
A SUPERLINEAR INFEASIBLE-INTERIOR-POINTAFFINE SCALING ALGORITHM FOR LCPR. D. C. MONTEIRO� AND S. J. WRIGHTyAbstract. We present an infeasible-interior-point algorithm for monotone linear complementarity prob-lems in which the search directions are a�ne scaling directions and the step lengths are obtained from simpleformulae that ensure both global and superlinear convergence. By choosing the value of a parameter in ap-propriate ways, polynomial complexity and convergence with Q-order up to (but not including) two can beachieved. The only assumption made to obtain the superlinear convergence is the existence of a solutionsatisfying strict complementarity.Key words. infeasible-interior-point methods, monotone linear complementarity problems, superlinearconvergence1. Introduction. The monotone linear complementarity problem (LCP) is to �nd avector pair (x; y) 2 IRn � IRn that satis�es the following conditions:y = Mx+ q;(1.1a) x � 0; y � 0;(1.1b) xT y = 0;(1.1c)where M is a positive semide�nite matrix. We use S to denote the solution set of (1.1) andSc to denote the set of solutions that satisfy strict complementarity, that is,Sc = f(x�; y�) 2 S jx� + y� > 0g:We say that (1.1) is nondegenerate if Sc 6= 0.It is well known that problems in linear programming and convex quadratic program-ming can be posed in the form (1.1). This fact partly accounts for the extensive e�ort thathas gone into designing interior-point algorithms for this class of problems.In this paper, we develop a superlinearly convergent infeasible-interior-point algorithmthat uses only a�ne scaling directions. Several infeasible-interior-point algorithms havebeen developed to solve problem (1.1), or the linear programming (LP) subclass. For LPproblems, these include works by Kojima, Megiddo, and Mizuno [1], Kojima, Megiddo, andTodd [3], Mizuno [2], Potra [6], and Zhang and Zhang [12]. For LCP, we mention Wright[7, 8], while Zhang [11] considers a generalized form of the monotone LCP.In a companion paper [4], we describe a method in which all iterates (xk; yk) are strictlyfeasible (that is, (xk; yk) > 0 and yk = Mxk + q) and search directions are generated bysolving the linear system � M �IY k Xk � � �xk�yk � = � 0�XkY ke � ;(1.2)� School of Industrial and Systems Engineering,Georgia Institute of Technology, Atlanta, GA 30332. Thework of this author was based on research supported by the National Science Foundation under grant DDM-9109404 and the O�ce of Naval Research under grant N00014-93-1-0234. This work was done while the�rst author was a faculty member of the Systems and Industrial Engineering Department at the Universityof Arizona.y Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, IL 60439. The work of this author was based on research supported by the O�ce of Scienti�cComputing, U.S. Department of Energy, under Contract W-31-109-Eng-38.1



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 2where Xk = diag(xk1; xk2; : : : ; xkn), Y k = diag(yk1 ; yk2 ; : : : ; ykn), and e = (1; 1; : : : ; 1)T . Thedirection (�xk;�yk) is known as the primal-dual a�ne scaling direction, and one can easilysee that it is simply the Newton direction for the nonlinear mapping F (x; y) = (Mx+ q �y;XY e) = (0; 0) at the point (xk; yk). In [4], we choose a parameter � 2 (0; 1=2) and de�nethe scalars �k and �k by�k 4= �xkT�ykxkTyk ; �k 4= max0B@0; maxi=1;2;:::;n�xki�yki <0� j�xki�yki jxki yki �1CA(1.3)and the step length �k by �k 4= �� + �k + (1 + �)�k :(1.4)The step from one iterate to the next is de�ned as(xk+1; yk+1) = (xk; yk) + �k(�xk;�yk):The resulting simple algorithm is globally and superlinearly convergent. It even exhibitspolynomial complexity for certain choices of the parameter � and starting point (x0; y0).In this paper, we generalize this algorithmby allowing the iterates to be infeasible. Givenan initial point (x0; y0) > 0, the modi�ed algorithm generates iterates (xk; yk) in such a waythat xkT yk # 0 and kyk �Mxk � qk ! 0 as k !1. Moreover, the convergence of fxkT ykgto zero is superlinear. Much of the elegance of the analysis for the feasible algorithm [4]does not carry through to this infeasible case and the results are slightly weaker here, so wefeel that a separate report is needed.Our analysis makes use of the fact that all iterates generated by our algorithm lie in aset of the formN (�; �; �) = f(x; y) > 0 j �xT y � krk1+�; xiyi � �(xT y)1+� ; i = 1; 2; : : : ; ng;where � > 0, � > 0, and � � 0, and r = y �Mx � q. Note that N (�; �; 0) corresponds tothe neighborhood N (�; �) that was used in [4].We formally specify our algorithm as follows.Algorithm IASinitially: Choose � 2 (0; 1] and (x0; y0) > 0;for k = 0; 1; 2; : : :Let (�xk;�yk) denote the solution of the linear systemM�x��y = r;(1.5a) Y�x+X�y = �Y Xe;(1.5b) where r = rk = yk �Mxk � q, X = Xk, and Y = Y k;Calculate �k and �k as in (1.3) and set�k = �� + �k + (1 + �)�+k ;(1.6)



