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AbstractMost asymptotic convergence analysis of interior-point algorithms for monotonelinear complementarity problems assumes that the problem is nondegenerate, that is,the solution set contains a strictly complementary solution. We investigate the behaviorof these algorithms when this assumption is removed.1 IntroductionIn the monotone linear complementarity problem (LCP), we seek a vector pair (x; y) 2IRn � IRn that satis�es the conditionsy = Mx+ q; x � 0; y � 0; xTy = 0; (1)where q 2 IRn, and M 2 IRn�n is positive semide�nite. We use S to denote the solution setof (1).An assumption that is frequently made in order to prove superlinear convergence ofinterior-point algorithms for (1) is the nondegeneracy assumption:Assumption 1 There is an (x�; y�) 2 S such that x�i + y�i > 0 for all i = 1; � � � ; n.In general, we can de�ne three subsets B, N , and J of the index set f1; � � � ; ng byB = fi = 1; � � � ; n jx�i > 0 for at least one (x�; y�) 2 Sg;N = fi = 1; � � � ; n j y�i > 0 for at least one (x�; y�) 2 Sg; (2)J = fi = 1; � � � ; n jx�i = y�i = 0 for all (x�; y�) 2 Sg:It is well known that B, N , and J form a partition of f1; � � � ; ng. Another useful result isthe following.�Systems and Industrial Engineering Department, University of Arizona, Tucson, AZ 85721. The work ofthis author was based on research supported by the National Science Foundation under grant DDM-9109404and the O�ce of Naval Research under grant N00014-93-1-0234.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, IL 60439. The work of this author was based on research supported by the O�ce of Scienti�cComputing, U.S. Department of Energy, under Contract W-31-109-Eng-38.1



Lemma 1.1 There is an (x�; y�) 2 S such that x�i > 0 for all i 2 B and y�i > 0 for alli 2 N .Proof. Choose jBj+ jN j members (xi; yi) of S (where j � j denotes set cardinality) withthe property that xii > 0 for i 2 B and yii > 0 for i 2 N . De�ne(x�; y�) = 1jBj+ jN j Xi2B[N(xi; yi):Since (xi)Tyj = (xj)Tyi = 0 for any two solutions (xi; yi) and (xj; yj) of (1), it is easy tocheck that y� =Mx� + q and (x�)Ty� = 0. Moreover, x�i > 0 for all i 2 B and y�i > 0 for alli 2 N , giving the result.Assumption 1 can be restated simply as J = ;.An infeasible-interior-point algorithm solves (1) by generating a sequence of strictly pos-itive iterates f(xk; yk)g, k = 0; 1; 2; � � �, while aiming to satisfy the two equality relationshipsin (1) in the limit as k !1. Feasible interior-point algorithms require all iterates to satisfyyk = Mxk + q in addition to strict positivity (xk; yk) > 0.This paper starts with general results about infeasible-interior-point algorithms. In ourpresentation, \Q-superlinear convergence" always means Q-superlinear convergence of thecomplementarity gap (xk)Tyk to 0. In Section 2, we de�ne the broad class of infeasiblealgorithms considered in this paper and show that no algorithm of this class can achieveQ-superlinear convergence when J 6= ;. Ye and Anstreicher [10] presented a trivial LCP forwhich J 6= ; and observed that no feasible algorithm whose steps approach the primal-duala�ne scaling directions can converge superlinearly for this example. Our result generalizesYe and Anstreicher's observation to all instances of problem (1) for which J 6= ; and to abroader class of algorithms that includes many infeasible algorithms.Section 3 proposes a scheme for estimating the index sets B, N , and J and shows thata �nite termination scheme based on these estimates eventually yields an exact solution of(1). The results of this section generalizes the results obtained in Ye [9] for linear programsto the context of degenerate monotone LCPs.Feasible algorithms in which the step vectors asymptotically converge to the primal-duala�ne scaling direction are discussed in Section 4. In this case, we are able to prove strongerresults about the asymptotic behavior of the steps (�xk;�yk) and to derive formulae for thelinear rate of convergence of the complementarity gap in terms of the current iterate and thecurrent stepsize.In Section 5, we analyze the two-step linear rate of convergence of the predictor-correctoralgorithm. We show that this rate is linear with a constant of at most 1 � c=Q1=4, whereQ � minfjJ j; n�jJ jg and c is not too small. This result shows that if jJ j contains only a fewindices, or it contains all but a few indices, then we can expect a linear rate of convergencethat is not too slow.The following notation is used throughout the paper. Superscripts on matrices andvectors and subscripts on index sets and scalars denote iteration indices (usually k), whilesubscripts on matrices and vectors de�ne components. The subvector xB denotes [xi]i2B,2



