
Operator Overloading as an Enabling Technology forAutomatic Di�erentiation�George F. CorlissMarquette University andArgonne National Laboratory Andreas GriewankArgonne National Laboratory
Preprint MCS-P358-0493, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., May 1993.

AbstractWe present an example of the science that is enabled by object-oriented programming tech-niques. Scienti�c computation often needs derivatives for solving nonlinear systems such asthose arising in many PDE algorithms, optimization, parameter identi�cation, sti� ordinarydi�erential equations, or sensitivity analysis. Automatic di�erentiation computes derivativesaccurately and e�ciently by applying the chain rule to each arithmetic operation or elemen-tary function. Operator overloading enables the techniques of either the forward or the reversemode of automatic di�erentiation to be applied to real-world scienti�c problems. We illustrateautomatic di�erentiation with an example drawn from a model of unsaturated ow in a porousmedium. The problem arises from planning for the long-term storage of radioactive waste.1 IntroductionScienti�c computation often needs derivatives for solving nonlinear partial di�erential equations.One such problem currently under investigation at Argonne and Sandia National Laboratoriesinvolves planning for long-term storage of radioactive waste.The speci�c problem is drawn from a mathematical model of unsaturated ow in a porousmedium modeled as a system of nonlinear partial di�erential equations. Solving the model requiresthe repeated solution of large, sparse nonlinear systems of algebraic equations. Newton's method ispreferred for its rapid convergence, but Newton's method requires the fast, accurate computationof derivatives.Automatic di�erentiation provides an attractive mechanism for meeting these requirements.Automatic di�erentiation is a prime example of the bene�ts of object-oriented programming tech-niques. It computes derivatives accurately and e�ciently by applying the chain rule to each arith-metic operation or elementary function. Moreover, because it propagates values rather than ex-pressions, automatic di�erentiation is not subject to the expression swell common in symbolicdi�erentiation.Many researchers have used overloaded operators with the forward mode of automatic di�eren-tiation to attack problems of modest size. For problems with many independent variables, however,the reverse mode of automatic di�erentiation is required for e�ciency.�This work was supported in part by the O�ce of Scienti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38 and through NSF Cooperative Agreement No. CCR-8809615.1

The software package ADOL{C [18] o�ers researchers a means for applying the reverse modee�ciently and e�ectively. ADOL{C includes overloaded operators that record each arithmeticoperation and elementary function and write the operands and the results on a \tape." The tapeis subsequently interpreted to provide the derivatives required for Newton's method. The sametools have been applied with algorithms for solving nonlinear equations, optimization, parameteridenti�cation, sti� ordinary di�erential equations, or sensitivity analysis.In this paper, we show how operator overloading is a critical enabling technology for ADOL{C.We begin in Section 2 with a sketch of a speci�c case study. In Section 3, we compare automaticdi�erentiation with traditional methods for computing derivatives; and we discuss the principlesunderlying automatic di�erentiation technology. Section 4 focuses on the role of object orientation.We show that automatic di�erentiation techniques can be implemented in various modes, requiringdi�erent tradeo�s between speed and ease of use. In Section 5, we present results obtained when thedi�erent modes are used, and we draw some conclusions about the future of automatic di�erentiationin scienti�c problem-solving.2 Unsaturated Flow ProblemA mathematical model of steady-state ow in a porous medium involves an elliptic partial di�er-ential equation (PDE) that contains a conductivity coe�cient [12, 24]. The coe�cient is typicallydiscontinuous across di�erent materials and can vary greatly. For unsaturated ow, the conduc-tivity is usually taken to be a function of pore pressure, which introduces a nonlinearity into theproblem. The nonlinearity for materials such as tu� can become severe enough to dominate theproblem, as conductivity can change markedly with a small change in pressure. Our interest was inmodeling ow in a region consisting of fractured tu� with conductivities that vary by ten or moreorders of magnitude, often over very short distances.We began with a code in C furnished by Tom Robey. His code uses a mixed �nite-elementapproach with a quasi-Newton iteration to handle the very high nonlinearity. He calculates a verysparse 1989� 1989 Jacobian J by centered di�erences. The resulting linear equation is solved by abiconjugate gradient algorithm. We approached Robey's code hoping to show the superiority of theADOL{C [18] implementation of automatic di�erentiation over centered di�erences. We believedthat automatic di�erentiation could improve both the accuracy and the speed by using operatoroverloading in C++. We modi�ed the original code of Robey in three steps (for further details,see [8, 10]).1. Convert to C++. Robey's original code was written in C. We converted function headersto a form acceptable to C++, removed some system-dependent calls, and added system-dependent timing instrumentation.2. Change to derivative type. We replaced the type double by the derivative type adoubleinside the function to be di�erentiated.3. Compute derivatives. Code for computing the Jacobian by centered di�erences was re-placed by code to record the tape as described in Section 4 and to call an interpreter togenerate the derivatives in either the forward or the reverse mode.The automatic di�erentiation code used the same sparse matrix techniques as the original code.Since many components of F in the nonlinear system F (u) = 0 are linear in u, we need to compute2

