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A REDUCED HESSIAN METHOD FOR LARGE-SCALE
CONSTRAINED OPTIMIZATION

by

Lorenz T. Biegler, Jorge Nocedal, and Claudia Schmid

ABSTRACT

We propose a quasi-Newton algorithm for solving large optimization problems with
nonlinear equality constraints. It is designed for problems with few degrees of freedom
and is motivated by the need to use sparse matrix factorizations. The algorithm
incorporates a correction vector that approximates the cross term Z7 WY py in order
to estimate the curvature in both the range and null spaces of the constraints. The
algorithm can be considered to be, in some sense, a practical implementation of
an algorithm of Coleman and Conn. We give conditions under which local and
superlinear convergence is obtained.

Key words: successive quadratic programming, reduced Hessian methods, constrained optimiza-
tion, quasi-Newton method, large-scale optimization.

Abbreviated title: A Reduced Hessian Method

1. Introduction

We consider the nonlinear optimization problem

subject to ¢(x) =0, (1.2)

where f : R” — R and ¢ : R® — R are smooth functions. We are particularly interested
in the case when the number of variables n is large, and the algorithm we propose, which is a
variation of the successive quadratic programming method, is designed to be efficient in this case.
We assume that the first derivatives of f and ¢ are available, but our algorithm does not require
second derivatives.

The successive quadratic programming (SQP) method for solving (1.1)—(1.2) generates, at an
iterate xp, a search direction dj by solving

1
min g(xk)Td—i— —dTW(xk)d (1.3)
deRn 2
subject to c(xy) + A(xx)Td =0, (1.4)



where ¢ denotes the gradient of f, W denotes the Hessian of the Lagrangian function L(xz, A) =
f(z) + ATe(z), and A denotes the n x m matrix of constraint gradients

A(x) = [Ver(z), ..., Vem (o). (1.5)
A new iterate is then computed as
Tr41 = xp + apdy, (16)

where «y, 1s a steplength parameter chosen so as to reduce the value of the merit function. In
this study we will use the £; merit function

Pu(@) = f(2) + plle(2)ls, (L.7)

where p is a penalty parameter; see, for example, Conn (1973), Han (1977) or Fletcher (1987).
We could have used other merit functions, but the essential points we wish to convey in this
article are not dependent upon the particular choice of the merit function.

The solution of the quadratic program (1.3)—(1.4) can be written in a simple form if we
choose a suitable basis of R™ to represent the search direction dj. For this purpose, we introduce
a nonsingular matrix of dimension n, which we write as

Vi Z¢], (1.8)
where Y, € R"*™ and Z; € R**("=™) and we assume that
AT Z;, = 0. (1.9)

(From now on we abbreviate A(x) as Ay, g(xr) as gx, etc.) Thus Z; is a basis for the tangent
space of the constraints. We can now express dj, the solution to (1.3)-(1.4), as

di = Yipy + Zkpa, (1.10)
for some vectors py € R™ and p; € R"7"™. Due to (1.9) the linear constraints (1.4) become
cr + AL Yipy = 0. (1.11)

If we assume that Ay has full column rank, then the nonsingularity of [Y; Z;] and equation (1.9)
imply that the matrix Ang is nonsingular, so that py is determined by (1.11):

py = —[ATV] er. (1.12)
Substituting this in (1.10), we have
dy = =Yi[ALYi] Yer + Zipy. (1.13)
Note that
Vi [ATy ]t (1.14)

is a right inverse of AZ and that the first term in (1.13) represents a particular solution of the
linear equations (1.4).

We have thus reduced the size of the SQP subproblem, which can now be expressed exclusively
in terms of the variables p;. Indeed, substituting (1.10) into (1.3), considering Y3 py as constant,
and ignoring constant terms, we obtain the unconstrained quadratic problem

. 1
Hﬁn (ZkTgk + ZkTWkYka)TpZ + §pZT(ZkTWka)pZ~ (1.15)
preRn-m



If we assume that ZkTWka is positive definite, the solution of (1.15) is
pr = —(Zy Wi Zi) 7 25 gr + ZE WiYapy]. (1.16)

This determines the search direction of the SQP method.

