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Superlinear Primal-Dual Affine Scaling
Algorithms for LCP

R. D. C. Monteiro* S. J. Wright'

Abstract

We describe an interior-point algorithm for monotone linear complementarity prob-
lems in which primal-dual affine scaling is used to generate the search directions. The
algorithm is shown to have global and superlinear convergence with Q-order up to (but
not including) two. The technique is shown to be consistent with a potential-reduction
algorithm, yielding the first potential-reduction algorithm that is both globally and
superlinearly convergent.
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1 Introduction

During the past three years, we have seen the appearance of several papers dealing with
primal-dual interior-point algorithms for linear programs (LP) and monotone linear com-
plementarity problems (LCP) that are superlinearly or quadratically convergent. For LP,
these works include McShane [7], Mehrotra [8], Tsuchiya [15], Ye [17], Ye et al. [19], Zhang
and Tapia [21], and Zhang, Tapia, and Dennis [22]. For LCP, we mention Ji, Potra, and
Huang [1], Ji et al. [2], Kojima, Kurita, and Mizuno [3], Kojima, Meggido, and Noma [4],
Ye and Anstreicher [18], and Zhang, Tapia, and Potra [23]. The introductory section of
Ye and Anstreicher [18] contains an interesting discussion of the historical development of
superlinearly convergent primal-dual interior-point algorithms.
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In this paper, we discuss superlinearly convergent primal-dual affine scaling methods for
solving the monotone LCP. This problem consists of finding a vector pair (z,y) € R" x R"
such that

y =Mz +q, (la)
x>0, y>0, (1b)
wly =0, (1c)

where ¢ € R™, and M € R"*" is positive semidefinite. In subsequent discussion, we say that
a point (x,y) is feasible if it satisfies the equations (1a) and (1b), and strictly feasible if (1a)
and (1b) are satisfied with > 0, y > 0. We refer to (z,y) as a solution only if all three
conditions in (1) hold.

Previous superlinearly convergent algorithms for (1) have required all iterates to belong
to a neighborhood of the central path defined by either

Na(B) = {(,y) feasible | [|XYe— (a"y/n)el, < B(z"y/n)}

N_(B) = {(:zj,y) feasible | xjy: > (1 — 8)(xTy/n), Vi=1,... ,n},

where

X = diag(x), Y = diag(y), e=(1,1,...,1)7,

and # € [0,1) is a constant. For example, the predictor-corrector algorithms of Ye et al.
[19] for LP and Ji, Potra, and Huang [1] and Ye and Anstreicher [18] for LCP use the
neighborhood N, while the linear programming algorithm of Zhang and Tapia [20] uses
N_.. In this paper, we use a different neighborhood defined with respect to two parameters
6>0and n >0 by

N(é,n) = {(:1;, y) strictly feasible | @;y; > n(zy)'™, Vi=1,... ,n}. (2)

Clearly, N'(6,7) is equal to the neighborhood N_.,(1 — nn) when § = 0. The parameters é
and 7 that define A'(6,7n) do not need to be changed as the solution is approached to obtain
rapid local convergence. In this respect, the neighborhood (2) differs from A3 and N_..,
which need to be expanded during the final stages of the algorithm to achieve superlinear
convergence (see Ye [17], Ye and Anstreicher [18]).

Our algorithm uses primal-dual affine scaling search directions. These directions are
simply Newton steps for the system of nonlinear equations formed by (la) and the comple-
mentarity condition XYe = 0. Because of the connection to Newton’s method, we would
expect such an algorithm to be quadratically convergent if started close to a unique nonde-
generate solution and allowed to take full steps. In this paper, we show that by judicious
choice of the step size, all iterates will remain in N (6, n) while simultaneously achieving fast
local convergence. Depending on the choice of ¢, the Q-order of the local convergence can lie
anywhere in the range (1,2). Moreover, our nondegeneracy assumption requires only that
one of the solutions (z*,y*) has * + y* > 0, not that the solution is unique.
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In Section 2, we define the search directions and find bounds on the components of these
directions, in terms of the complementarity gap 7y and the parameters § and 5 that define
the neighborhood N(6,7). We pay special attention to the case of M skew-symmetric, which
occurs when (1) is derived from a linear programming problem. In this case, the bounds on
the search directions are a little tighter and are global; that is, they hold everywhere in the
relative interior of the set of feasible points and not just in the neighborhood N(é,7). In
Section 3, we show that a specific choice of step length yields a globally and superlinearly
convergent algorithm. For particular choices of the parameter ¢, the number of iterates is
polynomial in the size of the problem. Finally, in Section 4, we show that the algorithm of
Section 3 is consistent with a potential reduction algorithm based on the Tanabe-Todd-Ye
potential function

Yy (x,y) = qlog aly — Zlog T, (¢ >n), (3)
i=1
where an Armijo line search with a well-chosen initial trial step length is used. The resulting
algorithm is again globally and superlinearly convergent.

Tuncel [16] introduced an algorithm for linear programming that uses affine scaling search

directions in conjunction with a penalty function of the form

Us(x,y) = (64 1)log(a"y/n) — log(min{z;y;}), (4)

for 6 > 0. Step lengths are chosen to keep Wy constant from iteration to iteration. This
function is closely related to our neighborhood A(8,n) since

(z,y) e N(6,7) & Us(a,y) < —logn — (1 +6)logn.