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 3where �+k = max(0; �k);Set (xk+1; yk+1) = (xk + �k�xk; yk + �k�yk);end forNote that in the case of (xk; yk) feasible, we have�xkT�yk = �xkTM�xk � 0:Therefore �k � 0 for all k, so the de�nition of �k in (1.6) reduces to (1.4). Hence, thealgorithm in [4] is a special case of Algorithm IAS.In the remainder of the paper, we prove that Algorithm IAS produces a sequence ofiterates f(xk; yk)g such that the complementarity gap xkTyk and the residual krkk convergeto zero. Moreover, we show that this convergence is Q-superlinear provided that Sc 6= ;and � < 1=7. An interesting feature of our superlinear convergence result is that we do notassume any condition that would imply the boundedness of the sequence f(xk; yk)g such as(i) existence of a strictly feasible point or (ii) convergence of fxkTykg and fkrkkg to 0 ata similar rate. Most superlinear convergence results for infeasible-interior-point algorithmsrequire the �rst condition. Exceptions are the results of Potra [6] and Wright [8], whichrequire only the second condition; speci�cally, for some  > 0 we have xkT yk � krkk forall k � 0. In this paper, we show �rst that fxkTykg converges superlinearly to zero then,as a consequence, that the sequence of iterates f(xk; yk)g converges and hence is bounded.Also, for certain values of � and for initial points (x0; y0) satisfying (x0; y0) � (x�; y�), forsome (x�; y�) 2 S, we show that the number of iterations required to reduce the gap xkTykbelow a certain � > 0 is polynomially bounded.The following notational conventions are used in the remainder of the paper. WhenSc 6= ;, we can partition the index set f1; 2; : : :; ng into subsets B and N such thati 2 B , x�i > 0; 8(x�; y�) 2 Sc; i 2 N , y�i > 0; 8(x�; y�) 2 Sc:Unless otherwise speci�ed, k:k denotes the the Euclidean norm. For a general vector z 2 IRnand index set L � f1; 2; : : :; ng, zL denotes the vector made up of components zi for i 2 L.If M 2 IRn�n and I; L � f1; 2; : : : ; ng, then MIL refers to the submatrix of M consistingof the elements Mij for i 2 I and j 2 L. If D 2 IRn�n is diagonal, then DB denotes thediagonal matrix constructed from Dii for i 2 B.2. Global Convergence. In this section, we prove the global convergence of Algo-rithm IAS. We show that for certain values of �, Algorithm IAS has a polynomial bound onthe number of iterations. We also obtain certain bounds on the directions generated by thealgorithm, which will be used in the next section to prove superlinear convergence.For much of the analysis, it is convenient to drop the iteration index k that appears onquantities such as (xk; yk), �k, and �k. Accordingly, we de�ne some index-free notation.For an arbitrary positive vector pair (x; y) > 0, let (�x;�y) be obtained from (1.5), andde�ne (x(�); y(�)) 4= (x; y) + �(�x;�y);r(�) 4= y(�) �Mx(�)� q;� 4= �xT�yxT y ;(2.1)



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 4� 4= max0@0; maxi=1;2;:::;n�xi�yi<0� j�xi�yijxiyi �1A ;where � 2 [0; 1].We start by stating and proving some basic results for quantities in (2.1).Lemma 2.1. � � ��.Proof. We have� = �xT�yxTy � Xi=1;2;:::;n�xi�yi<0 �xi�yixTy � � �xT y Xi=1;2;:::;n�xi�yi<0xiyi � ��:Lemma 2.2. Let (x; y) > 0 be given, and let (�x;�y) be the direction determined by(1.5). Then, for all � 2 [0; 1],(a) x(�)T y(�) = xTy(1 � �+ �2�);(b) xi(�)yi(�) � xiyi(1� �� �2�);(c) r(�) = (1� �)r;(d) �xi�yi = 0 for all i = 1; 2; : : : ; n if and only if (x(1); y(1)) is a solution of (1.1)that satis�es strict complementarity.Proof. Statements (a), (b), and (c) follow immediately from (1.5) and (2.1). The proofof (d) is essentially given by Monteiro and Wright [4, Lemma 3.1(d)], if we note in additionthat r(1) = 0.We now show that fxkT ykg is a decreasing sequence and that the property of member-ship of N (�; �; �) is inherited by successive iterates of the algorithm. In the proof of thisresult, we make use of the inequality(1� u)1+� � 1� (1 + �)u+ �u2; 8u � 1; 8� 2 (0; 1];(2.2)which is proved by Monteiro and Wright [4, Lemma 3.2].Lemma 2.3. Suppose that (x; y) 2 N (�; �; �) for some � 2 (0; 1], � > 0, and � � 0 andthat (�x;�y) is determined by (1.5). Assume that �xi�yi 6= 0 for some i 2 f1; 2; : : :; ng.Then, for all � 2 J 4= �0; �� + �+ (1 + �)�+ � ;(2.3)where �+ � max(0; �), we have(a) x(�)T y(�) � [1� �=(1 + �)]xTy; and(b) (x(�); y(�)) 2 N (�; �; �).Proof. To show statement (a), note that for � 2 J , we have��+ � ��+� + �+ (1 + �)�+ � �1 + � :(2.4)Thus in view of Lemma 2.2(a), we obtainx(�)Ty(�) � xT y(1 � �(1� ��+)) � xT y�1� �1 + �� :