while the submatrix MBN is [Mij]i2B;j2N. Subvectors and submatrices corresponding toother index sets are de�ned likewise. We use �k to denote the normalized complementaritygap �k = (xk)Tyk=n. If w 2 IRn then diag (w) denotes the diagonal matrix having thecomponents of w as diagonal entries. The matricesXk and Y k are de�ned as Xk = diag (xk)and Y k = diag (yk). If u and v are two vectors of the same length and � 2 IR, then uv denotesthe vector whose i-the component is uivi and u� denotes the vector whose i-th componentis u�i . The vector (1; � � � ; 1)T , regardless of its dimension, is denoted by e. For any vector x,the notation x+ is used for the vector whose i-th component is max(xi; 0). Unless otherwisespeci�ed, k � k denotes k � k2. If f�kg and f�kg are two positive sequences, we say �k = O(�k)if lim supk �k=�k <1 and �k = o(�k) if limk �k=�k = 0. The distance function to the solutionset S is de�ned as dist((x; y);S) = min(�x;�y)2S k(�x; �y)� (x; y)k:2 Infeasible Algorithms: Local ConvergenceIn this section we largely restrict ourselves to discussing interior-point algorithms that �tthe following framework, which we refer to as the standard framework.(a) For all k � 0 we have (xk; yk) > 0 andk(xk; yk)k1 � Cb; (3)for some constant Cb > 0.(b) There is a �
 2 (0; 1) such thatxki yki � �
�k for all i = 1; � � � ; n and k � 0. (4)(c) The step has the form (xk+1; yk+1) = (xk; yk) + �k(�xk;�yk) with �k 2 (0; 1]. Thesearch direction (�xk;�yk) satis�es the equation" M �IY k Xk # " �xk�yk # = " rk�xkyk + �k�ke # ; (5)where rk = yk �Mxk � q denotes the residual vector and �k 2 [0; 1] is the centeringparameter.(d) There are constants � and �� such that 0 � � � �� and�kr0k�0 � krkk�k � ��kr0k�0 : (6)3



For feasible interior-point algorithms, we have rk = 0, k = 0; 1; � � �, and so (d) is triviallysatis�ed.Infeasible-interior-point algorithms that �t the standard framework include those ofZhang [11] and Wright [7]. This framework is broad enough to include most algorithms thathave been proposed to date, including path-following and predictor-corrector algorithms (see,for example, Zhang [11] and Ji, Potra, and Huang [2]). Many algorithms use a central-pathneighborhood di�erent from (4); we use (4) partly because these alternative neighborhoodsare usually subsets of our neighborhood when �
 is chosen su�ciently small.We note that the analysis of most algorithms does not require Assumption 1 to holdin order to prove global linear convergence or polynomial complexity. It is usually neededonly to obtain a local convergence rate that is faster than the global rate (which is usuallyQ-linear or two-step Q-linear).The following observation (see Zhang [11, Proposition 3.3]) will be needed in subsequentresults. If we de�ne �0 = 1; �k � k�1Yj=0(1� �j); 8k > 0;then, rk = �kr0; 8k � 0: (7)The �rst few results of this section give upper and lower bounds on the components xkiand yki and their ratios. In Lemma 2.1, we show that (3) can be a consequence of otherfrequently-made assumptions.Lemma 2.1 If either(a) � > 0 or(b) there is a strictly feasible point for (1), and the sequence f�kg is bounded,then (3) holds.Proof. For case (a), our proof uses techniques similar to those of Mizuno [4, Lemma 3.3],Potra [6, Lemma 4.1], and Wright [8, Lemma 3.2]. Given any point (�x; �y) with (�x; �y) � 0,�y = M �x+ q, and the starting point (x0; y0), we haveM(�kx0 + (1 � �k)�x� xk)= �kMx0 + (1 � �k)M �x�Mxk= �k(y0 � q � r0) + (1� �k)(�y � q)� (yk � q � rk)= �ky0 + (1� �k)�y � yk:Hence, by positive semide�niteness of M , we have0 � (�kx0 + (1� �k)�x� xk)T (�ky0 + (1 � �k)�y � yk):4



Rearranging this expression, we obtain�k(x0Tyk + xkTy0) (8)� �2kx0Ty0 + xkTyk + �k(1� �k)(x0T �y + �xTy0) + (1� �k)2�xT �y � (1� �k)(�xTyk + xkT �y):Since (�x; �y) � 0, (xk; yk) � 0, and (1 � �k) � 0, the last term on the right-hand sideis nonnegative, so we can drop it without a�ecting the inequality. Also, we can choose(�x; �y) 2 S to ensure �xT �y = 0, and after some manipulation (8) becomesx0Tyk + xkTy0 � �kx0Ty0 + n�k�k + (x0T �y + �xTy0)� x0Ty0 + n�0� + (x0T �y + �xTy0);where the second inequality follows from (6). If we de�neCb = maxi=1;���;n ( 1min(x0i ; y0i ) "n�0  1 + 1�!+ (x0T �y + �xTy0)#) ;then (3) follows.For (b), we choose (�x; �y) to be a strictly feasible point, so that (�x; �y) > 0. By rearranging(8), we obtain(1� �k)(�xTyk + xkT �y) (9)� �2kx0Ty0 + xkTyk + �k(1� �k)(x0T �y + �xTy0) + (1� �k)2�xT �y � �k(x0Tyk + xkTy0):Again, the �nal term is nonnegative, so we can drop it without altering the inequality. Wealso use �k 2 [0; 1] and 1� �k � 1� �1 = �0 > 0; 8k > 0 (10)to write �xTyk + xkT �y � 1�0 (x0Ty0 + xkTyk) + x0T �y + �xTy0 + �xT �y:Boundedness of xkTyk can now be used to obtain (3).Our next result gives bounds on components of xkB and ykN .Lemma 2.2 There is a positive constant C1 such that for all k � 0,i 2 B ) yki � C1�k; xki � �
=C1; (11)i 2 N ) xki � C1�k; yki � �
=C1: (12)5



