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AbstractWe describe an interior-point algorithm for monotone linear complementarity prob-lems in which primal-dual a�ne scaling is used to generate the search directions. Thealgorithm is shown to have global and superlinear convergence with Q-order up to (butnot including) two. The technique is shown to be consistent with a potential-reductionalgorithm, yielding the �rst potential-reduction algorithm that is both globally andsuperlinearly convergent.Key words: interior-point methods, primal-dual a�ne scaling, linear programming,linear complementarity1 IntroductionDuring the past three years, we have seen the appearance of several papers dealing withprimal-dual interior-point algorithms for linear programs (LP) and monotone linear com-plementarity problems (LCP) that are superlinearly or quadratically convergent. For LP,these works include McShane [7], Mehrotra [8], Tsuchiya [15], Ye [17], Ye et al. [19], Zhangand Tapia [21], and Zhang, Tapia, and Dennis [22]. For LCP, we mention Ji, Potra, andHuang [1], Ji et al. [2], Kojima, Kurita, and Mizuno [3], Kojima, Meggido, and Noma [4],Ye and Anstreicher [18], and Zhang, Tapia, and Potra [23]. The introductory section ofYe and Anstreicher [18] contains an interesting discussion of the historical development ofsuperlinearly convergent primal-dual interior-point algorithms.�School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332. Thework of this author was based on research supported by the National Science Foundation under grant DDM-9109404 and the O�ce of Naval Research under grant N00014-93-1-0234. This work was done while the �rstauthor was a faculty member of the Systems and Industrial Engineering Department at the University ofArizona.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, IL 60439. The work of this author was based on research supported by the O�ce of Scienti�cComputing, U.S. Department of Energy, under Contract W-31-109-Eng-38.1



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 2In this paper, we discuss superlinearly convergent primal-dual a�ne scaling methods forsolving the monotone LCP. This problem consists of �nding a vector pair (x; y) 2 IRn � IRnsuch that y =Mx+ q; (1a)x � 0; y � 0; (1b)xTy = 0; (1c)where q 2 IRn, and M 2 IRn�n is positive semide�nite. In subsequent discussion, we say thata point (x; y) is feasible if it satis�es the equations (1a) and (1b), and strictly feasible if (1a)and (1b) are satis�ed with x > 0, y > 0. We refer to (x; y) as a solution only if all threeconditions in (1) hold.Previous superlinearly convergent algorithms for (1) have required all iterates to belongto a neighborhood of the central path de�ned by eitherN2(�) = n(x; y) feasible j kXY e� (xTy=n)ek2 � �(xTy=n)oor N�1(�) = n(x; y) feasible j xiyi � (1� �)(xTy=n); 8i = 1; : : : ; no ;where X = diag(x); Y = diag(y); e = (1; 1; : : : ; 1)T ;and � 2 [0; 1) is a constant. For example, the predictor-corrector algorithms of Ye et al.[19] for LP and Ji, Potra, and Huang [1] and Ye and Anstreicher [18] for LCP use theneighborhood N2, while the linear programming algorithm of Zhang and Tapia [20] usesN�1. In this paper, we use a di�erent neighborhood de�ned with respect to two parameters� � 0 and � > 0 byN (�; �) = n(x; y) strictly feasible j xiyi � �(xTy)1+�; 8i = 1; : : : ; no : (2)Clearly, N (�; �) is equal to the neighborhood N�1(1 � n�) when � = 0. The parameters �and � that de�ne N (�; �) do not need to be changed as the solution is approached to obtainrapid local convergence. In this respect, the neighborhood (2) di�ers from N2 and N�1,which need to be expanded during the �nal stages of the algorithm to achieve superlinearconvergence (see Ye [17], Ye and Anstreicher [18]).Our algorithm uses primal-dual a�ne scaling search directions. These directions aresimply Newton steps for the system of nonlinear equations formed by (1a) and the comple-mentarity condition XY e = 0. Because of the connection to Newton's method, we wouldexpect such an algorithm to be quadratically convergent if started close to a unique nonde-generate solution and allowed to take full steps. In this paper, we show that by judiciouschoice of the step size, all iterates will remain in N (�; �) while simultaneously achieving fastlocal convergence. Depending on the choice of �, the Q-order of the local convergence can lieanywhere in the range (1; 2). Moreover, our nondegeneracy assumption requires only thatone of the solutions (x�; y�) has x� + y� > 0, not that the solution is unique.



