
Quadrature over Curved Surfaces by Extrapolation�yJ. N. LynessMathematics and Computer Science DivisionArgonne National Laboratory9700 South Cass AvenueArgonne, IL 60439AbstractIn this paper we describe and justify a method for integrating over curved surfaces.This method does not require that the Jacobian be known explicitly. This is a naturalextension of extrapolation (or Romberg integration) for planar squares or triangles.1 IntroductionWe treat the numerical integration over a curvilinear quadrilateral, �, and over a curvilineartriangle, � . These are embedded in a curved surface, which may be parameterized in theform x = (x; y; z) = �(u) = �(u; v) (1.1)x = �(u; v); y =  (u; v); z = �(u; v):The region � (or �) is that part of the curved surface that is mapped from the unit squareS (or from the unit triangle T ). That is, � : �(u 2 S) and � : �(u 2 T ), where S and Tare, respectively, S : u 2 [0; 1)2 (1:2)T : u+ v < 1; u � 0; v � 0:The method is designed for a situation in which a triangularization (see below) based on themapping � is readily available; the functions �,  , and � and the Jacobian J (see below)need not be known explicitly. However, all these functions, known or unknown, are wellbehaved, and the surface in which � and � are embedded is smooth.A situation in which this may occur is one in which the surface is de�ned implicitly:H(x; y; z) = 0;�This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38.yThis version (November 1993) has an appendix which replaces Section 6 of the previous version. (Seethe �rst paragraph of the Appendix.) 1



and rH is available. In some such cases, one may obtain accurate values of x iteratively,without having to know � explicitly. Georg (1991) discusses problems of this sort in thecontext of the boundary element method. He conjectures the existence of an asymptoticexpansion, on which a convenient extrapolation scheme may be based. In this paper, wehave been able to establish this expansion. This puts on a sound theoretical footing someof his innovative but partly heuristic work in this area.We now describe a simple conventional method based on triangularization. Throughoutthis paper, m is a positive integer. The m-triangularization of the planar square [0; 1]2comprises a partition into 2m2 distinct triangles using the linesu = j=m; v = j=m; u+ v = j=m for all j: (1:3)The vertices of these triangles comprise a set of (m+ 1)2 points (tj ; tk), where j; k 2 [0; m]and tj = tj(m) = j=m: (1:4)We shall suppress the dependence on m in cases where no confusion is likely to arise.The mapping function x = �(u) induces an m-triangularization of the curvilinearquadrilateral �. The lines (1.3) are mapped into curves embedded in the curved sur-face, forming a set of 2m2 curvilinear triangles. The integral I�f may be approximatedusing as abscissas the (m + 1)2 distinct points that are vertices of these triangles. Let��; � = 1; 2; :::; 2m2, represent these curvilinear triangles; let f�;1; f�;2; f�;3 represent thefunction values of f at the three vertices of ��; and let �� be the area of the planar trianglehaving these vertices. Then it is evident thatQ(m)f = (1=3) 2m2X�=1��(f�;1 + f�;2 + f�;3) (1:5)is an approximation to I�f .The principal result in this paper is that Q(m)f has an h2- error expansion. That is,setting h = 1=m, when f 2 C(2p)(�) and �(u) is su�ciently well behaved, we haveQ(m)f = I�f + B2h2 +B4h4 + ::::+B2ph2p +O(h2p+1); (1:6)where the coe�cients B2q are independent of h. In the course of obtaining this result,we uncover several other results of the same