Tuncel [16] proves global convergence but has no superlinear convergence result. In Section
b, we prove as a consequence of our results that Tuncel’s method is superlinear for 6 € (0, 1).
Mizuno and Nagasawa [9] describe a method for linear programming which also uses affine
scaling search directions and the potential function (3). They prove complexity results for
an algorithm that takes a steplength greater than a specified minimum value (defined by a
formula not unlike our (35)) which does not increase (3).

The following notational conventions are used in the remainder of the paper: Unless
otherwise specified, ||.|| denotes the Euclidean norm. For a general vector z € R" and
index set B C {1,...,n}, zp denotes the vector made up of components z; for : € B. If
M € R™™ and B,N C {1,...,n}, then Mg refers to the submatrix of M consisting of
the rows ¢ € B. Similarly, M x denotes the submatrix of M corresponding to the columns
j € N.If D e R™" is diagonal, we write D > 0 when all the diagonal elements are strictly
positive, and use the notation Dpg to denote the diagonal submatrix constructed from D;,

i € B. We say that (B, N) is a partition of {1,...,n} if BUN ={1,...,n} and BAN = 0.

2 Technical Results

In this section, we state our assumptions and derive bounds on components of the iterates
(2%, y*) and the steps (Az*, Ay*) for k = 0,1,---. Tt is assumed throughout that (z*,y¥)
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lies in the neighborhood N (6, 7).
We make use of the following assumptions. The first assumption is implicit throughout
the paper; the second is invoked explicitly where needed.

Assumption 1 (Existence of a strictly feasible point) The set of strictly feasible points for
(1) is nonempty.

Assumption 2 (Nondegeneracy) There exists a solution (x*,y*) of (1) such that x*+y* > 0.

When (2%, y*) is the vector pair from Assumption 2, we can define a partition (B, N) of

{1,...,n} by
B={i]z; >0}, N ={i]|s >0}

It is easy to show that all solutions to (1) have 23 = 0 and y5 = 0.
We consider in this paper the following class of primal-dual affine scaling algorithms.

Algorithm PDA
initially: Let (2% y°) be a strictly feasible point;
for £ =0,1,2,...
Let (Ax*, Ay*) denote the solution of the linear system
YAz + XAy = —YXe, (5a)
Ay—MAz = 0, (5b)
where (z,y) = (z%,y%), X = diag(z), and Y = diag(y);
Choose ap > 0 such that (z* + a,Az® y* + apAyF) is strictly feasible;
Set (z*L y*) = (2% + Ak Y + ap AyF);
end for

We start by stating a well-known result from linear algebra.

Lemma 2.1 Let F' € R?*? be given. Then there exists a nonnegative constant C = C(F)
with the following property: for g € R such that the system Fw = g is feasible, there exists
a solution w of Fw = g such that

[w]] < Cllgll

The following technical lemma unifies Theorem 2.5 and Lemma A.1 of Monteiro, Tsuchiya
and Wang [13], which in turn are based on Theorem 2 of Tseng and Luo [14].



SUPERLINEAR AFFINE-SCALING ALGORITHMS FOR LCP 5

Lemma 2.2 Let f € R? and H € R?*? be given. Then there exists a nonnegative constant
L = L(f,H) with the property that for any diagonal matric D > 0 and any vector h €
Range(H), the (unique) optimal solution w = w(D,h) of

1
rrgn fTw+ 5 HDwH2 \ subject to Hw = h, (6)

satisfies

]|y < L {1F7 0]+ |7l } - (7)

Proof. We first show that |fTw| + ||h]|.c = 0 if and only if w = 0. The reverse assertion
is clear, since from (6) we have h = Hw = 0. For the forward assertion, note that the
optimality conditions for (6) are have D*w + f + HTu = 0 for some u € R”. Since fTw =0
and h = 0, we have

ol D?*w = —fTw —w! H'w = 0.
Hence, since D > 0, the result follows. Clearly the inequality (7) holds in this case. In the
remainder of the proof we show that L can be chosen such that (7) also holds for nonzero
solutions to (6).

Assume for contradiction that there exists a sequence of diagonal matrices {D*} with
Dy, > 0 and a sequence {h*} C Range(H) such that |fTw*| + ||h¥|| > 0 for every k and

lim [ = o0

h—oo [ fTwk] 4 {[h* | 7
where w* is the (unique) optimal solution of (6) with D = D¥ and h = h*. By taking
subsequences of subsequences, if necessary, we can identify a constant L; > 0 and a nonempty
index set J C {1,...,¢q} such that

] .
e . <t R ®
k

lim |wj = oo VieJd 9)

e [Tt R~ 7

Let us define the following linear system

o o= e (100)
Hw = i (10b)
w; = wi, Vji¢J, (10c)

and note that w" is a solution of this system. By Lemma 2.1, (10) has a solution %" such
that

uA)k

o £ LT 4 I+ s )
oo < Lo {1570+ 188+ sl o)}
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(the last term being omitted if 7 = {1,...,¢}), where Ly > 0 is a constant depending only
on f, H, and J. By substituting (8) into this bound, we obtain

< Ly {1+ 1B o + Lo (1 0]+ 13¥)|0) }

= Ly (If w4+ 17", (11)

where L3 = Ly (1 + Lq). From (9), there exists K > 0 such that for all £ > K we have
Wil > L(|fTw| + |1¥]l), Vi€ d. (12)
Combining (11) and (12), we have
wh| > |6, Vi €T, Vhk> K.
From this relation and the fact that 10* satisfies (10c), we obtain

’ = ZijAf —I_ZD;CJA;C

eJ €T
< 2 (Dfui)’ + X (Djjwy)
eJ €T

= ||DF|?,  VEk> K.