Proof. Again, we choose (�x; �y) in (8) to be a solution of (1) for which �xi > 0 for i 2 Band �yi > 0 for i 2 N . From (9) we have(1 � �k)(�xTyk + xkT �y)� �2kx0Ty0 + xkTyk + �k(1 � �k)(x0T �y + �xTy0)� �k(x0Tyk + xkTy0):Dropping the (nonnegative) �nal term on the right-hand side and using �k 2 [0; 1], we have(1 � �k)(�xTyk + xkT �y) � �kn�0 + n�k + �k(1� �k)(x0T �y + �xTy0): (13)Using (10), (13), and (6), we can write�xTyk + xkT �y � 1�0 (�kn�0 + n�k) + �k(x0T �y + �xTy0)� 1�0 (n���k + n�k) + ���0�k(x0T �y + �xTy0)� �C1�k;where �C1 is de�ned in an obvious way. The upper bounds on xkN and ykB follow when wede�ne C1 = �C1max  maxi2B 1�xi ; maxi2N 1�yi! :To prove the remaining inequalities, we use (4). Taking i 2 B, we havexki yki � �
�k ) xki � �
�kyki � �
�kC1�k = �
C1 :The lower bound on yki , i 2 N , is proved analogously.The following consequence of a result of Mangasarian and Shiau [3] bounds the distanceto the solution set in terms of �k.Lemma 2.3 There is a positive constant C2 such that for all k � 0,dist((xk; yk);S) � C2�1=2k : (14)Proof. From Mangasarian and Shiau [3, Theorem 2.7], there exist positive constants C2aand C2b such thatmin�x j (�x;M�x+q)2S k�x� xkk1 (15)� C2a8>><>>:
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2 + 24(xk)T (Mxk + q) + C2b 




" �Mxk � q�xk #+




2351=29>>=>>; :6



In our case, Mxk + q = yk � rk and (xk; yk) > 0, so by (6),f(xk)T (Mxk + q)ig+ � j(xk)T (Mxk + q)j � (xk)Tyk + kxkkkrkk �  n + Cb��kr0k�0 !�k;k(�Mxk � q)+k = k(rk � yk)+k � krk+k � krkk � Cb��kr0k�0 �k;k(�xk)+k = 0:Substitution of these inequalities into (15) indicates thatmin�x j (�x;M �x+q)2S k�x� xkk1 = O(�1=2k + �k): (16)Now dist((xk; yk);S) = min(�x;�y)2S 




" �x� xk�y � yk #




= min�x j (�x;M�x+q)2S 




" �x� xk(M �x+ q)� (Mxk + q + rk) #




� min�x j (�x;M�x+q)2S(1 + kMk)k�x� xkk+ krkk� (1 + kMk)pn min�x j (�x;M �x+q)2S k�x� xkk1 + ��kr0k�k=�0= O(�1=2k + �k);giving the result.The next two results give bounds on the ratios of components of xk to components of yk.Lemma 2.4 If C2 is the constant from Lemma 2.3, then for all k � 0,�
C2�1=2k � xki � C2�1=2k ; �
C2�1=2k � yki � C2�1=2k ; 8i 2 J; (17)and �
C22 � xkiyki � C22�
 8i 2 J: (18)Proof. We prove the bounds (17) only for xki , i 2 J , since the results for yki are similar.Since x�i = y�i = 0 for all i 2 J , we havexki = xki � x�i � dist((xk; yk);S) � C2�1=2k ;which gives the upper bounds. For the lower bounds, we use (4) to writexki � �
�kyki � �
�kC2�1=2k = �
C2�1=2k :The bounds (18) follow immediately from (17).7



Lemma 2.5 If C1 is the constant from Lemma 2.2, then for all k � 0,xkiyki � C21�
 �k; 8i 2 N; (19)ykixki � C21�
 �k; 8i 2 B: (20)(21)Proof. The proof follows immediately from (11) and (12).It is possible to prove global linear convergence and polynomial complexity for a numberof algorithms that �t the standard framework without assuming nondegeneracy (see, forexample, Zhang [11], Wright [7], and Ji, Potra, and Huang [2]). However, Assumption 1 isused to prove Q-superlinear convergence in Ye and Anstreicher [10], Ji, Potra, and Huang[2], and Wright [7]. We are therefore led to pose the question, Is nondegeneracy necessary forsuperlinear convergence? The following two results resolve this question in the a�rmative.Theorem 2.6 Suppose that J 6= ;. Then there is a constant � > 0 such that �k+1=�k � �for all k su�ciently large.Proof. Suppose for contradiction that there is an in�nite subsequence K such that �k+1 =o(�k) for k 2 K. Taking any index i 2 J , we have from (17) that0 < xk+1i � C2�1=2k+1 = o(�1=2k );0 < yk+1i � C2�1=2k+1 = o(�1=2k ):Now xk+1i = xki + �k�xki ) �k�xki = �xki + xk+1i = �xki + o(�1=2k )and, similarly, �k�yki = �yki + o(�1=2k ):From (5), we haveyki�xki + xki�yki = �xki yki + �k�k) yki (�k�xki ) + xki (�k�yki ) = ��kxki yki + �k�k�k) �2xki yki + o(�1=2k )xki + o(�1=2k )yki = ��kxki yki + �k�k�k:If we divide this last expression by xki yki , we obtain�2 + o(�1=2k )xki + o(�1=2k )yki = ��k + �k�k �kxki yki ;and using the lower bound in (17) for xki and yki , we conclude that2� �k = ��k�k �kxki yki + o(1) � ��k�k=n + o(1):8



