A SUPERLINEAR INFEASIBLE-INTERIOR-POINT
AFFINE SCALING ALGORITHM FOR LCP

R. D. C. MONTEIRO* AND S. J. WRIGHT'

Abstract. We present an infeasible-interior-point algorithm for monotone linear complementarity prob-
lems in which the search directions are affine scaling directions and the step lengths are obtained from simple
formulae that ensure both global and superlinear convergence. By choosing the value of a parameter in ap-
propriate ways, polynomial complexity and convergence with Q-order up to (but not including) two can be
achieved. The only assumption made to obtain the superlinear convergence is the existence of a solution
satisfying strict complementarity.
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1. Introduction. The monotone linear complementarity problem (LCP) is to find a
vector pair (z,y) € R" x R” that satisfies the following conditions:

(11&) y=Mz+q,
(1.1b) x>0, y>0,
(1.1¢) 2Ty =0,

where M is a positive semidefinite matrix. We use § to denote the solution set of (1.1) and
S. to denote the set of solutions that satisfy strict complementarity, that is,

S, ={",y)eS|z"+y" >0}

We say that (1.1) is nondegenerate if S. # 0.

It is well known that problems in linear programming and convex quadratic program-
ming can be posed in the form (1.1). This fact partly accounts for the extensive effort that
has gone into designing interior-point algorithms for this class of problems.

In this paper, we develop a superlinearly convergent infeasible-interior-point algorithm
that uses only affine scaling directions. Several infeasible-interior-point algorithms have
been developed to solve problem (1.1), or the linear programming (LP) subclass. For LP
problems, these include works by Kojima, Megiddo, and Mizuno [1], Kojima, Megiddo, and
Todd [3], Mizuno [2], Potra [6], and Zhang and Zhang [12]. For LCP, we mention Wright
[7, 8], while Zhang [11] considers a generalized form of the monotone LCP.

In a companion paper [4], we describe a method in which all iterates (z*, y*) are strictly
feasible (that is, (z*,y*) > 0 and y* = M=z* + ¢) and search directions are generated by
solving the linear system
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where X* = diag(z%, 25 ... 2F) Y* = diag(yf,vh, ..., vF), and e = (1,1,...,1)T. The
direction (Az*  Ay*) is known as the primal-dual affine scaling direction, and one can easily
see that it is simply the Newton direction for the nonlinear mapping F'(z,y) = (M2 + ¢ —
y, XYe) = (0,0) at the point (z*,y*). In [4], we choose a parameter é € (0,1/2) and define
the scalars ¢ and y; by

T
AzFT AyP AzFAyF
(1.3) o é #y, Yk é max | 0, max (%)
xk yk i=1,2,...n T Y;
Afoyf<0
and the step length a by
]

1>

(1.4) S+ (L1 8)e

The step from one iterate to the next is defined as
(l‘k+1,yk+1) — (l‘k,yk) 4 Ozk(Al‘k,Ayk).

The resulting simple algorithm 1s globally and superlinearly convergent. It even exhibits
polynomial complexity for certain choices of the parameter § and starting point (2, y°).

In this paper, we generalize this algorithm by allowing the iterates to be infeasible. Given
an initial point (2%, y%) > 0, the modified algorithm generates iterates (z*,y*) in such a way
that kayk 1 0 and [|y* — Mz* —¢|]| — 0 as k — oo. Moreover, the convergence of {kayk}
to zero is superlinear. Much of the elegance of the analysis for the feasible algorithm [4]
does not carry through to this infeasible case and the results are slightly weaker here, so we
feel that a separate report is needed.

Our analysis makes use of the fact that all iterates generated by our algorithm lie in a
set of the form

N, p)={(x,y) > 0] px"y > |7,z > n(zTy)'™, i=1,2,...,n},

where 6 > 0, 7> 0, and p > 0, and »r = y — Mx — q. Note that N(6,7n,0) corresponds to
the neighborhood N(6, 1) that was used in [4].

We formally specify our algorithm as follows.

Algorithm TAS
initially: Choose § € (0,1] and (2°,y%) > 0;
for k=0,1,2,...
Let (Az* Ay*) denote the solution of the linear system

(1.5a) MAz—Ay =
(1.5b) YAr+ XAy = —-Y Xe,

where r = ¥ = y# — Maz* — ¢, X = X*
Calculate ¢ and yj as in (1.3) and set

cand Y = YF,

)

1.6 - ,
(1.6) T vk + (L4 0)6)
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where QSZ' = max(0, ¢3);
Set (z"+1 yF+l) = (2F + ap Azt yb + ap Ayh);
end for

Note that in the case of (z* y*) feasible, we have
AkaAyk = AkaMAxk > 0.

Therefore ¢5 > 0 for all k, so the definition of « in (1.6) reduces to (1.4). Hence, the
algorithm in [4] is a special case of Algorithm TAS.