only a 350� 936 subblock bD at each Newton iteration. Further, bD is sparse and can be computedas three columns or as eight rows using matrix-coloring techniques [6].3 Alternative Methods for Computing JA common paradigm for the numerical solution of two-, three-, or higher-dimensional partial dif-ferential equations is as follows:� Given a PDE and boundary conditions,� apply �nite-di�erence or �nite-element approximations on some appropriate (frequently nonuni-form) grid, and� enforce an approximate solution by solving a nonlinear system F (u) = 0 for the residual byNewton's method.The dimension of the nonlinear system F (u) = 0 is proportional to the number of grid points.Typically, the Jacobian J = @F=@u required by Newton's method is computed by some combinationof hand coding, symbolic processing, and divided di�erences. In this section, we survey thesealternative methods for computing J . We conclude the section with a discussion of the two modesof automatic di�erentiation | forward and reverse. For both modes, we use operator overloading.3.1 Hand CodingAlgorithms usually perform best when the analytic Jacobian J is hand coded. Unfortunately,hand coding of derivatives is a tedious, time-consuming, and error-prone task. However in manyproblems, hand coding is feasible because many dependencies of F on u are linear. If the lineardependencies can be separated from the nonlinear ones, hand coding of at least portions of Jbecomes easier. Also, certain �nite elements or di�erencing stencils often appear in many copiesor minor variations, so that the e�ort of hand di�erentiation is limited and does not increase withthe size of the grid.3.2 Symbolic ProcessingSymbolic processors such as Maple or Mathematica are becoming more powerful in their abilityto provide symbolic expressions for derivative objects. They are excellent tools for modest-sizedproblems. However, as the size and complexity of the code to be di�erentiated grow, one reaches thelimits of symbolic processors. Maple addresses this limitation by providing a library for automaticdi�erentiation to work on Maple procedures.3.3 Divided Di�erencesThe Jacobian J can be approximated by backward, centered, or forward divided di�erences. Anappropriate choice of step size is di�cult, however, especially when there may be di�erences ofscale between di�erent components. Therefore, the accuracy of divided-di�erence approximationsis in doubt. A naive coding perturbing each component of u in turn is easy, but very expensive.Applications usually attempt to exploit any known sparsity structure.3

