse Modes

Rather than considering f(x) just as a mathematical mapping, we will assume from
now on that it is defined by a procedural (sub)program for its evaluation at any given
argument € IR". For simplicity we will exclude the possibility that the program
takes different branches for various values of x or that some intrinsic function such
as square root is evaluated at a point of nondifferentiability. Then one can by hand
or automatically (i.e., with the help of some software package) extend the original
program to a code that also evaluates the Jacobian-matrix product

J(z)S for SeR™P (1.1)

“analytically,” that is, without incurring any truncation error. The choice of the
seed matriz S provides the user with a great deal of flexibility at run time. For
example, one might choose S = I with p = n to obtain the full Jacobian J in one
sweep. Alternatively, one may have p = 1 over several sweeps and let S = [s] range
over a sequence of column vectors s € R", possibly as part of an iterative Newton-
step calculation. Under realistic assumptions on the computational model, we will
establish in Proposition 1 of Section 4 the bounds

(24 3p) OPS{/} (1.2)
(14 p) RAM{f}

OPS{/f,]S

}o<
RAM{f,J5} <
Here, OPS denotes a conventional operations count, and RAM represents the number
of randomly accessed storage locations required by the function or derivative evalua-
tion program. On a serial machine the run time will be proportional to the operations
count, and we will therefore refer to OPS{ f, task}/OPS{f} as the run-time ratio for
some additional computational task related to f.

For p = 1 the operations count and storage requirement may grow fivefold and
twofold, respectively. This situation is somewhat troubling, since a divided difference
of the form [f(x + es) — f(x)]/e yields an approximation to Js at the cost of one

5

extra function evaluation and without any increase in storage. Here we have assumed
that f has already been evaluated at the base point x. Fortunately, the factor 3 in
(1.2) is quite pessimistic. On the other hand, the leading constant 2 does not take
account of some of the overhead in the derivative code. Empirically it was found
[1] that, when the forward mode is implemented as compilable code and p is in the
double digits, then the resulting run-time ratio is typically between halt and twice
the divided difference ratio (1 + p).

The up to (1 + p)-fold increase in memory stems from the fact that a p-vector
of derivatives is associated with most or all scalar variables in the original evalua-
tion program. To limit this increase, one could alternatively evaluate one or a few
derivative components at a time, but that would increase the accumulated run time
significantly, since certain overhead costs are incurred repeatedly. On the other hand,
when p reaches into the hundreds, it will probably be better to split the columns of
S into groups in order to reduce the number of page faults in accessing intermediate-
derivative vectors. Provided these p vectors are allocated as contiguous arrays, the
number of memory accesses in the sense of pointer dereferencing does not really grow
(1 + p)-fold, but merely doubles. On the other hand, if they are stored and manip-
ulated as sparse vectors, the indirect addressing overhead goes up, but the storage
requirement may be significantly reduced.

As a first approximation one may view the forward mode as truncation- and
parameter-free equivalent of divided differences. The relationship is close enough
that the CPR [10] and the NR [18] approaches for estimating sparse Jacobians .J
from some product J S with p < n can be applied virtually unchanged. In the CPR
approach the rows of the seed matrix S are Cartesian p vectors, whereas in the NR
approach S is usually chosen as a Vandermonde matrix. The potential ill-conditioning
of the latter choice may be of less concern here since the projected Jacobian J S is
obtained essentially to working accuracy. The number p of columns required for the
NR method is simply the row-length p(.J), that is, the maximal number of nonzeros
in any row of the Jacobian. The corresponding lower bound for the CPR approach is
the chromatic number y(.J) of the column-intersection graph of the Jacobian. This
undirected graph has one node for each column of .J, with two of them being connected
by an edge exactly if the corresponding column pair shares a nonzero in at least one
row. Otherwise the two columns are said to be structurally orthogonal. The row
length and chromatic number satisfy the trivial relation

p(J) < x(J)

which means that the seed matrix for the CPR method has at least as many columns
as the minimum needed for the NR approach. However, to improve the conditioning
of the linear systems in the latter approach, one may prefer to define S using complex
roots of unity, which effectively doubles p to 2p(.J).

From a mathematical point of view, the reverse mode is much more interesting
since it has completely different complexity properties compared with differencing.

Instead of multiplying J from the right by a seed matrix S, whose columns represent
directions in the domain of f, the Jacobian is now multiplied from the right by a
matrix W7, whose rows represent linear functionals on the range of f. Formally, the
reverse mode yields

W) for WTeR>™
At first sight the corresponding complexity estimates are also neatly transposed in
that, for some integer r > 1,

OPS{f,W'J}
RAM{f, W1J}

(1+r+3q) OPS{f} (1.4)
(14+¢) RAM{f} . (1.5)

However, there is a crucial difference, namely, that the reverse mode requires the
ability to run the evaluation process for f step by step backward. This requirement
explains the terminology reverse mode, or top-down method, which is preferable to the
term backward differentiation, a label that invites confusion with a well-established
class of methods for the numerical solution of stiff differential equations. The “naive”

<
<

program reversal based on a full execution trace of the forward evaluation requires
temporary storage proportional to OPS{f}. Fortunately, the generation and uti-
lization of the trace data occur strictly sequentially in opposite order, so that it
makes sense to quantify this storage requirement as SAM (for Sequentially Accessed
Memory). Hence we obtain the basic bound

SAM{/,f} = O(OPS{f}) | (1.6)

where f denotes the reversal of the evaluation process for f. Because of the strictly
sequential access pattern, this potentially very large data set can be stored on external
mass storage devices. When the ratio

M} = OPS{f}/RAM{/f} (L.7)

is small or of moderate size, the proportionality relation (1.6) may not be worrisome.
This situation applies, for example, for any three-dimensional composite structure
without long-range interaction between its components (e.g., static models of build-
ings or mechanical devices and discretizations of differential operators). However,
especially on explicitly time-dependent problems, the ratio A{f} may be so large
that (1.6) represents an unacceptable increase in memory requirement. This severe
limitation of the basic reverse mode can be remedied as follows.

Rather than generating and storing the full execution trace in one piece, one
can break it into slices that are (re)generated several times from snapshots taken at
judiciously selected checkpoints. A detailed analysis of this recursive reverse mode in
[12] shows that there exists a constant ¢ such that for all integers r > 1, the reversal
costs can be limited according to

OPS{f} < r OPS{f} (1.8)
SAM{f} = ¢ RAM{f} J/a{f} . (1.9)

7

As an alternative to accepting a constant increase in the operations count and an
algebraic growth of the memory requirement with respect to h, one can also limit
both increases to order logh. In this paper we will use the algebraic option for
the program reversal, whose operations count (1.8) was already included in (1.4).
The total complexity of this reverse mode variant is therefore described by the three
equations (1.4), (1.5), and (1.9). Despite these rather tight results, the practical
reversal of a sizable program is a difficult problem, and no implementation achieving
these bounds is currently available.