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 3In Section 2, we de�ne the search directions and �nd bounds on the components of thesedirections, in terms of the complementarity gap xTy and the parameters � and � that de�nethe neighborhood N (�; �). We pay special attention to the case ofM skew-symmetric, whichoccurs when (1) is derived from a linear programming problem. In this case, the bounds onthe search directions are a little tighter and are global; that is, they hold everywhere in therelative interior of the set of feasible points and not just in the neighborhood N (�; �). InSection 3, we show that a speci�c choice of step length yields a globally and superlinearlyconvergent algorithm. For particular choices of the parameter �, the number of iterates ispolynomial in the size of the problem. Finally, in Section 4, we show that the algorithm ofSection 3 is consistent with a potential reduction algorithm based on the Tanabe-Todd-Yepotential function  q(x; y) = q log xTy � nXi=1 log xiyi; (q > n); (3)where an Armijo line search with a well-chosen initial trial step length is used. The resultingalgorithm is again globally and superlinearly convergent.Tun�cel [16] introduced an algorithm for linear programming that uses a�ne scaling searchdirections in conjunction with a penalty function of the form	�(x; y) = (� + 1) log(xTy=n)� log(minj fxjyjg); (4)for � > 0. Step lengths are chosen to keep 	� constant from iteration to iteration. Thisfunction is closely related to our neighborhood N (�; �) since(x; y) 2 N (�; �) , 	�(x; y) � � log � � (1 + �) log n:Tun�cel [16] proves global convergence but has no superlinear convergence result. In Section5, we prove as a consequence of our results that Tun�cel's method is superlinear for � 2 (0; 1).Mizuno and Nagasawa [9] describe a method for linear programming which also uses a�nescaling search directions and the potential function (3). They prove complexity results foran algorithm that takes a steplength greater than a speci�ed minimum value (de�ned by aformula not unlike our (35)) which does not increase (3).The following notational conventions are used in the remainder of the paper: Unlessotherwise speci�ed, k:k denotes the Euclidean norm. For a general vector z 2 IRn andindex set B � f1; : : : ; ng, zB denotes the vector made up of components zi for i 2 B. IfM 2 IRn�n and B;N � f1; : : : ; ng, then MB: refers to the submatrix of M consisting ofthe rows i 2 B. Similarly,M:N denotes the submatrix of M corresponding to the columnsj 2 N . If D 2 IRn�n is diagonal, we write D > 0 when all the diagonal elements are strictlypositive, and use the notation DB to denote the diagonal submatrix constructed from Dii,i 2 B. We say that (B;N) is a partition of f1; : : : ; ng if B [N = f1; : : : ; ng and B \N = ;.2 Technical ResultsIn this section, we state our assumptions and derive bounds on components of the iterates(xk; yk) and the steps (�xk;�yk) for k = 0; 1; � � �. It is assumed throughout that (xk; yk)



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 4lies in the neighborhood N (�; �).We make use of the following assumptions. The �rst assumption is implicit throughoutthe paper; the second is invoked explicitly where needed.Assumption 1 (Existence of a strictly feasible point) The set of strictly feasible points for(1) is nonempty.Assumption 2 (Nondegeneracy) There exists a solution (x�; y�) of (1) such that x�+y� > 0.When (x�; y�) is the vector pair from Assumption 2, we can de�ne a partition (B;N) off1; : : : ; ng by B = fi j x�i > 0g; N = fi j s�i > 0g:It is easy to show that all solutions to (1) have x�N = 0 and y�B = 0.We consider in this paper the following class of primal-dual a�ne scaling algorithms.Algorithm PDAinitially: Let (x0; y0) be a strictly feasible point;for k = 0; 1; 2; : : :Let (�xk;�yk) denote the solution of the linear systemY�x+X�y = �Y Xe; (5a)�y �M�x = 0; (5b)where (x; y) = (xk; yk), X = diag(x), and Y = diag(y);Choose �k > 0 such that (xk + �k�xk; yk + �k�yk) is strictly feasible;Set (xk+1; yk+1) = (xk + �k�xk; yk + �k�yk);end forWe start by stating a well-known result from linear algebra.Lemma 2.1 Let F 2 IRp�q be given. Then there exists a nonnegative constant C = C(F )with the following property: for g 2 IRp such that the system Fw = g is feasible, there existsa solution �w of Fw = g such that k �wk � Ckgk:The following technical lemma uni�es Theorem 2.5 and LemmaA.1 of Monteiro, Tsuchiyaand Wang [13], which in turn are based on Theorem 2 of Tseng and Luo [14].



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 5Lemma 2.2 Let f 2 IRq and H 2 IRp�q be given. Then there exists a nonnegative constantL = L(f;H) with the property that for any diagonal matrix D > 0 and any vector h 2Range(H), the (unique) optimal solution �w = �w(D;h) ofminw fTw + 12 kDwk2 ; subject to Hw = h, (6)satis�es k �wk1 � L njfT �wj+ khk1o : (7)Proof. We �rst show that jfT �wj+ khk1 = 0 if and only if �w = 0. The reverse assertionis clear, since from (6) we have h = H �w = 0. For the forward assertion, note that theoptimality conditions for (6) are have D2 �w+ f +HTu = 0 for some u 2 IRp. Since fT �w = 0and h = 0, we have �wTD2 �w = �fT �w � �wTHTu = 0:Hence, since D > 0, the result follows. Clearly the inequality (7) holds in this case. In theremainder of the proof we show that L can be chosen such that (7) also holds for nonzerosolutions to (6).Assume for contradiction that there exists a sequence of diagonal matrices fDkg withDk > 0 and a sequence fhkg � Range(H) such that jfTwkj+ khkk1 > 0 for every k andlimk!1 kwkk1jfTwkj+ khkk1 =1;where wk is the (unique) optimal solution of (6) with D = Dk and h = hk. By takingsubsequences of subsequences, if necessary, we can identify a constant L1 > 0 and a nonemptyindex set J � f1; : : : ; qg such that jwkj jjfTwkj+ khkk1 � L1; 8j 62 J ; (8)limk!1 jwkj jjfTwkj+ khkk1 = 1; 8j 2 J : (9)Let us de�ne the following linear systemfTw = fTwk; (10a)Hw = hk; (10b)wj = wkj ; 8j 62 J ; (10c)and note that wk is a solution of this system. By Lemma 2.1, (10) has a solution ŵk suchthat kŵkk1 � L2 �jfTwkj+ khkk1 +maxj 62J ( jwkj j )� ;