Hence, since " satisfies (10a), we have

1
Jhek + H P et 4 SlIDME E > K (13)

This relation together with the fact that " satisfies (10b) contradicts the assertion that w*
is an optimal solution of (6) with D = D* and h = h*. [

Our main aim now is to derive bounds on the components of the search directions gen-
erated by Algorithm PDA. We first deal with the case of M skew-symmetric. This special
case is of interest mainly because the linear programming formulation

min ¢ w, subject to Aw > b, w > 0,

can, with the introduction of a Lagrange multiplier A, be posed in the form (1) with

0 A —b
L
The following two lemmas lay the foundations for a global bound on (A, Ay) which is found
in Theorem 2.5.
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Lemma 2.3 Assume that the matriz M in (1) is skew-symmetric, that is, M = — M7, and
that Assumption 1 holds. Then for any strictly feasible point (x,y), the solution (Ax, Ay) of
(5) solves the quadratic program

1 1
(Hlir)l ¢ w + §HD_1wH2 + §HD2H2, subject to z — Mw = 0, (14)

where D = X1/2y-1/2,

Proof. From (5b), (Ax,Ay) is clearly feasible for (14). It remains to verify that the
optimality conditions hold, that is,

g+ D7 ?Az = MTu, D*Ay = —u, (15)

for some u € R". By using relations (5a), (5b), and (la) and the fact that M = — M7 we
obtain

g+ DPAr =g+ X WAz =qg—y—Ay=—M(z + Az) = M"(z 4+ Az)

and

D*Ay =Y ' XAy = —z — Ax.
Hence, (Ax, Ay) satisfies (15) with v = = + Ax. [

Lemma 2.4 Assume that M in (1) is skew-symmetric. Let a strictly feasible point (x,y) be
given, and consider the solution (Ax,Ay) of (5). Then,

¢ e =Ty = —¢' Az (16)

Proof. We have
¢'e=(y—Mz)'z =yTe — 2" Mz = y"x,

where the last equality is due to fact that M = —M7T. Using this fact again, together with
(5a) and (la), we obtain

—aTy =y Av+aTAy = (Ma+¢) " Ar+a"MAz = ¢" Ax+ 2" MT Az — 2" M7 Az = ¢ Ax.
n

Theorem 2.5 Assume that M = —M?. Then, for every strictly feasible point (z,y), the
solution (Ax, Ay) of (5) satisfies

(A2, Ay)lec < =Cy ¢"Ax=Caly, (17)

where Cy > 0 is a constant independent of (x,y).
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Proof. The bound follows directly from Lemmas 2.2, 2.3, and 2.4. [

We stress that this result holds when (x,y) is any strictly feasible point, not just when
(x,y) lies in the neighborhood N(8,7). An interesting consequence of this result is that
the sequence {(z*,y*)} generated by Algorithm PDA when M is skew-symmetric always
converges, regardless of the choice of step sizes {a;}, though not necessarily to a solution of
(1). We offer a formal proof as our next result.

Corollary 2.6 Assume that M = —M?. Then the sequence {(z*,y*)} generated by Algo-
rithm PDA converges.

Proof. From (5) and the skew-symmetry of M, we have

0< :I;k""lTyk"'l = :L'kTyk(l —ag) + ozZA:z;kTMA:L'k = :L'kTyk(l —ay) < :L'kTyk.

Hence, by Lemma 2.4, the sequence {:L'kTyk} = {q¢T2*} is monotonically decreasing and
bounded below by zero and therefore convergent. Using Theorem 2.5, we obtain

ka-l—l N ka _ OékHAl'kH < —Clozk(qTAl'k) — Cl(qTxk . qu’k"'l). (18)

Since the sequence {¢’2*} is convergent, the above relation implies that {2*} is a Cauchy
sequence and therefore convergent. Therefore {y*} = {Mz* + ¢} is also convergent, and we
have the result. [

We now turn to the case of general positive semidefinite matrices M. We start with the
following technical result which provides bounds on several quantities involving the direction
(Axz, Ay). Its proof is well known and can be found in several papers (see for example Kojima,

Mizuno, and Yoshise [6], Mizuno, Todd, and Ye [10], and Monteiro and Adler [12]).
Lemma 2.7 Let (z,y) be a strictly feasible point and (Ax, Ay) be the solution of (5). Then
(a) maxicicn |[AwiAy;] < aly/4;
) 0 < AaTAy < Ty /1
(e) max (D" Al | DAY|} < ()2, where D = X12y =12,

We next state some simple results concerning boundedness of certain components of (x, )

and (Axz, Ay).