The key difference between (1.4) and the earlier (1.2) is that the operations count
for the reverse mode depends on the number of dependent rather than independent
variables. In particular, one obtains gradients (where m = 1 = ¢) at a small multiple
of the cost of evaluating the underlying functions. Here, and later, we neglect the
additional SAM requirement (1.9), which grows very slowly if r is sizable (say, greater
than 5). For vector-valued functions, f, one can apply the CPR or NR approach to the
rows rather than the columns of the Jacobian J, so that their respective complexities
are determined by

p(J7) < x(JT)

It is sometimes mistakenly concluded that Jacobians also have essentially the same
complexity as the underlying vector function since each row is a gradient of the
corresponding function component. Applying (1.4) with ¢ = 1 to each component
separately, we have indeed

OPS{[. 1]} < 5%0138{]2} . (1.10)

=1

However, the sum of the right hand side can be almost m times larger than OPS{ f}, as
a result of the multiple usage of common intermediates in the simultaneous evaluation
of all function components. For example, this will be the case if m = n and f is of
the form

file) = a;xcrunch(xy, xq,...,2,),

with erunch(xz) being a computationally very expensive scalar-valued function. On
the other hand, the evaluation of any two components f;(z) and f;(2) may not in-
volve any common intermediates, so that the right-hand side of (1.10) is indeed exactly
equal to 50PS{f}. Since this can easily happen even when J is dense, one would
certainly wish to do better than applying the standard forward or reverse mode. In
fact, this case would be ideal for the more general elimination procedure described in
[14], whose optimal application is conjectured to be an NP-hard combinatorial prob-
lem. On the downside, even if greedy heuristics are used, the resulting Markowitz-like
procedure requires RAM of order OPS{ f}, which appears to be a serious drawback on
larger problems. Therefore, we introduce column- and row-splitting techniques that
sometimes yield similar reductions in the operations count without ever violating the

storage bounds (1.3) or (1.5), and (1.9).

2 (eneralizations of Partial Separability

Rather than applying computational differentiation techniques to calculate the Jaco-
bian J directly, we can first strip it of linear premultiplier and postmultipliers in order
to obtain an even sparser central part that contains all nonlinearities. For the pur-
poses of computational differentiation, the aim is to reduce the maximal number of
zeros per row or column and the chromatic number of the row- or column-intersection
graphs, which determine the cost of the forward and reverse mode, respectively. Es-
pecially for large-scale problems, one can expect that not only the Jacobian J but
especially the derivative tensor f” € R™*"*" is quite sparse. As observed in [15], any
scalar function h € C'(IR™) whose Hessian is sparse can be decomposed into a sum

h(z) = Zk:hk(ka))

where the projection P picks out the subset of components in x on which Aj depends
in a nontrivial fashion. Whenever a Hessian entry 9*h/dz;dz; vanishes identically,
each Py annihilates one of the Cartesian basis vectors e; and e; or both.

It is very important to understand that this partial separability property does not
imply that h is best evaluated by evaluating each additive term hj separately. For
example, we could have a function of the form

hi(x1,. .. xn1) = a1 crunch(xa, ..., x,-1)
ho(aa, ... x,) = crunch(xg, ..., &p-1) " Tn,
with erunch(xs, ..., x,-1) a computationally intensive and nonseparable common in-

termediate. Then h = hy + hy is partially separable because x1 and x,, do not interact
in a nonlinear fashion, so that the (1,n) and (n, 1) entries of the Hessian vanish.
However, evaluating hy and hy separately is clearly not a good idea since it would
entail computing crunch(xs, ..., x,-1) twice. Instead one should rewrite h(x) as

hz) = (1,1) H(x) with H(x) = (hi(2), ho())",
so that the gradient of h is given by
Vh(z) = (1,1) H'(x)

The Jacobian of the vector function H : R" — IR* is sparse and can therefore be
evaluated at reduced cost. More generally, we can use the following generalization of
partial separability.

2.1 Partial Function Separability and Row Splitting

We will call the vector function f partially function-separable whenever one of its
components is partially separable in the usual sense and can therefore be split into

two. The corresponding row of the Jacobian is then also split into two so that the
number of nonzeros in either of the new rows cannot be greater than the number of
nonzeros in the original row. On the other hand, unless the new rows are structurally
orthogonal, there is at least one column in which the number of nonzeros grows by
one, whereas it is nondecreasing in all others. Hence we find that row splitting is likely
to decrease the row length but increase the column length. Similarly, the number of
edges in the column-intersection graph cannot grow, whereas the number of nodes
and edges in the row-intersection graph must go up. However, the chromatic number
of the row intersection can go down, as can be seen in the following example.

Consider a vector function f : R®> — IR® whose Jacobian has a vanishing diagonal
and whose first component function is partially separable. Then the first component
can be split into two, and we obtain an vector function f : R?> — R* such that the
Jacobians J and J = f’ have the sparsity pattern

0
J=1] x
X

X o X
o X X
o
I
X X © o
X © O X
o X X o

The associated row-intersection graphs take the following simple forms:

The column-intersection graphs are both identical to the row-intersection graph of J,
so that

X)) =2 <3 =x(J)=x(JT) =x(JT)
In this example, row splitting makes no difference for the forward mode but is ben-
eficial for the CPR approach in the reverse mode. The corresponding weight matrix

WT—[l 01 0]

would be simply

0101

We will see later that the dual process of column splitting is sometimes beneficial for
the CPR approach in the forward mode.

If the row-splitting process is carried out as far as possible, one obtains a repre-
sentation of the form

flz) = Bf(z) with f:R™—=R™ and OPS{f} = OPS{f} ., (2.1

where each column of the matrix B € R™ ™ is a Cartesian basis vector. Here and
throughout the paper we consider the computational cost of merging the components

10

of f to those of f by addition as negligible. Applying the arguments given above, by
induction one finds that

p(J) < p(0) , x(D) < x(D) , p(JT) = p(JT) . (2.2)

If the first two inequalities hold strictly, it is advantageous in the forward mode first
to evaluate J and then to multiply it by B in order to obtain J = BJ. 1t is natural
to ask whether one can split off a similar linear factor on the right in order to make
the column- rather than the row-incidence graph sparser. In the next subsection, we
show how to do this by splitting independent variables, or arguments, rather than
dependent variables, or functions. First, however, we will end this subsection with an
observation that will be useful regarding the complexity of second derivatives.

For J to be nonseparable it is necessary that the nonzeros in the Hessians of
each component function ﬁ form a dense square block. Otherwise, ﬁ would still be
partially separable and could be split in at least two smaller component functions
(increasing m by one in the process). Hence we have the following lemma.

Lemma 1 [ff(:z;) :R™ — R™ is not partially function-separable, its column-intersection
graph is identical to the incidence graph G of the symmetric Hessian V2[aT f(x)] for
a generic multiplier vector u € R™.

Using the terminology of Coleman and Cai [6], we find for the path and cyclic
chromatic numbers y.(G) and yo(G)

p(J) = X(G) < xol(G) < x-(G) < X(GP) . (2.3)

Here G* is the column-intersection graph of the Hessian, which does not reflect its
symmetry. The chromatic numbers y.(G) and xo(G) determine how many gradient
evaluations are required to estimate the Hessian by differencing with direct and indi-
rect substitution, respectively. The same techniques have been applied in combination
with computational differentiation, which yields Hessian vector products without any
truncation errors. Again one may employ either the purely forward mode or a com-
bination with the reverse mode, which has a lower operations count but requires
more storage, as shown in Proposition 2 of Subsection 4.2. In any case it is possible
to obtain second-derivative information directly from the evaluation program for f,
without asking the user to supply a gradient code.

2.2 Partial Argument-Separability and Column Splitting

The row splitting described above proceeded by identifying one dependent variable
yr = fr(x) and a corresponding set of independent variables {x;},e7r that do not
interact nonlinearly in the evaluation of y,.. By not interacting nonlinearly we mean

that dyi./dx; Z 0 for all ¢« € 7 but that

My, [T[0=: = 0

€1

11

where |S| denotes the cardinality of a set S. This effect must occur in particular when
. 1s calculated as a sum of intermediate values each of which is constant with respect
to at least one x; with ¢« € Z. In the simplest case two independent variables x;, z;
and the dependent variable y; form a triplet (x;, x;,yx) that is disconnected in the
sense that at least one of the three dependencies between them and any intermediate
variable is trivial.