We are particularly interested in the class of problems in which the number of variables n is
large, but n — m is small. In this case it is practical to approximate ZkTWka using a variable
metric formula such as BFGS. On the other hand, the matrix Z W} Y%, of dimension (n —m) x m
may be too expensive to compute directly when m is large. For this reason several authors simply
ignore the “cross term” ZkT Wi Yipy in (1.16) and compute only an approximation to the reduced
Hessian Z] Wy Zy,; see Coleman and Conn (1984), Nocedal and Overton (1985), and Xie (1991).
This approach is quite adequate when the basis matrices Y3 and 7 in (1.8) are chosen to be
orthonormal (Gurwitz and Overton (1989)).

For large problems, however, computing orthogonal bases can be expensive, and it is more
efficient to obtain Y3 and Z; by simple elimination of variables (cf. Fletcher (1987)). Unfortu-
nately, in this case ignoring the cross term ZkT Wi Yipy can make the algorithm inefficient, as is
illustrated by an example given in a companion paper (Biegler, Nocedal, and Schmid (1993)).
The central point is that if the basis matrices Y3 and Zj are not orthogonal, the range space
component Y;py may be very large, and ignoring the contribution from the cross term in (1.16)
can result in a poor step.

Therefore, in this paper we suggest ways of approximating the cross term ZkT WirYrpy by a
vector wg,

(ZE W Yipy ~ wp, (1.17)

without computing the matrix ZI W;Y,. We will see that this can be done without substantially
increasing the cost of the iteration, and we will show that the rate of convergence of the new
algorithm is 1-step Q-superlinear, as opposed to the 2-step superlinear rate for methods that
ignore the cross term (Byrd (1985) and Yuan (1985)). The null space step (1.16) of our algorithm
will be given by

pz = —(ZE Wi Ze) ™M 2 g + Cews], (1.18)

where 0 < (x < 1 1s a damping factor to be discussed later on.

To describe our first strategy for computing the vector wy,, we consider a quasi-Newton method
in which the rectangular matrix ZkT W 1s approximated by a matrix S, using Broyden’s method.
We then obtain wg by multiplying this matrix by Yipy, that is,

wy = Sk Yepy-
How should Sy be updated? Since Wii1 = V2, L(2g41, Ak+1), we have that
ZEWig1(2rg1 — 1) & 23 [V L(2pg1, Mg1) — VeL(2r, Aeg1)], (1.19)

when 41 is close to ;. We use this relation to establish the following secant equation: we
demand that Sj41 satisfy

Spa1(Thyr — 1) = ZF [VoL(#pg1, Mey1) — Ve L(@r, Aprr)]- (1.20)

One point in this derivation requires clarification. In the left-hand side of (1.19) we have ZkT W1,
and not ZkT+1Wk+1~ We could have used Zj11 in (1.19), avoiding an inconsistency of indices,
but this is not necessary since we will show that using 7; instead of Zj41 in (1.20) results in
algorithms with all the desirable properties. This fact will not be surprising to readers familiar



with the analysis of SQP methods; see, for example, Coleman and Conn (1984) or Nocedal and
Overton (1985).

Let us now consider how to approximate the reduced Hessian matrix Z W, Z;,. Using (1.6)
and (1.10) in (1.20), we obtain

[Sk41Zk)arpz = —ax Sk (Yapy) + ZL Ve L(#p 11, Meg1) — Vo L(2k, Apg1)]-

Since Sg41 approximates Z} Wy, this suggests the following secant equation for By, the quasi-
Newton approximation to the reduced Hessian ZkTWka:

Bit+15k = Yk, (1.21)
where s is defined by
Sk = Qg Pz,
and yi by
Yr = Z3 (VoL (xpa1, Mer1) — Ve L(2g, Aet1)] — T, (1.22)
with
Wy = apSk41(Yepy). (1.23)

We will update By by the BFGS formula (cf. Fletcher (1987))

Brsgst By yryl

Biy1 = By — (1.24)

T T,
53, Brsy, Yy Sk

provided sgyk is sufficiently positive.