3.4 Matrix Coloring and Partial SeparabilityMatrix coloring [6] and partial separability [20] are techniques commonly used in computing divideddi�erences e�ciently for sparse Jacobians. Coloring identi�es several columns of J that can becomputed simultaneously with the same computational e�ort as a single column. The Jacobian ofa partially separable function can be written as a sum of several simple, smaller Jacobians. Matrixcoloring and partial separability also work well with the techniques of automatic di�erentiation.3.5 Automatic Di�erentiation { Forward ModeWe illustrate automatic di�erentiation [13, 16, 23] with an example. Assume that we have thesample program shown in Figure 1 for the computation of a function f : R2 7! R2. Here, thevector x contains the independent variables, and the vector y contains the dependent variables.The function described by this program is de�ned except at x[2] = 0 and is di�erentiable exceptat x[1] = 2. We can transform the program in Figure 1 into one for computing derivatives byassociating a derivative objectrt with every variable t. Assume thatrt contains the derivatives oft with respect to the independent variables x, rt = � @t@x[1]; @t@x[2]�T . We propagate these derivativesby using elementary di�erentiation arithmetic based on the chain rule [13, 23] for computing thederivatives of y[1] and y[2], as shown in Figure 2. In this example, each assignment to a derivativeis actually a vector assignment of length two. This example contains a branch and a loop toillustrate that the forward mode handles control structures. The only di�culty is that functionswith branches may fail to be di�erentiable. Work is in progress to warn the programmer when thishas occurred.if x[1] > 2 fa = x[1] + x[2];gelse fa = x[1] * x[2];gfor (i = 1; i <= 2; i ++) fa = a * x(i);gy[1] = a / x[2];y[2] = sin (x[2]);Figure 1. Sample function f : x 7! y
if x[1] > 2.0 fa = x[1] + x[2];ra = rx[1] + rx[2]; gelse fa = x[1] * x[2];ra = x[2] * rx[1] + x[1] * rx[2]; gfor (i = 1; i <= 2; i ++) ftemp = a;a = a * x(i);ra = x(i) * ra + temp * rx(i); gy[1] = a / x[2];ry[1] = 1.0 / x[2] * ra- a / (x[2] * x[2]) * rx[2];y[2] = sin (x[2]);ry[2] = cos (x[2]) * rx[2];Figure 2. Augmented with derivative codeThis mode of automatic di�erentiation, where we maintain the derivatives with respect to theindependent variables, is called the forward mode of automatic di�erentiation. The forward modeis easy to implement using overloaded operators, and many authors have done so (see the surveyin [21]). 4

3.6 Automatic Di�erentiation { Reverse ModeThe reverse mode of automatic di�erentiation maintains the derivative of the result with respectto intermediate quantities, called adjoints, which measure the sensitivity of the result with respectto some intermediate quantity. The reverse mode requires fewer operations than the forward modeif the number of independent variables is larger than the number of dependent variables. This isexactly the case for computing a gradient, which is a Jacobian matrix with only one row. For sparseproblems, the number of variables alone is not the determining factor. Instead, the complexity ofthe forward and the reverse modes can be bounded in terms of the chromatic numbers of thecolumn- and row-incidence graphs, respectively. This issue is discussed in more detail in [17, 16].Wolfe observed [25], and Baur and Strassen con�rmed [1], that if care is taken in handlingquantities that are common to the (rational) function and its derivatives, then the cost of evalu-ating a gradient with n components is a small multiple of the cost of evaluating the underlyingscalar function. Despite the advantages of the reverse mode from the viewpoint of complexity,the implementation for the general case is quite complicated. It requires the ability to access inreverse order the instructions executed for the computation of f and the values of their operandsand results, as illustrated in Figure 3. Current tools achieve this by storing a record of every com-putation performed. An interpreter performs a backward pass on this \tape." Unfortunately, theresulting overhead sometimes destroys the complexity advantage of the reverse mode (see [11]). Inthe unsaturated ow problem, complexity analysis predict no clear advantage for either mode overthe other. The forward mode proved to be only about 28 % faster than the reverse mode, althoughthe reverse mode had to compute 7 times as many values!The reverse mode associates an adjoint object with every variable u, u = dwdu , for each dependentvariable w. The key rule for the reverse mode iss = f(t; u)) t + = s � (df=dt)u + = s � (df=du) : (1)Figures 3 and 4 illustrate the application of the reverse mode of automatic di�erentiation to thefunction f given in Figure 1. This example contains a branch and a loop to illustrate the di�cultiesof the reverse mode. Straight-line code and basic blocks can be reversed by source-transformationtools, but code containing data-dependent branches and loops can be reversed only at run time.Therefore, we execute the code for the function f shown at the top of Figure 3 using operatorsoverloaded to record the code list shown at the bottom of Figure 3. Since the code list is a recordingof the operations actually executed at run time, it contains no branches, and all loops are fullyunrolled.Figure 4 propagates adjoint quantities to compute the derivatives of y with respect to x. Adjointobjects (vectors of length two in this example) are initialized. Then, the code list at the bottomof Figure 3 is processed in reverse order as shown by the comments in Figure 4. Formula (1) isapplied to each entry from the code list. At the end of the computation, the desired derivatives arein xbar and ybar. 5