If we take the limit for k 2 K, k !1, 2� �k is bounded below by 1, while the right-handside of the above inequality will eventually be less than any positive constant. This gives acontradiction, and therefore we cannot have �k+1 = o(�k).Corollary 2.7 When the assumptions of Theorem 2.6 hold, the sequence f�kg cannot exhibit`-step superlinear convergence to zero, for any integer ` � 1.Proof. The proof follows from �k+`=�k � �` for all su�ciently large k.As well as precluding Q-superlinear convergence of infeasible-interior-point algorithmssuch as the one in Wright [7], Corollary 2.7 shows that 2-step superlinear convergence isnot possible for predictor-corrector algorithms such as the one in Ji, Potra, and Huang [2]applied to degenerate problems.3 Infeasible Algorithms: Finite TerminationIn this section, we propose a technique for estimating the index sets B, N , and J and forperforming a projection from the current iterate onto the solution set S. We prove that�nite termination can be achieved from any su�ciently advanced iterate (that is, when k issu�ciently large). The projection scheme is similar to that of Ye [9] for linear programming.In the interests of generality, we make a number of assumptions on the iterates (xk; yk)themselves, rather than on the algorithm used to generate them. This strategy allows theanalysis of this section to be applied to algorithms such as the one in [8], in addition toalgorithms that fall within the standard framework of Section 2.We require the following bounds to be satis�ed for all su�ciently large k:i 2 J ) 1C3 � xkiyki � C3; 0 < xki � C2�1=2k ; 0 < yki � C2�1=2k ; (22a)i 2 B ) 0 < ykixki � C4�k; xki � C5; (22b)i 2 N ) 0 < xkiyki � C4�k; yki � C5; (22c)k(xk; yk)k � Cb; (22d)krkk�k � ��kr0k�0 ; (22e)limk �k = 0; (22f)where C3, C4, C5, Cb, and �� are positive constants with C3 > 1 and C4 > 1.9



The inequalities (22a), (22b), and (22c) immediately suggest a scheme for estimating B,N , and J . We de�ne estimates Bk, Nk, and Jk byBk = (i ����� ykixki � min(1=2; �1=2k )) ;Nk = (i ����� xkiyki � min(1=2; �1=2k )) ;Jk = f1; 2; � � � ; ngn(Bk [Nk):Lemma 3.1 For all k su�ciently large, we haveBk = B; Nk = N; Jk = J:Proof. Choose a positive integer K1 such that for k � K1 the bounds (22) hold and, inaddition, �k < min(1=(2C24 ); 1=C23 ):Then i 2 B ) ykixki � C4�k � (C4�1=2k )�1=2k � �1=2k ;and, since C4 > 1, i 2 B ) ykixki � C4�k � 1=(2C4) < 1=2:Therefore i 2 Bk. Similar logic shows that i 2 N ) i 2 Nk for k � K1. For i 2 J , we havexkiyki � 1C3 > �1=2k ) i =2 Nk;while ykixki � 1C3 > �1=2k ) i =2 Bk:Therefore i 2 Jk, and the proof is complete.On later iterations, when the index set estimates Bk, Nk, and Jk have stopped 
uctuatingfrom one iteration to the next, the following projection subproblem can be solved in anattempt to �nd an exact solution to (1). The problem is an equality-constrained quadraticprogram and hence is easier to solve than the original LCP.Problem P (k): minxBk ;yNk 12kxBk � xkBkk2 + 12kyNk � ykNkk2subject to 0 = MBk;BkxBk + qBk ;0 = MJk ;BkxBk + qJk ;yNk = MNk ;BkxBk + qNk:10



Let (�xkBk; �ykNk) denote the optimal solution of this problem. A candidate solution (�xk; �yk) of(1) is obtained by setting�xki = ( (�xBk)i i 2 Bk0 otherwise ; �yki = ( (�yNk)i i 2 Nk0 otherwise : (23)Theorem 3.2 For all k su�ciently large, the solution of Problem P (k) and the construction(23) yield a solution of (1).Proof. Assume that k is large enough that the bounds (22) and the result of Lemma 3.1hold. (We can subsequently refer to Bk, Nk, and Jk as B, N , and J without confusion.) Forany (x�; y�) 2 S, we have that (x�B; y�N) satis�es the equality constraints in Problem P (k),so the feasible set for P (k) is nontrivial. Using a change of variable~xkB = xB � xkB; ~ykN = yN � ykN ;we can reformulate P (k) as min~xkB ;~ykN 12k~xBk2 + 12k~yNk2; (24)subject to �MB;B~xkB = qB +MB;BxkB;�MJ;B~xkB = qJ +MJ;BxkB; (25)~ykN �MN;B~xkB = qN +MN;BxkB � ykN :Since the constraints (25) are consistent, Ho�man's lemma [1] implies that there is a sequenceof vector pairs f(~xkB; ~ykN )g such that (~xkB; ~ykN ) is feasible for (25) and
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1CA : (26)Since (�xkB � xkB; �ykN � ykN ) is optimal for problem (24){(25), we have