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 6(the last term being omitted if J = f1; : : : ; qg), where L2 � 0 is a constant depending onlyon f , H, and J . By substituting (8) into this bound, we obtainkŵkk1 � L2 njfTwkj+ khkk1 + L1 (jfTwkj+ khkk1)o= L3 (jfTwkj+ khkk1); (11)where L3 � L2 (1 + L1). From (9), there exists K � 0 such that for all k � K we havejwkj j > L3(jfTwkj+ khkk1); 8j 2 J : (12)Combining (11) and (12), we havejwkj j > kŵkk1; 8j 2 J ; 8k � K:From this relation and the fact that ŵk satis�es (10c), we obtainkDkŵkk2 = Xj2J(Dkjjŵkj )2 + Xj 62J(Dkjjŵkj )2< Xj2J(Dkjjwkj )2 + Xj 62J(Dkjjwkj )2= kDkwkk2; 8k � K:Hence, since ŵk satis�es (10a), we havefT ŵk + 12kDkŵkk2 < fTwk + 12kDkwkk2; 8k � K: (13)This relation together with the fact that ŵk satis�es (10b) contradicts the assertion that wkis an optimal solution of (6) with D = Dk and h = hk.Our main aim now is to derive bounds on the components of the search directions gen-erated by Algorithm PDA. We �rst deal with the case of M skew-symmetric. This specialcase is of interest mainly because the linear programming formulationminw cTw; subject to Aw � b, w � 0;can, with the introduction of a Lagrange multiplier �, be posed in the form (1) withM = " 0 A�AT 0 # ; q = " �bc # :The following two lemmas lay the foundations for a global bound on (�x;�y) which is foundin Theorem 2.5.



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 7Lemma 2.3 Assume that the matrix M in (1) is skew-symmetric, that is, M = �MT , andthat Assumption 1 holds. Then for any strictly feasible point (x; y), the solution (�x;�y) of(5) solves the quadratic programmin(w;z) qTw + 12kD�1wk2 + 12kDzk2; subject to z �Mw = 0, (14)where D � X1=2Y �1=2.Proof. From (5b), (�x;�y) is clearly feasible for (14). It remains to verify that theoptimality conditions hold, that is,q +D�2�x =MTu; D2�y = �u; (15)for some u 2 IRn. By using relations (5a), (5b), and (1a) and the fact that M = �MT , weobtain q +D�2�x = q +X�1Y�x = q � y ��y = �M(x+�x) =MT (x+�x)and D2�y = Y �1X�y = �x��x:Hence, (�x;�y) satis�es (15) with u = x+�x.Lemma 2.4 Assume that M in (1) is skew-symmetric. Let a strictly feasible point (x; y) begiven, and consider the solution (�x;�y) of (5). Then,qTx = xTy = �qT�x: (16)Proof. We have qTx = (y �Mx)Tx = yTx� xTMx = yTx;where the last equality is due to fact that M = �MT . Using this fact again, together with(5a) and (1a), we obtain�xTy = yT�x+xT�y = (Mx+q)T�x+xTM�x = qT�x+xTMT�x�xTMT�x = qT�x:Theorem 2.5 Assume that M = �MT . Then, for every strictly feasible point (x; y), thesolution (�x;�y) of (5) satis�esk(�x;�y)k1 � �C1 qT�x = C1 xTy; (17)where C1 � 0 is a constant independent of (x; y).



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 8Proof. The bound follows directly from Lemmas 2.2, 2.3, and 2.4.We stress that this result holds when (x; y) is any strictly feasible point, not just when(x; y) lies in the neighborhood N (�; �). An interesting consequence of this result is thatthe sequence f(xk; yk)g generated by Algorithm PDA when M is skew-symmetric alwaysconverges, regardless of the choice of step sizes f�kg, though not necessarily to a solution of(1). We o�er a formal proof as our next result.Corollary 2.6 Assume that M = �MT . Then the sequence f(xk; yk)g generated by Algo-rithm PDA converges.Proof. From (5) and the skew-symmetry of M , we have0 � xk+1Tyk+1 = xkTyk(1 � �k) + �2k�xkTM�xk = xkTyk(1 � �k) � xkTyk:Hence, by Lemma 2.4, the sequence fxkTykg = fqTxkg is monotonically decreasing andbounded below by zero and therefore convergent. Using Theorem 2.5, we obtainkxk+1 � xkk = �kk�xkk � �C1�k(qT�xk) = C1(qTxk � qTxk+1): (18)Since the sequence fqTxkg is convergent, the above relation implies that fxkg is a Cauchysequence and therefore convergent. Therefore fykg = fMxk + qg is also convergent, and wehave the result.We now turn to the case of general positive semide�nite matricesM . We start with thefollowing technical result which provides bounds on several quantities involving the direction(�x;�y). Its proof is well known and can be found in several papers (see for example Kojima,Mizuno, and Yoshise [6], Mizuno, Todd, and Ye [10], and Monteiro and Adler [12]).Lemma 2.7 Let (x; y) be a strictly feasible point and (�x;�y) be the solution of (5). Then(a) max1�i�n j�xi�yij � xTy=4;(b) 0 � �xT�y � xTy=4;(c) maxfkD�1�xk; kD�ykg � (xTy)1=2, where D � X1=2Y �1=2.We next state some simple results concerning boundedness of certain components of (x; y)and (�x;�y).Lemma 2.8 Suppose that Assumption 2 holds. Then there exists a constant r > 0 such thatxi � (xTy)=r; 8i 2 N; (19a)yi � (xTy)=r; 8i 2 B; (19b)for every feasible point (x; y).