Lemma 2.8 Suppose that Assumption 2 holds. Then there exists a constant r > 0 such that

(xTy)/r, Vi e N, (19a)
(zTy)/r, Vi € B, (19b)

Ty

Yi

IA A

for every feasible point (x,y).
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Proof. Consider a solution (x*,y*) with 2* + y* > 0, as in Assumption 2. Because of
monotonicity, we obtain

0< (=)' Mz—a")=(z—2)(y—y) =2y — 2Ty — 2Ty,

where the last equality is due to the fact that «*Ty* = 0. Hence, 7y* < 2Ty, which implies
that

v < (2'y)/y;,  VieN.
Similarly, we obtain

yi < (aly)/a7,  ViEDB,

and the result follows by choosing r to be the smallest component of (7%, yi)- [

Lemma 2.9 Suppose that Assumption 2 holds and that 6 > 0 and n > 0 are given. Then
Jor any (z,y) € N(8,n) with corresponding (Ax, Ay) defined by (5), we have

(«Ty)'—2 .
|A$2| S W, V1 € N, (20&)
(«Ty)'—2 .
and
i > ry(zly)’, Vi € B, (21a)
Y, > rn(:z;Ty)é, VieN, (21b)

where v is the constant from Lemma 2.8.
Proof. Let D = X'/2Y='/2_and note from Lemma 2.7(c) that
D Ax|| < (2Ty)' 2 (22)
Since (z,y) € N(é,n), we have
ways > n(aTy) e, Yi=1,...,n. (23)
Using relations (22), (19a), and (23), we obtain

T,\ /2 T 1/2 T, \1-2
|Azi| < . < e ! :Mv Vie N,
LY r n(zTy)? rnt/?

yielding (20a). Relation (20b) follows similarly. To show (21b), we observe that relations
(23) and (19a) imply

T, \1+46
g > T S Gy, Vie N
;
yielding (21b). Similarly, (21a) follows from (23) and (19b). [

We now provide upper bounds for the remaining components of the search directions,
namely, Axg and Ayy. This part of the development is based on the approach of Ye and
Anstreicher [18] and, in particular, the following lemma.
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Lemma 2.10 (Ye and Anstreicher [18, Lemma 3.5]) Suppose that Assumption 2 holds and
let (Ax,Ay) be the solution of (5). Then (u,v) = (Axp, Ayy) solves the problem

min 1| D5"ull* + 1 Dyoll”,

(u,v)

subject to
].NU—M.BUZM.NAJ}N—].BA]JB. (24)

Our bounds for Axzp and Ayy are given in the following result.

Lemma 2.11 Suppose that Assumption 2 holds and that 6 > 0 and n > 0 are given. Then
there exists a constant Cy > 0 independent of § and n such that for any (x,y) € N(6,n) with
corresponding (Ax, Ay) defined by (5), we have

s
2

CQ _s 02 _¢
Acplle < T Il < () R (25)

Proof. Applying Lemma 2.2 to problem (24), we conclude that there exists a constant
C5 > 0 which depends only on the matrix M and the index sets B and N such that

|(Azg, Ayn) || Cs||M yAxy — I BAYB||eo

Ca{[|M N ||oo [ Az |00 + B[ AyB |00 }
(«Ty)l~2
T

IA A

< 03 maX{HM.NHoov H]BHOO}

where the last inequality is due to relations (20a) and (20b). The result now follows by
setting
A
Cy = (Cs/r) max{[| M. x|, [ L5l }-
]
We note that the result of Lemma 2.11 with 6 = 0 is slightly stronger than the one
obtained by Ye and Anstreicher [18, Theorem 3.6] in the sense that the constant Cy does not
depend on the size of (z,y). Lemma 2.2 plays a crucial role in deriving this stronger version.
We can now merge the results of Theorem 2.5 with Lemmas 2.9 and 2.11 to obtain the
following theorem.

Theorem 2.12 Suppose that Assumption 2 holds and that 6 > 0 and n > 0 are given. Then
there exists a constant Cy > 1 independent of § and n such that for any (z,y) € N(6,n) with
(Axz, Ay) defined by (5), we have

C B C _
[Az]|o < 77—;1(51?Ty)1 0 Ayl < 77—;1(51?Ty)1 o

where p =0 if M is skew-symmetric and p = 1/2 otherwise.
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3 The Basic Algorithm

In this section, we develop a special version of a primal-dual affine scaling algorithm for which
all iterates lie in a neighborhood N'(§,7), for some § > 0 and n > 0. We show that when
6€(0,1/2) (6 € (0,1), if M is skew-symmetric), the algorithm is superlinearly convergent
with g-order equal to 2 — 26 (respectively, 2 — ¢). We also derive a bound on the number
of iterations to reduce the duality gap below a specified tolerance. For certain choices of ¢,
the algorithm is shown to have a polynomial bound on the total number of iterations.

The following notation and definitions will be used in the remainder of the paper. Given
the strictly feasible point (z,y) and the search direction (Az, Ay) from (5), define

(¢(a),y(a)) = (x,y)+a(Az, Ay);

A A:L'TAy
¢ = Ty (26)
A (|A$iﬁyi|)
Y = max —_—,
Az Ay; <0

where we assume that the maximum over the empty set is 0. We use ¢ and y; for the

values of ¢ and y at (z,y) = (2%, y*) and (Az, Ay) = (Az*, AyF).

Lemma 3.1 Let (z,y) be a strictly feasible point and (Ax, Ay) be the solution of (5). Then
the following statements hold for all a € [0,1]:

(a) x(a)Ty(a) =2Ty(l —a+a’e);
(b) @i(a)yi(a) > vyl —a—a?y);
(c) (1 —a)ely <z(a)Ty(a) < (1 —a/2)%y;

(d) Ax;Ay; =0 for all ¢« = 1,---,n if and only if (x(1),y(1)) is a solution of (1) with
o(1) +y(1) > 0.
Proof. Statements (a) and (b) follow immediately from (5a) and (26). Lemma 2.7(b)
implies that 0 < ¢ < 1/4, which together with (a) implies statement (c).
To prove (d), we assume first that Az;Ay; =0 for all i = 1,---,n, so that ¢ = 0. Using
(5a), we can partition {1,---,n} into index sets B and N such that

1€ B = Ayi:_yia AJ}Z':O,
1eN = Al’i:—l‘i, Ayi:().