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 5For statement (b), we start by showing that x(�)Ty(�) > 0 for all � 2 J . Observe �rst thatthe condition that �xi�yi 6= 0 for some i 2 f1; 2; : : : ; ng implies that either � > 0 or � > 0.Hence, �+ (1 + �)�+ > 0, and therefore� � �� + �+ (1 + �)�+ � 11 + �+ (1 + �)�+ < 1; � � 11 + �;(2.5)for all � 2 J . Observe that if � � 0, then, in view of Lemma 2.2(a) and (2.5), we havex(�)T y(�) � (1� �)xTy > 0, for all � 2 J . Assume that � < 0. In this case, we must have� > 0. This together with (2.5), Lemma 2.1, and Lemma 2.2(a) then implyx(�)T y(�) = xTy(1 � �+ �2�)� xTy(1 � �� �2�)> xTy (1� �(1 + �)) � 0for all � 2 J with � > 0. We have thus shown that x(�)Ty(�) > 0 for all � 2 J . Now,using Lemma 2.2(a), (2.2), and (2.4), we obtain for all � 2 J that0 < �[x(�)Ty(�)]1+�� �(xTy)1+� [1� �(1� ��+)]1+�� �(xTy)1+� [1� (1 + �)�(1� ��+) + ��2(1� ��+)2]� �(xTy)1+� [1� (1 + �)�(1� ��+) + ��2]� �(xTy)1+� [1� �� �2�];(2.6)where in the last inequality we used the fact that the interval J is exactly the set of all� � 0 for which 1� �(1 + �)(1� ��+) + ��2 � 1� �� �2�:From (2.6), Lemma 2.2(b), and the fact that (x; y) 2 N (�; �; �), we havexi(�)yi(�) � xiyi(1� �� �2�)� �(xTy)1+�(1 � �� �2�)� �[x(�)Ty(�)]1+� > 0:Thus, the second condition for membership ofN (�; �; �) is satis�ed by (x(�); y(�)). To showthe �rst condition, we observe that �xTy � krk1+�:(2.7)From Lemma 2.2(c), we know that kr(�)k = (1� �)krk. By (2.2) and (2.7), it follows thatkr(�)k1+� = (1� �)1+�krk1+� � [1� (1 + �)�+ ��2]�xTy:(2.8)For � � 0, the inequality 1� (1 + �)�+ ��2 � 1� �+ �2�(2.9)is equivalent to � � �(� � �), which is satis�ed by every � 2 [0; �=(� + ��)], where �� ��min(0; �). Now, using Lemma 2.1, we can easily see that J � [0; �=(� + ��)]. We then



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 6conclude that (2.9) is satis�ed by every � 2 J . Hence, in view of (2.8) and Lemma 2.2(a),we have kr(�)k1+� � (1� �+ �2�)�xT y = �x(�)T y(�):Therefore, the �rst condition for membership of (x(�); y(�)) in N (�; �; �) is also satis�ed,and we have the result.From now on, given the initial point (x0; y0) and � 2 (0; 1], we let�0 = mini=1;2;:::;n(x0iy0i )x0T y0=n ; � = kr0k1+�x0T y0 ;� = mini=1;2;:::;n(x0iy0i )(x0T y0)1+� = �0n(x0T y0)� ;(2.10)Note that �0 (a measure of the centrality of the initial point) is at most 1 and (x0; y0) 2N (�; �; �).The following result is an immediate consequence of Lemma 2.2(c) and Lemma 2.3.Corollary 2.4. The sequence f(xk; yk)g generated by Algorithm IAS satis�es(a) xk+1T yk+1 � [1� �k=(1 + �)]xkTyk for all k � 0;(b) rk = �kr0 for all k � 0, where �k � �k�1l=0 (1� �l);(c) (xk; yk) 2 N (�; �; �) for all k � 0, where � and � are as de�ned in (2.10).Our main goal now is to derive estimates for the quantities � and �. These estimateswill then be used to establish global convergence of Algorithm IAS, as well as polynomialcomplexity for certain values of �. The following inequality is exploited in a number ofproofs that follow.Lemma 2.5. Let (x0; y0) and (x; y) be points such that y �Mx� q = �(y0 �Mx0 � q)for some � 2 IRn, and let (�x; �y) be a point such that �y �M �x� q = 0. Then,0 � �2x0Ty0 + (1� �)2�xT �y + xTy + �(1� �)(x0T �y + �xT y0)��(x0Ty + xTy0) � (1� �)(�xTy + xT �y):(2.11)Proof. See, for example, Wright [8, Lemma 3.2].As an immediate consequence of this inequality, we obtain the following result.Lemma 2.6. Let (x0; y0) > 0 be given. Then there exists a constant C0 � 0 satisfyingthe following property: If (x; y) � 0 is a point such that y �Mx� q = �(y0 �Mx0 � q) forsome � 2 [0; 1], then maxf�kxk1; �kyk1g � C0 �xTy + �� :(2.12)Proof. Assume that (�x; �y) is a solution of (1.1). Using inequality (2.11) and the factsthat � 2 [0; 1], (x0; y0) > 0, (x; y) � 0, (�x; �y) � 0, and �xT �y = 0, we obtainx0T (�y) + y0T (�x) � �x0T y0 + xTy + �(x0T �y + y0T �x)� maxn1 ; x0T y0 + x0T �y + y0T �xo (xT y + �):Relation (2.12) now follows by lettingC0 4= maxn1; x0Ty0 + x0T �y + y0T �xomini=1;2;:::;n fmin(x0i ; y0i )g :



