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Abstract
Most asymptotic convergence analysis of interior-point algorithms for monotone
linear complementarity problems assumes that the problem is nondegenerate, that is,
the solution set contains a strictly complementary solution. We investigate the behavior
of these algorithms when this assumption is removed.

1 Introduction

In the monotone linear complementarity problem (LCP), we seek a vector pair (z,y) €
IR™ x R™ that satisfies the conditions

y= Mz +q, x>0, y >0, ey =0, (1)
where ¢ € R", and M € R"™" is positive semidefinite. We use S to denote the solution set

of (1).
An assumption that is frequently made in order to prove superlinear convergence of
interior-point algorithms for (1) is the nondegeneracy assumption:

Assumption 1 There is an (a*,y*) € S such that ¥ +y >0 foralli =1,---,n.

In general, we can define three subsets B, N, and J of the index set {1, - ,n} by
B = {i=1,---,n|a > 0for at least one (z*,y*) € S},
N = {i=1,---,n|y] > 0for at least one (z*,y*) € S}, (2)
J = {i=1,---,n|al =y =0forall (a*,y*) € S}.

It is well known that B, N, and J form a partition of {1,---,n}. Another useful result is
the following.
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Lemma 1.1 There is an (2*,y*) € S such that @ > 0 for all ¢ € B and y; > 0 for all
1€ N.

Proof. Choose |B|+ |N| members (z°,y") of S (where | - | denotes set cardinality) with
the property that @i > 0 for 2 € B and y! > 0 for i € N. Define

(xay)—7|B|+|N| > (2 yh).

1€ BUN

Since (z')Ty’ = (27)Ty" = 0 for any two solutions (z',y') and (27,y’) of (1), it is easy to
check that y* = Mz* + ¢ and (z*)Ty* = 0. Moreover, 27 > 0 for all 7 € B and y; > 0 for all
t € N, giving the result. [

Assumption 1 can be restated simply as J = ().

An infeasible-interior-point algorithm solves (1) by generating a sequence of strictly pos-
itive iterates {(z*,y*)}, £ = 0,1,2,- - -, while aiming to satisfy the two equality relationships
in (1) in the limit as & — oo. Feasible interior-point algorithms require all iterates to satisfy
y* = Mz* + ¢ in addition to strict positivity (z*,y*) > 0.

This paper starts with general results about infeasible-interior-point algorithms. In our
presentation, “Q-superlinear convergence” always means (Q-superlinear convergence of the
complementarity gap (2*)7y* to 0. In Section 2, we define the broad class of infeasible
algorithms considered in this paper and show that no algorithm of this class can achieve
Q-superlinear convergence when J # (). Ye and Anstreicher [10] presented a trivial LCP for
which J # () and observed that no feasible algorithm whose steps approach the primal-dual
affine scaling directions can converge superlinearly for this example. Our result generalizes
Ye and Anstreicher’s observation to all instances of problem (1) for which J # § and to a
broader class of algorithms that includes many infeasible algorithms.

Section 3 proposes a scheme for estimating the index sets B, N, and J and shows that
a finite termination scheme based on these estimates eventually yields an exact solution of
(1). The results of this section generalizes the results obtained in Ye [9] for linear programs
to the context of degenerate monotone LCPs.

Feasible algorithms in which the step vectors asymptotically converge to the primal-dual
affine scaling direction are discussed in Section 4. In this case, we are able to prove stronger
results about the asymptotic behavior of the steps (Az*, Ay*) and to derive formulae for the
linear rate of convergence of the complementarity gap in terms of the current iterate and the
current stepsize.

In Section 5, we analyze the two-step linear rate of convergence of the predictor-corrector
algorithm. We show that this rate is linear with a constant of at most 1 — ¢/Q"'/*, where
@ < min{|J|,n—|J|} and ¢ is not too small. This result shows that if |./| contains only a few
indices, or it contains all but a few indices, then we can expect a linear rate of convergence
that is not too slow.

The following notation is used throughout the paper. Superscripts on matrices and
vectors and subscripts on index sets and scalars denote iteration indices (usually k), while
subscripts on matrices and vectors define components. The subvector g denotes [z]iep,



while the submatrix Mpn is [Mjlicp jen. Subvectors and submatrices corresponding to
other index sets are defined likewise. We use pj to denote the normalized complementarity
gap pp = (2¥)Ty*/n. If w € R”™ then diag(w) denotes the diagonal matrix having the
components of w as diagonal entries. The matrices X* and Y* are defined as X* = diag (z*)
and Y* = diag (y*). If u and v are two vectors of the same length and v € IR, then uv denotes
the vector whose ¢-the component is u;v; and u” denotes the vector whose -th component
is u¥. The vector (1,---,1)T, regardless of its dimension, is denoted by e. For any vector =,
the notation x4 is used for the vector whose i-th component is max(x;,0). Unless otherwise
specified, || - || denotes || - |[2. If {6x} and {e;} are two positive sequences, we say 6, = O(¢x)
if lim supy 6x/€x < 0o and &, = o(e) if limy 6x /e, = 0. The distance function to the solution
set S is defined as

dist((x,y),8) = min_[|(2.5) — (a,9)]].