if x[1] > 2 fa = x[1] + x[2];gelse fa = x[1] * x[2gfor (i = 1; i <= 2; i ++) fa = a * x(i);gy[1] = a / x[2];y[2] = sin (x[2]);Yields the code list:// Assuming x[1] � 2a = x[1] * x[2];t1 = a * x[1];t2 = t1 * x[2];y[1] = t2 / x[2];y[2] = sin (x[2]);Figure 3. Reversing execution of f
// Initialize adjoint objects:ybar[1] = (1, 0); ybar[2] = (0, 1);xbar[1] = xbar[2] = abar= t1bar = t2bar = (0, 0);// y[2] = sin (x[2]);xbar[2] += ybar[2] * cos (x[2]);// y[1] = t2 / x[2];t2bar += ybar[1] / x[2];xbar[2] += ybar[1] * (-t2 / (x[2] * x[2]);// t2 = t1 * x[2];t1bar += t2bar * x[2];xbar[2] += t2bar * t1;// t1 = a * x[1];abar += t1bar * x[1];xbar[1] += t1bar * a;// a = x[1] * x[2];xbar[1] += abar * x[2];xbar[2] += abar * x[1];// ry[1] = (xbar[1][1], xbar[2][1]);// ry[2] = (xbar[1][2], xbar[2][2]);Figure 4. Augmented for the reverse modeThis discussion shows that the principles underlying automatic di�erentiation are not compli-cated. We associate extra computations (which are entirely speci�ed on a statement-by-statementbasis) with the statements executed in the original code, a task for which operator overloadingis well suited. As a result, a variety of implementations of automatic di�erentiation have beendeveloped over the years (see [21] for a survey). We also note that even though we showed thecomputation only of �rst derivatives, the automatic di�erentiation approach can easily be gen-eralized to the computation of univariate Taylor series or Hessians and multivariate higher-orderderivatives [5, 7, 9, 15, 17, 23].4 Role of Object OrientationThe ADOL{C tool for automatic di�erentiation relies critically on overloaded operators in C++. Inthis section, we discuss the role of operator overloading. The details of the ADOL{C implementationcan be found in [18].4.1 Forward ModeThere are three alternatives for the forward-mode propagation of derivative objects: naive operatoroverloading, source transformation, and use of a tape. We discuss each alternative in turn.Figures 1 and 2 implicitly give the speci�cations for a naive operator overloading for the forward-mode propagation of derivative objects. It is straightforward to write overloaded operators andfunctions to propagate simple derivatives, gradients, Jacobians, Hessians, single-, or multi-variableTaylor series. One de�nes a class containing the desired derivative type and overloaded operationsand elementary functions according the recurrence relations given by Rall [23], for example. Figure5 shows part of such a class for interval-valued functions written in C{XSC [22]. Many authors6