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 7Lemma 2.7. Let the vectors u0 2 IRn and v0 2 IRn and the parameters � > 0 and � � 0be given. Then, for every positive vector (x; y) 2 IR2n and scalar � � 0 such thaty �Mx� q = �(v0 �Mu0);(2.13) mini=1;2;:::;nxiyi � �(xT y)1+� ;(2.14)the corresponding direction (�x;�y) determined by (1.5) satis�esmax�kD�1�xk; kD�yk� � (xTy)1=2 + 2��1=2(xT y)(1+�)=2 �kY u0k+ kXv0k� ;(2.15)where D � X1=2Y �1=2.Proof. We will �rst show thatmax �kD�1�xk; kD�yk� � (xTy)1=2 + 2� �kD�1u0k+ kDv0k� :(2.16)Indeed, it follows from (1.5a) and (2.13) thatM�x��y = r = y �Mx� q = �(v0 �Mu0):Therefore, M (�x+ �u0) = �y + �v0;which by monotonicity of (1.1) implies that(�x+ �u0)T (�y + �v0) � 0:Hence, we obtain �xT�y � ��u0T�y � �v0T�x� �2u0T v0:(2.17)If we multiply (1.5b) by (XY )�1=2 and square both sides, we obtainkD�1�xk2 + kD�yk2 + 2�xT�y = xTy;which, in view of (2.17), implieskD�1�x� �Dv0k2 + kD�y � �D�1u0k2 � �2kDv0 +D�1u0k2 � xTy:Therefore, using the inequality (�2 + 2)1=2 � j�j+ jj and the triangle inequality, we havekD�1�xk � �xT y + �2kDv0 +D�1u0k2�1=2 + �kDv0k� (xTy)1=2 + 2�kDv0k+ �kD�1u0k� (xTy)1=2 + 2� �kDv0k+ kD�1u0k� :(2.18)A similar bound can be derived for kD�yk, and hence relation (2.16) follows.We now derive (2.15) from (2.16) and (2.14). From (2.14) we obtainkD�1u0k2 = nXi=1 yi(u0i )2xi = nXi=1 (yiu0i )2xiyi � kY u0k2�(xTy)1+� :(2.19)



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 8Similarly, we also have kDv0k2 � kXv0k2�(xTy)1+� :(2.20)Relation (2.15) now follows by substituting (2.19) and (2.20) into (2.16).We are now ready to show global convergence of Algorithm IAS without imposing anycondition on the initial point (x0; y0).Theorem 2.8. For any initial point (x0; y0) > 0, the sequence f(xk; yk)g generated byAlgorithm IAS satis�es(a) xkTyk ! 0; and(b) rk ! 0.Proof. First note that (b) follows as a consequence of (a) from Corollary 2.4(c). Toshow (a), we assume for contradiction that xkT yk does not converge to 0. Thus, in view ofCorollary 2.4(a), it follows that there exists � > 0 such thatxkTyk � �; 8k � 0:(2.21)Hence, in view of Corollary 2.4(c), we havemini=1;2;:::;nfxki yki g � �(xkTyk)1+� � ��1+�; 8k � 0:(2.22)Since the point (xk; yk) satis�es the assumptions of Lemma 2.6 from Corollary 2.4(b), weobtainmaxf�kkxkk1; �kkykk1g � C0 �xkTyk + �k� � C0 �x0T y0 + 1� ; 8k � 0:(2.23)Let (u0; v0) 2 IR2n be such that v0 �Mu0 = r0 (e.g., u0 = 0 and v0 = r0). From Corollary2.4, (xk; yk) and �k satisfy the assumptions of Lemma 2.7 with � given by (2.10). Hence,inequality (2.15) givesmax�k(Dk)�1�xkk; kDk�ykk�� �xkTyk�1=2 + 2�k�1=2(xkT yk)(1+�)=2 �kY ku0k+ kXkv0k�� �xkTyk�1=2 + 2�1=2�(1+�)=2 max�k�kykk1; k�kxkk1� �ku0k+ kv0k�� �x0T y0�1=2 + 2C0 �x0T y0 + 1��1=2�(1+�)=2 �ku0k+ kv0k� 4= Ĉ0:(2.24)Using (2.22) and (2.24), we obtain for all k � 0 thatmaxf�+k ; �kg � maxi=1;2;:::;n� j�xki�yki jxki yki �� kdiag(�xk)�ykkmini=1;2;:::;nfxki yki g



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 9� k(Dk)�1�xkkkDk�ykk��1+�� Ĉ02��1+� ;where the �rst inequality follows by using a similar argument as in the proof of Lemma 2.1.Hence, from (1.6) we have infk �k > 0, which implies xkT yk ! 0 from Corollary 2.4(a). Wehave thus obtained a contradiction, and statement (a) follows.We note that Theorem 2.8 does not imply that the sequence f(xk; yk)g is convergent orbounded. In Section 3, we will show that f(xk; yk)g is convergent under the assumptionsthat there is a solution of (1.1) satisfying strict complementarity and that � < 1=7.Our next aim is to derive an upper bound on the number of iterations required byAlgorithm IAS to reduce the duality gap below a given tolerance � > 0. We will see thatfor certain values of �, Algorithm IAS has a polynomial bound on this number of iterations.We restrict our analysis to certain choices of the initial point (x0; y0).Given some conditions on the initial point (x0; y0), the next result gives bounds on theleft-hand side of (2.15) in terms of the initial gap x0T y0, the current gap xT y, and themeasure of initial centrality �0.Lemma 2.9. Suppose that the initial point (x0; y0) > 0 is chosen so that (x0; y0) �(x�; y�) for some (x�; y�) 2 S and that �0, �, and � are de�ned by (2.10). Let (x; y) be anyvector pair in N (�; �; �) with xTy � x0Ty0 and y �Mx � q = �(y0 �Mx0 � q) for some� 2 (0; 1]. Let (�x;�y) be the direction determined by (1.5). Then, we havemax�kD�1�xk; kD�yk� � 9� n�0�1=2 x0Ty0xTy !3�=2 (xTy)1=2:(2.25)Proof. We start by de�ning a vector pair (u0; v0) by(u0; v0) = (x0; y0)� (x�; y�) � 0;(2.26)for (x�; y�) 2 S. It is easy to check that�(v0 �Mu0) = �(y0 �Mx0 � q) = y �Mx� q:Therefore Lemma 2.7 applies, and as a consequence the inequality (2.15) holds. Now, using(2.26), we obtainkY u0k+ kXv0k � yTu0 + xT v0 = yT (x0 � x�) + xT (y0 � y�) � yTx0 + xTy0:(2.27)By substituting this last relation into (2.15), we obtainmax �kD�1�xk; kD�yk� � (xTy)1=2 + 2���1=2(xT y)�(1+�)=2[yTx0 + xTy0]:(2.28)We now invoke the inequality (2.11) with (�x; �y) = (x�; y�), noting that � 2 (0; 1], (x�; y�) �0, x�Ty� = 0, and (x; y) > 0, to deduce that�(x0Ty + xT y0) � �2x0Ty0 + xT y + �(x0T y� + x�Ty0):(2.29)