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 9Proof. Consider a solution (x�; y�) with x� + y� > 0, as in Assumption 2. Because ofmonotonicity, we obtain0 � (x� x�)TM(x� x�) = (x� x�)T (y � y�) = xTy � x�Ty � xTy�;where the last equality is due to the fact that x�Ty� = 0. Hence, xTy� � xTy, which impliesthat xi � (xTy)=y�i ; 8i 2 N:Similarly, we obtain yi � (xTy)=x�i ; 8i 2 B;and the result follows by choosing r to be the smallest component of (x�B; y�N).Lemma 2.9 Suppose that Assumption 2 holds and that � � 0 and � > 0 are given. Thenfor any (x; y) 2 N (�; �) with corresponding (�x;�y) de�ned by (5), we havej�xij � (xTy)1� �2r�1=2 ; 8i 2 N; (20a)j�yij � (xTy)1� �2r�1=2 ; 8i 2 B; (20b)and xi � r�(xTy)�; 8i 2 B; (21a)yi � r�(xTy)�; 8i 2 N; (21b)where r is the constant from Lemma 2.8.Proof. Let D = X1=2Y �1=2, and note from Lemma 2.7(c) thatkD�1�xk � (xTy)1=2: (22)Since (x; y) 2 N (�; �), we havexiyi � �(xTy)1+�; 8i = 1; : : : ; n: (23)Using relations (22), (19a), and (23), we obtainj�xij � xi  xTyxiyi!1=2 �  xTyr ! 1�(xTy)�!1=2 = (xTy)1� �2r�1=2 ; 8i 2 N;yielding (20a). Relation (20b) follows similarly. To show (21b), we observe that relations(23) and (19a) imply yi � �(xTy)1+�xi � r�(xTy)�; 8i 2 N;yielding (21b). Similarly, (21a) follows from (23) and (19b).We now provide upper bounds for the remaining components of the search directions,namely, �xB and �yN . This part of the development is based on the approach of Ye andAnstreicher [18] and, in particular, the following lemma.



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 10Lemma 2.10 (Ye and Anstreicher [18, Lemma 3.5]) Suppose that Assumption 2 holds andlet (�x;�y) be the solution of (5). Then (u; v) = (�xB;�yN) solves the problemmin(u;v) 12kD�1B uk2 + 12kDNvk2;subject to I:Nv �M:Bu =M:N�xN � I:B�yB: (24)Our bounds for �xB and �yN are given in the following result.Lemma 2.11 Suppose that Assumption 2 holds and that � � 0 and � > 0 are given. Thenthere exists a constant C2 > 0 independent of � and � such that for any (x; y) 2 N (�; �) withcorresponding (�x;�y) de�ned by (5), we havek�xBk1 � C2�1=2 (xTy)1� �2 ; k�yNk1 � C2�1=2 (xTy)1� �2 : (25)Proof. Applying Lemma 2.2 to problem (24), we conclude that there exists a constantC3 > 0 which depends only on the matrixM and the index sets B and N such thatk(�xB;�yN)k1 � C3kM:N�xN � I:B�yBk1� C3 fkM:Nk1k�xNk1 + kI:Bk1k�yBk1g� C3maxfkM:Nk1; kI:Bk1g(xTy)1� �2r�1=2 ;where the last inequality is due to relations (20a) and (20b). The result now follows bysetting C2 4= (C3=r)maxfkM:Nk1; kI:Bk1g:We note that the result of Lemma 2.11 with � = 0 is slightly stronger than the oneobtained by Ye and Anstreicher [18, Theorem 3.6] in the sense that the constant C2 does notdepend on the size of (x; y). Lemma 2.2 plays a crucial role in deriving this stronger version.We can now merge the results of Theorem 2.5 with Lemmas 2.9 and 2.11 to obtain thefollowing theorem.Theorem 2.12 Suppose that Assumption 2 holds and that � > 0 and � > 0 are given. Thenthere exists a constant C4 � 1 independent of � and � such that for any (x; y) 2 N (�; �) with(�x;�y) de�ned by (5), we havek�xk1 � C4�� (xTy)1���; k�yk1 � C4�� (xTy)1���;where � = 0 if M is skew-symmetric and � = 1=2 otherwise.



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 113 The Basic AlgorithmIn this section, we develop a special version of a primal-dual a�ne scaling algorithm for whichall iterates lie in a neighborhood N (�; �), for some � > 0 and � > 0. We show that when� 2 (0; 1=2) (� 2 (0; 1), if M is skew-symmetric), the algorithm is superlinearly convergentwith q-order equal to 2 � 2� (respectively, 2 � �). We also derive a bound on the numberof iterations to reduce the duality gap below a speci�ed tolerance. For certain choices of �,the algorithm is shown to have a polynomial bound on the total number of iterations.The following notation and de�nitions will be used in the remainder of the paper. Giventhe strictly feasible point (x; y) and the search direction (�x;�y) from (5), de�ne(x(�); y(�)) 4= (x; y) + �(�x;�y);� 4= �xT�yxTy ; (26)� 4= maxi=1;���;n�xi�yi<0 j�xi�yijxiyi ! ;where we assume that the maximum over the empty set is 0. We use �k and �k for thevalues of � and � at (x; y) = (xk; yk) and (�x;�y) = (�xk;�yk).Lemma 3.1 Let (x; y) be a strictly feasible point and (�x;�y) be the solution of (5). Thenthe following statements hold for all � 2 [0; 1]:(a) x(�)Ty(�) = xTy(1� �+ �2�);(b) xi(�)yi(�) � xiyi(1 � � � �2�);(c) (1� �)xTy � x(�)Ty(�) � (1 � �=2)2xTy;(d) �xi�yi = 0 for all i = 1; � � � ; n if and only if (x(1); y(1)) is a solution of (1) withx(1) + y(1) > 0.Proof. Statements (a) and (b) follow immediately from (5a) and (26). Lemma 2.7(b)implies that 0 � � � 1=4, which together with (a) implies statement (c).To prove (d), we assume �rst that �xi�yi = 0 for all i = 1; � � � ; n, so that � = 0. Using(5a), we can partition f1; � � � ; ng into index sets B and N such thati 2 B ) �yi = �yi; �xi = 0;i 2 N ) �xi = �xi; �yi = 0:Therefore i 2 B ) yi(1) = 0; xi(1) = xi > 0;i 2 N ) xi(1) = 0; yi(1) = yi > 0;