D) Dependents @» @

1
Q Intermediates @P .
® . . ® Independents @

Two triplets that are connected by some intermediate variable z

Similarly, there may be triplets (x;,y;, yx) consisting of one independent x; and two
dependent variables y;, y; that are disconnected in the sense that no intermediate that
depends on x; can impact both y; and y;. Then we may create a duplicate z;_1/, of
x; and replace for all intermediates that impact y, their functional dependence on x;
by exactly the same dependence on x;_y/5. For example, if exp(z;) enters into the
evaluation of y;, and sin(a;) enters into the evaluation of yj but not y; we can replace
the definition of the second intermediate by sin(z;_;/3). Thus we have increased the
number of independents by one and obtained a function

. n+1 n
Jlr, 2o, om0, Ty .y xy) 0 R - R

so that
f(z) = f(Iiz) and OPS{f} =OPS{f} ,

where I; € R D% i obtained from the (n+1) x (n+ 1) identity matrix by adding
the ¢-th and (¢ 4+ 1)-st column together. The operations count for f is the same as
that for f even if the value for x;_;/, is chosen differently from x;. This follows from
the assumed disconnectedness of the triplet (x;,y;, yx). For example, in the situation
discussed above, exp and sin are no longer necessarily evaluated at the same argument,
but the kind and number of such intrinsic functions remain exactly unchanged. Since

by the chain rule .]
J(x) = J(Lx) I; with J=(f),

we see that the 2-th column of J has indeed been split.

More generally, we will call z; separable and f partially argument-separable, if
there exists a subset of dependent variables {yi}rex such that dy./dx; £ 0 for all
k € K but each intermediate that depends on z; impacts only a proper subset of
the {yx}rex. For each of these subsets we may then make a copy of z; and redefine
the dependencies accordingly. The process of column splitting can be continued until

12

none of the independents is separable any more. The resulting decomposition has the
form

f(z) = f(Az) with f:R" = R" and OPS{f} = OPS{f} ,

where all rows of the matrix A € R™*" are Cartesian basis vectors.

Comparing the relation J = J A with (1.1), we see that column splitting is formally
the opposite process of the Jacobian compression used in the CPR approach. As exact
transposition of (2.2) we find

p(JT) < p(JT) L XY < (I L p() = p(]) (2.4)

but there is no general relationship between y (/) and x(.J). Hence one might generally
expect that column splitting improves the situation primarily for the reverse mode.
However, as discussed in the Subsection 2.4 the splitting of independents may also be
used to implement CPR with so-called multicoloring in the forward mode. But first,
let us conclude this section by looking at an ideal situation for column splitting with
regard to the reverse mode.

Consider a vector function f where each component f;. is evaluated by a separate
computation so that the ratio

) = [kzzlePS{fk}] / 0PS{f} (2.5)

is exactly equal to one. This situation occurs frequently in ordinary differential equa-
tions when the right hand side is given as a set of algebraic expressions. Suppose the
k-th of these right hand sides depends nontrivially on n; < n of the variables. Then
we can define f: R" — R™ with

by making for all component functions f; one replica of each z; that they depend on.
The resulting extended Jacobian has the form

% O | T | R 0 0 0-0
0 0 X oeeo X ceeenenn. 0 0 0-0
i e e e ‘ (2.6)
0o 0 00 covvvenns Xeeeeox 0-0
0 cernrennn 0-----0

The nonzeros in J are exactly the same as the nonvanishing entries of J, but now
only one nontrivial entry occurs in each column, so that

p(JT) = 1 = x(JT)

13

Consequently, one reverse sweep with ¢ = 1 yields J and thus its row contraction,
J. In other words, we consider each component function separately and evaluate its
gradient in the scalar reverse mode. Obviously, this ideal example has an extreme
degree of argument separability. Nevertheless, one can expect that significant savings
are still possible if many arguments can be split with respect to most of the functions.
For example, it can be seen that, if f; and f; share common intermediates only if |¢ — |
is less than some width b, then f can be defined such that p(J7) < b.

2.3 Decomposition by Tearing of Rows and Columns

One may ask whether the complete splitting described above cannot be applied even
when the ratio ¥{f} defined in (2.5) is greater than one. This will be the case if and
only if certain intermediate values are shared in the joint computation of f and must
therefore be calculated repeatedly if its components f; are evaluated separately. To
indicate that this process involves some losses in efficiency, we will refer to it as tearing
of columns or rows. To emphasize the contrast, we will sometimes refer to the row
and column splittings discussed in Subsections 2.1 and 2.2 as exzact. If each column
is torn into as many copies as it contains nonzeros, we obtain a function F with
OPS{F'}/OPS{f} = 5{f}, as defined in (2.5), and a Jacobian of the structure (2.6).
This complete column tearing of f amounts to considering each of its component as a
completely separate function, and we have J = F' A with AT = (I,...,1) € R™"",
Then the reverse mode yields £ with the operations count

OPS{IF'} < (r+4)OPS{F}
= (r+4)7{/}0P5{f}
< (r+4)p{JTYOPS{f} |

where the last inequality follows from the relation 5{f} < p{J”}, which will be
established in Lemma 3 of Section 3.3. By comparison with (1.4) for ¢ > p{JT}
we see that complete column tearing can theoretically not be worse and is likely to
have a lower operations count than the reverse NR approach applied directly to J.
Moreover, there may also be a benefit for the CPR approach in the forward mode.

In contrast to exact argument splitting, complete column tearing keeps the number
of nonzeros in all rows constant. Moreover, the column-intersection graph becomes
the union of m disconnected cliques, which contain at most p(.J) = max{ny} elements.
Hence we have

X(F') = p(F") = p(J) < x(J) .
so that in the forward CPR approach

OPS{F'I} < [1+3x(F")]OPS{F}

Y+ 3p(J)]OPS{ [}
< [p(JT) 4+ 3p(JT)p(J)OPS{ [}

14

If the gap between yx(J) and p(J) is sufficiently large, this approach may be more
efficient than straightforward CRP. However, in practice it may be hard to extract
from the evaluation program for f exactly those calculations needed to obtain one
particular dependent value y; without carrying out any unnecessary calculations. As
we will see, essentially the same operations count can be obtained by a dynamically
sparse version of the reverse mode.

The “transposed” concept of row tearing is somewhat less intuitive, and the re-
sulting vector function depends in particular on the current argument. Suppose we
define for each z; the univariate function

f;l) = f(i‘l,...,i'i_hlii,i'ﬂ-l---wfn)) (27)

where z; represents x; held constant at its current value. Let m; < m be the number
of component functions that depend nontrivially on z; in that df;/0xz; £ 0. Then we
may omit the m — m; constant components so that f{V) : R — IR™. For each i we
may theoretically evaluate and store all intermediates occurring in the evaluation of
f that do not depend on ;. These operations need not be counted in the effort for
subsequently evaluating f(), so we obtain a generally lower complexity

OPS{/W} < OPS{f}

This is exactly the complexity that would arise during differencing if f(x 4+ ce;) could
be evaluated without redoing the parts of the evaluation at the base points = that
are unaffected by the increment ¢ in x,. If each f; is fully separable (i.e., the sum of
univariate scalar functions), then the ratio

i) = éOPS{f;“}] / OPS{f} <n (2.8)

is equal to one. In the presence of joint intermediates, ¥{f} may be any number
between 1 and n. In any case we can combine the f() to the function

Fo= [(fOT, (/)T (T s R - R

where m = 3, m;. The associated Jacobian F"' has the transposed structure of (2.6),
so that now

p(F) = 1 = x(J)
Hence the forward mode yields J with the complexity
OPS{F"e} < 50PS{F}

53{/} OPS{/}
< sp{Jyops{s}

where the last inequality follows from the relation 4{f} < p(j), which will be estab-
lished in Section 3.3.

15

The superscripts were chosen such that going from f to f by row splitting and
on to I by tearing is generally beneficial for the forward mode, whereas successively
increasing the number of columns by going from f to f and F is generally beneficial
for the reverse mode. The superscripts of the corresponding ratios 4 and % can also
be memorized as representing the average size of predecessor sets and successor sets
in the computational graph, respectively. This relation is established in Subsection
3.3. In view of the Jacobian structure (2. 6), we may also refer to [and F' as hori-
zontal expansions of f. Analogously f and F may be called vertical expansions of f.
Conversely we may refer to f as horizontal and vertical contraction of fand F or f
and F respectively.