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 10Now, by (2.26), we havex0Ty� + x�T y0x0Ty0 = x0T (y0 � v0) + (x0 � u0)T y0x0Ty0 = 2� x0Tv0 + u0T y0x0Ty0 � 2:(2.30)In addition, by (2.10) and the de�nition of N (�; �; �), we have� = krkkr0k � [�xTy]1=(1+�)kr0k = � xTyx0T y0�1=(1+�) :(2.31)Combining (2.29), (2.30), and (2.31), we get�(x0Ty + xTy0) � x0Ty0 ��2 +� xT yx0T y0�+ 2��� x0Ty0 � xTyx0Ty0�1=(1+�) "� +� xTyx0T y0��=(1+�) + 2#� 4x0T y0� xTyx0Ty0�1=(1+�) :(2.32)If we substitute (2.32) into (2.28) and replace � by its de�nition (2.10), we obtainmax �kD�1�xk; kD�yk� � (xTy)1=2 + 8��1=2(xTy)�(1+�)=2(x0Ty0)�=(1+�)(xTy)1=(1+�)= (xTy)1=2 241 + 8� n�0�1=2 x0T y0xTy !(�=2)(3+�)=(1+�)35� 9� n�0�1=2 x0Ty0xTy !3�=2 (xTy)1=2;where the last inequality follows fromx0Ty0xTy � 1; 3 + �1 + � < 3; �0 � 1:We next derive uniform bounds for the quantities j�kj and �k de�ned by (1.3).Lemma 2.10. Suppose that the initial point (x0; y0) > 0 satis�es (x0; y0) � (x�; y�)for some (x�; y�) 2 S and that � and � are de�ned by (2.10). Then for all iterates (xk; yk)generated by Algorithm IAS, we havej�kj � 81� n�0� x0Ty0xkTyk!3� ;(2.33a) 0 � �k � 81� n�0�2 x0Ty0xkTyk!4� :(2.33b)



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 11Proof. By Corollary 2.4, it follows that (xk; yk) satis�es the assumptions of Lemma 2.9for all k � 0. Hence, it follows from (2.25) thatj�kj = j�xkT�ykjxkT yk � kDk�xkkk(Dk)�1�ykkxkTyk � 81� n�0� x0Ty0xkTyk!3� :Similarly, by (2.10), (2.25), and the de�nition of N (�; �; �), we have�k � maxi=1;2;:::;n j�xki�yki jxki yki � kDk�xkkk(Dk)�1�ykk�(xkTyk)1+�� 81� n�0� x0Ty0xkTyk!3� (xkT yk)����1= 81� n�0�2 x0T y0xkT yk!4� ;as required.We can now state a global convergence result.Theorem 2.11. Suppose that the initial point (x0; y0) > 0 satis�es (x0; y0) � (x�; y�)for some (x�; y�) 2 S. Let � 2 (0; 1] be given, and let � and � be de�ned by (2.10). Then,given � 2 (0; x0Ty0), Algorithm IAS will generate an iterate (xk; yk) with xkT yk � � in atmost O0@1� � n�0�2 x0Ty0� !4� log(x0Ty0=�)1A(2.34)iterations, and the sequence fxkT ykg will be strictly monotonically decreasing.Proof. To simplify notation, let � = (x0Ty0=�). If the iterate (xk; yk) satis�es xkT yk � �then, in view of (2.33), we havej�kj � 81(n=�0)�3�; �k � 81(n=�0)2�4�;and hence �k = �� + �k + (1 + �)�+k� �� + 81(n=�0)2�4� + (1 + �)81(n=�0)�3�� �� + 243(n=�0)2�4�� �244 ��0n �2 ��4�4= ��:(2.35)Strictly monotonic decrease of the sequence fxkTykg now follows from Corollary 2.4(a) andthe fact that the inclusion (xk; yk) 2 N (�; �; �) implies that xkTyk > 0. Now let K be



