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A REDUCED HESSIAN METHOD FOR LARGE-SCALECONSTRAINED OPTIMIZATIONbyLorenz T. Biegler, Jorge Nocedal, and Claudia SchmidABSTRACTWe propose a quasi-Newton algorithm for solving large optimization problems withnonlinear equality constraints. It is designed for problems with few degrees of freedomand is motivated by the need to use sparse matrix factorizations. The algorithmincorporates a correction vector that approximates the cross term ZTWY pY in orderto estimate the curvature in both the range and null spaces of the constraints. Thealgorithm can be considered to be, in some sense, a practical implementation ofan algorithm of Coleman and Conn. We give conditions under which local andsuperlinear convergence is obtained.Key words: successive quadratic programming, reduced Hessian methods, constrained optimiza-tion, quasi-Newton method, large-scale optimization.Abbreviated title: A Reduced Hessian Method1. IntroductionWe consider the nonlinear optimization problemminx2Rn f(x) (1:1)subject to c(x) = 0; (1:2)where f : Rn ! R and c : Rn ! Rm are smooth functions. We are particularly interestedin the case when the number of variables n is large, and the algorithm we propose, which is avariation of the successive quadratic programming method, is designed to be e�cient in this case.We assume that the �rst derivatives of f and c are available, but our algorithm does not requiresecond derivatives.The successive quadratic programming (SQP) method for solving (1.1){(1.2) generates, at aniterate xk, a search direction dk by solvingmind2Rn g(xk)Td+ 12dTW (xk)d (1:3)subject to c(xk) +A(xk)Td = 0; (1:4)2



where g denotes the gradient of f , W denotes the Hessian of the Lagrangian function L(x; �) =f(x) + �T c(x), and A denotes the n�m matrix of constraint gradientsA(x) = [rc1(x); :::;rcm(x)]: (1:5)A new iterate is then computed as xk+1 = xk + �kdk; (1:6)where �k is a steplength parameter chosen so as to reduce the value of the merit function. Inthis study we will use the `1 merit function��(x) = f(x) + �kc(x)k1; (1:7)where � is a penalty parameter; see, for example, Conn (1973), Han (1977) or Fletcher (1987).We could have used other merit functions, but the essential points we wish to convey in thisarticle are not dependent upon the particular choice of the merit function.The solution of the quadratic program (1.3){(1.4) can be written in a simple form if wechoose a suitable basis of Rn to represent the search direction dk. For this purpose, we introducea nonsingular matrix of dimension n, which we write as[Yk Zk]; (1:8)where Yk 2 Rn�m and Zk 2 Rn�(n�m), and we assume thatATkZk = 0: (1:9)(From now on we abbreviate A(xk) as Ak, g(xk) as gk, etc.) Thus Zk is a basis for the tangentspace of the constraints. We can now express dk, the solution to (1.3){(1.4), asdk = YkpY + ZkpZ; (1:10)for some vectors pY 2 Rm and pZ 2 Rn�m. Due to (1.9) the linear constraints (1.4) becomeck +ATk YkpY = 0: (1:11)If we assume that Ak has full column rank, then the nonsingularity of [Yk Zk] and equation (1.9)imply that the matrix ATk Yk is nonsingular, so that pY is determined by (1.11):pY = �[ATk Yk]�1ck: (1:12)Substituting this in (1.10), we havedk = �Yk[ATk Yk]�1ck + ZkpZ: (1:13)Note that Yk[ATkYk]�1 (1:14)is a right inverse of ATk and that the �rst term in (1.13) represents a particular solution of thelinear equations (1.4).We have thus reduced the size of the SQP subproblem, which can now be expressed exclusivelyin terms of the variables pZ. Indeed, substituting (1.10) into (1.3), considering YkpY as constant,and ignoring constant terms, we obtain the unconstrained quadratic problemminpZ2Rn�m (ZTk gk + ZTkWkYkpY)TpZ + 12pZT (ZTkWkZk)pZ: (1:15)3



If we assume that ZTkWkZk is positive de�nite, the solution of (1.15) ispZ = �(ZTk WkZk)�1[ZTk gk + ZTkWkYkpY]: (1:16)This determines the search direction of the SQP method.We are particularly interested in the class of problems in which the number of variables n islarge, but n �m is small. In this case it is practical to approximate ZTkWkZk using a variablemetric formula such as BFGS. On the other hand, the matrix ZTkWkYk, of dimension (n�m)�mmay be too expensive to compute directly when m is large. For this reason several authors simplyignore the \cross term" ZTkWkYkpY in (1.16) and compute only an approximation to the reducedHessian ZTk WkZk; see Coleman and Conn (1984), Nocedal and Overton (1985), and Xie (1991).This approach is quite adequate when the basis matrices Yk and Zk in (1.8) are chosen to beorthonormal (Gurwitz and Overton (1989)).For large problems, however, computing orthogonal bases can be expensive, and it is moree�cient to obtain Yk and Zk by simple elimination of variables (cf. Fletcher (1987)). Unfortu-nately, in this case ignoring the cross term ZTk WkYkpY can make the algorithm ine�cient, as isillustrated by an example given in a companion paper (Biegler, Nocedal, and Schmid (1993)).The central point is that if the basis matrices Yk and Zk are not orthogonal, the range spacecomponent YkpY may be very large, and ignoring the contribution from the cross term in (1.16)can result in a poor step.Therefore, in this paper we suggest ways of approximating the cross term ZTkWkYkpY by avector wk, [ZTkWkYk]pY � wk; (1:17)without computing the matrix ZTkWkYk. We will see that this can be done without substantiallyincreasing the cost of the iteration, and we will show that the rate of convergence of the newalgorithm is 1-step Q-superlinear, as opposed to the 2-step superlinear rate for methods thatignore the cross term (Byrd (1985) and Yuan (1985)). The null space step (1.16) of our algorithmwill be given by pZ = �(ZTkWkZk)�1[ZTk gk + �kwk]; (1:18)where 0 < �k � 1 is a damping factor to be discussed later on.To describe our �rst strategy for computing the vector wk, we consider a quasi-Newton methodin which the rectangular matrix ZTk Wk is approximated by a matrix Sk, using Broyden's method.We then obtain wk by multiplying this matrix by YkpY, that is,wk = SkYkpY:How should Sk be updated? Since Wk+1 = r2xxL(xk+1; �k+1), we have thatZTkWk+1(xk+1 � xk) � ZTk [rxL(xk+1; �k+1)�rxL(xk; �k+1)]; (1:19)when xk+1 is close to xk. We use this relation to establish the following secant equation: wedemand that Sk+1 satisfySk+1(xk+1 � xk) = ZTk [rxL(xk+1; �k+1)�rxL(xk; �k+1)]: (1:20)One point in this derivation requires clari�cation. In the left-hand side of (1.19) we have ZTk Wk+1,and not ZTk+1Wk+1. We could have used Zk+1 in (1.19), avoiding an inconsistency of indices,but this is not necessary since we will show that using Zk instead of Zk+1 in (1.20) results inalgorithms with all the desirable properties. This fact will not be surprising to readers familiar4



with the analysis of SQP methods; see, for example, Coleman and Conn (1984) or Nocedal andOverton (1985).Let us now consider how to approximate the reduced Hessian matrix ZTk WkZk. Using (1.6)and (1.10) in (1.20), we obtain[Sk+1Zk]�kpZ = ��kSk+1(YkpY) + ZTk [rxL(xk+1; �k+1) �rxL(xk; �k+1)]:Since Sk+1 approximates ZTkWk, this suggests the following secant equation for Bk+1, the quasi-Newton approximation to the reduced Hessian ZTkWkZk:Bk+1sk = yk; (1:21)where sk is de�ned by sk = �kpZ;and yk by yk = ZTk [rxL(xk+1; �k+1)�rxL(xk; �k+1)]� wk; (1:22)with wk = �kSk+1(YkpY): (1:23)We will update Bk by the BFGS formula (cf. Fletcher (1987))Bk+1 = Bk � BksksTkBksTkBksk + ykyTkyTk sk ; (1:24)provided sTk yk is su�ciently positive.We highlight a subtle but important point. We have de�ned two correction terms, wk andwk. Both are approximations to the cross term (ZTWY )pY. The �rst term, wk, which is neededto de�ne the null-space step (1.18) | and thus the new iterate xk+1 | makes use of the matrixSk. The second term, wk, which is used in (1.22) to de�ne the BFGS update of Bk, is computedby using the new Broyden matrix Sk+1 and takes into account the steplength �k. We will seebelow that it is useful to incorporate the most recent information in wk.The Lagrange multiplier estimates �k needed in the de�nition (1.22) of yk are de�ned by�k = �[Y Tk Ak]�1Y Tk gk: (1:25)This formula is motivated by the fact that, at a solution x� of (1.1){(1.2), we have �g� = A���,and since Y�[AT� Y�]�1 is a right inverse of AT� ,�� = �[Y T� A�]�1Y T� g�:Using the same right inverse (1.14) in the de�nitions of pY and �k will allow us a convenientsimpli�cation in the formulae presented in the following sections. We stress, however, that otherLagrange multiplier estimates can be used and that the best choice in practice might be the onethat involves the least computation or storage.We can now outline the sequential quadratic programming method analyzed in this paper.Algorithm I1. Choose constants � 2 (0; 1=2) and �; � 0 with 0 < � < � 0 < 1. Set k : = 1, and choose astarting point x1 and an (n�m)� (n�m) symmetric and positive de�nite starting matrixB1. 5