We highlight a subtle but important point. We have defined two correction terms, wy and
wy. Both are approximations to the cross term (ZT WY )py. The first term, wy,, which is needed
to define the null-space step (1.18) — and thus the new iterate #5411 — makes use of the matrix
Si. The second term, Wy, which is used in (1.22) to define the BFGS update of By, is computed
by using the new Broyden matrix Siy1 and takes into account the steplength aj. We will see
below that it is useful to incorporate the most recent information in wy,.

The Lagrange multiplier estimates Ay needed in the definition (1.22) of y; are defined by

M= =YV AT Y g (1.25)

This formula is motivated by the fact that, at a solution z, of (1.1)—-(1.2), we have —g. = A, A,
and since Y, [ATY,]7! is a right inverse of AT,

o= -4 Wy,

Using the same right inverse (1.14) in the definitions of py and A; will allow us a convenient
simplification in the formulae presented in the following sections. We stress, however, that other
Lagrange multiplier estimates can be used and that the best choice in practice might be the one
that involves the least computation or storage.

We can now outline the sequential quadratic programming method analyzed in this paper.

Algorithm I
1. Choose constants € (0,1/2) and 7,7/ with 0 < 7 < 7/ < 1. Set k£ : = 1, and choose a

starting point z; and an (n —m) x (n —m) symmetric and positive definite starting matrix
Bi.



11.

Evaluate fi, g5, ¢, and Ay, and compute Y3 and Zj.

Compute py by solving the system
(ATYi)py = —cr. (range space step)
Compute an approximation wy to (ZF Wi Yy )py-
Choose the damping parameter {j € (0, 1] and compute py from
Bips = —[ZL g1 + Gowg]. (null space step)
Define the search direction by

dr = Yipy + Zrpz.

. Set ap = 1, and choose the weight yj of the merit function (1.7).

Test the line search condition

Gup (@ + andr) < Gy () + naw Dy, (x5 di),

(1.26)

(1.27)

(1.28)

(1.29)

where D¢, (xp; dy) is the directional derivative of the merit function ¢ in the direction dj.

. If (1.29) is not satisfied, choose a new ay, € [rayg, T'ai] and go to (7); otherwise set

Tpyr = Tk + apdy.

. Evaluate fr41, k41, ¢k+1, and Agy1, and compute Yi41 and Zp4q.
10.

Compute the Lagrange multiplier estimate
M1 = =i Ae ] Y gk
Define w;, (as will be discussed in §3), and compute
Sp = Qgpz

and

Yr = Z3 [VeL(2ra1, Mer1) — Ve L(xg, Apt1)] — T

(1.30)

(1.31)

(1.32)

(1.33)

If the update criterion (to be discussed in §3.3) is satisfied, compute Bjp41 by the BFGS

formula (1.24); else set Bjy1 = Bg.
Set k :=k + 1, and go to (3).

The algorithm has been left in a very general form, but in the next sections we discuss all its
aspects in detail. In §2 we consider the choice of the basis matrices Y and Z;. In §3 we describe
the calculation of the correction terms wy and Wy, the conditions under which BFGS updating
takes place, the choice of the damping parameter (3, and the procedure for updating the weight
pr 1n the merit function. In §4 and §5 we analyze of the local behavior of the algorithm and
show that the rate of convergence is at least R-linear. In §6 we present a superlinear convergence
result, and some final remarks in §7 conclude the paper.



We now make a few comments about our notation. Throughout the paper, the vectors py
and py are computed at 23 and could be denoted by py(*) and p;*), but we will normally omit
the superscript for simplicity. The symbol || - || denotes the {5 vector norm or the corresponding
induced matrix norm. When using the /; or [, norms we will indicate it explicitly by writing
[| - 1l1 or || - |leo- A solution of problem (1.1) is denoted by x., and we define

ey = — . and o = max{|lexl], |lex+1l|}- (1.34)

Here, and for the rest of the paper, VL(z, A) indicates the gradient of the Lagrangian with respect
to x only.