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 12the smallest nonnegative integer for which xK+1T yK+1 � �. Since (2.35) holds for every0 � k � K, we obtain from Lemma 2.3(a) thatxKT yK � [1� ��=(1 + �)]Kx0Ty0:(2.36)Assume for contradiction that K � (1 + �) log ��� :Using the inequality log(1 � �) � �� for � < 1 and the previous relation, we can easilyshow that [1� ��=(1 + �)]K � ��1;which, in view of the de�nition of � and relation (2.36), impliesxKTyK � ��1x0Ty0 = �:This relation contradicts our de�nition of K. Therefore, using (2.35) and the de�nition of� , we have K < (1 + �) log ��� = O0@1� � n�0�2 x0T y0� !4� log(x0T y0=�)1A :Note in particular that if� = e�O(L); x0T y0 = eO(L); �0 = O(1); � = 1=O(L);then the bound in (2.34) is O(n2L2), that is, there is a polynomial bound on the number ofiterations of Algorithm IAS.3. Local Convergence. Under the conditions that problem (1.1) is nondegenerateand � 2 (0; 1=7), we prove in this section that Algorithm IAS started from any initialpoint (x0; y0) > 0 generates a sequence of iterates f(xk; yk)g such that fxkTykg convergessuperlinearly to zero. Moreover, under the same conditions, we also show that the sequencef(xk; yk)g converges to a solution of (1.1). We emphasize that the convergence of f(xk; yk)gis obtained without assuming the existence of a strictly feasible point for (1.1). (Thisassumption was used by the local convergence analysis in Wright [7], for example.)The following assumption is imposed throughout this section.Assumption 1. (Nondegeneracy) Sc 6= ;.We show in [5] that Assumption 1 is in fact necessary for superlinear convergence of Newton-based primal-dual algorithms.An important feature of this section is that we are able to prove boundedness of the steps(�xk;�yk) in terms of xkTyk without an intermediate result that the sequence (xk; yk) isbounded. The key result | that k�xkBk and k�ykNk are both O(xkT yk) | is obtained bycombining Lemmas 3.3 and 3.4 below. In [7], the same result was obtained by combiningLemma 3.4 with a more elementary result in which boundedness of (xk; yk) was an essentialingredient. In fact, we can use the techniques of this section to drop the strict feasibility



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 13assumption from the analysis of [7] without a�ecting the conclusions of the paper (see Wright[9]).After �nding the bounds on the steps (�xk;�yk) in terms of the complementarity gapxkTyk , we bound the scalars j�kj and �k. Subsequently, we show that �k ! 1, from whichQ-superlinear convergence follows. We also �nd a lower bound on the Q-order of convergencein terms of �.The following result yields bounds on the nonbasic components of x and y.Lemma 3.1. Suppose that Assumption 1 holds. Assume that a point (x0; y0) > 0 andthat scalars � � 0, � > 0, and � � 0 are given. Then, there exists a constant C1 � 0 withthe following property: For every vector (x; y) 2 N (�; �; �) such thatxTy � x0T y0;(3.1) y �Mx� q = �(y0 �Mx0 � q); for some � 2 [0; 1=2];(3.2)we have xi � C1(xT y)1=(1+�); 8i 2 N;(3.3a) yi � C1(xT y)1=(1+�); 8i 2 B:(3.3b)Proof. Consider �rst the infeasible case in which r0 = y0 � Mx0 � q 6= 0. Setting(�x; �y) = (x�; y�) for some (x�; y�) 2 Sc in inequality (2.11) and using the fact that � 2[0; 1=2], (x; y) > 0, (x�; y�) � 0 and x�T y� = 0, we obtainx�Ty + xT y� � �1� � x0Ty0 + 11� � xT y + �(x0T y� + x�T y0):(3.4)Using (3.2) and the fact that (x; y) 2 N (�; �; �), we get� = krkkr0k � (�xTy)1=(1+�)kr0k ;(3.5)where, as usual, r = y�Mx� q. From (3.1), (3.5), (3.4), and the fact that 1� � � 1=2, wegetx�Ty + xT y�� 2x0T y0kr0k �1=(1+�)(xTy)1=(1+�) + 2xTy + 1kr0k�1=(1+�)(x0Ty� + x�Ty0)(xT y)1=(1+�)� (xT y)1=(1+�) "2x0Ty0kr0k �1=(1+�) + 2(x0Ty0)�=(1+�) + 1kr0k�1=(1+�)(x0Ty� + x�Ty0)#= �C1(xTy)1=(1+�);where �C1 is de�ned in an obvious way. This last relation immediately implies (3.3) whenwe de�ne C1 4= �C1max�maxi2N 1y�i ; maxi2B 1x�i � :