In the remainder of the paper, we prove that Algorithm TAS produces a sequence of

iterates {(z*,y*)} such that the complementarity gap kayk and the residual ||r¥|| converge

to zero. Moreover, we show that this convergence is Q-superlinear provided that S. # 0
and & < 1/7. An interesting feature of our superlinear convergence result is that we do not
assume any condition that would imply the boundedness of the sequence {(z*,y*)} such as

(i) existence of a strictly feasible point or (ii) convergence of {kayk} and {[|7*||} to 0 at
a similar rate. Most superlinear convergence results for infeasible-interior-point algorithms
require the first condition. Exceptions are the results of Potra [6] and Wright [8], which

require only the second condition; specifically, for some v > 0 we have z** y* > y||r*|| for

all £ > 0. In this paper, we show first that {kayk} converges superlinearly to zero then,
as a consequence, that the sequence of iterates {(z*,y*)} converges and hence is bounded.
Also, for certain values of § and for initial points (x°,y°) satisfying (2°,y°) > (2*, y*), for

some (z*,y*) € 8, we show that the number of iterations required to reduce the gap z*" y*

below a certain € > 0 1s polynomially bounded.
The following notational conventions are used in the remainder of the paper. When
8. # 0, we can partition the index set {1,2,...,n} into subsets B and N such that

i€eB < >0 Y@ y)eS,, ieN < y >0, V(") € S..

Unless otherwise specified, ||.|| denotes the the Euclidean norm. For a general vector z € R"
and index set L C {1,2,...,n}, zr, denotes the vector made up of components z; for i € L.
If M € R%" and I,L C {1,2,...,n}, then My refers to the submatrix of M consisting
of the elements M;; for i € I and j € L. If D € R**" is diagonal, then Dp denotes the
diagonal matrix constructed from Dy; for i € B.

2. Global Convergence. In this section, we prove the global convergence of Algo-
rithm TAS. We show that for certain values of §, Algorithm TAS has a polynomial bound on
the number of iterations. We also obtain certain bounds on the directions generated by the
algorithm, which will be used in the next section to prove superlinear convergence.

For much of the analysis, it is convenient to drop the iteration index k that appears on
quantities such as (z*,y*), ¢, and aj. Accordingly, we define some index-free notation.
For an arbitrary positive vector pair (x,y) > 0, let (Az, Ay) be obtained from (1.5), and
define

(2(a),y(0)) = (z,9) +a(Az, Ay),

~

~—~
Q

~—
(l

ylo) = Ma(a) — g,

AzT Ay
xTy

[

bl
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A
x = max |0, max (
TilYi

i=1,2 n

yZ2yeey

AriAy;<0

where « € [0, 1].
We start by stating and proving some basic results for quantities in (2.1).
LEMMaA 2.1. ¢ > —x.
Proof. We have

AzT Ay Ax; Ay; b%
R > e > > —x

i=1,2 n 1=1,2 n

y2yeeey y2yeeey

AziAy;<0 Az;Ay;<0

m

LEMMA 2.2. Let (z,y) > 0 be given, and let (Ax, Ay) be the direction determined by
(1.5). Then, for all « € [0, 1],

(1) (@) y(a) = eyl - a +a’);

(b) wi(a)yi(a) > wigi(l — o — a?x);

(¢) r(a) = (1—a)r;

(d) AwiAy; =0 for all i = 1,2,...,n if and only if (x(1),y(1)) is a solution of (1.1)

that satisfies strict complementarity.

Proof. Statements (a), (b), and (c) follow immediately from (1.5) and (2.1). The proof
of (d) is essentially given by Monteiro and Wright [4, Lemma 3.1(d)], if we note in addition
that »(1) = 0. n

We now show that {l‘kT y*} is a decreasing sequence and that the property of member-
ship of A'(8,7, p) is inherited by successive iterates of the algorithm. In the proof of this
result, we make use of the inequality

(2.2) 1—u)'PP <1 —(1+8u+tbdu?,  VYu<l, V6€(0,1],

which is proved by Monteiro and Wright [4, Lemma 3.2].

LEMMA 2.3. Suppose that (z,y) € N (8,1, p) for some § € (0,1], n> 0, and p > 0 and
that (Ax, Ay) is determined by (1.5). Assume that Ax;Ay; # 0 for some i € {1,2,...,n}.
Then, for all

A 6
23 EJ: 0, ;
(2:3) “« S+x+(L+6)pt

where ¢7 = max(0, ¢), we have
(a) z(a) y(a) <[l —a/(1+68)]zTy; and
(b) (z(@), y(a)) € N(8,7,p).