(z,9)eS

2 Infeasible Algorithms: Local Convergence

In this section we largely restrict ourselves to discussing interior-point algorithms that fit
the following framework, which we refer to as the standard framework.

(a) For all k > 0 we have (z*,y*) > 0 and

12", ") loo < G, (3)
for some constant Cy > 0.
(b) There is a 5 € (0,1) such that
eyt > A forall:=1,---,n and k£ > 0. (4)

(c) The step has the form ("1 y**1) = (2% y*) + an(Ax* Ay*) with a; € (0,1]. The
search direction (Az*, Ay*) satisfies the equation

M -1 AzF B rk 5
Yk Xk Ayk - _l'kyk‘l‘o'k,uke ) ( )

= y* — M2* — ¢ denotes the residual vector and o € [0,1] is the centering
parameter.

where rF

(d) There are constants p and p such that 0 < p < p and
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For feasible interior-point algorithms, we have r* = 0, & = 0,1,---, and so (d) is trivially
satisfied.

Infeasible-interior-point algorithms that fit the standard framework include those of
Zhang [11] and Wright [7]. This framework is broad enough to include most algorithms that
have been proposed to date, including path-following and predictor-corrector algorithms (see,
for example, Zhang [11] and Ji, Potra, and Huang [2]). Many algorithms use a central-path
neighborhood different from (4); we use (4) partly because these alternative neighborhoods
are usually subsets of our neighborhood when % is chosen sufficiently small.

We note that the analysis of most algorithms does not require Assumption 1 to hold
in order to prove global linear convergence or polynomial complexity. It is usually needed
only to obtain a local convergence rate that is faster than the global rate (which is usually
Q-linear or two-step Q-linear).

The following observation (see Zhang [11, Proposition 3.3]) will be needed in subsequent

results. If we define -

vo =1, v = H(l—ozj), Vk >0,
7=0
then,
P = vpr?, vk > 0. (7)

k
7

and y¥ and their ratios. In Lemma 2.1, we show that (3) can be a consequence of other

The first few results of this section give upper and lower bounds on the components x

frequently-made assumptions.
Lemma 2.1 [f either
(a) p>0 or
(b) there is a strictly feasible point for (1), and the sequence {uy} is bounded,

then (3) holds.

Proof. For case (a), our proof uses techniques similar to those of Mizuno [4, Lemma 3.3],
Potra [6, Lemma 4.1], and Wright [8, Lemma 3.2]. Given any point (z,y) with (z,y) > 0,
y = Mz + ¢, and the starting point (2, y"), we have

M(vpa® + (1 — )z — l’k)
= Mz + (1 —v)Mz — Mz"
= n(y’ —q=")+ (I -w)H—q) — (" —g—1")
= vy’ + (1 - )y —y".

Hence, by positive semidefiniteness of M, we have

0< (vpa®+ (1 — vz — ") (vy® + (1 — wi)y — y*).



Rearranging this expression, we obtain

T
Vk($0Tyk+$k yO) (8)
< szOTyO + :L'kTyk + (1 — l/k)(:szng + 27y + (1 — )2y — (1 — ) (@ y" + :L'kng).
Since (z,7) > 0, (¥, y*) > 0, and (1 — ) > 0, the last term on the right-hand side

is nonnegative, so we can drop it without affecting the inequality. Also, we can choose
(z,1) € S to ensure 7y = 0, and after some manipulation (8) becomes

T T T k T
20 yk-l-:lik yo < yo_l_n/lj__l_(xo y_l_xTyO)
&
T T
< of y0+n%+($0 g+ 'y,

where the second inequality follows from (6). If we define

1 1 T_ _T
Ch = P {miﬂ(l'?vy?) [nuo (1 * E) tatgte yO)] } 7

then (3) follows.
For (b), we choose (Z,y) to be a strictly feasible point, so that (z,y) > 0. By rearranging
(8), we obtain

_ T_
(1 —w)(@'y" + 2" 9) (9)
T T T_ _ _T_ T T
< vy Yy (=) (% g+ 20 + (1= )2y — v 2t y0).