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 14For the feasible case r0 = 0, note from the condition y �Mx� q = �(y0 �Mx0 � q) thatr = y �Mx� q = 0 for all (x; y) satisfying the assumptions of the theorem. Hence we cantake � = 0 in (3.4) and obtain x�Ty + xTy� � xT y:A simple argument produces the required bound with C1 de�ned byC1 = (x0Ty0)�=(1+�) max�maxi2N 1y�i ; maxi2B 1x�i � :We now use this lemma to �nd bounds on the nonbasic components of (�x;�y).Lemma 3.2. Suppose that Assumption 1 holds and that (x0; y0) > 0 is given. Assumethat scalars � 2 [0; 1=3], � > 0, and � � 0 are given. Then, there exists a constant C2 � 0with the following property: For any vector pair (x; y) 2 N (�; �; �) such thatxTy � min(1; x0T y0);(3.6) y �Mx� q = �(y0 �Mx0 � q); for some � 2 [0; 1=2];(3.7)we have j�xij � C2(xT y)1�3�; 8i 2 N;(3.8a) j�yij � C2(xT y)1�3�; 8i 2 B:(3.8b)Proof. We �rst show that there exists a constant �C2 such thatmax�kD�1�xk; kD�yk	 � �C2(xT y)(1�3�)=2:(3.9)We give the proof only for the case in which r0 � y0 �Mx0 � q 6= 0, since the proof forr0 = 0 is trivial. The assumptions of the lemma imply that (2.12) and (3.5) hold. Thesetwo relations together with (3.6) then implymaxf�kxk1; �kyk1g � C0 �xT y + ��� C0 �1 + �1=(1+�)kr0k � (xTy)1=(1+�)= Ĉ2(xTy)1=(1+�)� Ĉ2(xTy)1�� ;(3.10)where Ĉ2 is de�ned in an obvious way. Since the assumptions of Lemma 2.7 are satis�ed,inequality (2.15) together with (3.10) and (3.6) then yieldmax�kD�1�xk; kD�yk�� (xT y)1=2 + 2��1=2(xTy)(1+�)=2 �kY u0k+ kXv0k�� (xT y)1=2 + 2�1=2(xTy)(1+�)=2 �ku0k+ kv0k�max(k�yk1; k�xk1)



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 15� (xT y)1=2 + 2Ĉ2�1=2(xTy)(1+�)=2 �ku0k+ kv0k� (xT y)1��� "1 + 2Ĉ2�1=2 �ku0k+ kv0k�# (xTy)(1�3�)=2= �C2(xT y)(1�3�)=2;where �C2 is de�ned in an obvious way. We have thus shown that (3.9) holds.Considering i 2 N , we have from the de�nition D = X1=2Y �1=2, the formulae (3.9) and(3.3a), and the inclusion (x; y) 2 N (�; �; �) thatj�xij � �xiyi�1=2 �C2(xTy)(1�3�)=2= xi(xiyi)1=2 �C2(xT y)(1�3�)=2� �C2 C1(xT y)1=(1+�)�1=2(xT y)(1+�)=2 (xTy)(1�3�)=2= ( �C2C1��1=2)(xTy)(1�2��2�2)=(1+�):(3.11)Since � 2 [0; 1=3], we have1� 2� � 2�21 + � � (1� 2� � 2�2)(1� �) = 1� 3� + 2�3 � 1� 3� � 0;and since xT y � 1, we conclude from (3.11) thatj�xij � ( �C2C1��1=2)(xT y)1�3� = C2(xT y)1�3�;for C2 de�ned in an obvious way. Hence, we have proved (3.8a). The proof of (3.8b) isidentical.To �nd bounds on the remaining components of (�x;�y), we cite the following tworesults, which have been proved in earlier reports.Lemma 3.3. ([4, Lemma 2.2]) Let f 2 IRq and H 2 IRp�q be given. Then there existsa constant L = L(f;H) with the property that for any positive de�nite diagonal matrix Dand any vector h 2 Range(H), the (unique) optimal solution �w = �w(D;h) ofminw fTw + 12 kDwk2 ; subject to Hw = h,(3.12)satis�es k �wk1 � L �jfT �wj+ khk1	 :Lemma 3.4. ([7, Lemma 5.2]) Let (x; y) > 0 be given, and consider the direction(�x;�y) determined by (1.5). Then (�xB;�yN ) solves the convex quadratic programmingproblem min(w;z) 12kDBwk2 + 12kD�1N zk2



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 16subject to MBBw = rB �MBN�xN +�yBMNBw � z = rN �MNN�xN :Lemma 3.4 is an extension to the infeasible case of a result due to Ye and Anstreicher [10,Lemma 3.5].As a consequence of Lemmas 3.3 and 3.4, we can �nd bounds on �xB and �yN .Lemma 3.5. Suppose the assumptions of Lemma 3.2 hold. Then there exists a constantC3 � 0 such that j�xij � C3(xTy)1�3�; 8i 2 B;(3.13a) j�yij � C3(xTy)1�3�; 8i 2 N:(3.13b)Proof. From Lemmas 3.2, 3.3, and 3.4, we havek(�xB;�yN )k1 � L [krk1 + kMk1k�xNk1 + k�yBk1]� L h(�xTy)1=(1+�) + (kMk1 + 1)C2(xT y)1�3�i :Since 1=(1 + �) � 1� 3� when � 2 [0; 1=3], we obtain the desired result by settingC3 = L h�1=(1+�) + (kMk1 + 1)C2i :As a immediate consequence of Lemmas 3.2 and 3.5, we obtain the following result.Theorem 3.6. Suppose that Assumption 1 holds and that � 2 [0; 1=3] is given. Then,there exists a constant C4 � 0 such that for all k su�ciently large, we havej�xki j � C4(xkT yk)1�3�; 8i = 1; 2; : : : ; n;(3.14a) j�yki j � C4(xkT yk)1�3�; 8i = 1; 2; : : : ; n:(3.14b)Proof. Since the assumptions of Theorem 2.8 are satis�ed, we know that xkT yk # 0 andkrkk ! 0. Hence, in view of Corollary 2.4(b), we have that �k ! 0. Thus, there exists anindex K � 0 such that �k � 1=2 and xkTyk � 1 for all k � K. The above observationstogether with Corollary 2.4 imply that the assumptions of Lemmas 3.2 and 3.5 are satis�edby all points (xk; yk) with k � K. Thus, we obtain (3.14) by choosing C4 = max(C2; C3).Corollary 3.7. Suppose the assumptions of Theorem 3.6 are satis�ed. Then there isa constant C5 � 0 such that for all k su�ciently large, we havej�kj � C5(xkTyk)1�6�; 0 � �k � C5(xkTyk)1�7�:(3.15)Proof. For su�ciently large k, we have from (3.14) thatj�kj = j�xkT�ykjxkTyk � nC24(xkT yk)1�6�;