nature. Finally we obtain the result, givenin Theorem 5.6 below, which is analogous to (1.6) when the region � is replaced by thecurvilinear triangle � .This theorem is in fact Conjecture 5.1 of Georg (1991), which is itself part of Conjecture1 of Georg and Tausch (1993). This expansion may be used as a basis for h2-extrapolation;see, for example, Bauer, Rutishauser and Stiefel (1963). One evaluates successively Q(m)ffor a sequence of values of m and, either by means of a Neville-Romberg T-table or by someother simple technique, one obtains a sophisticated result based on this sequence of possiblyindividually inadequate results. Some advantages and other features of this approach formpart of the paper by Georg. The present paper is con�ned to one signi�cant task: toestablish the asymptotic expansion on which the underlying theory of his work may bebased. 2



The author recently became aware that this same conjecture was established by Verlin-den and Cools (1993) simultaneously and independently. Their paper appears in this issueof this journal.As a preliminary, in Section 2, we describe a method based on extrapolation that onemight use if the Jacobian function J in (2.2) below were readily available. The subsequentthree sections are devoted to modifying this method so as to avoid the explicit evaluation ofJ . Section 3 is devoted to the surface, delineating the relation between �� and J in somedetail. Section 4 provides results for the curvilinear quadrilateral, and Section 5 widensthese results to the curvilinear triangle. Section 6 provides details of some Euler-Maclaurintype expansions for the triangle.2 Background TheoryIn a recent article, Schwab and Wendland (1992) provide a broad survey and analysis ofintegration over curved surfaces required in the boundary element method. For the bene�tof a wider audience, in this paper we start directly from the classical theory. The generaltheory of analytic integration over surfaces is treated in Courant (1956; see pp. 273 et seq.).We follow, as far as possible, the framework introduced there. We setZZ �f(x; y; z)dS = ZZ Sf(�(u; v);  (u; v); �(u; v))J(u; v) dudv; (2:1)where J2 = (�u v �  u�v)2 + ( u�v � �u v)2 + (�u�v � �u�v)2: (2:2)In this case the problem reduces to that of evaluatingIg = Z 10Z 10 g(u; v)dudv;where g(u; v) = f(�(u; v);  (u; v); �(u; v))J(u; v): (2:3)There are many ways of integrating over a square. The classical approach (see, for example,Stroud (1971)) is by means of Gaussian formulas. A marginally less e�cient but occasionallymore convenient approach is by extrapolation (also known as Romberg integration), oneversion of which we now describe. LetRg = �Xi=1wig(ui; vi) (2:4)be any quadrature rule for S that integrates a constant function correctly. We de�ne them2-copy of this rule R asR(m)g = �Xi=1m�1Xj=0 m�1Xk=0 wim2g((ui + j)m ; (vi + k)m ): (2:5)3



When g 2 Cp(S) , the following minor generalization of the Euler-Maclaurin summationformula is valid: R(m)g � Ig = p�1Xs=1 Bs(R; g)ms + O(m�p): (2:6)Note that the coe�cients Bs are independent of m, the mesh ratio. Note also that, ingeneral, this is a full expansion containing all inverse integer powers of m. However, whenthe rule R is symmetric about the point (1=2; 1=2), all terms Bs with odd s vanish. Further,when R is of polynomial degree d, we have also that Bs = 0 for all s 2 [1; d]: Thus, in acontext in which J(u; v) is readily available, an attractive way to carry out integration over acurvilinear quadrilateral is by transformation to a plane square and the use of extrapolation.A conventional