Therefore

1€B = yi(1) =0, x(1) =x;>0,
e N = :1;2»(1):0, yi(l):yi>0,
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and so (x(1),y(1)) satisfies (1b) and (1c¢) and x(1) + y(1) > 0, The equations y = Max +
g and (5b) imply that (la) is also satisfied, so the forward implication is true. For the
converse, assume (z(1),y(1)) solution with =(1) + y(1) > 0. Partitioning {1,---,n} into
B={i|z;(1) >0} and N = {i|y;(1) > 0}, we have using (5a) that

1€ B = Ayi:_yia AJ}Z':O,

1eN = Al’i:—l‘i, Ayi:().

Hence, the converse is proved, and so (d) holds. [
Lemma 3.2 [fu <1 and § € (0,1], then (1 —u)'*® <1 — (1 + &)u + du’.

Proof. By the mean value theorem, we have that
2

(1—u)’ =1—8u-+(6—1)8(1— u)H%

for some u between 0 and w. The last term in the above expression is nonpositive, and
therefore (1 — u)® <1 — éu. Hence,

(1- u)l"'(S =(1—u)(l-— u)(S <(I—-u)(l—=du)=1—=(14d6u+ du’,
giving the result. [

Lemma 3.3 Let § € (0,1] and n > 0 be given, and assume that (z,y) € N(8,n). Let
(Ax,Ay) be defined by (5), and suppose that Ax;Ay; # 0 for some ¢ = 1,--- n, so that
(x(1),y(1)) does not solve (1). Then, for every

o

AN
EJ: 07 9
“ S+ x+(1+6)0

the following statements hold:
(a) 1 —a—a*x > 0;
(b) (x(a)y(a)) € N(6,n).

Proof. Since Axz;Ay; # 0 for some i, we can easily see that either y > 0 or ¢ > 0, or both.
Hence, J C [0,1). In view of Lemma 3.1(c) and x7y > 0, this implies that x(a)Ty(a) > 0
for all @ € J. Using Lemma 3.1(a), Lemma 3.2, and the inclusions ¢ € [0,1/4], « € [0, 1),
we obtain

0 < (@ y(a)]™”
= p(z"y)"1 - a(l —ag)]'*
< (@Ty) [ — (14 6)a(l — ag) + 8a?(1 — ag)]
< p(ay)* 1 (1+ 8)all — ag) + o]
< pa"y)' T — o — o], (27)
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where in the last inequality we used the fact that the interval J is exactly the set of all &« > 0
for which
l—oz(l+5)(1—ozq$)—|—5oz2 <1—a—a’y.

Clearly, (27) implies statement (a).
Since (z,y) € N(6,71), we have

ziyi > np(aly) e, Yi=1,---,n. (28)
Using this relation together with Lemma 3.1(b) and statement (a), we obtain
vi(a)yi(@) > iyl —a—a?x) 2 p(a'y) (1 —a—a’x),  Vi=1,-n  (29)
Hence, it follows from (27) and (29) that

min {:1; (@)yi(a)} > nlz(a) y(a)] ™ >0, Ya € J.

=1,
Thus, (2(a),y(a)) € N(5, n) for all & € J, and the result follows. [

Lemma 3.4 Assume that (x,y) € N(8,n), where § € (0,1] and n > 0 are given constants.

Then
1

n(xy)’ < - (30)

Proof. Since (z,y) € N(8,7), we have

3

n

Z vy = nnp(aly)'
=1

giving the result. [

Lemma 3.5 Suppose that § € (0,1] and n > 0 are given. There exists a constant C' > 0
independent of § and n such that if (x,y) € N'(6,n), then

LTy Y16
max{é, x} < &

e (31)

where £ = 1 if the matriz M is skew-symmetric and & = 2 otherwise.

Proof. Consider the constant ('y as in the statement of Theorem 2.12, and define C =302,
We will show that ' fulfills the requirements of the lemma. For any (x,y) € N (8,7), Theorem
2.12 and Lemma 3.4 imply that

AzT Ay
Ty
nCF ()"0 ]
Ty

¢ =

IA
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)1—(2p-|—1)5

(z7y
= np(2'y)’C} T

()=
= nn(xTy)(SCZT
T

< O—— 32
< ol — (32)

where in the last equality we have used the fact that 2p +1 = £. For a bound on y, we use
(x,y) € N(8,7) and Theorem 2.12 to deduce that

[AcAyi| | _ CH{(eTy) ]/, (afy)mBADe L (aty)t e
A {T = n(aly)t+e I T (3)
Clearly, (32) and (33) imply the result. [

We now state the main theorem concerning convergence of the algorithm. For the purpose
of this theorem and the next section we define a measure of centrality of the initial point as
follows:

mini—,... , {zdy?}
2y

(34)

To =

Theorem 3.6 Let 6 € (0,1/€) and the strictly feasible point (z°,y°) be given, where & is the
constant defined in Lemma 3.5. Suppose that Algorithm PDA is applied with step lengths

o
SOk (L4 8)er

Then

(a) the sequence {:L'kTyk} converges monotonically to 0;

kT

(b) given any € € (O,xOTyO), the algorithm achieves x* y* < ¢ in at most

oT o\ ° ol o
Yy n Yy
— 1
0 ( € ) (571'0) %6 (36)

iterations;

(c) either the algorithm terminates with :L'kTyk = 0 in a finite number of iterations, or else

the sequence {:L'kTyk} converges to zero superlinearly with Q-order 2 — 6€.