have written such a package (see the survey in [21]). Corliss [7] described an implementation in Adaof real- and interval-valued Taylor series with storage management for e�cient one-term-at-a-timegeneration.class autodiff {// Author: Andreas Wiethoff, University of Karlsruheprivate:interval f, df;public:autodiff(); // Constructorsautodiff(interval&, interval&);~autodiff(); // Destructorsautodiff& operator = (interval&); // Assignmentautodiff& operator = (autodiff&);// Arithmetic operators and functions:friend autodiff independent(interval&);friend autodiff operator + (autodiff&, autodiff&);friend autodiff operator - (autodiff&, autodiff&);friend autodiff operator * (autodiff&, autodiff&);friend autodiff operator / (autodiff&, autodiff&);friend autodiff sin (autodiff&);friend autodiff exp (autodiff&);friend interval Value (autodiff& a) { return a.f; }friend interval Deriv (autodiff& a) { return a.df; }};autodiff operator * (autodiff& a, autodiff& b){ // Derivative of a product: c = a * b ==> c' = a * b' + a' * bautodiff c;c.f = a.f * b.f; c.df = a.f * b.df + a.df * b.f;return c;}autodiff sin (autodiff& a){ // Derivative of sine: c = sin(a) ==> c' = a' * cos(a)autodiff c;c.f = sin(a.f); c.df = a.df * cos(a.f);return c;} Figure 5. Prototype for naive forward mode operator overloadingNaive operator overloading is easy to implement and easy to use because the program for thefunction to be di�erentiated is very nearly the same as the program for evaluating the function ata real argument. Overloading has an advantage of exibility. For example, operators for automaticdi�erentiation can easily be modi�ed to use complex, interval, or multiple precision arithmetic.The programs tend to execute slowly because they contain many function calls that interfere withcompile-time code optimization. Speed can be improved by placing many of the operators in7

line, but that causes code growth. Speed can be improved and code growth reduced by bettercompilation techniques. In principle, programs that place function calls for overloaded operatorsin line and then do code optimization should execute as fast as conventional compiled code.Source transformation uses a preprocessor (ADIFOR [3], for example) to generate code similarto that shown in Figure 2. The source transformation approach is conceptually similar to theoperator overloading approach in the sense that the programmer writes code in the original de-velopment language without being directly concerned that derivatives will be generated using thesame code. Source transformation has several advantages over naive overloading. The output fromthe source transformation is compilable. The resulting code usually runs faster than the equivalentoverloaded code because the source transformation tool can do code optimizations such as commonsubexpression removal or loop mining. The speed advantage of source transformation is likely to bereduced as better compilers for overloading become available. The source transformation tool cangenerate code for the reverse mode evaluation of basic blocks and parallel loops. Even the partialuse of the reverse mode in the context of an overall forward-mode propagation of derivatives givesa signi�cant speed improvement in some examples [3].The disadvantage of source transformation techniques is that it is di�cult to handle the fullreverse mode in the presence of branches and data-dependent loops. The reverse mode for functionscontaining branches and data-dependent loops requires the run time support furnished by operatoroverloading.The third alternative for the forward-mode propagation of derivative objects involves use ofa tape. As we execute the function to be di�erentiated, the overloaded arithmetic operators andelementary functions record a code list (operation, operands, result) on a tape. Constructors anddestructors also record \birth" and \death" notices on the tape. The tape is a complete recordof the computation with loops unrolled and branches actually taken. It is accessed in a strictlysequential mode, and it may be in main memory, on a disk �le, or on a magnetic tape, depending onthe running time of the program. The length of the tape is usually proportional to the running timeof the function to be di�erentiated. Work is in progress for a checkpointing option in ADOL{C thatreduces the length of the tape required to a logarithm of the original running time at the expenseof increasing the undi�erentiated running time [14]. Once the tape has recorded the sequence ofoperations in the evaluation of f , a separate function call interprets the code list in order andpropagates the desired derivatives.Forward-mode propagation using the tape is good for repeated evaluations that follow exactlythe same path of control through the execution of f . This happens when f has no branches ordata-dependent loops, when some iterative process has nearly converged, or when Taylor seriesmust be generated one term at a time (as for solving ODEs). Using the tape for the forward modealso has the advantage of presenting an interface that is consistent with the interface for the reversemode.The disadvantage of using the tape is that it is slower than the naive overloaded operators,because the tape approach incurs the signi�cant added overhead in writing and reading the tape.However, run time access to the code list provides opportunities for signi�cant improvements ine�ciency, including� run time code optimizations such as removal of common subexpressions,� parallel scheduling [2, 4], or 8