2. Evaluate fk; gk; ck; and Ak, and compute Yk and Zk.3. Compute pY by solving the system(ATk Yk)pY = �ck: (range space step) (1.26)4. Compute an approximation wk to (ZTkWkYk)pY.5. Choose the damping parameter �k 2 (0; 1] and compute pZ fromBkpZ = �[ZTk gk + �kwk]: (null space step) (1.27)De�ne the search direction by dk = YkpY + ZkpZ: (1.28)6. Set �k = 1, and choose the weight �k of the merit function (1.7).7. Test the line search condition��k(xk + �kdk) � ��k(xk) + ��kD��k (xk; dk); (1.29)where D��k (xk; dk) is the directional derivative of the merit function � in the direction dk.8. If (1.29) is not satis�ed, choose a new �k 2 [��k; � 0�k] and go to (7); otherwise setxk+1 = xk + �kdk: (1.30)9. Evaluate fk+1; gk+1; ck+1, and Ak+1, and compute Yk+1 and Zk+1.10. Compute the Lagrange multiplier estimate�k+1 = �[Y Tk+1Ak+1]�1Y Tk+1gk+1: (1:31)De�ne wk (as will be discussed in x3), and computesk = �kpZ (1:32)and yk = ZTk [rxL(xk+1; �k+1) �rxL(xk; �k+1)]� wk: (1:33)If the update criterion (to be discussed in x3.3) is satis�ed, compute Bk+1 by the BFGSformula (1.24); else set Bk+1 = Bk.11. Set k := k + 1, and go to (3).The algorithm has been left in a very general form, but in the next sections we discuss all itsaspects in detail. In x2 we consider the choice of the basis matrices Yk and Zk. In x3 we describethe calculation of the correction terms wk and wk, the conditions under which BFGS updatingtakes place, the choice of the damping parameter �k, and the procedure for updating the weight�k in the merit function. In x4 and x5 we analyze of the local behavior of the algorithm andshow that the rate of convergence is at least R-linear. In x6 we present a superlinear convergenceresult, and some �nal remarks in x7 conclude the paper.6



We now make a few comments about our notation. Throughout the paper, the vectors pYand pZ are computed at xk and could be denoted by pY(k) and pZ(k), but we will normally omitthe superscript for simplicity. The symbol k � k denotes the l2 vector norm or the correspondinginduced matrix norm. When using the l1 or l1 norms we will indicate it explicitly by writingk � k1 or k � k1. A solution of problem (1.1) is denoted by x�, and we de�neek = xk � x� and �k = maxfkekk; kek+1kg: (1:34)Here, and for the rest of the paper, rL(x; �) indicates the gradient of the Lagrangian with respectto x only.2. The Basis MatricesAs long as Zk spans the null space of ATk , and [Yk Zk] is nonsingular, the choice of Yk and Zkis arbitrary. However, from the viewpoint of numerical stability and robustness of the algorithmit is desirable to de�ne Yk and Zk to be orthonormal, that is,Z(x)TZ(x) = In�mY (x)TY (x) = ImY (x)TZ(x) = 0:One way of obtaining these matrices is by forming the QR factorization of A. For large problems,however, computing this QR factorization is often too expensive. Therefore many researchers,including Gabay (1982), Gilbert (1991), Fletcher (1987), Murray and Prieto (1992), and Xie(1991), consider other, nonorthogonal choices of Y and Z. For example, if we partition x intom basic or dependent variables (which without loss of generality are assumed to be the �rst mvariables) and n�m nonbasic or control variables, we induce the partitionA(x)T = [C(x)N (x)]; (2:1)where the m�m basis matrix C(x) is assumed to be nonsingular. We now de�ne Z(x) and Y (x)to be Z(x) = � �C(x)�1N (x)I � Y (x) = � I0 � : (2:2)When A(x) is large and sparse, a sparse LU decomposition of C(x) can often be computede�ciently, and this approach will be considerably less expensive than the QR factorization of A.Note that from the assumed nonsingularity of C(x) both Y (x) and Z(x) vary smoothly with x,provided the same partition of the variables is maintained. In our implementation of the newalgorithm (Biegler, Nocedal, and Schmid (1993)) we choose Yk and Zk by (2.2).There is a price to pay for using nonorthogonal bases. If the matrix C is ill conditioned(and this can be di�cult to detect), the step computation may be inaccurate. Moreover, evenif the basis is well conditioned, the range space step YkpY can be large, and ignoring the crossterm can cause serious di�culties. This phenomenon is illustrated in a two-dimensional examplegiven by Biegler, Nocedal, and Schmid (1993). It is shown in that example that if the crossterm ZTkWkYkpY is ignored, the ratio kxk + dkk=kxkk can be arbitrarily large, even close to thesolution. It is also shown that these ine�ciencies disappear if the cross term is approximated assuggested in the following sections.In the rest of the paper we allow much freedom in the choice of the basis matrices. Theycan be given by (2.2), can be orthonormal, or can be chosen in other ways. The only restrictions7



we impose are that ATkZk = 0 is satis�ed, that the n� n matrix [Yk Zk] is nonsingular and wellconditioned, and that this matrix varies smoothly in a neighborhood of the solution.3. Further Details of the AlgorithmIn this section we consider how to calculate approximations wk and wk to (ZTk WkYk)pY tobe used in the determination of the search direction pZ and in updating Bk, respectively. Wealso discuss when to skip the BFGS update of the reduced Hessian approximation, as well as theselection of the damping factor �k and the penalty parameter �k.To calculate approximations to (ZTWY )pY, we propose two approaches. First, we consider a�nite di�erence approximation to ZTk Wk along the direction YkpY. While this approach requiresadditional evaluations of reduced gradients at each iteration, it gives rise to a very good step.The second, more economical approach de�nes wk and wk in terms of a Broyden approximationto ZTk Wk, as discussed in x1, and requires no additional function or gradient evaluations. Ouralgorithmwill normally use this second approach, but as we will later see, it is sometimes necessaryto use �nite di�erences.3.1. Calculating wk and wk through Finite Di�erencesWe �rst calculate the range space step pY at xk through Equation (1.26). Next we computethe reduced gradient of the Lagrangian at xk + YkpY and de�newk = ZTk [rL(xk + YkpY; �k) �rL(xk; �k)]: (3:1)After the step to the new iterate xk+1 has been taken, we de�newk = ZTk [rL(xk + �kYkpY; �k+1)�rL(xk; �k+1)]; (3:2)which requires a new evaluation of gradients if �k 6= 1.We note that this �nite-di�erence approach is very similar to the algorithm of Coleman andConn (1982, 1984). Starting at a point zk, the Coleman-Conn algorithm (with steplength �k = 1)is given by ZkpZ = �Z(zk)B�1k Z(zk)T g(zk) (3:3)YkpY = �Y (zk)[A(zk)TY (zk)]�1c(zk + ZkpZ) (3:4)zk+1 = zk + ZkpZ + YkpY: (3:5)Let us now consider Algorithm I, and to better illustrate its similarity with the Coleman andConn method, let us assume that instead of (3.1), wk is de�ned bywk = Z(xk + YkpY)Tg(xk + YkpY)� Z(xk)Tg(xk);which di�ers from (3.1) by terms of order O(kpYk). Then Algorithm I with �k = 1 is given byYkpY = �Y (xk)[A(xk)TY (xk)]�1c(xk): (3:6)ZkpZ = �Z(xk)B�1k [Z(xk)T g(xk) +wk]= �Z(xk)B�1k [Z(xk + YkpY)Tg(xk + YkpY)]: (3.7)8



xk+1 = xk + YkpY + ZkpZ: (3:8)The similaritybetween the two approaches is apparent in Figure 1, especially if we consider theintermediate points in the Coleman-Conn iteration to be the starting and �nal points, respectively.In the Coleman-Conn algorithm, the approximation Bk to the reduced Hessian ZTk WkZk is ob-tained by moving along the null space direction ZkpZ, and making a new evaluation of the functionand constraint gradients. To be more precise, Coleman and Conn de�neyk = ZTk [rL(xk + ZkpZ; �k)�rL(xk; �k)]and sk = ZTk [xk+1 � xk] and apply a quasi-Newton formula to update Bk. Algorithm I, using�nite di�erences, amounts essentially to the same thing. To see this, note that if Formula (3.2)is used in (1.33), thenyk = ZTk [rL(xk+1; �k+1)�rL(xk + �kYkpY; �k+1)];which represents a di�erence in reduced gradients of the Lagrangian along the null space directionZkpZ.Byrd (1990) and Gilbert (1989) showed that the sequence fzk +ZkpZg (but not the sequencefzkg) generated by the Coleman-Conn method converges one-step Q-superlinearly. If AlgorithmI always computed the correction terms wk and wk by �nite di�erences, its cost and convergencebehavior would be similar to those of the Coleman-Conn method. However, we will often be ableto avoid these additional gradient evaluations by using the more economical approach discussednext.3.2. Using Broyden's Method to Compute wk and wkWe can approximate the rectangular matrix ZTk Wk by a matrix Sk updated by Broyden'smethod, and then compute wk and wk by post-multiplying this matrix by YkpY or by a multipleof this vector. As discussed in x1, it is reasonable to impose the secant equation (1.20) on thisBroyden approximation, which can therefore be updated by the formula (cf. Fletcher (1987))Sk+1 = Sk + (�yk � Sk�sk)�sTk�sTk �sk ; (3:9)where �yk = ZTk [rL(xk+1; �k+1) �rL(xk; �k+1)] (3:10)and �sk = xk+1 � xk: (3:11)We now de�ne wk = SkYkpY and wk = �kSk+1YkpY: (3:12)It should be noted that this approach requires the storage of the (n � m) � n matrix Sk.For problems where n � m is small, this expense is far less than the storage of a full Hessianapproximation to Wk. On the other hand, if n�m is not very small, it may be preferable to usea limited-memory implementation of Broyden's method. Here the matrices Sk are representedimplicitly, using, for example, the compact representation described in Byrd, Nocedal, and Schn-abel (1992). The advantage of the limited memory implementation is that it requires the storageof only a few n�vectors to represent S. 9