2.4 Relation to Multicoloring

It has often been observed [20] that for a partitioned vector function

r) = ;. R" — R™M*™
f() [f(z)(x)]
the partial Jacobians J() = (f(i))/ for ¢ = 1,2 may satisfy

X(J) > (D) +x(JP)

Then the CPR approach should be applied to obtain J® and J® separately, which
is more economical even if

OPS{f} ~ OPS{f9} for i=1,2

because of the presence of many common intermediates in evaluating f and f(
Formally, this can be interpreted as tearing all columns of J into two copies so that

ey FO (W) o .
F(2] T ey | o BEoR
with () and 2 duplicates of . Hence we have the representation

flx) = F(A:L') with AT =[I, 11T € R™*"

The extended Jacobian takes the form

. JO 0
- lo J@)] |

an expansion that has also been considered in [20]. Since the column-intersection
graph for J is the disconnected union of the two graphs associated with J®) and J®),
its chromatic number is given by

X(J) = max{y(JM), x(J®)}

16

Hence the CPR approach yields J and thus J at a total cost not exceeding
(S OPS{TI} + 3 (J®) OPS {70} < max{x (/™M) () HOPS{/ M} + OPS{/}]

In general, one has to split f into more than two subvectors in order to get the
individual x(J®) down to a small number. It then becomes important to ask how
the sum of the complexities OPS{f} grows with the number of parts. If there are
none or few common intermediates, it will be essentially equal to OPS{ f}; but if most
intermediates are shared by all dependents, the ratio (2.5) can grow proportionally
to the number of partitions.

For the NR approach in the forward mode, row partitioning makes no sense since
the maximal row length satisfies

p(J) = max{p(JM), p(J®)}

and therefore cannot be reduced at all.

2.5 A Binary Interaction Example

Suppose we have an unconstrained problem with an objective function of the form

f(x) = Z fi](xivxj)v

1<i<y<n

where all element functions f;; : R* — IR are nonseparable. For example, the variables
x; could represent the coordinates of atoms that are aligned along one coordinate
axis. The energy of such an arrangement is often modeled as the sum of n(n + 1)/2
pairwise interactions f;;. This situation has alos been examined in some detail as the
exponential example in [20].

Now suppose we wish to compute the gradient of f, given a computer program
for its evaluation. To illustrate the crucial role of common intermediates, we write
each f;; in the form

fij(xi,x5) = fij(prepi(x:), prepi(x;))

where ﬁj : R?* — R like f;;, and the n univariate functions prep; somehow prepare the
variables x; for their involvement in the f;;. Since m = 1 = p(J7), the reverse mode
yields the gradient of f at no more than r 4+ 4 times the operations count of f itself.
However, suppose we wish to evaluate the gradient and Hessian in the forward mode,
possibly to avoid the increase in memory requirement and interpretive overhead, or
simply because no suitable software for the reverse mode is available.

Using the obvious partial separability, we may rewrite

N

fl@) = "fa) with f(z) = (fij(2)hgicicn,

17

where eI = A is the vector of n(n 4 1)/2 ones and the ordering of the components
in f does not matter. Because any two columns of J share nonzeros in (exactly) one
row, the column intersection graph is a clique and therefore only allows the trivial
coloring with X(j) = n. Hence the CPR technique for estimating the gradient of f
via the Jacobian of f would require n full evaluations of f

To avoid this unacceptable complexity, we consider a complete column tearing,
where each contribution f;; is considered as an independent function from all the

others. Then the work ratio defined in (2.5) is given by

Si<icien |OPS{/ij} + OPS{prep:} + OPS{prep;}]
Yi<i<n OPS{prepi} + Yicicj<n OPS{fij}

(n —2) X1<icn OPS{prep:}
2199 OPS{pTGPi} + Zl§i<j§n OPS{fij}

Wi =

- 1 4+

A

If the preparatory functions are mere identities pred;(x;) = x;, then f is fully argu-
ment separable, and we have ’Ay{f} = 1. The complete tearing is still advantageous if
the preparatory functions prep; are cheap compared to the actual binary interactions
ﬁj. On the other hand, if these univariate transformations are expensive, then one
may get an n-fold increase in complexity, which amounts to the same as differencing
the gradient of each f;; separately.

One can also apply a complete row tearing to f Since each independent impacts
(n — 2) components of f the ratio ¥ defined in (2.8) is given by

21<i<n [OPS{pT@pi} + 2 OPS{fij}]

.]5 _ J
L Si<i<n OPS{prep:} + Yi<ici<n OPS{fi;}

Ticicion OPS{fis}
Y1<i<n OPS{prep:} + 21<i<i<n OPS{fi;}

The row tearing is efficient if the preparatory tfunctions prep; dominate the computa-

= 1 +

tional cost, in which case the column tearing is not so advantageous. If these costs are
significant but not dominant both tearings may result in an unacceptable complexity
for the CPR approach in the forward mode. In this particular example one may then
utilize a mixture between the two in the following way.

First one can order the components of f such that the top quarter corresponds
to element functions fi;; with 1 < ¢ < j < n/2 and the second quarter to those with
n/2 < i< j <n. Then the rows in the remaining bottom half correspond to element
functions f;; with 1 <7 <n/2 < j <n. The chromatic number of this (rn*/2) X n or
(n?—1)/2 xn matrix is 2, since the first n/2 and the last n —n/2 columns form groups
that are pairwise structurally orthogonal. Hence we can estimate the bottom part
using two function evaluations or, equivalently, Jacobian-vector products. The two

18

top quarters represent copies of the original problem with the number of independents
cut in half. Hence they can be decomposed recursively in the same way; and since
the corresponding columns are structurally orthogonal, each evaluation for the top
quarter can be combined with an evaluation for the second quarter. In this way the
whole Jacobian can be computed by using only 2log, n Jacobian-vector evaluations.

Using the method of Newsam and Ramsdell [18], one can do even better. Let s
be any n-vector whose components o; are all different from each other. Then the two
Jacobian-vector products

N

Of(x + ae +)

o) = J()[e, s] € R™~

a=0=0

completely determine j(:z;) since the nonzeros in the row corresponding to f;; form a
small vector-matrix product of the form

dfii(x + ae + Bs) B [afij afij] (1 gk)
8(0576) a=0=3 B 8:1;2»’ axj 1 o

for some index pair k # [. Since by assumption o # 0y, each 2 x 2 matrix is invertible,

and the two nonzero components of V f;; can thus be easily recovered. While uni-
formly spaced o) would be acceptable in this case, more sophisticated choices such as
roots of unity may be required to make the linear systems reasonably well conditioned
when the maximal row length is larger.

Differentiating once more, one obtains with z(«a, 8) = « + ae + s

L2 Flala B) %fw(a,m)] :(1 1) o (1)

2r. 2.
shfi(a(a,8) 5 fijlz(a, B) or o) | b aai%] L

Thus we see that all Hessians V?f;; can be computed from the n x 2 x 2 derivative
tensor of f(x + ae + (s) with respect to a and .

It is often optimistically assumed that for most square sparsity patterns, not only
the difficult to compute chromatic number itself but also a heuristically computed
coloring number lies within a factor of two of the maximal row length. It seems
unlikely that this property holds for the vertical expansions of partially separable
functions, which may have very long columns and thus highly connected intersection
graphs. Therefore we presume that the method of Newsam and Ramsdell deserves
further investigation in this context. Also, one might hope that sometimes the column
intersection graph of the transposed J is less connected, even though it is likely to
have more nodes. However, on the scalar example above, each column has exactly
n — 1 nonzero entries so that the reverse mode is not cheaper if one wishes to calculate
the whole Jacobian J. Nevertheless, it is very efficient for calculating the accumulated
gradient

or the gradient of a Lagrangian, where the vector of ones e would be replaced by a
vector of Lagrange multipliers.