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 12and so (x(1); y(1)) satis�es (1b) and (1c) and x(1) + y(1) > 0, The equations y = Mx +q and (5b) imply that (1a) is also satis�ed, so the forward implication is true. For theconverse, assume (x(1); y(1)) solution with x(1) + y(1) > 0. Partitioning f1; � � � ; ng intoB = fi jxi(1) > 0g and N = fi j yi(1) > 0g, we have using (5a) thati 2 B ) �yi = �yi; �xi = 0;i 2 N ) �xi = �xi; �yi = 0:Hence, the converse is proved, and so (d) holds.Lemma 3.2 If u � 1 and � 2 (0; 1], then (1� u)1+� � 1� (1 + �)u+ �u2.Proof. By the mean value theorem, we have that(1� u)� = 1 � �u+ (� � 1)�(1� �u)��2u22for some �u between 0 and u. The last term in the above expression is nonpositive, andtherefore (1� u)� � 1� �u. Hence,(1� u)1+� = (1 � u)(1� u)� � (1� u)(1� �u) = 1� (1 + �)u+ �u2;giving the result.Lemma 3.3 Let � 2 (0; 1] and � > 0 be given, and assume that (x; y) 2 N (�; �). Let(�x;�y) be de�ned by (5), and suppose that �xi�yi 6= 0 for some i = 1; � � � ; n, so that(x(1); y(1)) does not solve (1). Then, for every� 2 J 4= "0; �� + �+ (1 + �)�# ;the following statements hold:(a) 1� � � �2� > 0;(b) (x(�); y(�)) 2 N (�; �).Proof. Since �xi�yi 6= 0 for some i, we can easily see that either � > 0 or � > 0, or both.Hence, J � [0; 1). In view of Lemma 3.1(c) and xTy > 0, this implies that x(�)Ty(�) > 0for all � 2 J . Using Lemma 3.1(a), Lemma 3.2, and the inclusions � 2 [0; 1=4], � 2 [0; 1),we obtain 0 < � hx(�)Ty(�)i1+�= �(xTy)1+�[1� �(1 � ��)]1+�� �(xTy)1+�[1� (1 + �)�(1� ��) + ��2(1� ��)2]� �(xTy)1+�[1� (1 + �)�(1� ��) + ��2]� �(xTy)1+�[1� �� �2�]; (27)



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 13where in the last inequality we used the fact that the interval J is exactly the set of all � � 0for which 1 � �(1 + �)(1� ��) + ��2 � 1 � � � �2�:Clearly, (27) implies statement (a).Since (x; y) 2 N (�; �), we havexiyi � �(xTy)1+�; 8i = 1; � � � ; n: (28)Using this relation together with Lemma 3.1(b) and statement (a), we obtainxi(�)yi(�) � xiyi(1� � � �2�) � �(xTy)1+�(1� � � �2�); 8i = 1; � � � ; n: (29)Hence, it follows from (27) and (29) thatmini=1;���;n fxi(�)yi(�)g � �[x(�)Ty(�)]1+� > 0; 8� 2 J:Thus, (x(�); y(�)) 2 N (�; �) for all � 2 J , and the result follows.Lemma 3.4 Assume that (x; y) 2 N (�; �), where � 2 (0; 1] and � > 0 are given constants.Then �(xTy)� � 1n: (30)Proof. Since (x; y) 2 N (�; �), we havexTy = nXi=1 xiyi � n�(xTy)1+�;giving the result.Lemma 3.5 Suppose that � 2 (0; 1] and � > 0 are given. There exists a constant �C > 0independent of � and � such that if (x; y) 2 N (�; �), thenmaxf�; �g � �C (xTy)1���3�� ; (31)where � = 1 if the matrix M is skew-symmetric and � = 2 otherwise.Proof. Consider the constant C4 as in the statement of Theorem 2.12, and de�ne �C = 3C24 .We will show that �C ful�lls the requirements of the lemma. For any (x; y) 2 N (�; �), Theorem2.12 and Lemma 3.4 imply that� = �xT�yxTy� nC24 [ (xTy)2(1���) ]=�2�xTy