Again, the final term is nonnegative, so we can drop it without altering the inequality. We
also use vy, € [0, 1] and

l—vpy>1—vy =ag >0, Yk >0 (10)
to write .
T T
i,Tyk 4 ogh j < a—(xOTy0+xk yk) —I—:I:Ong—l—:f:TyO—l—:Y:ng.
0
Boundedness of :L'kTyk can now be used to obtain (3). [

Our next result gives bounds on components of = and y%,.
Lemma 2.2 There is a positive constant Cy such that for all k > 0,
i€B = yF<Cuyn,  2b=25/0y (11)
ieN = ol <Oy, yf 279/Ch (12)



Proof. Again, we choose (Z,y) in (8) to be a solution of (1) for which #; > 0 for ¢ € B
and y; > 0 for i € N. From (9) we have

_ T_
(1 —we)(@'y" + 2" g)
T o T
< 2y My (1 - ) (@ g+ 7 T0) — (2 4 a0,
Dropping the (nonnegative) final term on the right-hand side and using vy € [0, 1], we have

_ T o
(1 — ) (@Ty" + 2% §) < vinpo + nps + vi(1 — ) (2% 5 + 274°). (13)

Using (10), (13), and (6), we can write

_ T_ 1 T
Tyt ety < —(mnpo +np) +v(z” g+ 3y°)
0
1 _ p of- | -T. 0
< —(nppk +npk) + —pr(z” g+ 27y
Ofo Ho
S Cl,uk,

where (] is defined in an obvious way. The upper bounds on z% and y% follow when we

define

€B x; EN Yy,

- 1 1
(| = (; max (maX —, max —) )
To prove the remaining inequalities, we use (4). Taking ¢ € B, we have
THE o Tk

Eok o~ = 2 gl
Y Z Ve = T 2 T 2 ==
yf C1Mk Cl

The lower bound on y¥, i € N, is proved analogously. [
The following consequence of a result of Mangasarian and Shiau [3] bounds the distance
to the solution set in terms of .

Lemma 2.3 There is a positive constant Cy such that for all k > 0,
dist((+*,4").8) < Cop” (14)

Proof. From Mangasarian and Shiau [3, Theorem 2.7], there exist positive constants Cs,
and C'yp such that

min H:Z'—:l;kHOO (15)
z|(z,Mz+q)eS

(M (M2* + q) Mk g 1/2
< Oy —MaF —q + [(@F) T (Ma" + ¢q) + Co [ ok ]
—at 4y +1la



In our case, Mz" + ¢ = y* — r* and (2*,y*) > 0, so by (6),

. r?
(A O+ )} < (1 400 £ G+ 1A < (04 ool

0
M — _ E ok < k1| < ||k <07HTOH
[(=Ma" —q)4|[ = |77 =y | < [IPE I < P < Cop ool
[(=2")4 ]| = 0.
Substitution of these inequalities into (15) indicates that
. _ k 1/2
kL = , 1
sjemin M= 2l = O™ + pr) (16)
Now
"
dist((2",y"),8) = min [:1;—:1; ]
(( Y ) ) (79)ES 7 _yk
= min -t
T z@Mitges ||| (MZ +q) — (MaF + ¢+ 1)
< L emin (L+[IMD]z — |+ [
z|(z,Mz+q)eS
< (14 ||M i & — 2| o + p||7°
S IV min el Al
= O + ),
giving the result. [

The next two results give bounds on the ratios of components of z* to components of y*.

Lemma 2.4 [f Cy is the constant from Lemma 2.3, then for all k > 0,

TP <ab <o Ll <yt <o’ viel, (17)
02 CQ
and ) . ,
v Z; 2 .
— <= < — Vee J 18
gy 8
Proof. We prove the bounds (17) only for %, 7 € J, since the results for y¥ are similar.

Since xf =y =0 for all « € J, we have

ef = of — a7 < dist((2",9"),S) < Czui/za

which gives the upper bounds. For the lower bounds, we use (4) to write

ks JEE S TR T g
T e ialend.

The bounds (18) follow immediately from (17). [

7



Lemma 2.5 [f Cy is the constant from Lemma 2.2, then for all k > 0,

e
<Ly, VieN, (19)
Y v
P
Yo, VieB. (20)
Ty v
(21)
Proof. The proof follows immediately from (11) and (12). [

It is possible to prove global linear convergence and polynomial complexity for a number
of algorithms that fit the standard framework without assuming nondegeneracy (see, for
example, Zhang [11], Wright [7], and Ji, Potra, and Huang [2]). However, Assumption 1 is
used to prove Q-superlinear convergence in Ye and Anstreicher [10], Ji, Potra, and Huang
[2], and Wright [7]. We are therefore led to pose the question, Is nondegeneracy necessary for
superlinear convergence? The following two results resolve this question in the affirmative.

Theorem 2.6 Suppose that J # (). Then there is a constant € > 0 such that pgy,/pr > €
for all k sufficiently large.

Proof. Suppose for contradiction that there is an infinite subsequence K such that ;4 =
o(py) for k € K. Taking any index ¢ € J, we have from (17) that
1/2 1/2
0 <zt < C2ﬂki1 = o(m*),

0 <yl < Camly = o).

7 g

Now
:L'f"'l = :L'f + ozkA:L'f = ozkA:L'f = —:L'f + :L'f"'l = —:L'f + o(ﬂi/z)
and, similarly,
arAyk = —yF +o(u?).