3 The Evaluation Program and Its Complexity

In this third section we will describe the computational graph for a given vector func-
tion f and develop several complexity estimates at the elemental level. We will also
define the following key characteristics of f and its Jacobian J.

RAM{f} Bound on the the maximal number of live variables.
OPS{f} Sum of all elemental operations counts.

x(J) Chromatic number of the incidence graph of the generic Lagrangian.
p(J) Maximal number of independents that impact any dependent variable.
p(j) Maximal number of independents that impact any intermediate variable.
A{f} Average number of independents on which an intermediate depends.
p(JT) Maximal number of dependent variables impacted by any independent.
p(jT) Maximal number of dependent variables impacted by any intermediate.
3{f} Average number of dependents impacted by an intermediate variable.

In computational practice, a vector function f : R" — R™ is evaluated by a
sequence of scalar assignments

v; = @i(vi)iey (3.1)

where the variables v; may be real or complex. The relation ¢+ — j between integer
indices means that v; depends directly on v; because the latter is an argument of the
elementary function p; € C*. We will assume that the partial ordering induced by
this dependency relation is compatible with the natural ordering of the integers, so
that

J—or=3<t . (3.2)

Obviously there may be several such topological orderings of the computational graph
with the vertices v;. The edges are defined by the dependence relation —, and the
vertices can be labeled with the elementary function ¢;. Without loss of generality we
may require that the first n variables v; represent the independent variables and the
last m represent the dependent variables. Then the function y = f(x) can evaluated
by executing the elementary assignments (3.1) in one big loop with j ranging from
1 to o + m. Here the nonnegative integer o represents the number of intermediate
variables, which we expect to be much larger than both n and m for seriously nonlinear
problems. Thus we can combine the variables v; into the three vectors

20

r = (Vienyee. oy U-1,09) (independent)
z = (v1,0g,... V) (intermediate)

Yy = (Vog1, ... ceisVotm) (dependent)

so that x; = v;_, and yr = v,4k. The independent and dependent variables represent
the roots and leaves of the computational graph. To make partial function-separability
as defined in Subsection 2.1 a special case of partial separability in the usual sense, we
have to impose a final summation condition, which can always be achieved by minor
modifications of the graph. We state this requirement formally.

Final Summation Condition

Elementary function of the additive form

vi = i(vi)im; =D v (3.3)

must occur for all ¢+ > o but cannot occur for any j with v; — y; for some
k < m. The cost of the final summations is considered negligible.

In other words, each final elementary function must be a (possibly unary) addition,
but none of the immediate predecessors may be obtained as a sum. When a final
elementary function ¢, is multivariate and nonadditive, we may simply relabel v,
as an intermediate and use a unary summation to make copy that serves as the k-th
dependent variable. On the other hand, immediate predecessors of dependents that
are themselves obtained as sums can be eliminated by merging the two summations.
The “transposed” condition on the independent variables is that no identical copies
are made so that none of the ¢; with 2; — v; for some z; may be the identity function.

3.1 Counting Contemporaries, Ancestors, and Descendants

The v; considered here are mathematical variables rather than memory locations on
the computer. Since the storage requirement would otherwise be at least o, we must
allow that v; overwrites some v;, provided it is certain that

=k = k<y (3.4)

which means that v; can no longer occur as an argument once v; has been computed.
In the remainder we will denote by RAM{ f} an upper bound on the number of live
variables v; that must be in storage at any one time during the evaluation process.
For Fortran programs, a suitable bound can be determined at compile time since
there is no dynamic storage allocation.

21

We will use the notation
1~) Or v~ v

to indicate that v; depends on v; either directly in that ¢+ — j or indirectly through
intermediates. In graph theoretical terms 2 ~ j means that a directed path connects
the vertices v; and v;. For independent and dependent variables we will often write

T, ~r Uy and v; Yk
in lieu of ¢ ~ (j —n) or j ~ (0 + k), respectively. For all v; we may define the sets
X(vj) = {a; a2, ~ v} and Y(v;) = {yr: v~ yp} (3.5)

of independent ancestors and dependent descendants, respectively. By subsuming
constants into the definition of elementary functions and eliminating unnecessary
calculations, one can ensure that the sets X(v;) and Y(v;) are nonempty for all
intermediates. In other words, all intermediates lie on a path from an independent
to a dependent variable, so that for all 1 <j <o

r;~> v~y for some x; and y; . (3.6)

The set X(yi) contains exactly the independent variables on which y; may be
nontrivially dependent. Similarly, Y'(x;) contains exactly those dependent variables
that are nontrivially dependent on z;. Denoting by |S| the cardinality of a set S one
finds that the maximal row and column lengths of the Jacobian J are given by

P} = max|X(ye)l and p{J"} = max[Y(z)| . (3.7)

The concepts of function- and argument-separability used in Subsections 2.1 and 2.2
can now be reintroduced rigorously as follows.

3.2 Function and Argument Splitting on the Graph
Function separability

A dependent variable y; is called separable if for all 1 <5 <o
vi~ Yy = xib v, for some gz~ yp
in which case f is called partially function-separable.
This condition is equivalent to the property
vi—ye = X(v) C X(ye) (3.8)

22

where the symbol C excludes equality. Now let Xj; for [=1,..., [be a numbering
of all [distinct subsets of the form X(v;) with v; — yx. Then we can split ¥ into [
copies y; defined by

yki = >, v (3.9)

X=X (vj)

After renumbering some vertices and updating the dependencies accordingly, one has
now obtained a computational graph for a function f R" — R™ with m=m+ -1
as originally introduced in Section 2.1. From now on we will assume that f is maximal,
that is, that it has been obtained from f by performing all possible function splittings.

Argument separability

An independent variable x; is called separable if for all 1 < 5 <o
T~ v = vjbyp for some z;~yp
in which case f is called partially argument-separable.

This condition is equivalent to the property

o —v;, = Y(v)CY(x) , (3.10)
where the symbol C still excludes equality. In exact analogy to the function-separable
case discussed above we may now number [sets Y;; = Y (v;) for some v; « x; and
replace the original assignment v; = ¢;(..., -1, T4, Tig1...) by

v; = ¢j(...,wi_1,$k17$i+1,...) if 1/“ :Y(v]‘) . (311)
Whenever all 2;; = z; the values of the direct successors v; « z; as well as all later

intermediates are obviously the same. Therefore, the horizontal expansion f : R" —
IR™ defined by the new graph with 7 = n + [— 1 has the properties described in
Section 2.2. From now on we will assume that f is maximal, that is, that it has been
obtained from f by performing all possible argument splittings.

Now we can characterize the row and column lengths of the Jacobians f and f
directly in terms of the computational graph.

Lemma 2
Under the final summation condition we have for the mazimal expansions [and f

A

) = max |X(vj)| < p(J)
<j<o
A" = max V(v < p(J7)

where the X(v;) and Y(v;) are defined in (3.5).

23

Proof. Since we have assumed that all intermediates impact at least one dependent
of f, the same is true for f Excluding the possibility of accidental cancellation,
we must therefore have p{J} > |X(v;| for all 1 < j < o. Now suppose that the
gradient Vi of some component ;. of f has more nonzeros than any of the preceding
intermediates v;. Then that g is in fact separable, which contradicts the definition of
f. Thus we must have equality as asserted, and the bound by p(J) is an immediate
consequence of (3.7). The second assertion follows analogously. §

Finally, we note that the row- and column splitting processes reinforce rather
than obstruct each other. More specifically, when some independent x; is split, all
separable dependents y; maintain that property even if X (y;) contains a; and may
therefore be enlarged. Similarly, row splittings cannot reduce the number of separable
arguments, which can be used for subsequent column splittings. Hence, there must
be a function

for R = RT

such that
f(z) = Bf*(Ax) and OPS{f°} = OPS{f} .

where A € R” — R" and B € R™ — R™ as before. We can identify the previously
discussed vertical and horizontal expansions of f as

fz) = f(Az) and f(i) = Bf°(i) ,

where & € R™ is the replicated variable vector. Obviously the only difference between
the computational graphs for f, f, f¢, and the original f is in the leaves, roots and
the way the first layers of intermediates v; (with x#; — v; for some ¢) are defined
as elementary functions of the intermediates. Without ambiguity we may therefore
denote the dependents of f and f° by ¥ = (9r)1<k<m and the independents of f and
f® by & = (#i)1<i<a, respectively. The relation between these vectors and the original
independents and dependents is simply ¥ = By and & = Ax. The definition of the
first layer will be clear from the context.