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 14= n�(xTy)�C24 (xTy)1�(2�+1)��2�+1= n�(xTy)�C24 (xTy)1������ �C (xTy)1���3�� ; (32)where in the last equality we have used the fact that 2� + 1 = �. For a bound on �, we use(x; y) 2 N (�; �) and Theorem 2.12 to deduce that� � max1�i�n( j�xi�yijxiyi ) � C24 [ (xTy)2(1���) ]=�2��(xTy)1+� = C24 (xTy)1�(2�+1)��2�+1 = �C (xTy)1���3�� : (33)Clearly, (32) and (33) imply the result.We now state the main theorem concerning convergence of the algorithm. For the purposeof this theorem and the next section we de�ne a measure of centrality of the initial point asfollows: �0 = mini=1;���;nfx0iy0i gx0Ty0=n : (34)Theorem 3.6 Let � 2 (0; 1=�) and the strictly feasible point (x0; y0) be given, where � is theconstant de�ned in Lemma 3.5. Suppose that Algorithm PDA is applied with step lengths�k = �� + �k + (1 + �)�k : (35)Then(a) the sequence fxkTykg converges monotonically to 0;(b) given any � 2 (0; x0Ty0), the algorithm achieves xkTyk � � in at mostO0B@0@x0Ty0� 1A� � n��0� log x0Ty0� 1CA (36)iterations;(c) either the algorithm terminates with xkTyk = 0 in a �nite number of iterations, or elsethe sequence fxkTykg converges to zero superlinearly with Q-order 2 � ��.Proof. First, we observe that there is an index K � 0 with �xKi �yKi = 0 for alli = 1; � � � ; n if and only if (xK+1; yK+1) is a solution of (1) (see Lemma 3.1(d)). Moreover,using the proof of statement (b) below, one can easily see that if such an index K exists,



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 15then it must be of the order in (36). We will henceforth assume that �nite termination doesnot occur and so for all k � 0, there is at least one i = 1; � � � ; n such that �xki�yki 6= 0.(a) Choosing any � > 0 such that (x0; y0) 2 N (�; �), we have from relation (35) and Lemma3.3 that (xk; yk) 2 N (�; �) for all k � 0. We now �nd a lower bound on the step length�k. By Lemma 3.1(c) and the fact that �k 2 [0; 1] for all k � 0, we have that fxkTykg is adecreasing sequence. Hence, using (31), we obtainmaxf�k; �kg � �C (xkTyk)1���3�� � �C (x0Ty0)1���3�� ; 8k � 0;which, in view of (35), implies�k � �� 4= �� + �C(x0Ty0)1���=�� > 0; 8k � 0:Using Lemma 3.1(c) again, we get xk+1Tyk+1 � (1 � ��=2)2xkTyk, 8k � 0, which clearlyimplies statement (a).(b) Let � = �0n(x0Ty0)� ; (37)where �0 is de�ned in (34). Note that � is the largest possible choice for which (x0; y0) 2N (�; �). By relation (35) and Lemma 3.3, we know that (xk; yk) 2 N (�; �) for all k � 0.Assuming that xkTyk � �, we now seek bounds on �k and �k that are independent of thesomewhat murky constant �C. Using Lemma 2.7(a) and the fact that (xk; yk) 2 N (�; �), weobtain �k � max1�i�n ( j�xki�yki jxki yki ) � xkTyk=4�(xkTyk)1+� = 14�(xkTyk)� :Hence, from (37) and the assumption that xkTyk � �, we obtain�k � 14�(xkTyk)� � n4�0(�=x0Ty0)� :Moreover, Lemma 2.7(b) implies that �k � 1=4. These two last relations together with (35)then imply that �k � �� + n=[4�0(�=x0Ty0)�] + (1=2) � ��0(�=x0Ty0)�2n ;where in the last inequality we used the fact that �0 � 1 and � < x0Ty0. Hence, by Lemma3.1(c), we conclude that xk+1Tyk+1xkTyk � 0@1� ��0(�=x0Ty0)�4n 1A2 : (38)



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 16We have thus shown that (38) holds whenever xkTyk � �. Now, let K be the smallestnonnegative integer k for which xk+1Tyk+1 � �. Assume for contradiction thatK > 0@x0Ty0� 1A� � 2n��0� log x0Ty0� :By taking logarithms and using the inequality log(1 � �) � �� for � 2 (0; 1), we can showthat 0@1� ��0(�=x0Ty0)�4n 1A2K < �x0Ty0 :Using this relation and the fact that (38) holds for every k � K, we obtainxKTyK � 0@1� ��0(�=x0Ty0)�4n 1A2K x0Ty0 < �;which contradicts the fact that xKTyK � �. Therefore (36) holds, and we have provedstatement (b).(c) Choose � as in the proof of part (a). From Lemma 3.1(a), (35), and (31), we havexk+1Tyk+1 = xkTyk(1� �k + �2k�k)� xkTyk  �k + (1 + �)�k� + �k + (1 + �)�k + �k!� xkTyk 0@ �C(xkTyk)1���=��� + �C(xkTyk)1���3�� 1A� 4 �C3��� �xkTyk�2��� ;which implies statement (c).We observe that for certain values of �, the algorithm of Theorem 3.6 has a polynomialbound on the number of iterations. To see this, assume that L > 0 is such that 2L �maxfx0Ty0; ��1g. Assume also that the initial point (x0; y0) is chosen in such a way that�0 = O(1) is independent of n and L. Then, in terms of n, L, and �, the algorithm ofTheorem 3.6 terminates in O(nL22L�=�) iterations. If we choose � = O(1=L), then thenumber of iterations is O(nL2).4 A Superlinearly Convergent Potential ReductionAlgorithmAlthough our algorithm has excellent local convergence properties, preliminary computationshave shown that its behavior at points remote from the solution is poor. It is therefore