rule to use in this context might be the product m-panel trapezoidal ruleR(m)g = 1m2 mXj=000 mXk=000g(tj; tk): (2:7)Here, we can identify the positive integer m as the reciprocal of a step length h and de�netj = tj(m) = jh = j=m: (2:8)This is, of course, the m2-copy of a four-point rule, which applies equal weight to eachof the four vertices. This rule has an even error expansion and is used on occasion in thecontext of two-dimensional Romberg integration.The rules with which we shall be concerned are more primitive than this. One of theseis a rectangle rule de�ned by R�g = g(0; 0): (2:9)Neither this nor its m-copy (given in (3.11) below), is symmetric, and the expansion (2.6)above is full. Such a rule would be rarely used in practice. However, it turns out to beconvenient to develop the theory in terms of such primitive rules. We shall return to thisrule and several variants in Section 3.In the rest of this paper we deal with a context in which J(u; v) is not readily available.We describe how the simple approach given above can be modi�ed to deal with this lesstransparent situation.3 The m-TriangularizationIn this section we are concerned with the relation between individual points of the m-triangularization of � and the points that are the vertices of these triangles.De�nition 3.1 Let � be a four-integer index (�; �; 
; �). Let ti = i=m and xj;k = �(tj ; tk).Then, depending on context, �(m)j;k;� either denotes the triangle having vertices (tj ; tk), (tj+�; tk+�),(tj+
 ; tk+�), or denotes the area of this triangle; and �(m)j;k;� either denotes the planar trianglehaving vertices xj;k, xj+�;k+�, xj+
;k+�, or denotes the area of that triangle.4



De�nition 3.2 In the above context,det� = �� � �
�� = (��;��;�
;��):When det� = 0, the triangle �(m)j;k;� has zero area. Moreover (�; �; 
; �) and (
; �; �; �)refer to identical triangles. So, without any compromise, we may consider only indices �for which det� is a positive integer.In this paper we shall use only six distinct indices �, though much of the theory wouldallow a general assignment. These six refer to the distinct triangles of the triangularizationthat have xj;k as a vertex. These indices are those that appear in De�nition 3.6 below.In this section we shall prove various results that are valid for all �. We shall con�nethe details of the proofs to the case � = (1; 0; 0; 1) so that �(m)j;k;� is the area of a planartriangle having vertices at xj;k, xj+1;k, xj;k+1 (the northeast elementary triangle).Theorem 3.3 Let �(u) (de�ned in (1.1)) be C(p)(S), and det� = 1. Then2�(m)j;k;� = h2(�0 + h�1 + : : :+ hp�1�p�1) + O(hp+2); (3:1)where �0 = J(tj ; tk)and �s = �s;�(tj ; tk);where �s;�(u; v) is a function of u and v having continuous partial derivatives of order p.Proof. We treat only the case � = (1; 0; 0; 1), and within this proof we abbreviate �(m)j;k;�to �. The area of this triangle is one half of the absolute value of the triple vector product������� e1 e2 e3�(tj+1; tk)� �(tj ; tk)  (tj+1; tk)�  (tj; tk) �(tj+1; tk)� �(tj ; tk)�(tj ; tk+1)� �(tj ; tk)  (tj ; tk+1)�  (tj; tk) �(tj ; tk+1)� �(tj ; tk) ������� : (3:2)We may expand this in the forme1D(1) + e2D(2) + e3D(3);giving 4�2 = D(1)2 +D(2)2 +D(3)2:Since �(u; v) and the other components of P are well behaved, we may use the expansion�(tj+1; tk)� �(tj ; tk) = h�u + h22 �uu + : : : (3:3)5