Generally speaking, we can expect that the Jacobian of f° is much larger and
sparser than that of the original f. Because of (2.2) and (2.4) it is clear that the NR
approach in the forward and reverse modes is best applied to the f and f, respectively.
This is no longer true when the factors A and B are allowed to be general linear
transformations. Such further generalization is useful in cases where the evaluation
of f involves linear functionals like the average e’z of the independent or dependent
variables.

24

3.3 Elemental Complexity Assumptions

Our main restriction on the elementary functions ¢, is that the partial derivatives

g {8@/81@ if]—>Z
K 0 if A

and

o = {52%/8vﬁvk if j—i and k—i
ik = 0 it jA1 or kb

are well defined and easily evaluated at all arguments of interest. This is certainly
the case when the evaluation program is written in a standard high-level language
such as Fortran or C. Then the compiler breaks down the evaluation into a sequence
of arithmetic operations and intrinsic function calls.

For some purposes it is advantageous to view more complex computational units
as elementary building blocks. This approach has the advantage of reducing the in-
terpretive overhead and facilitates some local preaccumulation of derivatives. For ex-
ample, in the source translator ADIFOR, right-hand sides of assignments are treated
as elementary functions, whose gradients are computed by the reverse mode in the
form of compilable code. This compile-time differentiation can be easily generalized
to function and subroutines, especially if their code is tight in that it does not contain
variable dimensions or loop lengths. It has proven very efficient for the evaluation
of first derivatives. Unfortunately, the trade-offs are more complicated, if one also
wishes to compute second or higher derivatives. However, it is clear that linear or
bilinear vector-vector and matrix-vector operations should be treated as elementary
functions, since their first and higher derivatives are easy to store and manipulate,
with many of them vanishing altogether. For notational simplicity we will continue
to assume that all elementary functions are scalar valued, but we allow the number
of local independents [{i : i — j}| to be arbitrarily large.

Our key assumption is that the cost for computing the first and second derivatives
of each ¢; is no more than twice that of computing ¢; by itself, so that

OPS{p;, Vp;, Vipi} < 20PS{p;} . (3.12)

In fact, this bound is quite pessimistic, since for all linear and bilinear operations
the derivatives come virtually for free, and for most intrinsic functions the first two
derivatives are easily obtained from the function itself. For sinusoidal functions the
bound appears to be sharp, but even there sin and cos are often evaluated in pairs
anyway, in which case no extra derivative evaluations are required in theory. In
practice, such savings could be realized only if the automatic differentiation tool did
some compiler-like dependency analysis and optimization.

The temporal complexity measure OPS{} may account not only for arithmetic
operations but also for memory accesses. Naturally, we cannot distinguish the access

25

costs to different levels of the memory hierarchy and will assume exact additivity so
that (at least on a serial machine)

OPS{f} = Y OPS{p,} (3.13)

where we have again assumed that the cost of the final summations ¢,y for k =
1...m is negligible. Apart from generating the derivatives Vi, and V%, we must
also consider the cost of incorporating them into the chain rule. The elementary
operations addition and subtraction play a special role, because all first derivatives are
1 or -1 and all second derivatives vanish identically. In these cases no multiplications
are required to multiply the local gradients or Hessians by vectors or matrices. In
general, we assume that the effort of forming an inner product of the gradient Vi,
with a compatible vector, or multiplying the Hessian VZp; from the left and right
by two vectors, or incrementing a given vector by a multiple of V;, is bounded
according to

maX{OPS{(chj)Tw},OPS{uTvchjw},OPS{—l—chpj}} < 30PS{p;} , (3.14)

where the + sign indicates that adding the result to a give vector is considered an
integral part of the calculation. If a multiplication is no more expensive than an
addition, the bound is sharp for the multiplication operator v; = @;(v1,v2) = vy - va,
where (V;) 1w = vywy + v1wy and vl V2w = uywy + ugw.

Let us finally perform individual operations counts for the component functions
fr and the univariate functions f{) defined in Subsection 2.3. After discounting all
elementary functions ¢; that have no impact on a given f;, we obtain the operations
count

OPS{fc} = > OPS{p;} . (3.15)

I~k

Similarly, the (re)evaluation of f{? requires only the calculation of the elementary
functions that depend on z;, so that

OPS{f"1 = Y OPS{y,} (3.16)

where the subscript z indicates that the definition of f() depends on the “current”
point x viewed as a constant. Substituting these expressions into the definitions (2.8)

and (2.5), we obtain the following result.

Lemma 3 The complexity ratios defined in (2.5) and (2.8) satisfy
WY < plT) and A{f} < o))

26

Proof. Summing (3.15) and (3.16) over k and ¢, we obtain with Y'(v;) and X (v;) as
defined in (3.5) by changing the order of summation:

SFYOPS{f} = 3 (ZOPS{%«})

7=1 j~+k

= S V(o) OPS{p)} < p(JT)OPS{S)

J=1

where the last inequality follows from (3.7). By interchanging rows and columns we
find similarly

SFI0PS{) = 3 S OPS{p)

= 3 IX(0)| OPS{e} < p(J)OPS{f}

which completes the proof. 1

In this thirs section we have shown that there exist constant matrices B € R™*™
and A € R™ " (whose rows and columns are Cartesian basis vectors, respectively)
such that

fa) = Bf(2) = J(Azx) = Bf*(Ax)
and consequently

J(z) = BJ(z) = J(Az)A = BJ°(Az) A

Since pre- and post-multiplication by A and B involve only additions, we neglect
these costs and assume that

OPS{f} = OPS{f} = OPS{f} = OPS{/°}

and

OPS{J} < min {OPS{J}, OPS{J},0PS{J°}}.

In other words, we view J as a free by-product of any method for calculating j, J, or
J°. The same assumption will be made regarding the evaluation of second-derivative
matrices or tensors.

4 Results and Discussion

In this final section we formulate rigorous bounds on the complexity of evaluating
first and second derivatives of a vector function f in various ways. Similar bounds
have been derived repeatedly in the automatic differentiation literature (see, e.g., [16],
[17], and [4] as recent references).

27

4.1 First and Second Derivatives in the Forward Mode
Suppose the independent variables = are considered as linear functions
z(d)=ax+ 5d

of the differentiation parameter vector d € RF. We will refer to S € R"*? as the seed
matrix, which may vary from the n x n identity to a single-direction vector. Then all
intermediates v; have associated gradients and Hessians

Vsv; € RP and stvj e Rr*Pp

Starting from Vgz; = el S and Viz; = 0, one can propagate these derivatives forward
by the chain rules

VSU]‘ = Z C]‘Z'VSUZ' (41)
and
VQSU]‘ = Z [Cﬁvzsvi + VSUZ' Z Cjik(vSvk)T] . (42)

At the end one obtains the reduced gradients

. Ofr(x + Sd A
Vst = M = Vfi(x)S
ad i
and the two-sided projected Hessian
9 fr(x + Sd \
Vi = PIUESD _ groefis

Now we obtain from the elemental complexity assumptions in the preceding section
the following result.