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 17worthwhile to merge our method with other methods with more attractive global convergenceproperties. In this section, we embed our method in a potential reduction method. Theresulting method retains the global convergence behavior of potential reduction methodswhile exhibiting the fast local convergence associated with the algorithm of Section 3. Weare also motivated by a desire to show that potential reduction methods can be superlinearlyconvergent.Our potential reduction algorithm is based on the Tanabe-Todd-Ye potential function q(x; y) = q log xTy � nXi=1 log xiyi; (q > n): (39)We start by specifying the algorithm and stating a global convergence theorem. Then weshow that if q lies in the range (n; n + 1=�), the algorithm becomes compatible with themethod described in the previous section and is superlinearly convergent.We start by specifying the algorithm.Algorithm PDPRinitially: Choose �xed constants � > 1 and � 2 (0; 1). Let f�kg be a scalar sequencesatisfying �k � 1=2, and let (x0; y0) be strictly feasible;for k = 0; 1; 2; : : :Find (�xk;�yk) by solving (5) with (x; y) = (xk; yk);De�ne �k = ��mk�k, where mk is the smallest nonnegative integer for which(xk(��mk�k); yk(��mk�k)) > 0 and q(xk(��mk�k); yk(��mk�k)) �  q(xk; yk) + �(��mk�k)r q(xk; yk)T " �xk�yk # ; (40)Set (xk+1; yk+1) = (xk(�k); yk(�k));end forThis algorithm is closely related to the algorithm of Monteiro [11] for convex program-ming. Its global convergence properties can be analyzed by using techniques like those ofMonteiro [11] and Kojima et al. [5]. We omit the details of this analysis and simply statethe �nal theorem.Theorem 4.1 Suppose that Assumption 2 holds. Then the sequence of iterates f(xk; yk)ggenerated by Algorithm PDPR satis�eslimk!1 xkTyk = 0:



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 18The following assumption ensures that Algorithm PDPR enters a superlinear phase inwhich the local convergence rate of the algorithm of Theorem 3.6 is attained.Assumption 3 There is an integer K > 0 such that the iterate (xK; yK) of AlgorithmPDPR satis�es mini xKi yKi �  �C� !1=� �xKTyK�1+1=� ; (41)where �C and � are de�ned in Lemma 3.5.Suppose that for some � 2 (0; 1=�), the sequence of initial step sizes f�kg is selected as�k = max 12 ; �� + �k + (1 + �)�k! ; 8k � 0: (42)We have the following result.Lemma 4.2 Suppose that Assumptions 2 and 3 hold, and let f(xk; yk)g be the sequence ofiterates generated by Algorithm PDPR with the initial step size �k de�ned by (42) for allk � 0. De�ne � = minxKi yKi(xKTyK)1+� ; (43)where K is the index in Assumption 3. Then, for all k � K, we have(a) (xk; yk) 2 N (�; �); and(b) �k = �=(� + �k + (1 + �)�k).Proof. Recall that by Lemma 3.1(c), the sequence fxkTykg decreases. Using this facttogether with relations (41) and (43), one can easily verify that�C(xkTyk)1����� � �; 8k � K: (44)We show �rst that (a) implies (b) for each k � K. Assuming (a), we have from (31) and(44) that �k + (1 + �)�k� + �k + (1 + �)�k � �C(xkTyk)1���=��� + �C(xkTyk)1���=�� � �2� = 12 ;and therefore, from (42), statement (b) holds.We now prove (a) by induction. Clearly, by the de�nition (43), (a) holds for k = K.Assume now that (a) is satis�ed at some arbitrary k � K. Then (b) also holds at theindex k, and we can use Lemma 3.3(b) and the fact that �k 2 (0; �k] to conclude that(xk+1; yk+1) 2 N (�; �), giving the result.A result like Theorem 3.6(c) ensures superlinear convergence provided we show thatmk = 0 for all k su�ciently large, that is, �k = �k. We do so in the following theorem.



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 19Theorem 4.3 Suppose that Assumptions 2 and 3 hold, and let f(xk; yk)g be the sequence ofiterates generated by Algorithm PDPR with the initial step size �k de�ned by (42) for some� 2 (0; 1=�). Assume also that �k < 1 for all k. Then the sequence fxkTykg converges tozero superlinearly with Q-order 2� ��.Proof. Global convergence of the sequence fxkTykg to zero follows from Theorem 4.1. Wenext show that �k = �k for all k � K su�ciently large, from which superlinear convergenceof fxkTykg to zero follows as a consequence of Lemma 4.2(b) and Theorem 3.6(c). To showthat �k = �k, we need only show that(xk(�k); yk(�k)) > 0; (45)and  q(xk(�k); yk(�k))�  q(xk; yk) � ��kr q(xk; yk)T " �xk�yk # : (46)Lemma 4.2(a) implies that (45) holds for all k � K. To prove that (46) holds for all k � Ksu�ciently large, we start by �nding a lower bound on its right-hand side. Using (39) and(5a), we have��kr q(xk; yk)T " �xk�yk #= ��k 8<:" qxkTyk yk � (Xk)�1e#T �xk + " qxkTykxk � (Y k)�1e#T �yk9=;= ��k ( qxkTyk (ykT�xk + xkT�yk)� nXi=1 "�xkixki + �ykiyki #)= ���k(q � n) � ��(q � n): (47)To �nd an upper bound for the left-hand side of (46), note that for all k � K, we have� 2k max(�k; �k)1 � �k =  �� + �k + (1 + �)�k!2  � + �k + (1 + �)�k�k + (1 + �)�k !max(�k; �k)=  �2� + �k + (1 + �)�k! max(�k; �k)�k + (1 + �)�k� �:Using this bound together with statements (a) and (b) of Lemma 3.1, we obtain q(xk(�k); yk(�k))�  q(xk; yk)= q log "xk(�k)Tyk(�k)xkTyk # � nXi=1 log "xki (�k)yki (�k)xki yki #