" �xkB � xkB�ykN � ykN #
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" ~xkB~ykN #




 : (27)Now, using the bounds (22), we obtain
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= krkk+O(kxkNk+ kxkJk+ kykBk+ kykJk)= O(�1=2k ): (28)11



It follows from (26){(28) that there is a constant C8 > 0 such thatk�xkB � xkBk � C8�1=2k ; k�ykN � ykNk � C8�1=2k :Hence, we have �xkB � xkB � C8�1=2k e � C5e� C8�1=2k e;�ykN � ykN � C8�1=2k e � C5e� C8�1=2k e;and for k su�ciently large, we conclude that (�xkB; �ykN) > 0. The construction (23) then yieldsa vector pair (�xk; �yk) that solves (1).4 Feasible AlgorithmsIn this section we consider only feasible algorithms (rk � 0) in which all iterates lie in therelative interior of the feasible region. Condition (6) of the standard framework of Section 2becomes redundant. Theorem 2.6 shows that no algorithm from this framework can convergesuperlinearly when J 6= ;. Hence, the best we can hope to show is that the algorithm has alinear rate of convergence that is not too slow. Speci�cally, if we de�ne� 4= lim supk!1 xk+1Tyk+1xkTyk = lim supk!1 �k+1�k ; (29)then we hope that the value � 2 (0; 1) is not too close to 1.The main result of this section | Theorem 4.1 | assumes that �k converges to 0 andgives a formula for the linear rate of convergence in terms of just the current iterate and thecurrent step size.Theorem 4.1 Assume that rk = 0 for all k � 0 and limk!1 �k = 0. Then � de�ned by(29) satis�es � = lim supk!1 241� �k + �2k xkJTykJ4xkTyk35 : (30)The proof of this theorem is postponed until we have proved several preliminary results.Note that if �k converges to 1, then the rate of convergence becomes simply� = lim supk!1 24 xkJ TykJ4xkTyk35 � 14 :This expression indicates a reasonably fast linear convergence rate, but we have not beenable to design an algorithm that achieves this rate since it is di�cult to enforce the conditionlimk!1 �k = 1.We now derive lower and upper bounds on the linear rate of convergence. The followingresult is a consequence of Theorem 4.1. 12



Corollary 4.2 Assume that rk = 0 for all k � 0 and limk!1 �k = 0. If lim infk!1 �k = ��,then 1 � ��+ 14 ��2L � lim supk!1 xk+1Tyk+1xkTyk � 1 � �� + 14 ��2U; (31)where L = �
 jJ jn ; U = �
 jJ jn + (1� �
) < 1:Proof. Using relation (4), we can easily show thatL � xkJ TykJxkTyk � U: (32)Hence, lim supk!1 xk+1Tyk+1xkTyk � lim supk!1 �1 � �k + 14�2kU� = 1� ��+ 14 ��2U;where the last equality follows because the quadratic 1��+(U=4)�2 is decreasing on [0; 1].We have therefore proved the second inequality of (31); the �rst inequality follows by asimilar argument.We now concentrate our e�orts on the proof of Theorem 4.1.Lemma 4.3 Let a 2 IRp++, b 2 IRp++, and z 2 IRp be given. Let H � IR2p be a subspace withthe property that (u; v) 2 H ) uTv � 0: (33)Then, the relations au+ bv = z; (u; v) 2 H; (34)have at most one solution (u; v).Proof. Assume for contradiction that (u1; v1) 2 IR2p and (u2; v2) 2 IR2p are two solutionsof (34). We have (u1 � u2; v1 � v2) 2 H since H is a subspace. Therefore, in view of (33),we have (u1 � u2)T (v1 � v2) � 0: (35)On the other hand, we obtain a (u1 � u2) + b (v1 � v2) = 0; (36)which in turn impliesv1 � v2 = �b�1a (u1 � u2); u1 � u2 = �a�1b (v1 � v2):Combining these relations with relation (35), we obtain�k(b�1a)1=2(u1 � u2)k � 0; �k(a�1b)1=2(v1 � v2)k � 0:It follows from these last two inequalities that u1 = u2 and v1 = v2, so our result is proved.13