and similar expansions for the other elements of D(3). This givesD(3) = h2 ������� �u + h2�uu + : : :  u + h2 uu + : : :�v + h2�vv + : : :  v + h2�vv + : : : �������= h2(D(3)0 + hD(3)1 + : : :+ hp�1D(3)p�1) +O(hp+2);where D(3)0 = ����� �u u�v v ����� = @(�;  )@(u; v)and D(3)s , the coe�cient of hs+2 in this expansion, is a sum of analogously constructedproducts of partial derivatives. It follows that 4�2 has an expansion in powers of h of theform 4�2 = h40@J2 + p�1Xs=1 hsCs1A +O(hp+4):Finally, for su�ciently small h, we may take the square root of this to obtain2� = h2J + p�1Xs=1 �shs +O(hp+2):The series manipulation is elementary; to establish the theorem, we need informationabout the continuity of the functions �s;�(u; v).Since the derivatives of �,  , and � of order p are continuous functions of u and v, itfollows that so are the derivatives of D(3)s of order p � 1 � s; similarly, those of D(1)s andD(2)s have the same order of continuity. Then Cs has this order. Finally, so long as J(u; v)is bounded away from zero in the region S, we �nd that �s also has this order of continuity.It is relatively straightforward to show that the e�ect of replacing � by �� in the aboveproof is the same as that of reversing the sign of h ; this gives�s;�(u; v) = (�1)s�s;��(u; v): (3:4)It is no surprise that the �rst term in expansion (3.1) is h2J . This is needed for theclassical theory to survive. An expansion in powers of h is not unexpected. What is criticalis that the coe�cients �s;�(u; v) are smooth functions of u and v. Although they occur inthe form �s;�(tj ; tk) and tj ; tk depend on m, the functions �s;�(u; v) do not depend on m.Like J = �0(u; v), they depend on �,  , and � only. This circumstance is exploited later.The condition det� = 1 results in �0;�(u; v) = J(u; v). If this were relaxed, the sametheorem would hold with �0;�(u; v) = J(u; v) det�.We now discuss the connection between the m-triangularization and the indices �. Thefollowing de�nition is a �rst step in clarifying a somewhat involved situation.De�nition 3.4 Let B denote the square S or the triangle T de�ned in (1.2). Then �(m)j;k;�(B) =1 or 0 depending on whether or not the triangle �(m)j;k;� forms part of the m-triangularization(1.3) of B. 6



By inspection, one can verify that there are only six distinct values of index � for whichit is possible for any such triangle to be part of the triangularization. We refer to thesesix (which are precisely those that appear in De�nition 3.6 below) as the triangularization-compatible (T.C.) indices.We now return to the construction of quadrature rules.De�nition 3.5 Let B denote S or T . We denote by R(m)� (B) the rule that assigns a weightm�2 to all points (tj ; tk) of the m-triangularization of B for which the triangle �(m)j;k;� liesin B and is a member of the triangularization.De�nitions 3.4 and 3.5 will be applied in Section 5 in a context where B is the triangleT . In this section and in Section 4 we shall suppress the argument (S). We �nd that, forthe six T.C. indices, the de�nition is satis�ed as follows.De�nition 3.6 R(m)� is the m2-copy of R� given byR(1;0;0;1)g = g(0; 0) (3:5)R(0;1;�1;1)g = g(1; 0) (3:6)R(�1;1;�1;0)g = g(1; 0) (3:7)R(�1;0;0;�1)g = g(1; 1) (3:8)R(0;�1;1;�1)g = g(0; 1) (3:9)R(1;�1;1;0)g = g(0; 1): (3:10)Clearly, for no index � is R(m)� the product trapezoidal rule (which is symmetric). It isthe m2-copy of a one-point rule that assigns full weight to one corner of the unit square.Speci�cally, in accordance with De�nition 3.4,R(m)� g = (1=m2) mXj=0 mXk=0 �(m)j;k;�g(tj ; tk); (3:11)where �(m)j;k;� = 1 for only m2 of the (m + 1)2 speci�ed abscissas in (3.11), and is zerootherwise. For example, R(m)(1;0;0;1)g = 1m2 m�1Xj=0 m�1Xk=0 g(tj; tk): (3:12)However, since it is a copy rule, the full Euler-Maclaurin expansion (2.6) applies to thisrule.Corresponding to each R(m)� we now de�ne a quadrature rule for the curvilinear quadri-lateral �. This is obtained by �rst transforming the rule onto the curved surface and thenreplacing the Jacobian-dependent term by the area of an elementary triangle. The trans-formation gives R(m)� g = mXj=0 mXk=0 �(m)j;k;�h2J(tj ; tk)f(xj;k); (3:13)and the arbitrary replacement leads to the following de�nition.7