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 20� q log(1� �k + � 2k�k)� nXi=1 log(1 � �k � � 2k�k)= (q � n) log(1� �k) + q log 1 + � 2k�k1� �k!� n log  1� � 2k�k1� �k!� (q � n) log(1� �k) + q log(1 + �)� n log(1 � �): (48)Since xkTyk ! 0, it follows from (31) and (42) that 1 � �k ! 0. Therefore, from (48), theleft-hand side of (46) approaches �1 as k !1. Hence, in view of (47), the inequality (46)will hold for all su�ciently large k � K.The proof of superlinearity now follows as in Theorem 3.6(c).Note that if �k = 1 for some k, we have �xki�yki = 0 for all i; therefore, from Lemma3.1(d), (xk+1; yk+1) is an exact solution of (1). In this case, Algorithm PDPR will reject thestep �k = �k because (45) is not satis�ed! Any implementation would surely recognize thisspecial case, so we have avoided the complication that it introduces into the analysis above.Obviously, we cannot explicitly identify the index K required by Assumption 3, since wedo not know the value of �C in general. However, we can be sure that Assumption 3 holds ifwe choose q to be in the interval (n; n+ 1=�), as we show in the following theorem.Theorem 4.4 Suppose that Assumptions 1 and 2 hold and that q 2 (n; n+1=�). Then thereis an index K such that (41) holds at the iterate (xK; yK) generated by Algorithm PDPR.Proof. Let us de�ne Q and �Q asQ 4=  q(x0; y0); �Q 4= Q� (n� 1) log(n� 1):Since  q is reduced at each iteration of Algorithm PDPR, we have  q(xk; yk) � Q for allk � 0. Hence, for all k � 0 and i = 1; � � � ; n, we have(q � n+ 1) log xkTyk � log xki yki� Q� (n� 1) log xkTyk +Xj 6=i log xkjykj� Q� (n� 1) log �xkTyk � xki yki �+Xj 6=i log xkjykj� Q� (n� 1) log(n� 1) = �Q;where the third inequality follows from the arithmetic-geometric mean inequality, namely:(Ppi=1 ai)=p � (�pi=1ai)1=p for any positive scalars a1; : : : ; ap. Hence,log xki yki�xkTyk�q�n+1 � � �Q ) xki yki � e� �Q �xkTyk�q�n+1 ;and so xki yki �  �C� !1=� �xkTyk�1+1=�8<:e� �Q  ��C!1=� �xkTyk�q�n�1=�9=; :



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 21Since q� n� 1=� < 0 and xkTyk ! 0, there is a K > 0 such that the last bracketed term inthe expression is greater than 1 for all k � K, giving the result.Finally, we combine the results of the last two theorems to obtain the following result.Corollary 4.5 Suppose that Assumption 2 holds, that q 2 (n; n + 1=�), that the sequenceof initial step sizes f�kg is de�ned by (42) for some � 2 (0; 1=�), and that �k < 1 for all k.Then the sequence fxkTykg generated by Algorithm PDPR converges to zero superlinearlywith Q-order 2� ��.5 Concluding RemarksIn this concluding section, we discuss the close relationship that exists between the algorithmof Theorem 3.6 and the one presented by Tun�cel [16]. We also show that Tun�cel's algorithmis superlinearly convergent whenever the parameter � that appears in the potential function(4) lies in the interval (0; 1).For simplicity, we assume that the a�ne scaling direction (�x;�y) at any strictly feasiblepoint satis�es �xi�yi 6= 0, for some i 2 f1; � � � ; ng, so that �nite termination of the algorithmnever occurs. For the purpose of this section, we also assume that the matrix M in (1) isskew-symmetric. Since Tun�cel's algorithm is for linear programs, it �ts into this framework.We describe Tun�cel's algorithm in an equivalent but slightly di�erent way from [16] inorder to better point out its connection to the neighborhood N (�; �). Let the strictly feasiblepoint (xk; yk) be the k-th iterate of the algorithm. Tun�cel's algorithm sets (xk+1; yk+1) =(xk(�k); yk(�k)), where the stepsize �k 2 (0; 1) is such that the point (xk(�k); yk(�k)) satis�esthe equation in (x; y) de�ned bymini=1;���;nfxiyig(xTy)1+� = mini=1;���;nfxki yki g(xkTyk)1+� :Tun�cel shows that such a stepsize always exists and is unique. In the proof of this fact, healso shows that (xk(�); yk(�)) satis�es the strict inequalitymini=1;���;nfxki (�)yki (�)g[xk(�)Tyk(�)]1+� > mini=1;���;nfxki yki g(xkTyk)1+�for all � 2 (0; �k). Observe that the iterates of this algorithm satisfymini=1;���;nfxki yki g(xkTyk)1+� = mini=1;���;nfx0i y0i g(x0Ty0)1+� 4= �; 8k � 0;which, in terms of the potential function (4), is equivalent to 	�(xk; yk) = 	�(x0; y0) forall k � 0. It is now easy to see that Tun�cel's step size is the largest � > 0 for which(xk(�); yk(�)) 2 N (�; �). In view of Lemma 3.3(b), it follows that our step size (35) isless than or equal to Tun�cel's step size. Therefore Tun�cel's algorithm achieves larger or
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