� Markowitz elimination of nodes from the computational graph [19].4.2 Reverse ModeFigure 4 implicitly gives the speci�cation for the reverse-mode propagation of derivatives. Theincreased complexity of the implementation is justi�ed by the result of Baur and Strassen [1] that agradient can be evaluated at a cost of about �ve times the cost of a function evaluation, independentof the number of independent variables. As discussed in Section 3.6, the reverse mode requires theability to reverse the order of execution of the code list. We use a tape recorded by overloadedoperators as described above. Derivatives are computed by a separate function call during whichthe code list is processed in reverse order. Formula (1) is applied to each entry, and we propagatea vector of adjoints with one element for each dependent variable.5 ResultsThe problem considered here is a test problem with one spatial dimensional exhibiting a particularlysimple structure. We have illustrated a strategy that generalizes to higher-dimensional problemsof practical interest. We make several direct comparisons of automatic di�erentiation with moretraditional methods.� In comparison with centered di�erences, the values of the derivatives computed in double pre-cision by automatic di�erentiation agreed to at least �ve digits. (In general, the derivativescomputed by automatic di�erentiation are more accurate than those computed by divided dif-ferences. In some applications, the improved accuracy enables Newton's method to convergein fewer iterations, but that was not signi�cant in this application.)� In comparison with centered di�erences, the fastest ADOL{C code took 56 % longer. Table1 gives timing comparisons for some of the versions tested on a SPARC 1+ workstationusing the GNU g++ compiler, version 2.3.3. We report the average times for ten Jacobianevaluations. Table 1. CPU Times for Jacobian computationMethod SecondsThree-color centered di�erences 1.30Three-color forward mode 2.03Eight sweeps of reverse mode 5.88Eight-vector reverse mode 2.60The Jacobian J is a highly structured 1989 � 1989 matrix. The nonlinear contributions arecontained in a 350�936 subblock that is sparse and can be computed as three columns (1050 values)or as eight rows (7488 values) using matrix coloring techniques [6]. The forward mode propagatedthree gradient vectors of length 350. The tape for the three-color forward mode evaluation was 520Kbytes long. The reverse mode computed eight gradient vectors of length 936. The reverse modecomputed 7 times as many values as the forward mode in only 28 % more time.9

AcknowledgmentsThe work described in this paper was done in collaboration with Thomas Robey, Christian Bischof,and Steve Wright. We o�er a special thanks to Andreas Wietho� for permission to include a portionof his class autodiff.References[1] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Computer Science,22:317{330, 1983.[2] Christian Bischof. Issues in parallel automatic di�erentiation. In Andreas Griewank andGeorge F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implementation,and Application, pages 100{113. SIAM, Philadelphia, Penn., 1991.[3] Christian Bischof, Alan Carle, George Corliss, and Andreas Griewank. ADIFOR { Generatingderivative codes from Fortran programs. Scienti�c Programming, 1:11{29, 1992.[4] Christian Bischof, Andreas Griewank, and David Juedes. Exploiting parallelism in automaticdi�erentiation. In E. Houstis and Y. Muraoka, editors, Proceedings of the 1991 InternationalConference on Supercomputing, pages 146{153. ACM Press, Baltimore, Md., 1991.[5] Bruce D. Christianson. Automatic Hessians by reverse accumulation. Technical Report NOCTR228, The Numerical Optimisation Center, Hat�eld Polytechnic, Hat�eld, U.K., April 1990.[6] T. F. Coleman and J. J. Mor�e. Estimation of sparse Jacobian matrices and graph coloringproblems. SIAM Journal on Numerical Analysis, 20:187{209, 1984.[7] George Corliss. Overloading point and interval Taylor operators. In Andreas Griewank andGeorge F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implementation,and Application, pages 139{146. SIAM, Philadelphia, Penn., 1991.[8] George Corliss, Andreas Griewank, Tom Robey, and Steve Wright. Automatic di�erentiationapplied to unsaturated ow | ADOL{C case study. Technical Memorandum ANL/MCS{TM{162, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill.,April 1992.[9] George Corliss and Louis B. Rall. Automatic generation of Taylor series in Pascal{SC: Basicoperations and applications to di�erential equations, in Trans. of the First Army Conferenceon Applied Mathematics and Computing (Washington, D.C., 1983), pages 177{209. ARO Rep.84-1, U. S. Army Res. O�ce, Research Triangle Park, N.C., 1984.[10] George Corliss, Thomas Robey, Christian Bischof, Andreas Griewank, and Steve Wright. Auto-matic di�erentiation for PDEs | Unsaturated ow case study. In Robert Vichnevetski, DoyleKnight, and Gerard Richter, editors, Advances in Computer Methods for Partial Di�erentialEquations { VII, pages 150{156. IMACS, New Brunswick N.J., 1992.10