Since is no guarantee that the Broyden approximations Sk will remain bounded, we need tosafeguard them. At the beginning of the algorithm we choose a positive constant � and de�newk := ( wk if kwkk � �kpYk1=2 kpYkwk �kpYk1=2kwkk otherwise. (3:13)The correction wk will be safeguarded in a di�erent way. We choose a sequence of positivenumbers fkg such that �1k=1k <1, and we setwk := ( wk if kwkk � �kkpYk=kwk �kkpYkkkwkk otherwise. (3:14)As the iterates converge to the solution, pY ! 0, so that from (3.12) and from the boundednessof Yk we see that these safeguards allow the Broyden updates Sk to become unbounded, butin a controlled manner. We will show in x4 and x5 that with the safeguards (3.13) and (3.14)Algorithm I is locally and R-linearly convergent and that this implies that the Broyden updatesSk do, in fact, remain bounded, so that the safeguards become inactive asymptotically.Our Broyden approximation to the correction terms wk and wk was motivated by recent workof Gurwitz (1993). She approximates ZTk WkZk by the BFGS formula withsk = ZTk [xk+1 � xk]and yk = ZTk [rL(xk+1; �k+1) �rL(xk; �k+1)]and approximates ZTk WkYk by a matrix Dk using Broyden's formula (3.9) with�sk = Y Tk [xk+1 � xk]�yk = ZTk [rL(xk+1; �k+1)�rL(xk; �k+1)]�BkpZ:Since the updates may not always be de�ned, Gurwitz proposes to sometimes skip the update ofBk or Dk. She shows 1-step Q-superlinear convergence if and only if one of the updates is takenat each iteration. We will argue below that it is preferable to update an approximation to ZTk Wk,as is done in Algorithm I, instead of an approximation to ZTkWkYk, as proposed by Gurwitz.A related method was derived by Coleman and Fenyes (1992). Their partitioned Lower HalfUpdate (LHU) simultaneously updates approximations to ZTkWkZk and ZTk WkYk, by means of anew variational problem. The resulting updating formula requires the solution of a cubic equation,and its roots can correspond to cases where updates should be avoided (e.g., sTk yk � 0). Thedrawback of this approach is that choosing the correct root is not always easy.Finally, an earlier proposal by Tagliaferro (1989) consists of approximating the matrix[ZTkWkZk ZTkWkYk]using a formula that can be viewed as an extension to the PSB update. One disadvantage ofthis approach is that the matrices generated by this updating procedure may become very illconditioned. 10



3.3. Update CriterionIt is well known that the BFGS update (1.24) is well de�ned only if the curvature conditionsTk yk > 0 is satis�ed. This condition can always be enforced in the unconstrained case by perform-ing an appropriate line search; see, for example, Fletcher (1987). When constraints are present,however, the curvature condition sTk yk > 0 can be di�cult to obtain, even near the solution.To show this, we �rst note from (1.33), (1.28), and (1.32) and from the Mean Value theoremthat yk = ZTk �Z 10 r2xxL(xk + ��kdk; �k+1)d���kdk � wk� ZTk ~Wk�kdk � wk= ZTk ~WkZksk + �kZTk ~WkYkpY � wk; (3.15)where we have de�ned ~Wk = Z 10 r2xxL(xk + ��kdk; �k+1)d�: (3:16)Thus sTk yk = sTk �ZTk ~WkZk� sk + �ksTk �ZTk ~WkYk�pY � sTkwk: (3:17)Near the solution, the �rst term on the right-hand side will be positive, since ZTk ~WkZk canbe assumed positive de�nite. Nevertheless, the last two terms are of uncertain sign and can makesTk yk negative. Several reduced Hessian methods in the literature set wk equal to zero for all k,and update Bk only if pY is small enough compared with sk that the �rst term in the right-handside of (3.17) dominates the second term (see Nocedal and Overton (1985), Gurwitz and Overton(1989), and Xie (1991)).Skipping the BFGS update may appear to be a crude heuristic, but we argue that it givesrise to a sound algorithm. First of all, the last two terms in (3.17) normally converge to zerofaster than the �rst term, so that the right-hand side of (3.17) will often be positive and BFGSupdating will take place frequently. Furthermore, if the right-hand side of (3.17) is negative, therange space step YkpY is relatively large, resulting in su�cient progress towards the solution.These arguments will be made more precise in x5.We conclude that skipping the BFGS update is desirable in some circumstances, and we nowpresent a strategy for deciding when to do so. Recall that �k, de�ned by (1.34), converges to zeroif the iterates converge to x�.Update Criterion IChoose a constant fd > 0 and a sequence of positive numbers fkg such that �1k=1k < 1 (thisis the same sequence fkg that was used in (3.14)).� If wk is computed by Broyden's method, and if both sTk yk > 0 andkpYk � 2kkpZk (3:18)hold at iteration k, then update the matrix Bk by means of the BFGS formula (1.24) withsk and yk given by (1.32) and (1.33). Otherwise, set Bk+1 = Bk.� If wk is computed by �nite di�erences, and if both sTk yk > 0 andkpYk � fdkpZk=�1=2k (3:19)hold at iteration k, then update the matrix Bk by means of the BFGS formula (1.24) withsk and yk given by (1.32) and (1.33). Otherwise, set Bk+1 = Bk.11



Note that �k requires knowledge of the solution vector x� and is therefore not computable.However, we will later see that �k can be replaced by any quantity that is of the same order asthe error ek, for example, the optimality conditions (kZTk gkk+kckk). Nevertheless, for conveniencewe will leave �k in (3.19).We now closely consider the properties of the BFGS matrices Bk when Update Criterion I isused. Let us de�ne cos �k = sTkBkskkskk kBkskk ; (3:20)which, as we will see, is a measure of the goodness of the null space step ZkpZ. We begin byrestating a theorem from Byrd and Nocedal (1989) regarding the behavior of cos �k when thematrix Bk is updated by the BFGS formula.Theorem 3.1 Let fBkg be generated by the BFGS formula (1.24) where, for all k � 1, sk 6= 0and yTk sksTk sk � m > 0 (3.21)kykk2yTk sk � M: (3.22)Then, there exist constants �1; �2; �3 > 0 such that, for any k � 1, the relationscos �j � �1 (3.23)�2 � kBjsjkksjk � �3 (3.24)hold for at least d12ke values of j 2 [1; k].This theorem refers to the iterates for which BFGS updating takes place; but since, forthe other iterates, Bk+1 = Bk, the theorem characterizes the whole sequence of matrices fBkg.Theorem 3.1 states that, if sTk yk is always su�ciently positive, in the sense that Conditions (3.21)and (3.22) are satis�ed, then at least half of the iterates at which updating takes place are suchthat cos �j is bounded away from zero and Bjsj = O(ksjk). Since it will be useful to refer easilyto these iterates, we make the following de�nition.De�nition 3.1 We de�ne J to be the set of iterates for which BFGS updating takes place and forwhich (3.23) and (3.24) hold. We call J the set of \good iterates" and de�ne Jk = J\f1; 2; :::; kg.Note that if the matricesBk are updated only a �nite number of times, their condition numberis bounded, and (3.23){(3.24) are satis�ed for all k. Thus in this case all iterates are good iterates.We now study the case when BFGS updating takes place an in�nite number of times. Letus assume that all functions under consideration are smooth and bounded. If at a solution pointx� the reduced Hessian ZT� W�Z� is positive de�nite, then for all xk in a neighborhood of x� thesmallest eigenvalue of ZTk ~WkZk is bounded away from zero ( ~Wk is de�ned in (3.16)). We nowshow that in such a neighborhood Update Criterion I implies (3.21){(3.22).Let us �rst consider the case when wk is computed by Broyden's method. Using (3.17), (3.18),and (3.14), and since k converges to zero, we havesTk yk � Ckskk2 � O(2kkskk2) �O(kkskk2)� mkskk2; (3.25)12



for some positive constants C;m. Also, from (3.15), (3.18), and (3.14) we have thatkykk � O(kskk) +O(2kkskk) +O(kkskk)� O(kskk): (3.26)We thus see from (3.25){(3.26) that there is a constant M such that for all k for which updatingtakes place, kykk2yTk sk � M;which together with (3.25) shows that (3.21){(3.22) hold when Broyden's method is used.If wk is computed by the �nite-di�erence formula (3.2), we see from (1.33) and the MeanValue theorem that there is a matrix Ŵk such thatyk = ZTk [rL(xk+1; �k+1)�rL(xk + �kYkpY; �k+1)]� ZTk ŴkZksk:Reasoning as before we see that (3.25) and (3.26) also hold in this case, and that (3.21){(3.22)are satis�ed in the case when �nite di�erences are used. These arguments show that, in aneighborhood of the solution and whenever BFGS updating of Bk takes place, sTk yk is su�cientlypositive, as stipulated by (3.21){(3.22).3.4. Choosing �k and �kWe will now see that by appropriately choosing the penalty parameter �k and the dampingparameter �k for wk, the search direction generated by Algorithm I is always a descent directionfor the merit function. Moreover, for the good iterates J , it is a direction of strong descent.Since dk satis�es the linearized constraint (1.11), it is easy to show (see Eq. (2.24) of Byrdand Nocedal (1991)) that the directional derivative of the `1 merit function in the direction dk isgiven by D��k(xk; dk) = gTk dk � �kkckk1: (3:27)The fact that the same right inverse of ATk is used in (1.26) and (1.31) implies thatgTk YkpY = �Tk ck: (3:28)Recalling the decomposition (1.28) and using (3.28), we obtainD��k (xk; dk) = gTk ZkpZ � �kkckk1 + �Tk ck= (ZTk gk + �kwk)TpZ � �kwTk pZ � �kkckk1 + �Tk ck: (3.29)Now from (1.32) and (1.27) we have thatBksk = ��k(ZTk gk + �kwk): (3:30)Substituting this in (3.20), we obtaincos �k = �(ZTk gk + �kwk)TpZkZTk gk + �kwkk kpZk : (3:31)13