Lemma 4.4 There hold �xkN = O(�k); �ykB = O(�k); (37)�xkJ = O(�1=2k ); �ykJ = O(�1=2k ); (38)�xkB = O(�1=2k + �k); �ykN = O(�1=2k + �k): (39)Proof. The proof is a modi�cation of earlier results of Ye and Anstreicher [10] and Wright[7, 8]. For completeness, we include it in the appendix.Lemma 4.5 Assume that rk = 0 for all k � 0 and limk!1 �k = 0. Theni 2 J ) limk!1 �xkixki = �12 ; limk!1 �ykiyki = �12 :Proof. It follows from Lemmas 2.4 and 4.4 that the sequence f((xkJ)�1�xkJ ; (ykJ)�1�ykJ)gis bounded. Let (wx; wy) be an accumulation point of this sequence, so that there is anin�nite subsequence K withlimk2K((xkJ)�1�xkJ ; (ykJ)�1�ykJ) = (wx; wy): (40)By further restriction of K if necessary, we use Lemmas 2.4 and 4.4 again to deduce thatthere are vector pairs (lx; ly) and (�x; �y) such thatlimk2K 1�1=2k (xkJ ; ykJ) = (lx; ly) > 0; (41)and limk2K 1�1=2k (�xkJ;�ykJ) = (�x; �y): (42)By using Lemma 4.4, the fact that limk!1 �k = 0, and the relationsxkJ�ykJ + ykJ�xkJ = �k�ke� xkJykJ ;�yk �M�xk = 0;we can easily verify that lx�y + ly�x = �lxly; (43)I:J�y �M:J�x 2 Range[I:N;�M:B]: (44)Let (�x; �y) be an arbitrary solution of (1). Then, we have0 = yk �Mxk � q= yk �Mxk � (�y �M �x)= (yk � �y)�M(xk � �x):14



This relation and the fact that �xJ[N = 0 and �yB[J = 0 then implyI:B ykB�1=2k + I:J ykJ�1=2k �M:J xkJ�1=2k �M:N xkN�1=2k 2 Range[I:N ;�M:B]: (45)It follows from Lemma 2.2 that the �rst and fourth terms in the left-hand side of relation(45) converge to 0, so we obtainI:Jly �M:J lx 2 Range[I:N;�M:B]: (46)It is easy to verify that the subspace H of the vectors (u; v) 2 IR2jJ j satisfying relation (46)(with (lx; ly) replaced by (u; v)) has the property expressed by relation (33). Hence, byLemma 4.3, the system de�ned by (43) and (44) has at most one solution. From (46), it isclear that (�x; �y) = �12(lx; ly)solves (43) and (44) and is therefore the unique solution. Hence, from (40), (41), and (42),we obtain (wx; wy) = ((lx)�1�x; (ly)�1�y) = �12(e; e):Since every accumulation point of f((xkJ)�1�xkJ; (ykJ)�1�ykJ)g is equal to �12(e; e), the resultfollows.We are now in a position to give the proof of Theorem 4.1.Proof of Theorem 4.1. From the standard framework of Section 2, it is straightforward tosee that xk+1Tyk+1xkTyk = 1� �k + �k�k + �2k�xkT�ykxkTyk : (47)Observe that relation (30), and therefore Theorem 4.1, follows immediately from (47) oncewe show that �xkT�ykxkTyk = xkJ TykJ4xkTyk + o(1): (48)To show (48), de�ne tkx = (xkJ)�1�xkJ � 12e; tky = (ykJ)�1�ykJ � 12e: (49)By Lemma 4.5, we know that tkx = o(1) and tky = o(1). Using (49), we have�xki�yki = xki yki [ 12 + (tkx)i ] [ 12 + (tky)i ] = xki yki4 [1 + qki ]; (50)where qki � 2 [ (tkx)i + (tky)i + 2(tkx)i(tky)i ] = o(1): (51)15



From (50), we obtain�xkJT�ykJxkTyk = xkJ TykJ4xkTyk +Xi2J qki xki yki4xkTyk = xkJTykJ4xkTyk + o(1): (52)By using Lemma 4.4, we can easily verify that�xkBT�ykBxkTyk = o(1); �xkNT�ykNxkTyk = o(1): (53)Relation (48) now follows by combining (52) and (53).5 Convergence of the Predictor-Corrector AlgorithmIn this section we use the results of the preceding section to analyze the two-step linear rateof convergence of the predictor corrector algorithm (see, for example, [2], [5], and [10]) whenapplied to degenerate LCPs. We show that this rate is less than or equal to 1�c=Q1=4 whereQ � minfjJ j; n� jJ jg and c is a positive constant that is not too small. This result showsthat if jJ j contains only a few indices, or all but a few indices, then we can attain a linearrate of convergence that is not too slow.Although the predictor-corrector algorithm �ts the standard framework of Section 2(and can be described accordingly by letting predictor steps be taken at even values of kand corrector steps at odd values), it is more convenient to use the description below, whichclosely follows [2]. For a given constant � 2 (0; 1), de�neN (�) � f(x; y) � 0 j y = Mx+ q; kXy � �ek � ��g;where, as earlier, � � xTy=n. For (x; y) > 0 with y = Mx+ q, the following system de�nesa direction (�x;�y) which is used in the description of the predictor-corrector algorithm:M�x��y = 0; (54a)y�x+ x�y = ��e� xy; (54b)where � 2 [0; 1].Predictor-Corrector Algorithm: Let the constants � 2 (0; 1=4] and � 2 (0; �], and astrictly feasible solution (x0; y0) 2 N (�) be given. Set k = 0, and go to step 1.(1) Compute the predictor step (�xk;�yk) by solving system (54) with (x; y) = (xk; yk)and �k = 0.(2) Compute the step size �k > 0 by�k � maxf� 2 [0; 1] j (xk + ~��xk; yk + ~��yk) 2 N (� + � ); 8~� 2 [0; �]g;and set (x̂k; ŷk) � (xk; yk) + �k(�xk;�yk).16