De�nition 3.7 Q(m)� f = mXj=0 mXk=0 �(m)j;k;�2�(m)j;k;�f(xj;k): (3:14)Although this appears to contain (m+1)2 abscissas, in fact only m2 have nonzero weights.For example, in the case � = (1; 0; 0; 1), abscissas with j = m and with k = m have zeroweights.Note carefully that, in spite of the notation, the rule in (3.14) is not an m2-copy rule.It is obtained by modifying a term in a rule that is an m2-copy rule in a di�erent space.The expansion of Theorem 3.3 allows us to establish the following.Theorem 3.8 Let �(u) (de�ned in (1.1)) be C(p)(S), and let Q(m)� f and R(m)� g be givenby (3.14) and (3.11), respectively. ThenQ(m)� f = p�1Xs=0 hsR(m)� gs;� + O(hp); (3:15)where gs;�(u; v) = f(x(u; v))�s;�(u; v) (3:16)and the functions �s;� are de�ned in Theorem 3.3.Proof. This is simply a matter of substituting for �(m)j;k;� in (3.14) the expression given in(3.1) and simplifying by using (3.11).Note that g0;�(u; v) coincides with g(u; v). Note also that (3.15) is not an h-expansion,since R(m)� gs depends on h through m.We have, as yet, made no commitment about the properties of f or g. To proceed, weneed to be speci�c about the form of gs;�(u; v). In the rest of this paper we treat the casein which f(x) and consequently gs;�(u; v) are well behaved.4 Rules for the Curvilinear QuadrilateralTheorem 3.8 expresses Q(m)� f , a rule over the curved surface �, in an expansion, each term ofwhich involves a product rectangle rule evaluation over the planar square S. As mentionedabove, this is not an h-expansion.We now restrict ourselves to an integrand g 2 C(p)(S). In this case we may make useof the Euler-Maclaurin expansion (2.6) applied to each rule R� in this expansion. Thisexpansion is of the form R(m)� g = p�1Xj=0 hjBj(R�; g) +O(m�p): (4:1)Here, we have set h = 1=m; bearing in mind thatB0(R; g) = I(g) � Z 10Z 10 g(u; v)dudv (4:2)8



and that Bj(R; g) is independent of m, we may substitute (4.1) into (3.15) to establish thefollowing theorem.Theorem 4.1 When �(u) (de�ned in (1.1)) and f(x(u; v)) are C(p)(S), the quadraturerule Q(m)� f of De�nition 3.7 has an h-error expansion, namely,Q(m)� f � I�f = p�1Xw=1 ~Bw(�; f)mw + O(hp); (4:3)where ~Bw(�; f) = wXj=0Bj(R�; gw�j;�): (4:4)When � is one of the six T.C. indices, the rule described by this theorem has the propertythat the points for function evaluation lie in the completion of �.Any one of these rules alone seems quite reasonable, but a little \lop-sided". In thecontext of extrapolation, a rule having an h2-error expansion would be preferable.The rest of this section is devoted to deriving such a rule. It turns out (see Theorem4.4 below) that the average of the six rules mentioned above has an h2-error expansion.Lemma 4.2 The coe�cients in the Euler-Maclaurin expansion (4.1) satisfyBj(R�; g) = (�1)jBj(R��; g): (4:5)Proof. The result may be established by direct evaluation of the coe�cients in terms ofBernoulli functions. A more elegant approach is based on the circumstance that a symmetricrule has an m2-error expansion (and an antisymmetric rule operator has an expansioninvolving only odd powers of m). It is readily veri�ed thatRg = 12R�g + 12R��g (4:6)is symmetric. When j is odd, Bj(R; g) vanishes, leavingBj(R��; g) = �Bj(R�; g) for all odd j:A corresponding argument provides a corresponding result for even j, thus establishing(4.5).Another simple proof using an integral representation of Bj(R�; g) is outlined in theappendix.A feature of the foregoing theory, which has been specially built in, is that in many h-expansions involving �, the e�ect of reversing the sign of h is the same as that of reversingthe sign of �. In particular, in view of (3.4), the functions de�ned in (3.16) satisfygs;�(u; v) = (�1)sgs;��(u; v): (4:7)We are now ready to consider the rule de�ned in (4.8) below. This rule applies to eachfully interior point xi;j a weight equal to the sum of the areas of two opposite triangles.9



(For example, when � = (1; 0; 0; 1), these are the one to the northeast and the one to thesouthwest.) In general, points on edges have weights involving only one of these triangles,the interior one. Two of the vertices have zero weight.Theorem 4.3 Under the hypotheses of Theorem 4.1 the quadrature ruleQ(m)f = 12Q(m)� f + 12Q(m)�� f (4:8)has an h2-error expansion.Proof. The proof relies entirely on Equations (4.5) and (4.7). These are used in (4.4) toshow~Bw(�; f) = wXj=0Bj(R�; gw�j;�) = wXj=0(�1)j(�1)w�jBj(R��; gw�j;��) = (�1)w ~Bw(��; f):(4:9)The error expansion for Q(m)f in (4.8) is the average of two asymptotic series of the form(4.3), the second di�ering from the �rst only in that � is replaced by ��. Thus the coe�cientof m�w in this expansion is (1=2)( ~Bw(�; f) + ~Bw(��; f)). In view of (4.9), this coe�cientvanishes when w is odd. This establishes the theorem.Our �nal result for the curvilinear quadrilateral is as follows.Theorem 4.4 Under the hypotheses of Theorem 4.1 the quadrature ruleQ(m)f = (1=6)(Q(m)(1;0;0;1)f +Q(m)(0;1�;1;1)f +Q(m)(�1;1;�1;0)f+Q(m)(�1;0;0;�1)f +Q(m)(0;�1;1;�1)f +Q(m)(1;�1;1;0)f); (4.10)has an h2-error expansion.Proof. The proof is a simple corollary of Theorem 4.3. The quadrature rule here is obtainedby taking the mean of three rules, each being of form (4.8); speci�cally, the three values of� involved are those in the �rst three assignments in (4.10). Naturally, the mean of threeh2-error expansions is itself an h2-error expansion.This rule applies to each point xj;k a contribution from each of the triangles inside �of which it is a vertex. This contribution is one-third of the planar area of the trianglein question. Thus it could be reexpressed in terms of contributions from triangles. Doingthis reveals the expression in (1.5). Thus this theorem is one of the principal results of thispaper, foreshadowed in the introduction.5 Rules for the Curvilinear TriangleIn this section we treat the numerical integration over the curvilinear triangle � , which, werecall from Section 1, is embedded in the same curved surface (1.1) as is �. Thus much of10



the theory in Sections 1{3 applies with only minor modi�cation. The region � is that partof the curved surface that is mapped from the unit triangle. That is, � : �(u 2 T ), whereT is T : u+ v < 1 u � 0 v � 0: (5:1)The same triangularization (1.3) is used, and so is the same notation introduced in Section3 to describe individual triangles: m2 of the triangles in the m-triangularization of S formthe m-triangularization of T .We may construct a rule for T using the technique of Section 3. We use De�nition 3.4for �(m)j;k;�(T ) and then de�ne R(m)� (T ) in accordance with De�nition 3.5. This givesR(m)� (T )g = (1=m2) mXj=0 mXk=0 �(m)j;k;�(T )g(tj; tk): (5:2)Following the same steps as in