Recalling the inequality �Tk ck � k�kk1kckk1, and using (3.31) in (3.29), we obtain, for all k,D��k (xk; dk) � �kZTk gk + �kwkk kpZk cos �k � �kwTk pZ � (�k � k�kk1)kckk1: (3:32)Note also from (3.30) and (1.32) thatkskkkBkskk = kpZkkZTk gk + �kwkk : (3:33)We now concentrate on the good iterates J , as given in De�nition 3.1. If j 2 J , we have from(3.33) and (3.24) that 1�3 kZTj gj + �jwjk � kp(j)Z k � 1�2 kZTj gj + �jwjk: (3:34)Using this and (3.23) in (3.32), we obtain, for j 2 J ,D��j (xj ; dj) � � 1�3 kZTj gj + �jwjk2 cos �j � �kwTj p(j)Z � (�j � k�jk1)kcjk1� ��1�3 kZTj gjk2 � 2�j cos �j�3 (gTj Zjwj)� �jwTj p(j)Z � (�j � k�jk1)kcjk1;where we have dropped the nonpositive term ��2j cos �jkwjk2=�3. Since we can assume that�3 > 1 (it is de�ned as an upper bound in (3.24)), we haveD��j (xj ; dj) � ��1�3 kZTj gjk2 + h2�j cos �j jgTj Zjwjj � �jwTj p(j)Z i� (�j � k�jk1)kcjk1:It is now clear that if 2�j cos �j jgTj Zjwjj � �jwTj p(j)Z � �kcjk1; (3:35)for some constant �, and if �j � k�jk1 + 2�; (3:36)then for all j 2 J , D��j (xj; dj) � ��1�3 kZTj gjk2 � �kcjk1: (3:37)This means that if (3.35) and (3.36) hold, then for the good iterates j 2 J , the search direction djis a strong direction of descent for the `1 merit function in the sense that the �rst-order reductionis proportional to the KKT error.We will choose �k so that (3.35) holds for all iterations. To show how to do this, we notefrom (1.27) that pZ = �B�1k ZTk gk � �kB�1k wk;so that, for j = k, (3.35) can be written as�k[2 cos �kjgTk Zkwkj+wTkB�1k ZTk gk + �kwTkB�1k wk] � �kckk1: (3:38)Clearly this condition is satis�ed for a su�ciently small and positive value of �k. Speci�cally, atthe beginning of the algorithm we choose a constant � > 0 and, at every iteration k, de�ne�k = minf1; �̂kg; (3:39)14



where �̂k is the largest value that satis�es (3.38) as an equality.The penalty parameter �k must satisfy (3.36), so we de�ne it at every iteration of the algo-rithm by �k = � �k�1 if �k�1 � k�kk1 + 2�k�kk1 + 3� otherwise. (3:40)The damping factor �k and the updating formula for the penalty parameter �k have beende�ned so as to give strong descent for the good iterates J . We now show that they ensure thatthe search direction is also a direction of descent (but not necessarily of strong descent) for theother iterates, k 62 J . Since (3.35) holds for all iterations by our choice of �k, we have in particular��kwTk pZ � �kckk1:Using this and (3.40) in (3.32), we haveD��k (xk; dk) � �kZTk gk + �kwkk kpZk cos �k � �kkckk1: (3:41)The directional derivative is thus nonpositive. Furthermore, since wk = 0 whenever ck = 0(regardless of whether wk is obtained by �nite di�erences or through Broyden's method), it iseasy to show that this directional derivative can be zero only at a stationary point of problem(1.1){(1.2).3.5. The AlgorithmWe can now give a complete description of the algorithm that incorporates all the ideasdiscussed so far and that speci�es the only remaining question, namely, when to apply �nitedi�erences and when to use Broyden's method to approximate the cross term. The idea is toconsider the relative sizes of pY and pZ. Update Criterion I generates the three regions R1; R2,and R3 illustrated in Figure 2. The algorithm starts by computing wk through Broyden's methodand by calculating pY and pZ. If the search direction is in R1 or R3, we proceed. Otherwise werecompute wk by �nite di�erences, use this value to recompute pZ, and proceed. The reason forapplying �nite di�erences in this fashion is that in the middle region R2 Broyden's method is notgood enough, nor is the convergence su�ciently tangential, to give a superlinear step. Thereforewe must resort to �nite di�erences to obtain a good estimate of wk. The motivation behind thisstrategy will become clearer when we study the rate of convergence of the algorithm in x6.Note from Updating Criterion I that the BFGS update of Bk is skipped if the search directionis in R3. A precise description of the algorithm follows.Algorithm II1. Choose constants � 2 (0; 1=2), � > 0 and �; � 0 with 0 < � < � 0 < 1, and positive constants� and fd for Conditions (3.13) and (3.19), respectively. For Conditions (3.14) and (3.18),select a summable sequence of positive numbers fkg. Set k := 1, and choose a startingpoint x1, an initial value �1 for the penalty parameter, an (n �m) � (n � m) symmetricand positive de�nite starting matrix B1 and an (n�m)� n starting matrix S1.2. Evaluate fk; gk; ck, and Ak, and compute Yk and Zk.3. Set �ndi� = false and compute pY by solving the system(ATk Yk)pY = �ck: (range space step) (3:42)15



4. Calculate wk using Broyden's method, from Equations (3.12) and (3.13).5. Choose the damping parameter �k from Equations (3.38) and (3.39), and compute pZ fromBkpZ = �[ZTk gk + �kwk]: (null space step) (3:43)6. If (3.19) is satis�ed and (3.18) is not satis�ed, set �ndi� = true and recompute wk fromEquation (3.1).7. If �ndi� = true, use this new value of wk to choose the damping parameter �k fromEquations (3.38) and (3.39), and recompute pZ from Equation (3.43).8. De�ne the search direction by dk = YkpY + ZkpZ; (3:44)and set �k = 1.9. Test the line search condition��k(xk + �kdk) � ��k(xk) + ��kD��k (xk; dk): (3:45)10. If (3.45) is not satis�ed, choose a new �k 2 [��k; � 0�k] and go to 9; otherwise setxk+1 = xk + �kdk: (3:46)11. Evaluate fk+1; gk+1; ck+1; Ak+1, and compute Yk+1 and Zk+1.12. Compute the Lagrange multiplier estimate�k+1 = �[Y Tk+1Ak+1]�1Y Tk+1gk+1; (3:47)and update �k so as to satisfy (3.40).13. Update Sk+1 using Equations (3.9) to (3.11). If �ndi� = false, calculate wk by Broyden'smethod through Equations (3.12) and (3.14); otherwise calculate wk by (3.2).14. If sTk yk � 0 or if (3.19) is not satis�ed, set Bk+1 = Bk. Else, computesk = �kpZ; (3:48)yk = ZTk [rL(xk+1; �k+1)�rL(xk; �k+1)]�wk; (3:49)and compute Bk+1 by the BFGS formula (1.24).15. Set k := k + 1, and go to 3.We mentioned in x3.1 that, when using �nite di�erences, there are various ways of de�ningwk and wk, but for concreteness we now assume in steps 6 and 13 that they are computed by(3.1) and (3.2), respectively. We should also point out that the curves in Figure 2 may intersect,creating a fourth region, and in practice we should stipulate a new set of conditions in this region.We discuss these conditions in another paper that considers the implementation of the algorithm(Biegler, Nocedal, and Schmid (1993)).In the next sections we present several convergence results for Algorithm II. The analysis,which does not assume that the BFGS matrices Bk or the Broyden matrices Sk are bounded,is based on the results of Byrd and Nocedal (1991), who have studied the convergence of the16



Coleman-Conn updating algorithm. We also make use of some results of Xie (1991), who hasanalyzed the algorithm proposed by Nocedal and Overton (1985) using nonorthogonal bases Yand Z. The main di�erence between this paper and that of Xie stems from our use of thecorrection terms wk and wk, which are not employed in his method.4. Semi-Local Behavior of the AlgorithmWe �rst show that the merit function � decreases signi�cantly at the good iterates J and thatthis gives the algorithm a weak convergence property. To establish the results of this section, wemake the following assumptions.Assumptions 4.1 The sequence fxkg generated by Algorithm II is contained in a convex set Dwith the following properties:(I) The functions f : Rn ! R and c : Rn ! Rm and their �rst and second derivatives areuniformly bounded in norm over D.(II) The matrix A(x) has full column rank for all x 2 D, and there exist constants 0 and �0such that kY (x)[A(x)TY (x)]�1k � 0; kZ(x)k � �0; (4:1)for all x 2 D.(III) For all k � 1 for which Bk is updated, (3.21) and (3.22) hold.(IV) The correction term wk is chosen so that there is a constant � > 0 such that for all k,kwkk � �kckk1=2: (4:2)Note that Condition (I) is rather strong, since it would often be satis�ed only ifD is bounded,and it is far from certain that the iterates will remain in a bounded set. Nevertheless, the con-vergence result of this section can be combined with the local analysis of x5 to give a satisfactorysemi-global result. Condition (II) requires that the basis matrices Y and Z be chosen carefully,and is important to obtain good behavior in practice. Note that (4.1) and (3.42) imply thatkYkpYk � 0kckk: (4:3)Condition (III) is justi�ed in the last paragraphs of x3.3, where it is shown that (3.21) and(3.22) are satis�ed whenever BFGS updating takes place in a neighborhood of a solution point.Condition (III) and Theorem 3.1 ensure that at least half of the iterates at which BFGS updatingtakes place are good iterates.We have left some freedom in the choice of wk since (4.2) su�ces for the analysis of this section.Relation (4.2) holds for the �nite-di�erence approach, since (3.1) implies that wk = O(YkpY) andsince (I) ensures that fkckkg is uniformly bounded (see (5.21)). Furthermore, the safeguard (3.13)and (4.3) immediately imply that (4.2) is satis�ed when the Broyden approximation is used.The following result concerns the good iterates J , as given in De�nition 3.1.Lemma 4.1 If Assumptions 4.1 hold and if �j = � is constant for all su�ciently large j, thenthere is a positive constant � such that for all large j 2 J ,��(xj) � ��(xj+1) � � �kZTj gjk2 + kcjk1� : (4:4)17