Proof. To show statement (a), note that for o« € J, we have

N st 5
(2:4) a¢ S R S PR B

Thus in view of Lemma 2.2(a), we obtain

2(@)7y(a) < aTy(1 — afl - ag™)) < aTy (1 - 1:“_6) |
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For statement (b), we start by showing that z(a)? y(a) > 0 for all @ € J. Observe first that

the condition that Aa;Ay; # 0 for some i € {1,2,...,n} implies that either y > 0 or ¢ > 0.
Hence, x + (1 + 6)¢t > 0, and therefore

(2.5)

< < <1, <—

TN (100t T T+ (1)o7 T Ty

for all @ € J. Observe that if ¢ > 0, then, in view of Lemma 2.2(a) and (2.5), we have
(o) y(a) > (1 —a)zTy > 0, for all @ € J. Assume that ¢ < 0. In this case, we must have
x > 0. This together with (2.5), Lemma 2.1, and Lemma 2.2(a) then imply

J:(oz)Ty(oz) = a:Ty(l —a+a’g)
> 2Tyl —a —a?y)

> 2Ty(l—a(l+x) >0

for all @ € J with @ > 0. We have thus shown that z(a)Ty(a) > 0 for all @ € J. Now,
using Lemma 2.2(a), (2.2), and (2.4), we obtain for all « € J that

0 < ple(a) y(a)]*
< ety = a(l - agh)]H
< Ty = (14 8)a(l — agh) + sa®(1 — agt)’]
< p(aty) L= (14 8)a(l - agt) + o]
(2.6) < (aty) Pl - a - oy,

where in the last inequality we used the fact that the interval J is exactly the set of all
a > 0 for which

I—a(l+8)(1—apT)+8a? <1—a—a’y.
From (2.6), Lemma 2.2(b), and the fact that (z,y) € N(8,7, p), we have

zi(a)yi(a)

z;y Z(l—a—a X)
§aT9) (1 — 0 = ay)

nlz(a)" y(a)]'*" > 0.

Thus, the second condition for membership of (8, 7, p) is satisfied by (z(), y(«)). To show
the first condition, we observe that

(AVARAVARIYS

(2.7 oy > [+,

From Lemma 2.2(c), we know that ||r(a)]] = (1 — «)||7]|. By (2.2) and (2.7), it follows that
(25) @I = (1= )45 < [1 = (14 8)a+ 8a]paTy.

For o > 0, the inequality

(2.9) I—(1+8)a+éa’<1—a+a’s

is equivalent to 8§ > «(é — ¢), which is satisfied by every o € [0,6/(6 + ¢ )], where ¢~ =
—min(0, ¢). Now, using Lemma 2.1, we can easily see that J C [0,6/(6 + ¢~)]. We then
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conclude that (2.9) is satisfied by every a € J. Hence, in view of (2.8) and Lemma 2.2(a),
we have

Ir(@)|'*" < (1= o+ a?¢)pr"y = pa(a) y(a).

Therefore, the first condition for membership of (z(a), y(«)) in N'(8,7, p) is also satisfied,
and we have the result. [
From now on, given the initial point (z°,y°) and & € (0, 1], we let

_ minz:1,2,...,n(l‘0y0) _ ||7'D||1+LS
To = 20T y0/n e, p= 20T y0
. 0,0
_ minizio. o a(8y)) To
(210) 77 - (xDTyD)1+6 - n(xDTyD)LS’

Note that 7o (a measure of the centrality of the initial point) is at most 1 and (z°,y°) €
N(6,n, p).

The following result is an immediate consequence of Lemma 2.2(c) and Lemma 2.3.

COROLLARY 2.4. The sequence {(x*,y*)} generated by Algorithm IAS satisfies

(a) xk+1Tyk+1 <[l—ar/(1+ 6)]kayk for all k > 0;

(b) v = v for all k > 0, where vy, = Hfz_ol(l —o);

(c) (z% y*) € N(6,m,p) for all k >0, where n and p are as defined in (2.10).

Our main goal now is to derive estimates for the quantities y and ¢. These estimates
will then be used to establish global convergence of Algorithm IAS, as well as polynomial
complexity for certain values of §. The following inequality is exploited in a number of
proofs that follow.

LemMa 2.5. Let (2°,4°) and (z,y) be points such that y— Mz —q=v(y’ — Mz° — q)
for some v € R", and let (Z,y) be a point such that y— M% — q=10. Then,

0 < VZxOTyO +(1- V)zi‘ng +2ly+ v(l— V)(xOng + i‘TyO)

(2.11) (@ y 4+ 2Ty") — (1= )&y + 2 Ty).

Proof. See, for example, Wright [8, Lemma 3.2]. n

As an immediate consequence of this inequality, we obtain the following result.

LEMMA 2.6. Let (2%, y") > 0 be given. Then there exists a constant Cy > 0 satisfying
the following property: If (z,y) > 0 is a point such that y — Mz —q = v(y° — Mz° — q) for
some v € [0,1], then

(2.12) max {v||#|eo, ¥[|Yl|ec } < Co [J:Ty—l— 1/] .

Proof. Assume that (Z,y) is a solution of (1.1). Using inequality (2.11) and the facts

T T T T T _
() +y? (ve) < vyt + Ty + v y+y° 7)
< max{l, xOTyO—i—J:OTy—I—yOTi‘} (eTy +v).