From (5), we have

?JfAl'f + foyf = —J?fyf + ok g
= yM(epAct) + 2 AyF) = —apatyf + oragu
= —228yF 4 o(u) )2t + ol * )yt = —anatyE + oranu.

If we divide this last expression by zfy¥, we obtain

1/2 1/2
o o
o4 (/;12 )—I- (le ): — o+ opon /:kw

7 7 T

and using the lower bound in (17) for #¥ and y¥, we conclude that

2—ap = _Ukak% +o(l) < —oka/n + o(1).

T



It we take the limit for k£ € K, k — 00, 2 — «;, is bounded below by 1, while the right-hand
side of the above inequality will eventually be less than any positive constant. This gives a
contradiction, and therefore we cannot have pp11 = o). [

Corollary 2.7 When the assumptions of Theorem 2.6 hold, the sequence {uy} cannot exhibit
(-step superlinear convergence to zero, for any integer £ > 1.

Proof. The proof follows from pgie/px > € for all sufficiently large k. [

As well as precluding Q-superlinear convergence of infeasible-interior-point algorithms
such as the one in Wright [7], Corollary 2.7 shows that 2-step superlinear convergence is
not possible for predictor-corrector algorithms such as the one in Ji, Potra, and Huang [2]
applied to degenerate problems.

3 Infeasible Algorithms: Finite Termination

In this section, we propose a technique for estimating the index sets B, N, and J and for
performing a projection from the current iterate onto the solution set S. We prove that
finite termination can be achieved from any sufficiently advanced iterate (that is, when k is
sufficiently large). The projection scheme is similar to that of Ye [9] for linear programming.

In the interests of generality, we make a number of assumptions on the iterates (z*,y¥)
themselves, rather than on the algorithm used to generate them. This strategy allows the
analysis of this section to be applied to algorithms such as the one in [8], in addition to
algorithms that fall within the standard framework of Section 2.

We require the following bounds to be satisfied for all sufficiently large k:

1 k
ieJ = ng—ggcg, 0<2b<Cuul?  0<yt <Oul? (22a)
3 Yi
"
ie€B = 0<% <Cip, ab > Oy, (22b)
. zk L
S N = 0< _k S C4,Mk, Y, Z 05, (22C)
[(«*, y")|| < Gy, (22d)
k 0
[I7]] < ﬁHr H7 (22¢)
Hi Ho
lilgn pr =0, (22f)

where Cf, Cy, Cs, Cy, and p are positive constants with C5 > 1 and Cy > 1.



The inequalities (22a), (22b), and (22¢) immediately suggest a scheme for estimating B,
N, and J. We define estimates By, Ny, and Ji by

Bk:{l

M= i[5 stz

Jk == {1,2, te ,n}\(Bk U Nk)

L < min(12 M},

iﬁ?v“iv

Lemma 3.1 For all k sufficiently large, we have
B, =B, N = N, Jp = J.

Proof. Choose a positive integer K7 such that for & > Kj the bounds (22) hold and, in
addition,
< min1/(202),1/C3)
Then .
i€eB = i— < Capre < (Capd M < i,

K3

and, since Cy > 1,
k
ieB = Y< Oy <1/(200) < 1)2.
Ly

Therefore ¢ € By. Similar logic shows that : € N = 2 € Ny, for k > K;. For ¢ € J, we have

z > ! V2 o i¢ N
T i s
yET G
while .
Y; 1 1/2 .
E > 63 > Wy =1 Qé By.
Therefore ¢ € Ji, and the proof is complete. [

On later iterations, when the index set estimates By, Ny, and J; have stopped fluctuating
from one iteration to the next, the following projection subproblem can be solved in an
attempt to find an exact solution to (1). The problem is an equality-constrained quadratic
program and hence is easier to solve than the original LCP.

I* + I*

Problem P(k): min —|lxg, — J}Bk
l’BkvyNk

HyNk uN,
subject to

MBkakak + 4B,
= MkakaBk + 47

yn, = Mn, B, TB, + 9N,

10



Let (J}Bk, yN ) denote the optimal solution of this problem. A candidate solution (z*,4*) of
(1) is obtained by setting

k= (i’Bk)z v € By k_ (ngk)Z 1 € Ny, (23)
10 otherwise ’ 10 otherwise

Theorem 3.2 For all k sufficiently large, the solution of Problem P(k) and the construction
(23) yield a solution of (1).

Proof. Assume that k is large enough that the bounds (22) and the result of Lemma 3.1
hold. (We can subsequently refer to By, Ni, and J as B, N, and J without confusion.) For
any (2*,y*) € S, we have that (275, y%) satisfies the equality constraints in Problem P(k),
so the feasible set for P(k) is nontrivial. Using a change of variable

Fp=rp—Th, N =Uyn— YN
we can reformulate P(k) as
1 N
min §H1’BH2 _HyNH27 (24)
By
subject to
—MB,BIY?% = qp + Mp gl
— Myp3y = qi+ Mgk, (25)
Jv — My g3y = qv + Mysrh — yk.