Proof. Using (3.37), we have for all j 2 JD��j (xj ; dj) � �b2 �kZTj gjk2 + kcjk1� ; (4:5)where b2 = min(�1=�3; �). Note that the line search enforces the Armijo condition (3.45),��j (xj) � ��j (xj+1) � ���jD��j (xj; dj): (4:6)It is then clear from (4.5) that (4.4) holds, provided the �j, j 2 J , can be bounded from below.Suppose that �j < 1, which means that (4.6) failed for a steplength ~�:��j (xj + ~�dj)� ��j (xj) > �~�D��j (xj; dj); (4:7)where � ~� � �j (4:8)(see Step 10 of Algorithm II). On the other hand, expanding to second order, we have��j (xj + ~�dj)� ��j (xj) � ~�D��j (xj; dj) + ~�2b1kdjk2; (4:9)where b1 depends on �j . Combining (4.7) and (4.9), we have(� � 1)~�D��j (xj; dj) < ~�2b1kdjk2: (4:10)Next we show that, for j 2 J ,kdjk2 � b3[kZTj gjk2 + kcjk1]; (4:11)for some constant b3. To do this, we make repeated use of the following elementary result:a; b � 0 ) a2 + 2ab+ b2 � 3a2 + 3b2: (4:12)Using (3.44), (4.12), (4.1), and (4.3), we havekdjk2 � kZjp(j)Z k2 + 2kZjp(j)Z k kYjp(j)Y k+ kYjp(j)Y k2� 3 hkZjp(j)Z k2 + kYjp(j)Y k2i� 3 h�20kp(j)Z k2 + 20kcjk2i : (4.13)Also by (3.34), (4.12), and (4.2) and noting that k � k � k � k1 , we have that for j 2 Jkp(j)Z k2 � 1�22 �kZTj gjk2 + 2�jkZTj gjk kwjk+ �2j kwjk2�� 3�22 �kZTj gjk2 + �2j kwjk2�� 3�22 �kZTj gjk2 + �2kcjk1� ;since �j � 1. Since kcjk1 is uniformly bounded on D, we see from this relation and (4.13) that(4.11) holds, where b3 = maxf9�20=�22 ; 3(3�2�20=�22 + 20 supx2D kc(x)k)g:18



Combining (4.10), (4.5), and (4.11), and recalling that � < 1, we obtain~� > (1� �)b2b1b3 : (4:14)This relation and (4.8) imply that the steplengths �j are bounded away from zero for all j 2 J .Since by assumption �j = � for all large j, we conclude that (4.4) holds with � = �b2minf1; (1��)�b2=(b1b3)g. 2It is now easy to show that the penalty parameter settles down and that the set of iterates isnot bounded away from stationary points of the problem.Theorem 4.2 If Assumptions 4.1 hold, then the weights f�kg are constant for all su�cientlylarge k and lim infk!1 (kZTk gkk+ kckk) = 0:Proof. First note that by Assumptions 4.1 (I){(II) and (3.47) that fk�kkg is bounded. Therefore,since the procedure (3.40) increases �k by at least � whenever it changes the penalty parameter,it follows that there are an index k0 and a value � such that for all k > k0, �k = � � k�kk+ 2�.If BFGS updating is performed an in�nite number of times, by Assumptions 4.1-(III) andTheorem 3.1 there is an in�nite set J of good iterates, and by Lemma 4.1 and the fact that ��(xk)decreases at each iterate, we have that for k > k0,��(xk0) � ��(xk+1) = kXj=k0(��(xj) � ��(xj+1))� Xj2J\[k0;k](��(xj)� ��(xj+1))� � Xj2J\[k0;k][kZTj gjk2 + kcjk1]:By Assumption 4.1(I) ��(x) is bounded below for all x 2 D, so the last sum is �nite, and thusthe term inside the square brackets converges to zero. Thereforelimj2Jj!1(kZTj gjk+ kcjk1) = 0: (4:15)If BFGS updating is performed a �nite number of times, then, as discussed after De�nition 3.1,all iterates are good iterates, and in this case we obtain the stronger resultlimk!1(kZTk gkk+ kckk1) = 0: 25. Local ConvergenceIn this section we show that if x� is a local minimizer that satis�es the second-order optimalityconditions, and if the penalty parameter �k is chosen large enough, then x� is a point of attraction19



for the sequence of iterates fxkg generated by Algorithm II. To prove this result, we will makethe following assumptions. In what follows, G denotes the reduced Hessian of the Lagrangianfunction, namely, Gk = ZTk r2xxL(xk; �k)Zk: (5:1)Assumptions 5.1 The point x� is a local minimizer for problem (1.1){(1.2), at which the fol-lowing conditions hold.(1) The functions f : Rn ! R and c : Rn ! Rm are twice continuously di�erentiable in aneighborhood of x�, and their Hessians are Lipschitz continuous in a neighborhood of x�.(2) The matrix A(x�) has full column rank. This implies that there exists a vector �� 2 Rmsuch that rL(x�; ��) = g(x�) +A(x�)�� = 0:(3) For all q 2 Rn�m, q 6= 0, we have qTG�q > 0:(4) There exist constants 0, �0, and c such that, for all x in a neighborhood of x�,kY (x)[A(x)TY (x)]�1k � 0; kZ(x)k � �0; (5:2)and k[Y (x) Z(x)]�1k � c: (5:3)(5) Z(x) and �(x) are Lipschitz continuous in a neighborhood of x�. That is, there existconstants Z and � such thatk�(x)� �(z)k � �kx� zk; (5.4)kZ(x)� Z(z)k � Zkx� zk; (5.5)for all x; z near x�.Note that (1), (3), and (5) imply that for all (x; �) su�ciently near (x�; ��), and for all q 2 Rn�m,mkqk2 � qTG(x; �)q � Mkqk2; (5:6)for some positive constants m;M . We also note that Assumptions 5.1 ensure that the conditions(3.21){(3.22) required by Theorem 3.1 hold whenever BFGS updating takes place in a neighbor-hood of x�, as argued at the end of x3.3. Therefore Theorem 3.1 can be applied in the convergenceanalysis.The following two lemmas are proved by Xie (1991) for very general choices of Y and Z.Their result generalizes Lemmas 4.1 and 4.2 of Byrd and Nocedal (1991); see also Powell (1978).Lemma 5.1 If Assumptions 5.1 hold, then for all x su�ciently near x�1kx� x�k � kc(x)k+ kZ(x)Tg(x)k � 2kx� x�k; (5:7)for some positive constants 1; 2.This result states that, near x�, the quantities c(x) and Z(x)T g(x) may be regarded as ameasure of the error at x. The next lemma states that, for a large enough weight, the meritfunction may also be regarded as a measure of the error.20



Lemma 5.2 Suppose that Assumptions 5.1 hold at x�. Then for any � > k��k1 there existconstants 3 > 0 and 4 > 0, such that for all x su�ciently near x�3kx� x�k2 � ��(x)� ��(x�) � 4 �kZ(x)T g(x)k2 + kc(x)k1� : (5:8)Note that the left inequality in (5.8) implies that, for a su�ciently large value of the penaltyparameter, the merit function will have a strong local minimizer at x�. We will now use thedescent property of Algorithm II to show convergence of the algorithm. However, because ofthe nonconvexity of the problem, the line search could generate a step that decreases the meritfunction but that takes us away from the neighborhood of x�. To rule this out, we make thefollowing assumption.Assumption 5.2 The line search has the property that, for all large k, ��((1� �)xk + �xk+1) ���(xk) for all � 2 [0; 1]. In other words, xk+1 is in the connected component of the level setfx : ��(x) � ��(xk)g that contains xk.There is no practical line search algorithm that can guarantee this condition, but it is likelyto hold close to x�. Assumption 5.2 is made by Byrd, Nocedal, and Yuan (1987) when analyzingthe convergence of variable metric methods for unconstrained problems, as well as by Byrd andNocedal (1991) in the analysis of Coleman-Conn updates for equality constrained optimization.Lemma 5.3 Suppose that the iterates generated by Algorithm II are contained in a convex regionD satisfying Assumptions 4.1. If an iterate xk0 is su�ciently close to a solution point x� thatsatis�es Assumptions 5.1, and if the weight �k0 is large enough, then the sequence of iteratesconverges to x�.Proof. By Assumptions 4.1 (I){(II) and (3.47) we know that fk�kkg is bounded. Therefore theprocedure (3.40) ensures that the weights �k are constant, say �k = � for all large k. Moreover, ifan iterate gets su�ciently close to x�, we know by (3.40) and by the continuity of � that � > k��k.For such value of �, Lemma 5.2 implies that the merit function has a strict local minimizer atx�. Now suppose that once the penalty parameter has settled, and for a given � > 0, there is aniterate xk0 such that jjxk0 � x�jj � 324̂0 �2;where ̂0 is such that k � k1 � ̂0k � k. Assumption 5.2 shows that for any k � k0, xk is in theconnected component of the level set of xk0 that contains xk0 , and we can assume that � is smallenough that Lemmas 5.1 and 5.2 hold in this level set. Thus since ��(xk) � ��(xk0) for k � k0,and since we can assume that kZTk0gk0k � 1, we have from Lemmas 5.1 and 5.2, for any k � k0jjxk � x�jj � � 123 (��(xk)� ��(x�))12� � 123 (��(xk0) � ��(x�))12� �43�12 �kZTk0gk0k2 + kck0k1�12� �43�12 �kZTk0gk0k2 + ̂0kck0k�1221