Section 3, we are led to the correspondent of De�nition 3.7.De�nition 5.1 Q(m)� (�)f = mXj=0 mXk=0 �(m)j;k;�(T )2�(m)j;k;�f(xj;k): (5:3)One may verify that, when � is one of the six T.C. indices, this employs either m(m+1)=2or m(m� 1)=2 function values. The result of Theorem 3.8 in this context is simplyQ(m)� (�)f = p�1Xs=0 hsR(m)� (T )gs;� +O(hp); (5:4)where, as before, gs;�(u; v) = f(x(u; v))�s;�(u; v) (5:5)and the functions �s;� are de�ned in Theorem 3.3.In Section 4, we proceeded by invoking the two-dimensional Euler-Maclaurin expansionfor the square. Less well known is the corresponding formula for the triangle. Besides theoverall formula, we shall also require some details about the structure of the coe�cients.The following theorem is a specialization of one given in Lyness and Puri (1973).Theorem 5.2 When g 2 C(p)(T )R(m)� (T )g = p�1Xj=0 hjBj(R�;T ; g)+ O(m�p); (5:6)where B0(R�;T ; g) = I(T ; g)� ZZT g(u; v)dudv: (5:7)An integral representation for Bj(R�;T ; g) is given in the appendix. We now substitute(5.6) into (5.4) to obtain the following theorem.11



Theorem 5.3 Under the hypotheses of Theorem 4.1 the quadrature rule Q(m)� (�)f of Def-inition 5.1 has an h-error expansion, namely,Q(m)� (�)f � I�f = p�1Xw=1 ~Bw(�; � ; f)mw + O(hp); (5:8)where ~Bw(�; � ; f) = wXj=0Bj(R�;T ; gw�j;�): (5:9)It remains to establish quadrature rules having h2-error expansions. We follow preciselythe same approach as in the preceding section for the square. We need the followingresult, which corresponds to Lemma 4.2 and relates coe�cients in di�erent Euler-Maclaurinexpansions.Lemma 5.4 The coe�cients in the Euler-Maclaurin expansion (5.6) satisfyBj(R�;T ; g) = (�1)jBj(R��;T ; g): (5:10)This is signi�cantly more di�cult to prove than the corresponding result for the square,and we defer this to the appendix. However, once this is established, the rest of the theoryfollows in a relatively straightforward manner. Corresponding to Theorem 4.3, we have thefollowing theorem.Theorem 5.5 Under the hypotheses of Theorem 4.1 the quadrature ruleQ(m)(�)f = 12Q(m)� (�)f + 12Q(m)�� (�)f (5:11)has an h2-error expansion.Proof. Exactly as in the proof of Theorem 4.3 we use (5.9), (5.10) and (4.7) to show that(1=2)( ~Bw(�; � ; f) + ~Bw(��; � ; f)) vanishes when w is odd. Since this is the coe�cient ofm�w in the error expansion of Q(m)(�)f , the theorem is established.Our �nal result for the curvilinear triangle is as follows.Theorem 5.6 Under the hypotheses of Theorem 4.1 the quadrature ruleQ(m)(�)f = (1=6)(Q(m)(1;0;0;1)(�)f +Q(m)(0;1;�1;1)(�)f +Q(m)(�1;1;�1;0)(�)f+Q(m)(�1;0;0;�1)(�)f +Q(m)(0;�1;1;�1)(�)f + Q(m)(1;�1;1;0)(�)f) (5.12)has an h2-error expansion.This rule is simply the mean of three examples of the rule in Theorem 5.5. These threehave the indices � coinciding with the �rst three occurring in (5.12). The mean of threerules each of which has an h2-error expansion also has an h2-error expansion. As mentionedin Section 1, this theorem coincides with Conjecture 5.1 of Georg (1991) and with part ofConjecture 1 of Georg and Tausch (1993). 12