Proposition 1 The forward propagation of first and second derivatives with respect
to p differentiation parameters can be achieved with

OPS{f,J S}
OPS{f,J S, STfISfork=1...1n}

(2 + 3p) OPS{f}

<
< [243p(p+1)]OPS{f}

operations. The corresponding memory requirement is bounded by

RAM{f,J S}
RAM{f,J S, ST f"Sfork = 1...1}

(1+p) RAM{[}

<
< (1+p)(2+p)/2RAM{f}

28

Proof. First let us note that the bounds on the randomly accessed memory reflect
the fact that the p vector Vg, and possibly also the symmetric p x p matrix Ve,
must be kept for each scalar variable v;. These gradient and Hessian objects can also
be overwritten when v; itself is overwritten by a new value.

Equation (4.1) can be interpreted as the multiplication of the row vector Vy; by
a matrix with p columns from the right. Hence the computational effort consists of
exactly p inner products between Vi, and a generally dense vector w. Thus we derive

from (3.12), (3.14) and (4.1)

[

OPS{f,JS} = Z:[OPS{c,oj,Vc,oj}—I—pOPS{(Vc,oj)Tw}] (4.3)
< Y (43p)0PS(e) = (243p)OPS{f} . (L)

Similarly we see that (4.2) requires the computation of p(p + 1)/2 inner products in
V; and exactly the same number of quadratic forms, u? V2p;w, so that by (4.2) and
again (3.14)

OPS{f,J S, STfIs k< m}

= Z_Z [OPS{% Vi, Viei} + %p(p +1) (OPS{(Vip;) w} + OPS{uTVQL,ojw})]

< Y 24 3p(p+ 1)]OPS{p;} = [243p(p + 1)]OPS{f} ,

=1
which completes the proof. 1

A key advantage of the forward mode is that no extra sequentiallly accessed storage
(SAM) is required and that sweeps of various order can be carried out simultaneously
with the function evaluation by compilable code. If J and J’ are dense, they can
be calculated from one forward sweep with p = n parameters. Alternatively, one
can use slicing to obtain the Jacobian f’ or the collection of Hessians f” over several
sweeps with S obtained from a partitioning of the identity matrix. For Jacobians the
temporal complexity is strictly additive, but for Hessians the operations count may
grow by a factor of two as a result of slicing [3]. In the constrained optimization case,
one only needs projections of the objective and constraint Hessians to the range space
of S anyway.

Even when f is neither function- nor argument-separable and J is dense, it is
quite likely that the ratio 4 defined in (2.8) is significantly smaller than n. Then the
Jacobian J could theoretically be calculated more efficiently as a contraction of the
vertically expanded Jacobian E’. The difficulty with this approach is that one can, in
general, not easily separate the calculations for (re)evaluating the various functions

29

@ by themselves. A similar effect is achieved if one performs the recursion (4.1)
with S = [and hence p = n, but with Vsv; and Viv; stored and manipulated
as sparse vectors and matrices, respectively. Since each Vgv; has at most | X (v;)]
nonzero entries, we obtain the following corollary.

Corollary 1
If the forward propagation of first and second derivatives is carried out using the
sparsity of the gradients Vsv; and Hessians V3v;, then the operations count is

OPS{f,J} < (2+435{f})OPS{f}
m} <

OPS{f,J, flfork=1... 24 35{f}p(J) + 1)]OPS{f}

and the corresponding RAM requirements are bounded as in Prop. 1 with p = p(j)

Proof. The first inequality follows by definition of 4 from (4.3) with p on the right-
hand side replaced by | X (v;)|. To prove the second inequality, we first note that the
nonzeros of each Hessian Viv; form a nonzero square submatrix of order | X (v;)],
so that on the right-hand side of (4.5) the factor p can also be replaced by | X (v;)|.
Hence we have instead

OPS{[.18.57f1S, k<m} = S[243[X(0))|(1X(0;)] +1)]OPS{s;)

< 2+33{rHe) + 1] OPS{f}

where we have used Lemma 3 to bound the second factor | X (v;)]. &

A A

Since ¥ < p(J) < x(J), it is clear that the sparse forward mode yields the lowest
operations count followed by NR where we may choose p = p(j) and CPR with
p > X(j) However, the NR and CPR methods may actually have a lower run-time,
since on most computing platforms, vectors of fixed length p can be accessed and
manipulated much faster than dynamically sparse vectors with a comparable number
of nonzeros on average. In comparing the NR and CPR methods, we have so far
ignored the fact that the former scheme requires the solution of 1 linear Vandermonde
systems. According to [11] this adds

> 2.5m
k=1

A

X(@e))? < 25mp(J)?

floating-point operations to complexity. As pointed out in [18], the conditioning of
these linear systems can be improved by defining the Vandermonde matrix S using
only X(j) distinct real abscissas or defining them as complex roots of unity if the
chromatic number is still too large. In the latter case, since all Vgv; are complex,
the arithmetic cost exactly doubles, because no complex multiplications or divisions

are required.

30

4.2 First Derivatives in the Reverse Mode

In this subsection we first consider the complexity bounds for evaluating first deriva-
tives in the reverse mode. Given the weight matrix W7 € IR?*", we may associate
with each intermediate variable v; the adjoint vector

dy

oWy T
=W = cR? , (4.5)
av]‘ av]'

AWUJ‘ =

where all vy with v; % v, are held constant with respect to the differentiation. It is
well known that the A"v; satisfy the backward recurrence

AWUJ‘ = Z Clj vak 5 (46)

Vj UL

which can be executed only if the elementary partials ¢x; = d¢y/0x; can be provided
in reverse order, namely, for k = 0,0 —1,...,1. As we have mentioned in Subsection
1.3, it was shown in [12] that this program reversal can be performed at the computa-
tional costs (1.8) and (1.9) for some integer r, which determines a trade-off between
temporal and spatial complexity. At the end of the reverse computation one obtains
the adjoint vectors

The complexity of this reverse sweep is bounded by the following result

Proposition 2
The reverse differentiation of the q functions WTf : R" — R? with respect to the
expanded independents & can be achieved at the costs

OPS{f,W'J} < (r+1+43q)OPS{f}
RAM{f,W"J} < (1+q¢RAM{f}

SAM{f,W"J} < cRAM{f}/h{f} .
where h{f} = OPS{f}/RAM{f} as before.

Proof. The RAM requirement follows from the need to store an adjoint g¢-vector
AW, for each variable that is live during the reverse sweep. Using the third inequality
implicit in (3.14), we find that the backward propagation of the ¢ vectors A%v;
according to (4.6) requires also no more than 3¢ OPS{p;} operations per intermediate
node. Together with the cost for evaluating V; and that for reversing the program
as described in [12], this yields the operations count as well as the SAM requirement.

If one wishes to obtain the whole Jacobian J in order to compute J = A J, one
may use the NR approach with ¢ = p(JT) and W a Vandermonde matrix or the

31

CPR approach with ¢ < y(J7) and W a 0 — 1 matrix. Similarly, one can also
employ a dynamically sparse reverse mode with W = [for which ¢ is effectively
replaced by ¥{f} as defined (2.5). The advantages and disadvantages of these three
alternatives are essentially the same as in the forward mode. Again the operations
count is highest for CPR and lowest for the dynamically sparse procedure, which
does, however, involve more overhead. The NR approach may again suffer from poor
conditioning unless the matrix W is chosen carefully, possibly using a coloring or
complex roots of unity.