� �24̂03 kxk0 � x�jj�12� �:This implies that the whole sequence of iterates remains in a neighborhood of radius � of x�. If� is small enough, we conclude by (5.8), by the monotonicity of f��(xk)g, and by Theorem 4.2that the iterates converge to x�. 2The assumptions of this lemma, which is modeled after a result in Xie (1991), are restrictive| especially the assumption on the penalty parameter. One can relax these assumptions andobtain a stronger result, such as Theorem 4.3 in Byrd and Nocedal (1991), but the proof wouldbe more complex and is not particularly relevant to Algorithm II since it is based only on theproperties of the merit function. Therefore, instead of further analyzing the local convergenceproperties of the new algorithm, we will study its rate of convergence.5.1. R-Linear ConvergenceFor the rest of the paper we assume that the iterates generated by Algorithm II convergeto x�, which implies that for all large k, �k = � > k��k. The analysis that follows depends onhow often BFGS updating is applied. To make this concept precise, we de�ne U to be the set ofiterates at which BFGS updating takes place,U = fk : Bk+1 = BFGS(Bk ; sk; yk)g; (5:9)and let Uk = U \ f1; 2; :::; kg: (5:10)The number of elements in Uk will be denoted by jUkj.Theorem 5.4 Suppose that the iterates fxkg generated by Algorithm II converge to a point x�that satis�es Assumptions 5.1. Then for any k 2 U and any j � kkxj � x�k � CrjUkj; (5:11)for some constants C > 0 and 0 � r < 1.Proof. Using (4.4) and (5.8), we have for i 2 J ,��(xi)� ��(xi+1) � �4 [��(xi)� ��(x�)] : (5:12)Let us de�ne r = (1� �=4) 14 . Then for i 2 J��(xi+1)� ��(x�) � r4 [��(xi)� ��(x�)] : (5:13)We know that the merit function decreases at each step, and by (5.8) we have, for j � k andk 2 U , kxj � x�k � � 123 (��(xj) � ��(x�))12� � 123 (��(xk)� ��(x�))12 :22



We continue in this fashion, bounding the right-hand side by terms involving earlier iterates, butusing now (5.13) for all good iterates. Since by Theorem 3.1 at least half of the iterates at whichupdating takes place are good iterates (i.e., jJkj � 12 jUkj), we havekxj � x�k � � 123 hr4jJkj(��(x1) � ��(x�))i12� � 123 hr2jUkj(��(x1) � ��(x�))i12� [�123 (��(x1) � ��(x�))12 ]rjUkj� CrjUkj: 2This result implies that if fjUkj=kg is bounded away from zero, then Algorithm II is R-linearlyconvergent. However, BFGS updating could take place only a �nite number of times, in whichcase this ratio would converge to zero. It is also possible for BFGS updating to take place anin�nite number of times, but every time less often, in such a way that jUkj=k! 0. We thereforeneed to examine the iteration more closely.We make use of the matrix function  de�ned by (B) = tr(B) � ln(det(B)); (5:14)where tr denotes the trace, and det the determinant. It can be shown thatln cond(B) <  (B); (5:15)for any positive de�nite matrix B (Byrd and Nocedal (1989)). We also make use of the weightedquantities ~yk = G�1=2� yk; ~sk = G1=2� sk; (5:16)~Bk = G�1=2� BkG�1=2� ; (5:17)cos ~�k = ~sTk ~Bk~skk ~Bk~skkk~skk ; (5:18)and ~qk = ~sTk ~Bk~sk~sTk ~sk : (5:19)One can show (see Eq. (3.22) of Byrd and Nocedal (1989)) that if Bk is updated by the BFGSformula, then  ( ~Bk+1) =  ( ~Bk) + k~ykk2~yTk ~sk � 1� ln ~yTk ~sk~sTk ~sk + ln cos2 ~�k+ �1� ~qkcos2 ~�k + ln ~qkcos2 ~�k � : (5.20)This expression characterizes the behavior of the BFGS matrices Bk and will be crucial tothe analysis of this section. Before we can make use of this relation, however, we need to considerthe accuracy of the correction terms. We begin by showing that when �nite di�erences are usedto estimate wk and wk, these are accurate to second order.23



Lemma 5.5 If at the iterate xk, the corrections wk and wk are computed by the �nite-di�erenceformulae (3.1){(3.2), and if xk is su�ciently close to a solution point x� that satis�es Assump-tions 5.1, then wk = O(kpYk); (5:21)kwk � ZT� W�YkpYk = O(�kkpYk) (5:22)and kwk � ZT� W�YkpYk = O(�kkpYk): (5:23)Proof. Recalling that rL(x; �) = g(x) + A(x)�, we have from (3.1) thatwk = ZTk [rL(xk + YkpY; �k)�rL(xk; �k)]= ZTk [rL(xk + YkpY; ��) �rL(xk; ��)] + ZTk [(A(xk + YkpY)� Ak)(�k � ��)]= ZTk �Z 10 r2xxL(xk + �YkpY; ��)d��YkpY + ZTk [(A(xk + YkpY) �Ak)(�k � ��)]� ZTkW kYkpY + ZTk [(A(xk + YkpY)�Ak)(�k � ��)]: (5.24)Let us assume that xk is in the neighborhood of x� where (5.2){(5.5) hold. Then k�k � ��k =O(kekk) = O(�k), where �k is de�ned by (1.34). Therefore the last term in (5.24) is O(kpYk�k),which proves (5.21). Also, a simple computation shows that[ZTkW k � ZT� W�]YkpY = O(�kkpYk): (5:25)Using these facts in (5.24) yields the desired result (5.22). To prove (5.23), we note only that�k � 1 and reason in the same manner. 2Next we show that the condition number of the matrices Bk is bounded and that, at theiterates U at which BFGS updating takes place, the matrices Bk are accurate approximations ofthe reduced Hessian of the Lagrangian.Theorem 5.6 Suppose that the iterates fxkg generated by Algorithm II converge to a solutionpoint x� that satis�es Assumptions 5.1. Then fkBkkg and fkB�1k kg are bounded, and for allk 2 U k(Bk � ZT� W�Z�)pZk = o(kdkk): (5:26)Proof. We will only consider iterates k for which BFGS updating of Bk takes place. We havefrom (3.49), (3.46), (3.44), (3.16), and (3.48)yk = ZTk [rL(xk+1; �k+1) �rL(xk; �k+1)]� wk= ZTk �Z 10 r2xxL(xk + ��kdk; �k+1)d���kdk � wk= �kZTk ~Wk(ZkpZ + YkpY)� wk= ZTk ~WkZksk + �k(ZTk ~Wk � ZT� W�)YkpY + (�kZT� W�YkpY � wk): (5.27)Since wk can be computed by Broyden's method or by �nite di�erences, we need to consider thesetwo cases separately. 24



Part I. Let us �rst assume that wk is determined by Broyden's method. A simple computationshows that kZTk ~Wk � ZT� W�k = O(�k), and from (3.14) we have that wk = O(kpYk=k). Usingthis and Assumptions 5.1 in (5.27), we haveyk = ZTk ~WkZksk + (�k + 1 + 1=k)O(�kkpYk)= (ZTk ~WkZk � G�)sk +G�sk + (�k + 1 + 1=k)O(�kkpYk): (5.28)Recalling (5.16) and noting that ~yTk ~sk = yTk sk, we have~yTk ~sk = sTk (ZTk ~WkZk �G�)sk + k~skk2 + (�k + 1 + 1=k)O(�kkpYk)k~skk;since k ~skk and kskk are of the same order. Therefore~yTk ~skk~skk2 = 1 + sTk (ZTk ~WkZk � G�)skk~skk2 + (�k + 1 + 1=k)O�k�kpYkk~skk �= 1 +O(�k) + (�k + 1 + 1=k)O�k�kpYkk~skk � : (5.29)Similarly from (5.28) and (5.16) we have~yTk ~yk � k(ZTk ~WkZk �G�)skk2kG�1� k+ 2k(ZTk ~WkZk �G�)skk kG�1=2� k k~skk+ k~skk2+2(�k + 1 + 1=k)O(k�kpYk)kG�12� k�k~skk+ k(ZTk ~WkZk � G�)skkkG�1=2� k�+(�k + 1 + 1=k)2O(k�kpYk)2;and thus k~ykk2k~skk2 � 1 +O(�k) + (�k + 1 + 1=k)(1 + �k)O�k�kpYkk~skk �+(�k + 1 + 1=k)2O�k�kpYk2k~skk2 � : (5.30)At this point we invoke the update criterion and note from (3.18) that, if BFGS updating ofBk takes place at iteration k, then k�kpYk � 2kkskk, where fkg is summable. Using this, theassumption that �k converges to zero, and (5.29), we see that for large k~yTk ~skk~skk2 = 1 +O(�k + k); (5:31)and using (5.30) k~ykk2k~skk2 = 1 +O(�k + k):Therefore k~ykk2~yTk ~sk = k~ykk2k~skk2 k~skk2~yTk ~sk = 1 +O(�k + k): (5:32)We now consider  ( ~Bk+1) given by (5.20). A simple expansion shows that for large k, ln(1+O(�k + k)) = O(�k + k). Using this, (5.31), and (5.32), we have ( ~Bk+1) =  ( ~Bk) + O(�k + k) + ln cos2 ~�k + �1� ~qkcos2 ~�k + ln ~qkcos2 ~�k � : (5:33)25