(3) Compute the corrector step (�x̂k;�ŷk) by solving system (54) with (x; y) = (x̂k; ŷk)and �k = 1.(4) Compute the new iterate as(xk+1; yk+1) = (x̂k; ŷk) + (�x̂k;�ŷk):Set k = k + 1, and go to step 1.We now state several properties of the predictor-corrector algorithm. The main propertiesof the centering steps are given by the following result.Lemma 5.1 Let �̂k � (x̂k)T ŷk=n for all k � 0. The following statements hold for everyk � 0:(a) k�x̂k�ŷkk � ��̂k;(b) (�x̂k)T�ŷk � �̂k=8;(c) (xk+1; yk+1) = (x̂k; ŷk) + (�x̂k;�ŷk) 2 N (�);(d) (xk+1)Tyk+1 = (x̂k +�x̂k)T (ŷk +�ŷk) � [1 + 1=(8n)] (x̂k)T ŷk.Proof. Statements (a) and (c) follows from arguments similar to the ones used in Lemma2.3 of Ji, Potra, and Huang [2], while (b) and (d) are based on Lemma 3.1 of [2].As a consequence of Lemma 5.1, we have the following result.Corollary 5.2 For all k � 0, we have(xk+1)Tyk+1xkTyk � �1 + 18n� 1 � �k + �2k (�xk)T�ykxkTyk ! : (55)Proof. The result follows immediately from Lemma 5.1(d) and the fact that(x̂k)T ŷk = (xk + �k�xk)T (yk + �k�yk) = (1 � �k)xkTyk + �2k(�xk)T�yk:For the predictor steps, we have the following result.Lemma 5.3 The following statements hold for every k � 0:(a) k�xk�ykk � (xk)Tyk=2;(b) (�xk)T�yk � (xk)Tyk=4; 17



(c) The step size �k satis�es �k � ��n�1=2and �k � 21 +q1 + 4kzkk=� ; (56)where zk � 1�k  �xk�yk � (�xk)T�ykn e! ; (57)(d) If � � 1=(16n), then xk+1Tyk+1xkTyk �  1 � p�2pn! = 1 �O(1=pn): (58)For a proof of Lemma 5.3, we refer the reader to Lemma 3.1, Lemma 3.2, and Theorem3.1 of Ji, Potra and Huang [2] and Lemma 2.2 of Ye and Anstreicher [10].It is well known that Lemma 5.3(d) implies polynomial convergence of the predictor-corrector algorithm. Our �nal goal | stated in the next theorem | is to provide an upperbound on the ratio of successive elements of the sequence f(xk)Tykg which is sharper thanthe one implied by relation (58).Theorem 5.4 Assume that � � 1=(8n) and 0 < jJ j < n. Then,lim supk!1 xk+1Tyk+1xkTyk � 1 � (�=2)1=22Q1=4 ; (59)where Q � (n� jJ j)jJ jn � minfjJ j; n� jJ jg:The proof of Theorem 5.4 is postponed until we have proved the following preliminaryresult.Lemma 5.5 Assume that n � 2. For all k su�ciently large, we havekzkk � Q1=2=2: (60)Proof. De�ne wk 2 IRn as wk = 0B@ wkBwkNwkJ 1CA � 0B@ 00xkJskJ 1CA :18



Using Lemmas 4.4 and 4.5, we can easily verify thatk�kzkk = 




�xk�yk � (�xk)T�ykn e




 = 14 




wk � (xkJ)TykJn e




+ o(�k): (61)Since (xk; yk) 2 N (�), a simple argument shows that




xkJykJ � (xkJ)TykJjJ j e




 � kxkJykJ � �kek � ��k:Also, (xkJ)TykJ � (1 + �)jJ j�k;so we obtain




wk � (xkJ)TykJn e




2= 




xkJykJ � (xkJ)TykJn e




2 + (n� jJ j) (xkJ)TykJn !2= 




xkJykJ � (xkJ)TykJjJ j e




2 + 




(xkJ )TykJjJ j e� (xkJ)TykJn e




2 + (n� jJ j) (xkJ )TykJn !2� (��k)2 + (n� jJ j)2n2jJ j (xkJTykJ)2 + (n� jJ j) (xkJ)TykJn !2= (��k)2 + n � jJ jnjJ j (xkJTykJ)2� (��k)2 + n � jJ jnjJ j jJ j2(1 + �)2�2k� �2k(1 + �)2 "�2 + (n� jJ j)jJ jn #� �2k(1 + �)2 h�2 +Qi :Hence, for all k su�ciently large, we have from (61) thatk�kzkk � �k (1 + �)4 h�2 +Qi1=2 + o(�k) � �k (1 + �)4 h� +Q1=2i � �k2 Q1=2;where the last inequality follows from the fact that � � 1=4 and Q1=2 � 1=p2.We are now in a position to give the proof of Theorem 5.4.Proof of Theorem 5.4. Using relations (56) and (60), we obtain�k � 21 +q1 + 2Q1=2=� � 22q2Q1=2=� = q�=2Q1=4 ; (62)19