Proof. First, we observe that there is an index K > 0 with AzFAyX = 0 for all
i = 1,---,n if and only if (zB+1 y®+1) is a solution of (1) (see Lemma 3.1(d)). Moreover,
using the proof of statement (b) below, one can easily see that if such an index K exists,
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then it must be of the order in (36). We will henceforth assume that finite termination does
not occur and so for all & > 0, there is at least one ¢ = 1,---,n such that AzFAy¥ £ 0.

(a) Choosing any 5 > 0 such that (2%, y%) € N(8,7), we have from relation (35) and Lemma
3.3 that (2%, y*) € N(é,7) for all & > 0. We now find a lower bound on the step length

ag. By Lemma 3.1(c) and the fact that oy € [0, 1] for all & > 0, we have that {:L'kTyk} is a
decreasing sequence. Hence, using (31), we obtain

(kayk)1—5g (xoTy0)1—5g

max{op, xi} £ O f— S C——, k20,
which, in view of (35), implies
A o
ap 2 a = 0, vk > 0.

— >
8+ C(a0Ty0)1=0¢ /¢

Using Lemma 3.1(c) again, we get :Jck"'lTyk"'l < (1- @/Z)Zkayk, Yk > 0, which clearly
implies statement (a).
(b) Let
To
= —, 37
n n(xoTyo)g ( )
where 7 is defined in (34). Note that 5 is the largest possible choice for which (2° 4°%) €
N(8,m). By relation (35) and Lemma 3.3, we know that (2%, y*) € N(8,5) for all & > 0.
Assuming that :L'kTyk > ¢, we now seek bounds on ¢; and xj that are independent of the
somewhat murky constant C'. Using Lemma 2.7(a) and the fact that (2%, y*) € N(6,7), we

obtain

|AﬁAﬁ@<::ﬁ%W4 1
n(

< max = .
Y { ey (kT yh)e

Toasice | agyf
Hence, from (37) and the assumption that :L'kTyk > ¢, we obtain
< - "
ES < :
4n(kayk)5 471'0(6/:1;0Ty0)5

Moreover, Lemma 2.7(b) implies that ¢; < 1/4. These two last relations together with (35)
then imply that

X

Qg > 5T > 5770(6/3;0Ty0)67
=S4 n/lAmo( TN (1/2) T 20

0

where in the last inequality we used the fact that 79 <1 and ¢ < x Tyo. Hence, by Lemma

3.1(c), we conclude that

2
:Jck"'lTyk"'l (571'0(6/:1;0Ty0)5
—— < |l . (38)
bt yk 4n
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We have thus shown that (38) holds whenever :L'kTyk > €. Now, let K be the smallest

nonnegative integer k for which :Jck"'lTyk"'l < e. Assume for contradiction that

oT o0\ ¢ oT o
2
K>($ y) (—n)logx v
€ 07 €

By taking logarithms and using the inequality log(1 — 3) < —f for 8 € (0,1), we can show

that -
(1 . 67ro<e/x0Ty0>5) < ¢

dn xoTyo'
Using this relation and the fact that (38) holds for every & < K, we obtain

2K
o S ol 0\6
wﬂyhg(l_ mle/s 7))ty <
n

which contradicts the fact that :L'KTyK > ¢e. Therefore (36) holds, and we have proved

statement (b).

(c¢) Choose n as in the proof of part (a). From Lemma 3.1(a), (35), and (31), we have
P 2 T oy o)

kak( Xk + (1 +0)9y, ¢)
O+ Xk + (1 +6)on *

kayk(cMy’f)l—éf/nﬁ c<kayk>1—ﬁf)

IA

) + 3nt

AC | o1 256
10t
which implies statement (c). [

We observe that for certain values of ¢, the algorithm of Theorem 3.6 has a polynomial
bound on the number of iterations. To see this, assume that L > 0 is such that 2% >
maX{:L'OTyO, e~ '}. Assume also that the initial point (2% y°) is chosen in such a way that
7o = O(1) is independent of n and L. Then, in terms of n, L, and ¢, the algorithm of
Theorem 3.6 terminates in O(nL22%/§) iterations. If we choose § = O(1/L), then the
number of iterations is O(nL?).

4 A Superlinearly Convergent Potential Reduction
Algorithm

Although our algorithm has excellent local convergence properties, preliminary computations
have shown that its behavior at points remote from the solution is poor. It is therefore
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worthwhile to merge our method with other methods with more attractive global convergence
properties. In this section, we embed our method in a potential reduction method. The
resulting method retains the global convergence behavior of potential reduction methods
while exhibiting the fast local convergence associated with the algorithm of Section 3. We
are also motivated by a desire to show that potential reduction methods can be superlinearly
convergent.