Relation (2.12) now follows by letting

A max{l, xOTyO + xOng + yOTi‘}
Co=

mini=1 2, {min(z?,y?)}
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n
LEMMA 2.7. Let the vectors u® € R” and v° € R" and the parameters n > 0 and 6 > 0
be given. Then, for every positive vector (x,y) € R* and scalar v > 0 such that

(2.13) y—Mz—q = v’ — Mu°),

(2.14) min gy > (el y)

=1,2,...,

the corresponding direction (Ax, Ay) determined by (1.5) satisfies

2v
-1 T N1/2 0 0
(2.15) max (||D™"Ax[], [|[DAy]]) < (=" y)'* + (T )7 [y wl]+ 11X "]
where D = XY2y—1/2,
Proof. We will first show that
(2.16) max (|[D7' Az|], [|DAY]]) < (27 y)'* + 20 [| D7) + (| D]

Indeed, it follows from (1.5a) and (2.13) that
MAz —Ay=r=y— Mz —q=v("— Mu).
Therefore,
M(Az +vu’) = Ay + vo?,
which by monotonicity of (1.1) implies that
(Az 4+ vu®)T (Ay + %) > 0.
Hence, we obtain
(2.17) AxTAy > —VuOTAy — 0T Az — 200 0,
If we multiply (1.5b) by (XY)~/2 and square both sides, we obtain
D™ Ax|)? + || DAY|* +2A82TAy = 2Ty,
which, in view of (2.17), implies
1D~ Az — v D2 + | DAy — v D~ H|)? — v?||Dv® + D7 2O))? < 2Ty
Therefore, using the inequality (3> + %)/ < ||+ |7| and the triangle inequality, we have
[y + 22| D+ D] 4 v Do)

(") + 20| D + w| | D™ M|
(@"y)"? + 20 || Do + ||~ ]

1D~ Azl

IN A IA

(2.18)

A similar bound can be derived for ||[DAy||, and hence relation (2.16) follows.
We now derive (2.15) from (2.16) and (2.14). From (2.14) we obtain

n (1,9)2 n .2,0)2 YU0||2
2.1 D—l 02 — yl(ul) — (ylul) < ||
2.19) It =3 B - 5

— iy op(aTy)Et
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Similarly, we also have

0()2 X0
Relation (2.15) now follows by substituting (2.19) and (2.20) into (2.16). L]

We are now ready to show global convergence of Algorithm IAS without imposing any
condition on the initial point (2%, y°).

THEOREM 2.8. For any initial point (z°,y°) > 0, the sequence {(z*,y*)} generated by
Algorithm TAS satisfies

(a) kayk — 0; and

(b) r* —0.

Proof. First note that (b) follows as a consequence of (a) from Corollary 2.4(c). To

show (a), we assume for contradiction that z*" y* does not converge to 0. Thus, in view of
Corollary 2.4(a), it follows that there exists ¢ > 0 such that

(2.21) Ty > e vk >o0.
Hence, in view of Corollary 2.4(c), we have

(2.22) min {fyk} > (@t Y > gl V> 0.

i=1,2,...,

Since the point (z*,y*) satisfies the assumptions of Lemma 2.6 from Corollary 2.4(b), we
obtain

(2.23) max{v*||z*||oo, v¥||¥*||oo } < Co (kayk + I/k) < Cy (xOTyO + 1) , Yk > 0.

Let (u” v°) € R be such that v — Mu" = 7 (e.g., u® =0 and v° = #°). From Corollary
2.4, (z* y*) and vy, satisfy the assumptions of Lemma 2.7 with 7 given by (2.10). Hence,
inequality (2.15) gives

max (||(D*)"" Az"[], [|[D*Ay*|))

T 1/2 2wk
< () T+ s (Pl )
/2 (k" yk)A+0)/2
T 1/2 2
< (=) st ma (A e, 12 o) (el + 111D

172 20 (l‘OTyO + 1)

T 4 A
(224) S (l‘o yo) + 7]1/26(1+6)/2 (HUOH + ||UO||) = CO'

Using (2.22) and (2.24), we obtain for all £ > 0 that

|Azf Ay
~ max —
i=1,2,...,n xi yl.

IN

max{], x¢ }

32y

[[diag(Az") Ay*||

min;=1 2, {zfyf}




SUPERLINEAR AFFINE-SCALING ALGORITHM FOR LCP 9

(D)~ At |l[| DE Ay®||
neL+s

IN

.2
< G
s A

where the first inequality follows by using a similar argument as in the proof of Lemma 2.1.
Hence, from (1.6) we have inf; g > 0, which implies kayk — 0 from Corollary 2.4(a). We
have thus obtained a contradiction, and statement (a) follows. [

We note that Theorem 2.8 does not imply that the sequence {(z*,y*)} is convergent or
bounded. In Section 3, we will show that {(z*, y*)} is convergent under the assumptions
that there is a solution of (1.1) satisfying strict complementarity and that 6 < 1/7.