where the second inequality can easily be veri�ed by using � � 1=4 and Q1=2 � 1=p2. Usingrelations (55), (62), and Lemma (5.3)(b), we conclude that for all k su�ciently large, wehave xk+1Tyk+1xkTyk � �1 + 18n��1� �k2 �2� �1 + 18n � �k2 ��1� �k2 �� �1 � �k2 ��  1� (�=2)1=22Q1=4 !where the third inequality follows from (62) and the fact that � � 1=(8n) and Q1=2 � n.A AppendixWe prove Lemma 4.4 for the infeasible case rk 6= 0, although a proof for the feasible casewould su�ce for the purposes of Section 4. Before doing do, we prove some useful auxiliaryresults. First, we recall a result due to Ye and Anstreicher [10].Lemma A.1 Let M be a positive semi-de�nite matrix, and partition M asM =  MPP MPQMQP MQQ ! ;where the pair of index sets P � f1; � � � ; ng and Q � f1; � � � ; ng forms a nontrivial partitionof f1; � � � ; ng. Then Range MPP MPQ0 I ! = Range MTPP MTQP0 �I !As a consequence of Lemma A.1, we obtain the following result which will be explicitlyused in the proof of Lemma 4.4.Lemma A.2 There holdsRange MBB MBJ MBN0 0 I ! = Range MTBB MTJB MTNB0 0 �I ! : (63)Proof. Applying Lemma A.1 with P = B [ J and Q = N , we obtainRange0B@ MBB MBJ MBNMJB MJJ MJN0 0 I 1CA = Range0B@ MTBB MTJB MTNBMTBJ MTJJ MTNJ0 0 �I 1CA ;20



which in turn immediately implies (63).The following lemma is similar to Lemma 3.5 of Ye and Anstreicher [10] and Lemma 5.2of Wright [7]. For this proof and the proof of Lemma 4.4, we drop the iteration index kon matrices and vectors for clarity, and de�ne the diagonal matrix D = X�1=2Y 1=2. (Theprincipal submatrices DN and DB are de�ned in an obvious way.)Lemma A.3 The vector pair (�xB;�yN) is the unique solution of the convex quadraticprogramming problemmin(w;z) 12kDBwk2 � �k�keTX�1B w + 12kD�1N zk2 � �k�keTY �1N z; (64)subject to MBBw = rB �MBJ�xJ �MBN�xN +�yB;MJBw = rJ �MJJ�xJ �MJN�xN +�yJ ; (65)MNBw � z = rN �MNJ�xJ �MNN�xN :Proof. By the Karush-Kuhn-Tucker conditions, a candidate solution (w; z) is optimal ifit is feasible with respect to (65) and, in addition, D2Bw � �k�kX�1B eD�2N z � �k�kY �1N e ! 2 Range MTBB MTJB MTNB0 0 �I ! : (66)We prove the result by showing that (�xB;�yN) satis�es this condition. Clearly, (�xB;�yN)is feasible with respect to (65). Using (5), we haveD2B�xB � �k�kX�1B e= �yB ��yB= �yB � (MBB�xB � rB +MBN�xN +MBJ�xJ)= �MBB(xB +�xB)�MBN(xN +�xN)�MBJ(xJ +�xJ);and D�2N �yN � �k�kY �1N e = �(xN +�xN):Therefore,  D2Bw � �k�kX�1B eD�2N z � �k�kY �1N e ! 2 Range MBB MBJ MBN0 0 I ! : (67)From relations (63) and (67), it follows that (�xB;�yN) satis�es (66).We are now in a position to give the proof of Lemma 4.4.Proof of Lemma 4.4. First, we show thatkD�xk = O(�1=2k ); kD�1�yk = O(�1=2k ): (68)21



We introduce vector pairs (û; v̂) and (�u; �v) that satisfy" M �IY X # " û̂v # = " r0 # ; (69a)" M �IY X # " �u�v # = " 0�xy + �k�ke # ; (69b)so that (�x;�y) = (û; v̂) + (�u; �v):It follows exactly as in [8, Lemma 3.3] thatkD�uk = O(�1=2k ); kD�1�vk = O(�1=2k ): (70)If we use (6) and the boundedness assumption (3), minor modi�cations to the proof of [8,Lemma 3.4] can be used to showkDûk = O(�1=2k ); kD�1v̂k = O(�1=2k ): (71)The relations (68) follow from (70) and (71).We now prove (37) for �xN (the proof for �yB is similar). Taking i 2 N , we have from(68) and (19) that������yixi�1=2�xi����� � kD�xk = O(�1=2k )) j�xij �  xiyi!1=2O(�1=2k ) �  C21�
 �k!1=2O(�1=2k ) = O(�k);as required.To prove (38), we observe from (68) and (18) that for i 2 J , we have������yixi�1=2�xi����� = O(�1=2k )) j�xij =  xiyi!1=2O(�1=2k ) = O(�1=2k );as required. The proof for �yJ is identical.For the remaining inequality (39), we use the result of Lemma A.3. Since the feasible setfor (65) is nonempty, there is a feasible vector pair ( �w; �z) such thatk( �w; �z)k = O(krk) +O(k�xJk+ k�xNk+ k�yJk+ k�yBk)= O(�1=2k );where the last equality follows from (6), (37), and (38). The remainder of the proof followsby using identical logic to that of Lemma 5.3 of Wright [7], so we omit the details.22
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