Since the constraints (25) are consistent, Hoffman’s lemma [1] implies that there is a sequence

of vector pairs {(#5,7%)} such that (:L'B, gk is feasible for (25) and
o g8 + Mp BSI?B
11 Bk
gv + My BSI?B —yN
Since (z§, — 2%, y% — y&) is optimal for problem (24)-(25), we have
k k k
BB < || B 27
H[y]’“v—y]’“v - yf“v” (27)
Now, using the bounds (22), we obtain
qp + Mp pzk
47+ Mjypxh
qv + My sl — yi
Mp naly + Mg j2h — yg
< lg+ Ma* —y* ||+ ||| Myyak + My -y
MN7N:L'§§\7 + MN,J$§
= |r* I+ OUlep |l + =511+ sl + [y51)
= O(m). (28)

11



It follows from (26)—(28) that there is a constant Cs > 0 such that

2% — 2l < Csp®, ik — vl < Capy”™.

Hence, we have

:1;% — Cg,uime > (Cse — Cg,ui/ze,
—k k 1/2 1/2
Un = yn — Cspy'"e = Cse — Cypuy' e,

5]
oy =
V

and for k sufficiently large, we conclude that (z§, y%) > 0. The construction (23) then yields
a vector pair (z%,%") that solves (1). [

4 Feasible Algorithms

In this section we consider only feasible algorithms (r* = 0) in which all iterates lie in the

relative interior of the feasible region. Condition (6) of the standard framework of Section 2

becomes redundant. Theorem 2.6 shows that no algorithm from this framework can converge

superlinearly when J # (. Hence, the best we can hope to show is that the algorithm has a
linear rate of convergence that is not too slow. Specifically, if we define

A k+1Ty

A = lim sup T
s oo ok T yk

k+1

= lim sup ala , (29)
k—oo HE
then we hope that the value A € (0,1) is not too close to 1.
The main result of this section — Theorem 4.1 — assumes that o converges to 0 and
gives a formula for the linear rate of convergence in terms of just the current iterate and the
current step size.

Theorem 4.1 Assume that v* = 0 for all k > 0 and limy_—oo 0 = 0. Then A defined by
(29) satisfies

kayk
A =limsup |1 —ap + ozz JkT Jk . (30)

The proof of this theorem is postponed until we have proved several preliminary results.
Note that if aj, converges to 1, then the rate of convergence becomes simply

kT k
1
A = lim sup Ty Y < -
4 4

yk
This expression indicates a reasonably fast linear convergence rate, but we have not been
able to design an algorithm that achieves this rate since it is difficult to enforce the condition
limk_m A = 1.

We now derive lower and upper bounds on the linear rate of convergence. The following
result is a consequence of Theorem 4.1.

12



Corollary 4.2 Assume that v* =0 for all k > 0 and limj_.. o), = 0. If liminf,_ . a; = a,
then

1 xk-l—lTyk-I—l 1
where
L VTR
=3, =y —+(1-7) <L
n n
Proof. Using relation (4), we can easily show that
kT k
<2V <y (32)
kT yk
Hence,
1T k1
limsup -2 < limsup |1 — o + lozzU =l—-a+ l6z2U
k—>oop l’kTyk o k—>oop g 4 k 4 ’

where the last equality follows because the quadratic 1 —a + (U/4)a? is decreasing on [0, 1].

We have therefore proved the second inequality of (31); the first inequality follows by a

similar argument. [
We now concentrate our efforts on the proof of Theorem 4.1.

Lemma 4.3 Let a € RL_, b€ R, and z € R” be given. Let H C IR?" be a subspace with
the property that
(u,v) € H = u'v>0. (33)
Then, the relations
au + bv = z, (u,v) € H, (34)

have at most one solution (u,v).

Proof. Assume for contradiction that (u!,v!) € R*” and (u?,v?) € IR* are two solutions
of (34). We have (u' — u? v!' —v?) € H since H is a subspace. Therefore, in view of (33),
we have

(u' — uz)T(vl — %) > 0. (35)
On the other hand, we obtain
a(u' —u?)+b(v' —2v*) =0, (36)
which in turn implies
ol — v = —b7a (u! — u?), ut —u? = —ath (v — 0.

Combining these relations with relation (35), we obtain

—[l(07 ) 2t =) 20, —[l(a70) ("t =) 2 0.

2

It follows from these last two inequalities that u! = u? and v! = v2, so our result is proved.