Our potential reduction algorithm is based on the Tanabe-Todd-Ye potential function

Yy(w,y) = qloga’y — 3 log zyi, (¢ >n). (39)
=1

We start by specifying the algorithm and stating a global convergence theorem. Then we
show that if ¢ lies in the range (n,n 4 1/¢), the algorithm becomes compatible with the
method described in the previous section and is superlinearly convergent.

We start by specifying the algorithm.

Algorithm PDPR

initially: Choose fixed constants 3 > 1 and g € (0,1). Let {73} be a scalar sequence
satisfying 7, > 1/2, and let (2%, y°) be strictly feasible;

for £ =0,1,2,...
Find (Az*, Ay*) by solving (5) with (z,y) = (2%, y*);

Define o, = f7# 13, where my is the smallest nonnegative integer for which

(z*(B~™ 7 ), y* (87 71)) > 0 and

N ] ; (40)

@Z)q(xk(ﬂ_mkﬂv)vyk(ﬂ_mkﬂc)) < ¢q($kvyk) + ﬂ(ﬂ_kak)v¢q($kvyk)T [ Ayk
Set (z#1, y*1) = (a*(an), y*(aw));
end for

This algorithm is closely related to the algorithm of Monteiro [11] for convex program-
ming. Its global convergence properties can be analyzed by using techniques like those of
Monteiro [11] and Kojima et al. [5]. We omit the details of this analysis and simply state
the final theorem.

Theorem 4.1 Suppose that Assumption 2 holds. Then the sequence of iterates {(z*, y*)}
generated by Algorithm PDPR satisfies

lim :L'kTyk =0.

k—o0
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The following assumption ensures that Algorithm PDPR enters a superlinear phase in
which the local convergence rate of the algorithm of Theorem 3.6 is attained.

Assumption 3 There is an integer K > 0 such that the iterate (x™,y™) of Algorithm
PDPR satisfies

i ONYE , p 1
mmxﬁy{*z(g) (27 ) (1)

where C' and ¢ are defined in Lemma 3.5.

Suppose that for some 6 € (0,1/¢), the sequence of initial step sizes {7} } is selected as

1 o
_ - . VE>0. 42
o= max (3t (12

We have the following result.

Lemma 4.2 Suppose that Assumptions 2 and 3 hold, and let {(x*,y*)} be the sequence of
iterates generated by Algorithm PDPR with the initial step size 7, defined by (42) for all
k> 0. Define

min z Xy X

(xKTyI()1+<S’ (43)

n =
where K is the index in Assumption 3. Then, for all k > K, we have
(a) (2%, y*) € N(8,n); and
(b) 7= 8/(8 4 xx + (1 + 8)n).
Proof. Recall that by Lemma 3.1(c), the sequence {:L'kTyk} decreases. Using this fact
together with relations (41) and (43), one can easily verify that
Clatyh) =
775
We show first that (a) implies (b) for each & > K. Assuming (a), we have from (31) and
(44) that

<5, VE>K. (44)

) 1
< ==
- 26

et (L4 6)dn _ Clakyh) =/t
27

S+ Xk + (L48)dr — 6+ C(akTyk)i—es /e
and therefore, from (42), statement (b) holds.

We now prove (a) by induction. Clearly, by the definition (43), (a) holds for k = K.
Assume now that (a) is satisfied at some arbitrary & > K. Then (b) also holds at the
index k, and we can use Lemma 3.3(b) and the fact that a; € (0,74] to conclude that
(aF+ gy € N (6, 7), giving the result. n

A result like Theorem 3.6(c) ensures superlinear convergence provided we show that

my = 0 for all & sufficiently large, that is, ap = 7. We do so in the following theorem.
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Theorem 4.3 Suppose that Assumptions 2 and 3 hold, and let {(z*,y*)} be the sequence of
iterates generated by Algorithm PDPR with the initial step size 1, defined by (42) for some

6 € (0,1/¢). Assume also that 7, < 1 for all k. Then the sequence {:L'kTyk} converges to
zero superlinearly with (QQ-order 2 — 6€.

Proof. Global convergence of the sequence {:L'kTyk} to zero follows from Theorem 4.1. We
next show that ap = 74 for all £ > K sufficiently large, from which superlinear convergence
of {:L'kTyk} to zero follows as a consequence of Lemma 4.2(b) and Theorem 3.6(c). To show
that ap = 7, we need only show that

(«* (), 5" (7)) > 0, (45)

and

At ] . (46)

S ) ) = et ) < et | R

Lemma 4.2(a) implies that (45) holds for all & > K. To prove that (46) holds for all £ > K
sufficiently large, we start by finding a lower bound on its right-hand side. Using (39) and
(5a), we have

= —umlg—n) = —plg —n). (47)
To find an upper bound for the left-hand side of (46), note that for all £ > K, we have
7 max(fr, Xe) ( o )2 (5+Xk+(1+5)¢k
L =7 O+ xk+(1+06)¢n Xk + (14 0)dp

( 6? ) max( ok, X)
S+ xk+ (1 +06)dk) xx+ (1 +0)dk

< 0.