A Appendix: Notes on Euler-Maclaurin Expansions for PlanarRegionsThis appendix replaces Section 6 of a previous version of this paper. In that version,equations (6.5), (6.10), and (6.11) are incorrect. A correct example of (6.5) is given in(A.4). The other equations require modi�cations of the same nature.The coe�cients in the Euler-Maclaurin expansion (2.6) for the square, S, for any rule(2.5) (weights wi; abscissas (ui; vi)) have the following simple integral representation,Bj(R; g) = Xj1+j2=jji�0 cj1 ;j2(R) ZS g(j1;j2)(u; v)dudv; (A:1)where cj1;j2(R) = �Xi=1wiBj1 (ui)Bj2(vi)j1! j2! (A:2)is essentially the result of applying the rule R to the product of two Bernoulli polynomials.For the rules R�, de�ned in De�nition 3.6, the coe�cients Bj(R�; g) in (4.1) are of thesame form. Using the properties of the Bernoulli polynomials, we �ndcj1;j2(R�) = Bj1(�)Bj2(�)j1! j2! ; (A:3)where �; � are individually 0 or 1 and (�; �) occurs as argument of g in Equations (3.5) to(3.10).Lemma 4.2 follows from (A.1) and (A.3) as a consequence of the symmetry propertiesof the Bernoulli polynomials, namely, Bj(0) = (�1)jBj(1).The Euler-Maclaurin expansion for the triangle, T , is less known and is dealt with atlength in Lyness and Puri (1973) and in Lyness (1978). In this case the coe�cients havea more complicated structure than that in (A.1). However, in the special case of thesetrapezoidal-type rules R�, a simpler formula is available. For example, when � = (1; 0; 0; 1),Bj(R�;T ; g) = Xj1+j2=jji�0 cj1;j2(R�) Z 10 @j1@uj1 (Z 1�u0 @j2@vj2 gdv)du (A:4)with cj1;j2(R�) given by (A.3) above. When j1 = 0, the j1; j2 term in the sum reduces to anintegral over T , in direct analogy to (A.1) above. But otherwise the e�ect of di�erentiationwith respect to the limit of an integral is to introduce additional terms.In Section 5 the derivation of curvilinear rules Q(�)f having h2-error expansions restedon Lemma 5.4. We shall establish this lemma by showing two lemmas.Lemma A.1 The operator (null rule) de�ned byR(m)�� (T )g = 12 nR(m)� (T )g� R(m)�� (T )go (A:5)has an error expansion involving only odd powers of h = 1=m.13



Lemma A.2 The rule de�ned byR(m)�+ (T )g = 12 nR(m)� (T )g+ R(m)�� (T )go (A:6)has an h2-error expansion.Proof. We treat only the case � = (1; 0; 0; 1). We recall that both R(m)� and R(m)�� applya weight 1=m2 to every strictly interior point. In addition, R(m)� applies this weight to allpoints on edges x = 0 and y = 0, except for points (1,0) and (0,1). On the other hand, R(m)��applies the same weight only to all points on the edge x+ y = 1, except for the endpoints.Applying these assignments to the operators in (A.5) and (A.6), we �ndR(m)�+ g = 1m2 Xj+k<mj>k>0 g� jm; km�+ 12m2 m�1Xj=1 �g� jm; 0�+ g�0; jm�+ g� jm; m� jm ��+ 12m2g(0; 0); (A.7)while R(m)�� g = 12m2 m�1Xj=1 �g� jm; 0�+ g�0; jm�� g� jm; m� jm ��+ 12m2g(0; 0) (A:8)which can be reexpressed in the form2mR(m)�� g = 1m mXj=000�g� jm; 0�+ g�0; jm�� g� jm; m� jm �� : (A:9)The right-hand side comprises three one-dimensional trapezoidal rule operators; since theseare symmetric, each has an h2-error expansion. Thus, the expansion for R(m)�� g involves onlyodd inverse powers of m, establishing Lemma A.1.In Lyness and Puri (1973), Section 7, rules for the triangle of the same general natureas (A.7) are discussed in detail. In particular, a rule denoted there by R(m)s g is de�nedthat has an even expansion. This rule di�ers from R(m)�+ (T )g above only in that the weightsattached to vertices are di�erent. Speci�cally,R(m)s g = R(m)�+ (T )g+ 18m2 (g(1; 0)+ g(0; 1)� 2g(0; 0)):These variant weights simply modify the coe�cient of 1=m2 in the expansion; its evennature is, of course, not compromised This establishes Lemma A.2 above.As a convenience to the reader, we note that Equations (3.5) through (3.10) may beabbreviated to R(�;�;
;�)g = g(�; �);where, so long as det� = 1, we have� = 1 or 0 according as � > � or � < �� = 1 or 0 according as 
 > � or 
 < �:Note that � + 
 = 0; � 6= �; 
 6= �; � � � = �+ � � 
 � �.14
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