13



Lemma 4.4 There hold

Ak = O, Ayl = O(ue): (37)
Ack = O(u?, Ayh = O(w); (38)
Aaly = O(* + o), Ayk = O + o) (39)

Proof. The proof is a modification of earlier results of Ye and Anstreicher [10] and Wright
[7, 8]. For completeness, we include it in the appendix. [

Lemma 4.5 Assume that v* =0 for all k>0 and limy_.oc 0, =0. Then

) ) A:L'f 1 ) Ayf 1
i€ = fim "y == ImoF=-3

Proof. Tt follows from Lemmas 2.4 and 4.4 that the sequence {((z%)7t*Az%, (v%)~1Ay%)}
is bounded. Let (w”,wY) be an accumulation point of this sequence, so that there is an
infinite subsequence K with

lim((5) 7 A, (45)7 D) = (07, 0). (40)

By further restriction of K if necessary, we use Lemmas 2.4 and 4.4 again to deduce that
there are vector pairs (I, 1Y) and (6%, 6Y) such that

: 1 -
genicl —7 2k, %) = (17, 1¥) > 0, (41)
H
and |
lim e (Axh, Ayh) = (67,8"). (42)
k

By using Lemma 4.4, the fact that limy_ . or = 0, and the relations
Ay +ys Ay = owpe — 25yl
Ay — MAz* = 0,
we can easily verify that

8 4+ 1987 = —I7IY, (43)
]J&y — MJ&QE € Range[].N, —M.B]- (44)

Let (z,y) be an arbitrary solution of (1). Then, we have

0 = yf—MazF—gq
= y*— Mz" —(y— Mz)
= (" —y) - M(a" —2).

14



This relation and the fact that z ;0,8 = 0 and ygus = 0 then imply

k k

k k
) ) T T
Lp—55 + Li—75 — M5 — My—5 € Range|[l.x, —Mp). (45)
Hi Hi Hi Hi

It follows from Lemma 2.2 that the first and fourth terms in the left-hand side of relation
(45) converge to 0, so we obtain

I3l — M 51" € Range[l y, —M g]. (46)

It is easy to verify that the subspace H of the vectors (u,v) € R satisfying relation (46)
(with (I*,1¥) replaced by (u,v)) has the property expressed by relation (33). Hence, by
Lemma 4.3, the system defined by (43) and (44) has at most one solution. From (46), it is
clear that

(51’7 51/) — _%(zx7 ly)

solves (43) and (44) and is therefore the unique solution. Hence, from (40), (41), and (42),
we obtain

(w”, w?) = ((I")7'67, (1) 7'8%) = —3(e, e).

Since every accumulation point of {((z%) " Axz%, (y5) ™ Ay5)} is equal to —1(e, ), the result
follows. [
We are now in a position to give the proof of Theorem 4.1.

Proof of Theorem 4.1. From the standard framework of Section 2. it is straightforward to
see that . .
$k+1 yk-|—1 Al‘k Ayk
=1 —ap + ooy F ol ————
kT yk s k kT yk
Observe that relation (30), and therefore Theorem 4.1, follows immediately from (47) once
we show that

(47)

AdtTAyE ahTyh

kayk B 4kayk

+ o(1). (48)
To show (48), define
ty = (25) 7 Ach —Je, 1y =(y5) T Ay) — ge. (49)

By Lemma 4.5, we know that ¢¥ = o(1) and t’y“ = o(1). Using (49), we have

AcfAyf = byl [3+ @+ ()] = =7 [+, (50)
where
af = 2[00 + (1) + 2021 ] = (). (51)
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From (50), we obtain

k

k. k T K
LY, Ty Yy

ET Ak kT
Az Ayj Ty Yy
2kt

By using Lemma 4.4, we can easily verify that

Azk TAyk Azk TAyk
—r P =o(l),  —r = o(l) (53)
=y =y
Relation (48) now follows by combining (52) and (53). n

5 Convergence of the Predictor-Corrector Algorithm

In this section we use the results of the preceding section to analyze the two-step linear rate
of convergence of the predictor corrector algorithm (see, for example, [2], [5], and [10]) when
applied to degenerate LCPs. We show that this rate is less than or equal to 1 —¢/Q'/* where
@ < min{|J|,n — |J|} and ¢ is a positive constant that is not too small. This result shows
that if |.J| contains only a few indices, or all but a few indices, then we can attain a linear
rate of convergence that is not too slow.

Although the predictor-corrector algorithm fits the standard framework of Section 2
(and can be described accordingly by letting predictor steps be taken at even values of k
and corrector steps at odd values), it is more convenient to use the description below, which
closely follows [2]. For a given constant 8 € (0,1), define

NB)={(z,y) >0y =Mz +gq, ||[Xy— pe| < Bpu},

where, as earlier, u = 27y /n. For (z,y) > 0 with y = Mz + ¢, the following system defines
a direction (Axz, Ay) which is used in the description of the predictor-corrector algorithm:

MAzx — Ay = 0, (54a)
yAx + Ay = ope— xy, (54b)

where o € [0, 1].