[11] Lawrence C. W. Dixon. Use of automatic di�erentiation for calculating Hessians and Newtonsteps. In Andreas Griewank and George F. Corliss, editors, Automatic Di�erentiation of Algo-rithms: Theory, Implementation, and Application, pages 114{125. SIAM, Philadelphia, Penn.,1991.[12] Richard Ewing and Mary Wheeler. Computational aspects of mixed �nite element methods.In R. Stepleman et al., editors, Scienti�c Computing. IMACS/North-Holland Publishing Com-pany, 1983.[13] Andreas Griewank. On automatic di�erentiation. In M. Iri and K. Tanabe, editors, Mathemat-ical Programming: Recent Developments and Applications, pages 83{108. Kluwer AcademicPublishers, Dordrecht, 1989.[14] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverseautomatic di�erentiation. Optimization Methods and Software, to appear.[15] Andreas Griewank. Automatic evaluation of �rst- and higher-derivative vectors. In R. Sey-del, F. W. Schneider, T. K�upper, and H. Troger, editors, Proceedings of the Conference atW�urzburg, Aug. 1990, Bifurcation and Chaos: Analysis, Algorithms, Applications, volume 97,pages 135{148. Birkh�auser Verlag, Basel, Switzerland, 1991.[16] Andreas Griewank. The chain rule revisited in scienti�c computing. SIAM News, 24, May &July 1991. No. 3, p. 20 & No. 4, p. 8.[17] Andreas Griewank. Some bounds on the complexity of gradients, Jacobians, and Hessians.To appear in P. M. Pardalos, editor, Complexity in Numerical Optimization, World Scienti�cPublishers, 1993.[18] Andreas Griewank, David Juedes, Jay Srinivasan, and Charles Tyner. ADOL-C, a package forthe automatic di�erentiation of algorithms written in C/C++. ACM Trans. Math. Software,to appear.[19] Andreas Griewank and S. Reese. On the calculation of Jacobian matrices by the Markowitz rule.In Andreas Griewank and George F. Corliss, editors, Automatic Di�erentiation of Algorithms:Theory, Implementation, and Application, pages 126{135. SIAM, Philadelphia, Penn., 1991.[20] Andreas Griewank and Ph. L. Toint. On the unconstrained optimization of partially separablefunctions. In M. J. D. Powell, editor, Nonlinear Optimization 1981, NATO Conference SeriesII: Systems Science, pages 301{321. Academic Press, New York, 1982.[21] David Juedes. A taxonomy of automatic di�erentiation tools. In Andreas Griewank andGeorge F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implementation,and Application, pages 315{329. SIAM, Philadelphia, Penn., 1991.[22] R. Klatte, U. Kulisch, C. Lawo, M. Rauch, and A. Wietho�. C{XSC : A C++ Class Libraryfor Extended Scienti�c Computing, Springer Verlag, Berlin, 1993.[23] Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume 120 of LectureNotes in Computer Science. Springer Verlag, Berlin, 1981.11

[24] Mary Wheeler and Ruth Gonzalez. Mixed �nite element methods for petroleum reservoirengineering problems. In R. Glowinski and J.-L. Lions, editors, Computing Methods in AppliedSciences and Engineering, VI. Elsevier, New York, 1984.[25] Philip Wolfe. Checking the calculation of gradients. ACM Trans. Math. Softw., 6(4):337{343,1982.

12