Note that for x � 0 the function 1 � x + lnx is nonpositive, implying that the term in squarebrackets is nonpositive and that ln cos2 ~�k is also non-positive. We can therefore delete theseterms to obtain  ( ~Bk+1) �  ( ~Bk) +O(�k + k): (5:34)Before proceeding further we show that a similar expression holds when �nite di�erences are used.Part II. Let us now consider the iterates k for which updating takes place and for which wk iscomputed by �nite di�erences. In this case (3.19) holds. Again we begin by considering (5.27),yk = ZTk ~WkZksk + �k(ZTk ~Wk � ZT� W�)YkpY + (�kZT� W�YkpY �wk):From (5.23) the last term is of order �k(�kkpYk), and so is the second term. Thusyk = ZTk ~WkZksk +O(�k�kkpYk)= (ZTk ~WkZk � G�)sk +G�sk + O(�k�kkpYk): (5.35)Noting once more that ~yTk ~sk = yTk sk and recalling the de�nition (5.16), we have~yTk ~sk = sTk (ZTk ~WkZk �G�)sk + k~skk2 +O(�k�kkpYkk~skk);since k ~skk and kskk are of the same order. Therefore~yTk ~skk~skk2 = 1 + sTk (ZTk ~WkZk � G�)skk~skk2 + O��k k�kpYkk~skk �= 1 +O(�k) +O��k k�kpYkk~skk � : (5.36)Similarly from (5.35) and (5.16) we have~yTk ~yk � k(ZTk ~WkZk � G�)skk2kG�1� k+ 2k(ZTk ~WkZk � G�)skk kG�1=2� k k~skk+ k~skk2+�kO�k�kpYkkG�12� k hk~skk+ k(ZTk ~WkZk � G�)skkkG�1=2� ki�+�2kO(k�kpYk)2;and thus k~ykk2k~skk2 � 1 +O(�k) + �kO�k�kpYkk~skk �+ �2kO�k�kpYk2k~skk2 � : (5:37)We now invoke Update Criterion I and note from (3.19) that, if BFGS updating of Bk takesplace at iteration k, then kpYk � fdkpZk=�1=2k . Using this, (5.36), and the fact that �k convergesto zero, we see that for large k ~yTk ~skk~skk2 = 1 +O(�1=2k );and using (5.37) k~ykk2k~skk2 = 1 + O(�1=2k ):Therefore k~ykk2~yTk ~sk = k~ykk2k~skk2 k~skk2~yTk ~sk = 1 + O(�1=2k ): (5:38)26



We now consider  ( ~Bk+1) given by (5.20). Noting that ln(1 + O(�1=2k )) = O(�1=2k ) for all largek, we see that if updating takes place at iteration k ( ~Bk+1) =  ( ~Bk) + O(�1=2k ) + ln cos2 ~�k + �1� ~qkcos2 ~�k + ln ~qkcos2 ~�k � : (5:39)Since both ln cos2 ~�k and the term inside the square brackets are nonpositive, we can delete themto obtain  ( ~Bk+1) �  ( ~Bk) + O(�1=2k ): (5:40)We now combine the results of Parts I and II of this proof. Let us subdivide the set of iterates Ufor which BFGS updating takes place into two subsets: U 0 corresponds to the iterates in whichwk is computed by Broyden's method, and U 00 to the iterates in which �nite di�erences are used.We also de�ne U 0k = U 0 \ f1; 2; :::; kg and U 00k = U 00 \ f1; 2; :::; kg.Summing over the set of iterates in Uk, using (5.34) and (5.40), and noting that Bj+1 = Bjfor j =2 Uk, we have ( ~Bk+1) �  ( ~B1) +C1 Xj2U 00k �1=2j + C2 Xj2U 0k �j +C3 Xj2U 0k j ; (5:41)for some constants C1; C2; C3. By (5.11) and since jU 00j j � jUjj,Xj2U 00 �1=2j � Xj2U 00 C1=2rjUjj=2� Xj2U 00 C1=2rjU 00j j=2= jU 00jXi=1 C1=2ri=2< 1:Similarly Xj2U 0 �j <1;and since fkg is summable, we conclude from (5.41) that f ( ~Bk)g is bounded above. By (5.14) ( ~Bk) =Pni=1(li� ln li), where li are the eigenvalues of ~Bk, and it is easy to see that this impliesthat both kBkk and kB�1k k are bounded.To prove (5.26), we sum relations (5.33) and (5.39), recalling that �k, k and �1=2k aresummable, to obtain ( ~Bk+1) � C + Xj2Uk�ln cos2 ~�k + �1� ~qkcos2 ~�k + ln ~qkcos2 ~�k �� ;for some constant C. Since  ( ~Bk+1) > 0, and since both ln cos2 �k and the term inside the squarebrackets are nonpositive, we see that limk!1k2U ln cos2 ~�k = 027



and limk!1k2U �1� ~qkcos2 ~�k + ln ~qkcos2 ~�k �! 0:Now, for x � 0 the function 1 � x + lnx is concave and has its unique maximizer at x = 1.Therefore the relations above imply thatlimk!1k2U cos ~�k = limk!1k2U ~qk = 1: (5:42)Now from (5.18){(5.19)kG�1=2� (Bk � G�)pZk2kG1=2� pZk2 = k( ~Bk � I)~skk2k~skk2= k ~Bk~skk2 � 2~sTk ~Bk~sk + ~sTk ~sk~sTk ~sk= ~q2kcos ~�2k � 2~qk + 1:It is clear from (5.42) that the last term converges to 0 for k 2 U , which implies that (5.26) holds.2This result immediately implies that the iterates are R-linearly convergent, regardless of howoften updating takes place.Theorem 5.7 Suppose that the iterates fxkg generated by Algorithm II converge to a solutionpoint x� that satis�es Assumptions 5.1. Then the rate of convergence is at least R-linear.Proof. Theorem 5.6 implies that the condition number of the matrices fBkg is bounded. There-fore, all the iterates are good iterates. Reasoning as in the proof of Theorem 5.4, we concludethat for all j kxj � x�k � Crj;for some constants C > 0 and 0 � r < 1. 2We can now show that the Broyden matrices Sk are bounded. This task is easy, since we haveestablished that the iterates fxkg converge R-linearly. We make use of the well-known boundeddeterioration property for Broyden's method (cf. Lemma 8.2.1 in Dennis and Schnabel (1983)),which states that under Assumptions 5.1kSk+1 � ZT� W�k � kSk � ZT� W�k+ C�k;for some constant C > 0. As a result of the R-linear convergence of fxkg, we obtainkSk+1 � ZT� W�k � kS1 � ZT� W�k+ C kXi=1 �k< 1;28



which shows that the matrices Sk remain bounded. We then see from (3.12) that the Broydencorrections wk and wk satisfy wk = O(kpYk) wk = O(kpYk); (5:43)and it is clear that the safeguards (3.13) and (3.14) become inactive for all large k. Therefore, thealgorithm will not modify the information supplied by Broyden's method, asymptotically. Thisis an important point in establishing superlinear convergence.6. Superlinear ConvergenceWithout the correction terms wk and wk, and with appropriate update criteria, Algorithm IIis 2-step Q-superlinearly convergent. This was proved by Nocedal and Overton (1985) assumingthat Yk and Zk are orthogonal bases and assuming that a good starting matrix B1 is used.This result has been extended by Xie (1991) for more general bases and for any starting matrixB1 > 0. In this section we will show that if the correction terms are used in Algorithm II, therate of convergence is 1-step Q-superlinear. This result is possible by Update Criterion I and bythe selected application of �nite-di�erence approximations, which allow BFGS updating to occurmore frequently.To establish superlinear convergence, we need to ensure that the steplengths �k have thevalue 1 for all large k. When a smooth merit function, such as Fletcher's di�erentiable function(Fletcher (1973)) is used, it is not di�cult to show that, near the solution, unit steplengths givea su�cient reduction in the merit function and will be accepted. However, the nondi�erentiable`1 merit function (1.7) used in this paper may reject steplengths of one, even very close to thesolution. This so-called Maratos e�ect requires that the algorithm be modi�ed to allow unitsteplengths and to achieve a fast rate of convergence. We will not consider this modi�cationhere, so as not to complicate our already lengthy analysis and since it does not a�ect the mainstructure of the algorithm or its essential properties. In the companion paper (Biegler, Nocedal,and Schmid (1993)), which is devoted to a numerical investigation of Algorithm II, we describehow to incorporate the nonmonotone line search (or watchdog technique) of Chamberlain et al.(1982) that allows unit steplengths to be accepted for all large k. The analysis of the modi�edalgorithm would be similar to that presented in x5.5 of Byrd and Nocedal (1991).In the remainder of this section we assume that the iterates generated by Algorithm II con-verge R-linearly to a solution and that unit steplengths are taken for all large k. We begin byshowing that the damping parameter �k, used in (3.43) to ensure that descent directions arealways generated, has the value of 1 for all large k.We have shown in Theorem 5.6 that kB�1k k is bounded above. Also, (5.21), (5.2), and (3.42)show that, when �nite di�erences are used, wk = O(kpYk) = O(kckk), and by (5.43) we see thatthis is also the case when Broyden's method is used. Using these facts, and noting that k�k � k�k1,we see that there is a constant C such that the left-hand side of (3.38) can be bounded by�k[2 cos �kjgTk Zkwkj+wTkB�1k ZTk gk + �kwTkB�1k wk] � [�kC(kekk+ �kkckk)]kckk1;since gTk Zk = O(kekk). As the iterates converge to the solution, and since �k � 1, the term insidethe square brackets is less than the constant � given in (3.38), showing that �k = 1 for all large k.This and the remarks made at the end of x5 show that all the safeguards included in Algorithm IIbecome inactive asymptotically.We can show that the Broyden matrices satisfy the condition of Dennis and Mor�e (1974)for superlinear convergence. Note from Algorithm II that a Broyden update of Sk is always29