Predictor-Corrector Algorithm: Let the constants 3 € (0,1/4] and 7 € (0, 3], and a
strictly feasible solution (z?,y%) € N(3) be given. Set k = 0, and go to step 1.

(1) Compute the predictor step (Az*, Ay*) by solving system (54) with (z,y) = (z*,y¥)
and o5 = 0.

(2) Compute the step size ay, > 0 by
or = max{a € [0,1] | (¢ 1 62y 1 6AG) € A5+ 7). Va € [0,a]),

and set (2%, 9%) = (2%, y*) + an(Az®, Ay).
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(3) Compute the corrector step (AZ*, Ag¥) by solving system (54) with (z,y) = (2%, %)
and o, = 1.

(4) Compute the new iterate as
(@411 = (55,35) + (AR AR
Set K=k + 1, and go to step 1.

We now state several properties of the predictor-corrector algorithm. The main properties
of the centering steps are given by the following result.

Lemma 5.1 Let fi, = (25)T9%/n for all k > 0. The following statements hold for every
k>0:

a

||Az

o) (" y™) = (35, 9%) + (A5, Ag*) € N(B);

(a)
(b) (AFHTAGE < i8;
)
Q) (F)TyH = (35 4 APYT(F + AGF) < [L+1/(80)] (24)74

(
(
Proof. Statements (a) and (c) follows from arguments similar to the ones used in Lemma

2.3 of Ji, Potra, and Huang [2], while (b) and (d) are based on Lemma 3.1 of [2]. ]

As a consequence of Lemma 5.1, we have the following result.

Corollary 5.2 For all k > 0, we have

(") Ty 1 (Ax YT Ay*

Y

Proof. The result follows immediately from Lemma 5.1(d) and the fact that

(#)75" = (2" + @A) (4 ardy®) = (1= et yh + ad(Ach)TAy".

For the predictor steps, we have the following result.
Lemma 5.3 The following statements hold for every k > 0:
(a) [IAz*Ay*|| < (2%)Ty*/2;
(b) (Az*)TAyF < (a")Ty*/4;

17



(c) The step size oy, salisfies

N\ 1/2
Qap > <—)
n

and 5
(043 Z 5 (56)
L4 /144|257
where T Ak
N (Akayk _ Me) : (57)
i n
(d) If 7 > 1/(16n), then
k+1T

M VT L -
e (125 ) - - ouiva (5%)

For a proof of Lemma 5.3, we refer the reader to Lemma 3.1, Lemma 3.2, and Theorem
3.1 of Ji, Potra and Huang [2] and Lemma 2.2 of Ye and Anstreicher [10].

It is well known that Lemma 5.3(d) implies polynomial convergence of the predictor-
corrector algorithm. Our final goal — stated in the next theorem — is to provide an upper
bound on the ratio of successive elements of the sequence {(z*)Ty*} which is sharper than
the one implied by relation (58).

Theorem 5.4 Assume that 7 > 1/(8n) and 0 < |J| < n. Then,

:Jck"'lTyk"'l (7_/2)1/2
. LM A
L T S g

(59)

where
(n—[J])]J]

Q= < min{|J|,n — |]}.

The proot of Theorem 5.4 is postponed until we have proved the following preliminary
result.

Lemma 5.5 Assume that n > 2. For all k sufficiently large, we have

1] < @'2/2. (60)
Proof. Define w* € R™ as
wh, 0
wt = wk | = 0
w} x}s)

18



Using Lemmas 4.4 and 4.5, we can easily verity that

(AzF)T Ay

$k T k
et = Hmmyk— ‘ o )Ty

el = - ||lw
4

Since (z¥,y*) € N(B), a simple argument shows that

E ok (:z;ﬁ)Tyf}

LyYr |J|

< |lahyh — pwell < B

Also,
(=5) 5 < (1 + B)[T |
so we obtain

kN, K
Hwk_ (7) 41,

n

2

kNT, &
_ xﬁyﬁ— (¢3)"y5 .

i - ((‘”’Wﬁ)z

SO N Y L1 I ) G
< (Bue)’+ %(xﬁTyﬁ)z + (=) ((l’ﬁ?jyﬁ)z
= (4 T
< (B + A |J|| ||J| (14 8)*ui
< L+ p) [ﬂQ + W]

< p(l 48782+ Q]
Hence, for all k sufficiently large, we have from (61) that
(1 + p) [ (1+ 5)

bl < o 2 824+ Q)" + o) < 3+ <

2

where the last inequality follows from the fact that 3 < 1/4 and Q'/? > 1//2.
We are now in a position to give the proof of Theorem 5.4.

Proof of Theorem 5.4. Using relations (56) and (60), we obtain

2 - 2 _T/2
L4 4/1+2QV2 ) 2,2Q12 7 QY
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el + ofus).