Our next aim is to derive an upper bound on the number of iterations required by
Algorithm TAS to reduce the duality gap below a given tolerance € > 0. We will see that
for certain values of é, Algorithm TAS has a polynomial bound on this number of iterations.
We restrict our analysis to certain choices of the initial point (2, y°).

Given some conditions on the initial point (2% y"), the next result gives bounds on the

left-hand side of (2.15) in terms of the initial gap J:OTyO, the current gap 27y, and the
measure of initial centrality .

LEMMA 2.9. Suppose that the initial point (2°,y°) > 0 is chosen so that (2°,y%) >
(z*,y*) for some (x*,y*) € S and that my, 1, and p are defined by (2.10). Let (x,y) be any
vector pair in N'(6,n,p) with xTy < xOTyO and y — Mz — q = v(y® — Mz" — q) for some
v € (0,1]. Let (Ax, Ay) be the direction determined by (1.5). Then, we have

1/9 T 35/2
9.5 DAzl IDAY) < 9 [ - o s T2
) max(padpah 9 (2] (5] @

Proof. We start by defining a vector pair (u”,v") by

(2.26) (u®,0%) = (2°,y°) = (2", y") > 0,
for (z*,y*) € S. Tt is easy to check that
v(v? = Mu®) = vy’ — Mz" —q) =y — Mz —q.

Therefore Lemma 2.7 applies, and as a consequence the inequality (2.15) holds. Now, using
(2.26), we obtain

(2.27) [V u?]) + | X0° < yFu® + 270 =y (2 — )+ 2T (3 — y*) <yl a® 4+ 2Ty°.
By substituting this last relation into (2.15), we obtain
(2.28) max (||D7 Az, ||DAY||) < (2Ty) % + 202 (2T y)=OFO2[yT 20 4 2Ty,

We now invoke the inequality (2.11) with (z,y) = (¢*, y*), noting that v € (0,1], (z*,y*) >
0, z*Ty* =0, and (x,y) > 0, to deduce that

T T T *
(2.29) v y+2Ty?) < vy Ty + vy o Ty ).
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Now, by (2.26), we have

xOTy* + x*TyO B xOT(yO . vo) + (l,o _ uO)TyO

i -
0y Yy

T T
) xO UO—|—U0 yO

(2.30) : T,

<2

T =
0 70 0

In addition, by (2.10) and the definition of A(8,7, p), we have

(2.31) [|7|] - [paTy) 1/ (1+8) ( 2Ty )1/(1+5)
: Ly = _ |
||7°0|| - ||7°0|| $0Ty0

Combining (2.29), (2.30), and (2.31), we get

T
T T X
I/(xo Y+ xTyO) S xo yO |:1/2 + (ﬁ) =+ 21/:|

T 1/(146) T 8/(146)
< xoTy(J( nyo) V+< nyo) 49
oy Ty
T 1/(146)
ol of 2 Y
(2.32) < dxy (xOTyO) :

If we substitute (2.32) into (2.28) and replace n by its definition (2.10), we obtain

- — — T
max (|[D7'Az|| [|DAY])) < (@T )M+ 8y 2@ y) T U@ ) AN (T y) /O

n \ 2 [ 0T 0 (6/2)(3+8)/(1+8)
(zTy)t /2 |1 +8 <—) ( xTy )

o Y

IN
o)
TN
3=
N
—
~
[3v]
SN
& &o
NN
N
o
~——
w
<
~
[3v]
—~
&
~
NS
Se—’
.
~
[3v]

<3, 7T()§1.

n
We next derive uniform bounds for the quantities |¢5| and yj defined by (1.3).
LEMMA 2.10. Suppose that the initial point (2% y") > 0 satisfies (2°,y°) > (2*,y*)

for some (z*,y*) € S and that 1) and p are defined by (2.10). Then for all iterates (z* y*)

generated by Algorithm IAS, we have

(2.33a) ||

a\? [ 207y 16
2.33b 0< < 81— —_— .
(2.330) sw o< (2 (MTyk)

IN
[o's)
—
N
3=
N
SN
SRS
Eol e
| |
@ o=
Ecl =]
~—

w

<
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Proof. By Corollary 2.4, it follows that (z*, y*) satisfies the assumptions of Lemma 2.9
for all £ > 0. Hence, it follows from (2.25) that

T _ T 3

_ AP AYF DR ARI(DF) T Ay n\ (=g
|6x] = 7 < = <81 ,
ok Ty ok ok o k

2ty
Similarly, by (2.10), (2.25), and the definition of (6,7, p), we have

[AcfAyt] _ [ID"AE|[(DF) T AYT
2,0 zbyb - (kT yk)ito

n l’OT@/O ” T k-5 -1
81 (—) F AT I/
mo l‘kTyk ( )
5 of o\ 4
- (_) U
7TO l‘k yk‘

as required. [

We can now state a global convergence result.