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 17as required. Since (xk; yk) 2 N (�; �; �), we also have that�k � maxi=1;2;:::;n j�xki�yki jxki yki � C24(xkT yk)2�6��(xkT yk)1+� = (C24=�)(xkTyk)1�7�:The result follows if we set C5 = max(nC24 ; C24=�).We are now ready to prove the main local convergence result.Theorem 3.8. Suppose that Assumption 1 holds and that � 2 (0; 1=7) is given. Thenthe sequence fxkT ykg converges Q-superlinearly to zero with Q-order at least 2� 7�.Proof. Suppose the index K is chosen su�ciently large that the relation xkT yk � 1 andthe bounds in (3.15) hold for all k � K. Then we have1� �k = �k + (1 + �)�+k� + �k + (1 + �)�+k� �k + (1 + �)�+k�� C5 [1 + (1 + �)(xkT yk)�] (xkT yk)1�7��� 3C5� (xkT yk)1�7�:Hence, from Lemma 2.2(a), we have for all k � K thatxk+1Tyk+1 � xkTyk(1� �k + �2k�k)� xkTyk(1� �k + j�kj)� xkTyk �3C5� (xkT yk)1�7� + C5(xkTyk)1�6��� 4C5� (xkT yk)2�7�;as required.Convergence (and therefore boundedness) of the sequence f(xk; yk)g follows as a corol-lary of Theorem 3.8.Corollary 3.9. Suppose the assumptions of Theorem 3.8 hold. Then the sequencef(xk; yk)g is convergent.Proof. It su�ces to show that the sequence is Cauchy. From Theorem 3.8, there existsan index �K such that xk+1T yk+1 � (1=2)1=(1�3�)xkT yk for all k � �K. Hence, from (3.14)we have for k1, k2 with �K � k1 < k2 thatk(xk2 ; yk2) � (xk1 ; yk1)k1 � k2�1Xk=k1 k(�xk;�yk)k1� C4 k2�1Xk=k1 �xkTyk�1�3�� C4 �xk1Tyk1�1�3� k2�1Xk=k1 12k�k1



SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 18� 2C4 �xk1T yk1�1�3� :Since xkT yk # 0, the above relation shows that, given any � > 0, we can choose K̂ � �K suchthat k(xk2; yk2) � (xk1 ; yk1)k1 � � 8k2 > k1 � K̂;and so the sequence f(xk; yk)g is Cauchy.REFERENCES[1] M. Kojima, N. Megiddo, and S. Mizuno, A primal-dual infeasible-interior-point point algorithm forlinear programming, Mathematical Programming, Series A, 61 (1993), pp. 261{280.[2] S. Mizuno, Polynomiality of Kojima-Meggido-Mizuno infeasible-interior-point algorithm for linearprogramming, Tech. Rep. 1006, School of Operations Research and Industrial Engineering, CornellUniversity, Ithaca, N.Y., January 1993.[3] S. Mizuno, M. Kojima, and M. Todd, Infeasible interior-point primal-dual potential-reduction al-gorithms for linear programming, Tech. Rep. 1023, School of Operations Research and IndustrialEngineering, Cornell University, Ithaca, New York, August 1992. To appear in SIAM Journal onOptimization.[4] R. D. C. Monteiro and S. J. Wright, Superlinear primal-dual a�ne scaling algorithms for LCP,Preprint MCS{P360{0693, Mathematics and Computer Science Division, Argonne National Lab-oratory, Argonne, Ill., June 1993. To appear in Mathematical Programming, Series A.[5] , Local convergence of interior-point algorithms for degenerate monotone LCP, ComputationalOptimization and Applications, 3 (1994), pp. 131{155.[6] F. A. Potra, A quadratically convergent predictor-corrector method for solving linear programs frominfeasible starting points, Reports on Computational Mathematics 28 & 34, University of Iowa,Iowa City, December 1993. To appear in Mathematical Programming.[7] S. J. Wright, An infeasible-interior-point algorithm for linear complementarity problems, PreprintMCS{P331{1092, Mathematics and Computer Science Division, Argonne National Laboratory,Argonne, Ill., October 1992. To appear in Mathematical Programming, Series A.[8] , A path-following infeasible-interior-point algorithm for linear complementarity problems, Op-timization Methods and Software, 2 (1993), pp. 79{106.[9] , A path-following interior-point algorithm for linear and quadratic optimization problems,Preprint MCS{P401{1293, Mathematics and Computer Science Division, Argonne National Lab-oratory, Argonne, Ill., December 1993.[10] Y. Ye and K. Anstreicher,On quadratic and O(pnL) convergence of a predictor-corrector algorithmfor LCP, Mathematical Programming, Series A, 62 (1993), pp. 537{551.[11] Y. Zhang, On the convergence of a class of infeasible-interior-point methods for the horizontal linearcomplementarity problem, SIAM Journal on Optimization, 4 (1994), pp. 208{227.[12] Y. Zhang and D. Zhang, Superlinear convergence of infeasible interior-point methods for linearprogramming, Research Report 92{15, Department of Mathematics and Statistics, University ofMaryland Baltimore County, September 1992. To appear in Mathematical Programming, SeriesA.