Qlﬂ

(61)

(62)



where the second inequality can easily be verified by using 7 < 1/4 and Q'/? > 1//2. Using
relations (55), (62), and Lemma (5.3)(b), we conclude that for all k& sufficiently large, we
have

k1T
Y

Y

T k+1

T =~
xkt ok

gy

where the third inequality follows from (62) and the fact that 7 > 1/(8n) and QY2 < n. n

A Appendix

We prove Lemma 4.4 for the infeasible case r* # 0, although a proof for the feasible case
would suffice for the purposes of Section 4. Before doing do, we prove some useful auxiliary
results. First, we recall a result due to Ye and Anstreicher [10].

Lemma A.1 Let M be a positive semi-definite matriz, and partition M as

Mpp Mpo
M = ,
( Mop Moo

where the pair of index sets P C {1,---.n} and Q@ C{l,---,n} forms a nontrivial partition
of {1,---.n}. Then

Mpp Mpg \ _ Mpp Mbp
Range( 0 I = Range 0 iy

As a consequence of Lemma A.1, we obtain the following result which will be explicitly
used in the proof of Lemma 4.4.

Lemma A.2 There holds

Mpp Mpy Mpn | _ MEp Mjp Mg
Range( 0 0 7 )—Range( 0 0 i . (63)

Proof. Applying Lemma A.1 with P = BU J and @ = N, we obtain

Mpp Mpy Mpn Mip Mjg Mip
Range | Myp My; My | = Range| Mg, Mj; MY, |,
0 0 I 0 0 -7
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which in turn immediately implies (63). [

The following lemma is similar to Lemma 3.5 of Ye and Anstreicher [10] and Lemma 5.2
of Wright [7]. For this proof and the proof of Lemma 4.4, we drop the iteration index k
on matrices and vectors for clarity, and define the diagonal matrix D = X~1/2Y"/2 (The
principal submatrices Dy and Dpg are defined in an obvious way.)

Lemma A.3 The vector pair (Axp, Ayn) is the unique solution of the conver quadratic
programming problem

min S Dpwl® — oxune’ Xgtw + S| DR 2|* — oppre Yz, (64)
subject to
Mppw = rp— MpjAxy; — MpnAxy + Ayp,
Mjpw = ry— Mj;Azy— MyjnvAzy + Ayy, (65)
MNBU)—Z = TN—MNJAJ}J—MNNAJ}N.

Proof. By the Karush-Kuhn-Tucker conditions, a candidate solution (w, z) is optimal if
it is feasible with respect to (65) and, in addition,

Diw — oy Xp'e Mgp Mjp Myp
( D2z — o Yot € Range 0 0 ) (66)

We prove the result by showing that (Axp, Ayy) satisfies this condition. Clearly, (Axg, Ayy)
is feasible with respect to (65). Using (5), we have

D3Azxp — opupXgte
= —ys— Ays
= —yp— (MppAap —rp+ MpnAxy + MpjAxy)
= —Mpgp(ep + Azg) — Mpn(an + Azy) — Mpy(zy + Azy),

and
DN Ayn — opupYy'te = —(on + Azy).
Therefore,
D%w — oppupXg'e Mpp Mpy Mgy
( D2z — o Yilte € Range 0 0 I . (67)
From relations (63) and (67), it follows that (Axzp, Ayy) satisfies (66). [

We are now in a position to give the proof of Lemma 4.4.

Proof of Lemma 4.4. First, we show that

IDAz|| = O(ii/*),  |ID7 Ay| = O(?). (68)
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We introduce vector pairs (@, ) and (u,v) that satisfy

- s}

] N [ —ry ka/Lke ] ’ (69h)

(A, Ay) = (i) + (1,0,
It follows exactly as in [8, Lemma 3.3] that

> D>

| —— N a——
ST~

so that

|Da|| = O(uy*),  |[D7 0| = O(u). (70)

If we use (6) and the boundedness assumption (3), minor modifications to the proof of [8,
Lemma 3.4] can be used to show

D) = O(uy?), D7 = O(u). (71)

The relations (68) follow from (70) and (71).

We now prove (37) for Axy (the proof for Ayp is similar). Taking ¢ € N, we have from
(68) and (19) that

\1/2
(&) Az,
;i

2\ 172 2 1/2
- |Axi|s(y—%) O<ni/z>§(71uk) O?) = Ouy),

K3

< | DAz| = O(?)

as required.
To prove (38), we observe from (68) and (18) that for « € J, we have

N 1/2
€Ty

= O(,?)

2\ /2
i 1/2 1/2
f) O(Nk/ )= O(Nk/ ),
as required. The proof for Ay is identical.
For the remaining inequality (39), we use the result of Lemma A.3. Since the feasible set
for (65) is nonempty, there is a feasible vector pair (w, z) such that

(@, 2)|| = O(lrl) + O Azl + [[Azx|| + | Ayl + | Aysll)
= 0w,
where the last equality follows from (6), (37), and (38). The remainder of the proof follows
by using identical logic to that of Lemma 5.3 of Wright [7], so we omit the details. [
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