THEOREM 2.11. Suppose that the initial point (z°,y°) > 0 satisfies (x°,y°) > (2*, y*)
for some (x*,y*) € S§. Let & € (0,1] be given, and let n and p be defined by (2.10). Then,
given € € (O,xOTyO), Algorithm TAS will generate an iterate (z*, y*) with kayk < ¢ n at
most

9 o o\ 46
(2.34) 0 %(ﬁ) (“3 y) log(z°" 4 /€)

o €

IN

iterations, and the sequence {kayk} will be strictly monotonically decreasing.
Proof. To simplify notation, let 7 = (a:OTyO/e). If the iterate (z*, y*) satisfies kayk > ¢
then, in view of (2.33), we have

|ox| < 81(71/71'0)7'35, e < 81(71/71'0)27'45,
and hence
6
o =
‘ 8+ xk+ (1L +8)o7
S 6
= 5+ 81(n/m)* T + (14 6)81(n/mo) T3
S 6
= 8§+ 243(n /)T
o (MmN __us
> - (o
YV ( n ) i
(2.35) 2 a

Strictly monotonic decrease of the sequence {kayk} now follows from Corollary 2.4(a) and
the fact that the inclusion (z*,y*) € N(8, 7, p) implies that kayk > 0. Now let K be
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the smallest nonnegative integer for which xK‘HTyK‘H < €. Since (2.35) holds for every
0 < k < K, we obtain from Lemma 2.3(a) that

(2.36) KTy <1 — a1+ 65Ty,

Assume for contradiction that

(14 6)logT

K>
8%

Using the inequality log(l — 8) < —7 for 8 < 1 and the previous relation, we can easily
show that

[l—a/(+8)" <7,
which, in view of the definition of 7 and relation (2.36), implies

T _ T
l‘K yK<7_ 1l‘0

< y' =

€.

This relation contradicts our definition of K. Therefore, using (2.35) and the definition of
T, we have

46
(148 logr 1/ 207y oT o
K< — = 0 s\ - log(z”" 4" /e)

Note in particular that if
e=e 90 xOTyO =900, 7o = O(1), 8§ =1/0(L),

then the bound in (2.34) is O(n?L?), that is, there is a polynomial bound on the number of
iterations of Algorithm TAS.

3. Local Convergence. Under the conditions that problem (1.1) is nondegenerate
and & € (0,1/7), we prove in this section that Algorithm TAS started from any initial

point (2 y%) > 0 generates a sequence of iterates {(z*,y*)} such that {kayk} converges
superlinearly to zero. Moreover, under the same conditions, we also show that the sequence
{(z*,y*)} converges to a solution of (1.1). We emphasize that the convergence of {(z*, y*)}
is obtained without assuming the existence of a strictly feasible point for (1.1). (This
assumption was used by the local convergence analysis in Wright [7], for example.)

The following assumption is imposed throughout this section.

AssumPTION 1. (Nondegeneracy) S. # .
We show in [5] that Assumption 1 is in fact necessary for superlinear convergence of Newton-
based primal-dual algorithms.

An important feature of this section is that we are able to prove boundedness of the steps
(Az* Ay*) in terms of kayk without an intermediate result that the sequence (z*,y*) is

bounded. The key result — that ||Az%]| and ||Ayk|| are both O(J:kTyk) — is obtained by
combining Lemmas 3.3 and 3.4 below. In [7], the same result was obtained by combining
Lemma 3.4 with a more elementary result in which boundedness of (z*,y*) was an essential
ingredient. In fact, we can use the techniques of this section to drop the strict feasibility
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assumption from the analysis of [7] without affecting the conclusions of the paper (see Wright
[9]).

After finding the bounds on the steps (Az* Ay*) in terms of the complementarity gap
kayk, we bound the scalars |¢x| and xj. Subsequently, we show that ay — 1, from which
Q-superlinear convergence follows. We also find a lower bound on the Q-order of convergence
in terms of 6.

The following result yields bounds on the nonbasic components of z and y.

LEMMA 3.1. Suppose that Assumption 1 holds. Assume that a point (z° y°) > 0 and
that scalars 6 > 0, n > 0, and p > 0 are given. Then, there exists a constant C7 > 0 with

the following property: For every vector (z,y) € N(8,7, p) such that

(3.1) Ty <y

(3.2) y—Mze—q = vy’ — Mz®—q), for some v €[0,1/2],
we have

(3.3a) r, < C’l(xTy)l/(Hé), Yie N,

(3.3b) yi < Cy(xTy)/0+), Vi€ B.

Proof. Consider first the infeasible case in which r® = y* — M2° — ¢ # 0. Setting
(Z,y) = (x*,y*) for some (2*,y*) € S, in inequality (2.11) and using the fact that v €
[0,1/2], (2,y) > 0, (2*,y*) > 0 and 2*Ty* = 0, we obtain

1
(3.4) J:*Ty—i—xTy* < 1_1/1‘0Ty0 + 1_V$Ty+’/(l’0 Yy +a7 ).