performed, regardless of whether a BFGS update of Bk takes place or not. The following resultis a straightforward modi�cation of a well-known property for Broyden's method.Lemma 6.1 Suppose that the iterates generated by Algorithm II converge R-linearly to a pointx� that satis�es Assumptions 5.1 and that the matrices Sk remain bounded. Thenlimk!1 k(Sk � ZT� W�)dkkkdkk = 0: (6:1)Proof. The proof is essentially given in Griewank (1986) and is also very similar to the analysisin Dennis and Schnabel (1983, pp. 183{4), but we will give it here for the sake of completeness.Using the Broyden formula (3.9), we haveSk+1 � ZT� W� = Sk � ZT� W� + ( �yk � Sk�sk)�sTk�sTk �sk= Sk � ZT� W� + ( �yk � ZT� W��sk)�sTk�sTk �sk + (ZT� W� � Sk)�sk�sTk�sTk �sk= (Sk � ZT� W�)(I � �sk�sTk =�sTk �sk) + ( �yk � ZT� W��sk)�sTk =�sTk �sk:De�ning Ek = Sk � ZT� W�, applying Lemma 8.2.5 of Dennis and Schnabel (1983), recalling(3.10){(3.11), and using the Mean Value theorem, we obtainkEk+1kF � kEk(I � �sk�sTk =�sTk �sk)kF +O(�k)� kEkkF � kEk�skk22kEkkFk�skk2 + O(�k):Rearranging this expression yieldskEk�skk2k�skk2 � 2kEkkF [kEkkF � kEk+1kF +O(�k)] ; (6:2)and since the elements of Sk remain bounded, we have for some � that for all k � �k, kEkk � �=2and 1Xk=�k kEk�skk2k�skk2 � �[kE�kkF + 1Xk=�kO(�k)]:Since f�kg converges R-linearly, the last term is summable, which implies thatlimk!1 kEk�skk2k�skk2 = 0:Noting that �sk = �kdk gives the desired result. 2This lemma shows that Sk is an accurate approximation to ZT� W� along dk, and Theorem 5.6shows that, when updating takes place, Bk is an accurate approximation to ZT� W�Z� along pY.We will use these two facts and the following lemma, which is an application of the well-knownresult of Boggs, Tolle, and Wang (1982). 30



Lemma 6.2 Suppose that the iterates generated by Algorithm II converge R-linearly to a pointx� that satis�es Assumptions 5.1, and suppose that �k = 1 for all large k. If, in addition,limk!1 kBkpZ + wk � ZT� W�dkkkdkk = 0; (6:3)then the rate of convergence is 1-step Q-superlinear.Proof. Nocedal and Overton (1985, Theorem 3.2) show that if an algorithm of the form� ~SkATk � dk = � � ZTk gkck � ; (6:4)xk+1 = xk + dk;converges to a point x� that satis�es Assumptions 5.1, and iflimk!1 k( ~Sk � ZT� W�)dkkkdkk = 0; (6:5)then the rate of convergence is superlinear. Algorithm II clearly satis�es the second equation in(6.4), ATk dk = �ck. Now, since dk = YkpY + ZkpZ, we have[Yk Zk]�1dk = � pYpZ � : (6:6)Let us write wk = TkpY for some matrix Tk. Then, recalling that �k = 1 for all large k, we havefrom (3.43) that [Tk Bk][Yk Zk]�1dk = �ZTk gk:Thus we can de�ne ~Sk = [Tk Bk][Yk Zk]�1, and the condition (6.5) for superlinear convergence islimk!1 k([Tk Bk][Yk Zk]�1 � ZT� W�)dkkkdkk = 0:However, using (6.6) and wk = TkpY, we have that [TkBk][YkZk]�1dk = TkpY+BkpZ = wk+BkpZ,giving the desired result. 2We can now prove the �nal result of this section. The analysis is complicated by the fact thatBFGS updating may not always take place, and by the fact that the correction terms are some-times computed by �nite di�erences and sometimes by Broyden's method. We therefore considerthe following three sets of iterates, based on Update Criterion I and illustrated in Figure 2.� R1 = fjj kp(j)Y k � 2j kp(j)Z kg,� R2 = fj =2 R1j kp(j)Y k � kp(j)Z k=�1=2j g,� R3 = fjjkp(j)Y k > kp(j)Z k=�1=2j g,and note that both k and �k are summable.Theorem 6.3 Suppose that the iterates generated by Algorithm II converge R-linearly to a pointx� that satis�es Assumptions 5.1, and suppose that �k = 1 for all large k. Then the rate ofconvergence is 1-step Q-superlinear. 31



Proof. Since dk = YkpY + ZkpZ, we have� pYpZ � = [Yk Zk]�1dk:Therefore, Assumption (5.3) implies thatkpYk = O(kdkk); kpZk = O(kdkk): (6:7)Now kBkpZ + wk � ZT� W�dkk � kBkpZ � ZT� W�ZkpZk+ kwk � ZT� W�YkpYk� kBkpZ � ZT� W�Z�pZk+ kwk � ZT� W�YkpYk+O(kekkkpZk):Since by (6.7) the last term is of order o(kpZk) = o(kdkk), the objective of the proof is to showthat kBkpZ � ZT� W�Z�pZk+ kwk � ZT� W�YkpYk = o(kdkk); (6:8)for this together with (6.3) will give the desired result. We consider the three regions R1; R2, andR3 separately. Algorithm II is designed so that, in R2, wk must be computed by �nite di�erences.On the other hand, since pZ is recomputed in Step 7, after which we can be in any of the threeregions, we see that in R1 and R3 wk may be computed by �nite di�erences or by Broyden.If k 2 R1, we have that kpYk = o(kpZk) = o(kdkk). We also know from (5.43) that wk =O(kpYk) when the correction is computed by Broyden's method, and by (5.21) this relation alsoholds when wk is computed by �nite di�erences. Therefore, for k 2 R1,kwk � ZT� W�YkpYk = o(kdkk): (6:9)Furthermore, since updating always takes place in R1, (5.26) holds:kBkpZ � ZT� W�Z�pZk = o(kdkk): (6:10)We have thus established (6.8) for all k 2 R1.Let us now suppose that k 2 R2, in which case wk is computed by �nite di�erences. Using(5.22), we have that kwk � ZT� W�YkpYk = o(kpYk) = o(kdkk); (6:11)where the last step follows from (6.7). Since updating always takes place in R2, Equation (6.10)also holds in this case, and we conclude that (6.8) holds for all k 2 R2.Finally we consider the case when k 2 R3. Now pZ satis�espZ = o(kpYk) = o(kdkk): (6:12)If k 2 R3 and the correction term wk is computed by Broyden's method as wk = SkYkpY (see(3.12)), we havekwk � ZT� W�YkpYk = k(Sk � ZT� W�)YkpYk� k(Sk � ZT� W�)dkk+ k(Sk � ZT� W�)ZkpZk:Using (6.1), (6.12), and the boundedness of Sk, we see that the right-hand side is of order o(kdkk),so that (6.11) holds. On the other hand, if wk is computed by �nite di�erences, we have directly32



from (5.22) that (6.11) holds. In addition, (6.12) and the boundedness of Bk show that (6.10)holds for all k 2 R3, regardless of whether �nite di�erences or Broyden's method are used. 27. Final RemarksWe have presented a new reduced Hessian algorithm for large-scale equality-constrained opti-mization. The motivation for this work has been practical: our earlier reduced Hessian code, de-signed for large problems, was often subject to instabilities, and we have aimed to develop a morerobust algorithm that resembles the full-space SQP method but is less expensive to implement.In a forthcoming paper (Biegler, Nocedal, and Schmid (1993)), we discuss our computationalexperience with the new method. That paper describes how to handle inequality constraints anddiscusses numerous important details of implementation not considered here. These include thechoices of all constants and tolerances, the strategy for coping with the case when the basis matrixC in (2.1) changes, and the procedure for computing the damping parameter �k, which was onlyoutlined in (3.39). We also discuss in that paper how to apply the updating criterion away fromthe solution. We believe that the new algorithm can be very useful for solving large problems,especially those with few degrees of freedom.We have focused only on convergence results that helped us in the design of the algorithmand that revealed its main properties. The analysis was complicated by two factors. We did notassume that the BFGS matrices Bk or the Broyden matrices Sk were bounded, which requiredcareful consideration of their behavior. This analysis paid o� by suggesting safeguards that areuseful in practice and ensure a superlinear rate of convergence. The other complicating factorwas the fact that the frequency of BFGS updating can vary drastically: it can take place atevery iteration, never, or in various patterns. As was found earlier by Xie (1991), it is necessaryto develop the theory in su�cient generality to cover all of these cases, and this signi�cantlyincreased the complexity of some of the results.Acknowledgment. We thank R. Byrd for many interesting discussions on the subject of thispaper.
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