) masten v

Using this bound together with statements (a) and (b) of Lemma 3.1, we obtain
Yo (1), 4" (7)) — g (2*, y")
k(o \T,k n k k
~ 4log lx ()" y (Tk)] ~ Y log ll‘ (Tkzy (Tk)]
=1

K3
T 2
aktyk LY,
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< qlog(l — 7 4+ %) — > log(l — 7 — 7 xk)

=1
2 2
= (¢g—n)log(l —7%) + qlog (1—|— Tk¢k)—nlog (1— Tka)
1_Tk — Tk
< (g—n)log(l — 1)+ qlog(l +6) — nlog(l —¢). (48)

Since :L'kTyk — 0, it follows from (31) and (42) that 1 — 7, — 0. Therefore, from (48), the
left-hand side of (46) approaches —oo as k — oo. Hence, in view of (47), the inequality (46)
will hold for all sufficiently large &£ > K.

The proof of superlinearity now follows as in Theorem 3.6(c). [

Note that if 7, = 1 for some k, we have Az¥Ay¥ = 0 for all 7; therefore, from Lemma
3.1(d), (2F+1 y*+1) is an exact solution of (1). In this case, Algorithm PDPR will reject the
step oy = 7, because (45) is not satisfied! Any implementation would surely recognize this
special case, so we have avoided the complication that it introduces into the analysis above.

Obviously, we cannot explicitly identify the index K required by Assumption 3, since we
do not know the value of C' in general. However, we can be sure that Assumption 3 holds if
we choose ¢ to be in the interval (n,n + 1/¢£), as we show in the following theorem.

Theorem 4.4 Suppose that Assumptions | and 2 hold and that ¢ € (n,n+1/€). Then there
is an index K such that ({1) holds at the iterate (z™,y™) generated by Algorithm PDPR.

Proof. Let us define Q and Q as
Qé¢q(x07y0)7 QéQ_(n_l)log(n_l)

Since v, is reduced at each iteration of Algorithm PDPR, we have 1,(2*,y*) < @ for all
k > 0. Hence, for all £ > 0 and ¢ = 1,---,n, we have

(¢g—n+1)log fl?kTyk — log z}y"

< @Q—(n—1)log :L'kTyk +> log :L'fyf
J#
< Q—(n—1)log («"y* — alyf) + X logatyt
J#
< Q-(n-1logn—1) = Q,

where the third inequality follows from the arithmetic-geometric mean inequality, namely:
(X8 ai)/p > (E_,a;)'/? for any positive scalars ay, ..., a,. Hence,

k. k
LY,

NV, e [ o (6N, L a1t
k. k “ Tk Q{9 Tk
xiin((S) (:1; y) e (0) (:L' y) .

log

Y

~ ko k —g (kT p\i—tl
> —Q = fl?iin@Q(l' y)

and so
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Since ¢ —n —1/¢£ < 0 and :L'kTyk — 0, there is a K > 0 such that the last bracketed term in
the expression is greater than 1 for all £ > K, giving the result. [
Finally, we combine the results of the last two theorems to obtain the following result.

Corollary 4.5 Suppose that Assumption 2 holds, that ¢ € (n,n + 1/£), that the sequence
of initial step sizes {1} is defined by (42) for some 6 € (0,1/€), and that 7, < 1 for all k.

Then the sequence {:L'kTyk} generated by Algorithm PDPR converges to zero superlinearly
with Q-order 2 — 6&.

5 Concluding Remarks

In this concluding section, we discuss the close relationship that exists between the algorithm
of Theorem 3.6 and the one presented by Tuncel [16]. We also show that Tuncel’s algorithm
is superlinearly convergent whenever the parameter ¢ that appears in the potential function
(4) lies in the interval (0,1).

For simplicity, we assume that the affine scaling direction (Ax, Ay) at any strictly feasible
point satisfies Ax;Ay; # 0, for some s € {1,---,n}, so that finite termination of the algorithm
never occurs. For the purpose of this section, we also assume that the matrix M in (1) is
skew-symmetric. Since Tuncel’s algorithm is for linear programs, it fits into this framework.

We describe Tungel’s algorithm in an equivalent but slightly different way from [16] in
order to better point out its connection to the neighborhood A'(8, 7). Let the strictly feasible
point (2%, 4*) be the k-th iterate of the algorithm. Tuncel’s algorithm sets (z**! y**+1) =
(z%(ar), y*(ax)), where the stepsize a € (0, 1) is such that the point (z*(ay), y*(as)) satisfies
the equation in (x,y) defined by

min;—y .. {zy ) min=y ., {afyF}

(xTy)l-l—é - (kayk)1+6

Tuncel shows that such a stepsize always exists and is unique. In the proof of this fact, he
also shows that (z(a),y*(a)) satisfies the strict inequality

min;—; ... {z¥(@)yf(a)}  mingy .. {aFyF}
[e*(a) ¥ ()]0 (kT yh)ree

for all @ € (0, ay). Observe that the iterates of this algorithm satisfy

min¢:17...7n{xfyf} B min;—; .., {20y} N
(kayk)H—é B (xoTy0)1+5 =

vk >0,

which, in terms of the potential function (4), is equivalent to Ws(z* y*) = Ws(20 y°) for
all £ > 0. It is now easy to see that Tuncel’s step size is the largest o > 0 for which
(z%(a),y*(a)) € N(8,7). In view of Lemma 3.3(h), it follows that our step size (35) is
less than or equal to Tuncel’s step size. Therefore Tuncgel’s algorithm achieves larger or
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equal reduction of the duality gap at each iteration while generating all points within the
neighborhood N(,n). Hence, the same proof given for Theorem 3.6(c) can be used to show
that Tuncel’s algorithm is superlinearly convergent with ¢g-order of convergence equal to 2—¢,
whenever ¢ € (0,1).
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