Using (3.2) and the fact that (z,y) € N (8,7, p), we get

Il _ (o))
3.5 v = )
(3:5) N

where, as usual, r = y — M — ¢q. From (3.1), (3.5), (3.4), and the fact that 1 —v > 1/2, we
get

l‘*Ty + a:Ty*
29:0T

1/(146) V4 49, Ty 4
< (")

|| OH 1/(1-|—6)(I y +$*T 0)( )1/(1+6)

1/<1+ﬁ>($07“y* 42Ty

IN

(x y)1/(1+5) lW 1/(1+5)+2( oT 0)6/(1+6)_|_ ||7~0||p

= GO

where C is defined in an obvious way. This last relation immediately implies (3.3) when
we define

¥

1 1
Ch = C’lmax max —, max — o .
IEN yl i€EB 132'
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For the feasible case #* = 0, note from the condition y — Mz — ¢ = v(y’ — M2® — ¢) that
r=y— Mz —q=0 for all (z,y) satisfying the assumptions of the theorem. Hence we can
take v = 0 in (3.4) and obtain

*

Ty 42Ty <2y

A simple argument produces the required bound with 7 defined by

Ch = (J:OTyO)é/(Hé) max{maxi*, maxi*} :
teN Y, i€B X,
n
We now use this lemma to find bounds on the nonbasic components of (Az, Ay).
LEMMA 3.2. Suppose that Assumption 1 holds and that (2% y°) > 0 is given. Assume
that scalars 6 € [0,1/3], n > 0, and p > 0 are given. Then, there exists a constant Cy > 0

with the following property: For any vector pair (z,y) € N(8, 7, p) such that

(3.6) oty < min(l,xOTyO),

(3.7) y—Mz—q = vy’ —Mz"—yq), for some v €[0,1/2],
we have

(3.8a) |Az;| < C’z(xTy)l_Sé, Vi € N,

(3.8b) Ayl < CylaTy)t=3, Vi € B.

Proof. We first show that there exists a constant C such that
(3.9) max {||D7  Axl], | DAy} < Co(aTy) =372,

We give the proof only for the case in which r% = y® — Mz° — ¢ # 0, since the proof for
r® = 0 is trivial. The assumptions of the lemma imply that (2.12) and (3.5) hold. These
two relations together with (3.6) then imply

max {v[|z[lo, v|lyllc} < ColeTy+v]
< Gol1+2 16:?] (aTy) !/ 0+
= Cy(aTy) O+
(3.10) < Colay)' ™7,

where (5 is defined in an obvious way. Since the assumptions of Lemma 2.7 are satisfied,
inequality (2.15) together with (3.10) and (3.6) then yield

max (|| D™ Azl|, | DAy]])
2v

T N1/2
S ($ y) + Ul/z(l‘Ty)(l-I_é)/z [|

[V ull] + [ X7

2
< @'+ (T g T (Il =+ 1" 1) max (lyllcs., lr]|oo)
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2C
T, N1/2 2 0 0 T, N1—6
S (l‘ y) + Ul/z(l’Ty)(l-I—é)/z (HU ||+||U H) (l‘ y)
2C, _
< 1+m<||u0||+||v0||>] (T y) 20

= CyaTy)t =302,

where C is defined in an obvious way. We have thus shown that (3.9) holds.
Considering i € N, we have from the definition D = X'/2Y~1/2 the formulae (3.9) and
(3.3a), and the inclusion (z,y) € N(8, 7, p) that

) 1/27
Al = (?) Ca(aTy) =72

_ Li ~ ¢ T N(1-36)/2
o (way)? SIC
< ¢ Cy(aTy)t/ 01+ (2T y)(1=30)/2
= 2771/2(xTy)(1+6)/2 Yy

(3.11) — (02017]_1/2)(xTy)(1_26_252)/(1+6).

Since § € [0, 1/3], we have

_ 95 _ 982
%2(1—26—262)(1—5):1—36+2632 1—36>0,

and since 7y < 1, we conclude from (3.11) that
|Al‘z| < (Cvzcln—l/Z)(xTy)l—Sé — Cz(xTy)l—Sé’

for Cy defined in an obvious way. Hence, we have proved (3.8a). The proof of (3.8b) is
identical. [
To find bounds on the remaining components of (Axz, Ay), we cite the following two
results, which have been proved in earlier reports.
LEMMA 3.3. ([4, Lemma 2.2]) Let f € R? and H € RP*? be given. Then there exists
a constant L = L(f, H) with the property that for any positive definite diagonal matriz D
and any vector h € Range(H), the (unique) optimal solution w = w(D,h) of

1
(3.12) min ffw + 5 ||Dw||2 , subject to Hw = h,

satisfies

[0l < L {177 @] + [|hlleo } -

LEmMMA 3.4. ([7, Lemma 5.2]) Let (z,y) > 0 be given, and consider the direction
(Az, Ay) determined by (1.5). Then (Axp, Ayn) solves the conver quadratic programming
problem

min 3|D5ul* + §IDF |

)
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subject to

Mppw = rp— MpnAzy+ Ayp
MNBw—z = TN—MNNAl‘N.