4.3 Combinations of Forward and Reverse Sweeps

In Proposition 1 we have shown that the full second-derivative tensor, f”, and thus
its contraction, f”, can be obtained at a complexity that grows quadratically with
p= p(j) orp = X(j), depending on whether one uses the NR or CPR approach. It is
interesting to note that, if one were to use CPR in the forward mode to evaluate the
gradient of a scalar function f and then to use directional derivatives of this vector
function V f in an indirect substitution method as described and analyzed in [6], then

by (2.3) the complexity would be proportional to OPS{f} times

(Gxo(G) = H(G) = (),

where (& is the incidence graph of VZf, which coincides by Lemma 1 with the column-
intersection graph of the expanded Jacobian J. Consequently, even indirect substi-
tution on a gradient that is evaluated in the forward mode is likely to be less efficient
than the calculation of the Hessian by differentiating f twice in the forward mode.
Even lower complexities can be achieved if the forward and reverse modes are com-
bined (see, for example, [5]). By combining Propositions 1 and 2 we obtain our final
result.

Corollary 2
With f: IR"™ — R™ as before, u € R™ a vector of Lagrange multipliers, and S € R"*?
the one-sided projection

ViL(2)S = Y VS
=1
can be calculated as the complexity

OPS{V?L(x) S} (44 7)(2+3p)OPS{[f}
RAM{V2L(xz) S} 2(1 4+ p)RAM{ [}

SAM{V2L(z)S} < e(1+p)RAM{fIVR{f}

where ¢ may be larger by a factor of 3 compared with Proposition 2.

32

Proof. This result can be achieved by first evaluating the vector function g(x) =
J(2)S: R" — RP. According to Proposition 1 the forward mode yields these values
with an operations count no greater than (2 + 3p)OPS{f} and a RAM requirement
no greater than (1 + p)RAM{f}. Hence the ratio between the operations count and
the RAM requirement grows by a factor less than 3. Applying Proposition 2 to this
calculation with W = u and ¢ = 1, we pick up another factor of r+4 for the operations
count, a factor of 2 for the RAM requirement, and a factor less than (1 + p)v/3 for
the SAM requirement. 1

Since the number n of independents does not occur in the bounds of Corollary 2, we
see that the complexity of the one-sided projected Hessian of the Lagrangian depends
only on the degrees of freedom p = n — m in a constrained optimization problem.
It also appears that the cheapest way of obtaining the two-sided projection is to
multiply the one-sided projection by S. Further cost reductions might be achievable
if one exploits sparsity of V2LS. The columns of S must span the null-space of .J and
are often defined on the basis of an LU or QR factorization of J. It would appear
that these choices may be far from optimal regarding the sparsity of VZLS, since they
tend to introduce dense rows into S and consequently V2LS. This question deserves
further investigation.

5 Summary and Conclusion

In this paper we have shown how function separability and the new concept of argu-
ment separability can be exploited to yield first and second derivatives by the forward
or reverse mode of computational differentiation with surprisingly low complexity.

The ideal case of function separability is that of a partially separable objective
function f, whose gradient and Hessian can be obtained in the forward mode at a
complexity of p(j) and pz(j), respectively. Here p(j) represents the maximal number
of variables that are truly intertwined in a nonlinear fashion during the evaluation
of f. The ideal case of argument separability is that of a vector function f, whose
components f;. are evaluated completely separately from each other. Then one may
apply the reverse mode to the horizontal expansion f and obtain the full Jacobian
J = J A at no more than five times the cost of evaluating f itself. It is likely
that substantial savings can be realized in mixed cases, but the implementation in a
computational differentiation tool is a nontrivial task.

Rather than just considering additive decompositions with 0-1 matrices A and
B, one can generalize the separability concepts, so that arbitrary linear pre-factors
B and post-factors A are removed from the given vector functions to facilitate more
efficient differentiation on the remaining nonlinear part.

33

Acknowledgments

The author had the benefit of extended discussions with Jorge Moré and Brett
Averick, and he is greatly indebted to Christian Bischof and Paul Plassmann for
their careful reading of the first draft.

References

1]

[4]

[5]

[6]

7]

[3]

[9]

[10]

B. M. Averick, J. J. Morg, C. H. BiscHor, A. CARLE, AND A.
GRIEWANK, Computing large sparse Jacobian matrices using automatic differen-
tiation, Preprint MCS-P348-0193, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, Illinois, 1993.

C. Biscunor, A. CARLE, G. CoRLISS, A. GRIEWANK, AND P. HOVLAND,
ADIFOR: Generating derivative codes from Fortran programs, Scientific Pro-
gramming, 1 (1992), pp. 1-29.

C. Biscuor, G. CoRrLiss, AND A. GRIEWANK, Computing second- and higher-
order derivatives through univariate Taylor series, Preprint MCS-P296-0392,
Mathematics and Computer Science Division, Argonne National Laboratory, Ar-
gonne, Illinois, 1992.

B. CHRISTIANSON, Automatic Hessians by reverse accumulation, IMA J. of Nu-
merical Analysis, 12 (1992) pp. 135-150 .

B. CHRISTIANSON, Reverse accumulation and accurate rounding error estimates
for Taylor series coefficients, Optimization Methods and Software, 1 (1992),
pp- 81-94.

T. F. CoLEMAN AND JIN-Y1 CAlL, The cyclic coloring problem and estimation
of sparse Hessain matrices, SIAM J. Alg. Disc. Meth., 7 (1986), pp. 221-235.

T. F. COLEMAN, B. S. GARBOW, AND J. J. MORE, Fortran subroutines for
estimating sparse Jacobian matrices, ACM Trans. Math. Software, 10 (1984),
pp- 346-347.

——, Software for estimating sparse Jacobian matrices, ACM Trans. Math. Soft-
ware, 10 (1984), pp. 329-345.

T. F. COLEMAN AND J. J. MORE, Estimation of sparse Jacobian matrices and
graph coloring problems, STAM J. Numer. Anal., 20 (1983), pp. 187-209.

A. R. Curtis, M. J. D. POWELL, AND J. K. REID, On the estimation of
sparse Jacobian matrices, J. Inst. Math. Appl., 13 (1974), pp. 117-119.

34

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

G. H. GoruB, AND C. F. VAN LoAN, Matriz Computations, second edition,
The Johns Hopkins University Press, Baltimore (1988)

A. GRIEWANK, Achieving logarithmic growth of temporal and spatial complex-
ity in reverse automatic differentiation, Optimization Methods and Software, 1

(1992), pp. 35-54.

A. GRIEWANK AND G. F. CORLISS, eds., Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application, STAM, Philadelphia, 1991.

A. GRIEWANK AND S. REESE, On the calculation of Jacobian matrices by the
Markowitz rule, in Automatic Differentiation of Algorithms: Theory, Im-
plementation, and Application (A. Griewank and G. Corliss, eds.), SIAM,
Philadelphia, 1991, pp. 126-135.

A. GRIEWANK AND Pu.L. TOINT On the unconstrained optimization of par-
tially separable objective functions, in Nonlinear Optimization 1981 (M. J.
D. Powell, ed.), Academic Press, London, 1981, pp. 301-312.

MasAo IRr1, History of automatic differentiation and rounding estimation, in
Automatic Differentiation of Algorithms: Theory, Implementation, and Appli-
cation, A. Griewank and G. Corliss, eds., STAM, Philadelphia, 1991, pp. 1-16

R. D. NEIDINGER, An efficient method for the numerical evaluation of partial
derivatives of arbitrary order, ACM Trans. Math. Software, 18(1992), pp. 159-
173 .

G. N. NEWSAM AND J. D. RAMSDELL, Estimation of sparse Jacobian matrices,
SIAM J. Alg. Disc. Meth., 4 (1983), pp. 404417 .

L. B. RALL, Automatic Differentiation: Techniques and Applications, Lecture
Notes in Computer Science, Vol. 120, Springer-Verlag, Berlin, 1981.

TROND STEIHAUG AND A. K. M. SHAHADAT HOSSAIN, Graph coloring and
the estimation of sparse Jacobian matrices using row and column partitioning,
Report 72, Department of Informatics, University of Bergen, 1992.

STEPHEN A. VAVASIS, Nonlinear Optimization, Complexity Issues, Oxford Uni-
versity Press, Oxford, 1991.

35