Lemma 3.4 is an extension to the infeasible case of a result due to Ye and Anstreicher [10,
Lemma 3.5].
As a consequence of Lemmas 3.3 and 3.4, we can find bounds on Azpg and Ayy.
LEMMA 3.5. Suppose the assumptions of Lemma 3.2 hold. Then there exists a constant
C5 > 0 such that

(3.13a) |Aa;]
(3.13b) | Ayl

Cs(x"y)'=%,  VieB,

<
< Cylaly)t=3, Yie N.

Proof. From Lemmas 3.2, 3.3, and 3.4, we have

1(Azp, Ayn)llee < Ll[7lloo + 1M ]les | A2 N]loo + [[AYB||oo]

< L[l ) 1 (Mo + DT ).
Since 1/(1+6) > 1 — 38 when § € [0, 1/3], we obtain the desired result by setting

Ca = L[4 4 (Mo + 1)C]

n
As a immediate consequence of Lemmas 3.2 and 3.5, we obtain the following result.
THEOREM 3.6. Suppose that Assumplion 1 holds and that § € [0,1/3] is given. Then,

there exists a constant Cq > 0 such that for all k sufficiently large, we have

Ca(e® g7 wi=1,2,.. . n,

Ca(z* g3 wi=1,2,... n.

(3.14a) |Az¥]|
(3.14b) |AyF|

IN

IN

Proof. Since the assumptions of Theorem 2.8 are satisfied, we know that kayk 1 0 and
||7*(] — 0. Hence, in view of Corollary 2.4(b), we have that v; — 0. Thus, there exists an
index K > 0 such that v < 1/2 and kayk < 1 for all £ > K. The above observations
together with Corollary 2.4 imply that the assumptions of Lemmas 3.2 and 3.5 are satisfied
by all points (z*,y*) with & > K. Thus, we obtain (3.14) by choosing Cy = max(Cs, C3).
n

COROLLARY 3.7. Suppose the assumptions of Theorem 3.6 are satisfied. Then there is
a constant Cs > 0 such that for all k sufficiently large, we have

T T
(3.15) 6x] < Cs(2F yF)1=0% 0 <y < Cs(a® yf)7

Proof. For sufficiently large k, we have from (3.14) that

T
Azk AyP T _
|or| = % < nCi(x* yh) =%,
ey
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as required. Since (z*,y*) € N'(6,n, p), we also have that

T
[AafAyF| _ CR(ah yF)*® kT kN1-76
e < _mg S wvwvand (V) CARE S B
i=1,2,...n 7Y, n(x Yy )
The result follows if we set Cs = max(nC3,C3/n). L]

We are now ready to prove the main local convergence result.
THEOREM 3.8. Suppose that Assumption 1 holds and that 6 € (0,1/7) is given. Then

the sequence {kayk} converges @Q-superlinearly to zero with Q-order at least 2 —76.

Proof. Suppose the index K is chosen sufficiently large that the relation kayk < 1and
the bounds in (3.15) hold for all k¥ > K. Then we have

xi 4 (14 8)oF

l—« =
’ §+xr 4 (L+8)of
_ xet(40)ef
- 6
8T x\61 kT kN1—76
o G+ )

6
3C T _
< 65(l,k yk)l 76.

Hence, from Lemma 2.2(a), we have for all k¥ > K that

T
l‘k+1 k+1

< (1= o+ oden)
< Y= ant o)
< kayk (%(kayk)l—m+Cs(kayk)1—6é)
< Zl(%(acﬂyk)z_m,
as required. [

Convergence (and therefore boundedness) of the sequence {(z*,y*)} follows as a corol-
lary of Theorem 3.8.

COROLLARY 3.9. Suppose the assumptions of Theorem 3.8 hold. Then the sequence
{(z*,y*)} is convergent.

Proof. Tt suffices to show that the sequence is Cauchy. From Theorem 3.8, there exists
an index K such that xk+1Tyk+1 < (1/2)1/(1_35)1"“Tyk for all k > K. Hence, from (3.14)
we have for ki, ks with K < %y < k- that

ko—1
b 57) = @ )l <3 A, Al
k=k1
ka—1 1-36
< O Z (kayk)
k=k1
LT 1
1 1
< (x y ) 9k—k1
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< 204 (xleykl)l_Sé.

Since kayk 1 0, the above relation shows that, given any € > 0, we can choose K > K such
that

||($k2ayk2)_($klaykl)||w §€ VkZ >k1 Z[;:
and so the sequence {(z* y*)} is Cauchy. n
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