2. The Basis Matrices

As long as 7 spans the null space of A{, and [Y; Zg] is nonsingular, the choice of Y3 and Zj,
is arbitrary. However, from the viewpoint of numerical stability and robustness of the algorithm
it 1s desirable to define Y; and Zj to be orthonormal, that 1s,

Z(&) ' Z2(x) = In_m
Y(@)'Y(x) = In
Y(2)'Z(zx) = 0.

One way of obtaining these matrices is by forming the QR factorization of A. For large problems,
however, computing this QR factorization is often too expensive. Therefore many researchers,
including Gabay (1982), Gilbert (1991), Fletcher (1987), Murray and Prieto (1992), and Xie
(1991), consider other, nonorthogonal choices of ¥ and Z. For example, if we partition z into
m basic or dependent variables (which without loss of generality are assumed to be the first m
variables) and n — m nonbasic or control variables, we induce the partition

Afx)" = [C(x) N (@), (2.1

where the m x m basis matrix C'(z) is assumed to be nonsingular. We now define Z(x) and Y ()

to be
Z(@) = | @@ ] Y(z) = [ ! ] . (2.2)

When A(z) is large and sparse, a sparse LU decomposition of C'(x) can often be computed
efficiently, and this approach will be considerably less expensive than the QR factorization of A.
Note that from the assumed nonsingularity of C'(x) both Y (z) and Z(x) vary smoothly with x,
provided the same partition of the variables is maintained. In our implementation of the new
algorithm (Biegler, Nocedal, and Schmid (1993)) we choose Y3 and Z; by (2.2).

There is a price to pay for using nonorthogonal bases. If the matrix C' is ill conditioned
(and this can be difficult to detect), the step computation may be inaccurate. Moreover, even
if the basis is well conditioned, the range space step Yipy can be large, and ignoring the cross
term can cause serious difficulties. This phenomenon is illustrated in a two-dimensional example
given by Biegler, Nocedal, and Schmid (1993). Tt is shown in that example that if the cross
term ZkTWkYka is ignored, the ratio ||z + di||/||zk|| can be arbitrarily large, even close to the
solution. It is also shown that these inefficiencies disappear if the cross term is approximated as
suggested in the following sections.

In the rest of the paper we allow much freedom in the choice of the basis matrices. They
can be given by (2.2), can be orthonormal, or can be chosen in other ways. The only restrictions



we 1mpose are that A{Zk = 0 is satisfied, that the n x n matrix [Y; Zi] is nonsingular and well
conditioned, and that this matrix varies smoothly in a neighborhood of the solution.

3. Further Details of the Algorithm

In this section we consider how to calculate approximations w; and wi to (ZkT Wi Yi)py to
be used in the determination of the search direction py and in updating Bj, respectively. We
also discuss when to skip the BFGS update of the reduced Hessian approximation, as well as the
selection of the damping factor {; and the penalty parameter py.

To calculate approximations to (ZZ WY )py, we propose two approaches. First, we consider a
finite difference approximation to ZkT Wr along the direction Yz py. While this approach requires
additional evaluations of reduced gradients at each iteration, it gives rise to a very good step.
The second, more economical approach defines w; and wy, in terms of a Broyden approximation
to ZI Wy, as discussed in §1, and requires no additional function or gradient evaluations. Our
algorithm will normally use this second approach, but as we will later see, it is sometimes necessary
to use finite differences.

3.1. Calculating w; and w; through Finite Differences

We first calculate the range space step py at 3 through Equation (1.26). Next we compute
the reduced gradient of the Lagrangian at xp + Yipy and define

wy = ZL [VL(x + Yiepy, M) — VL(2k, M) (3.1)
After the step to the new iterate 41 has been taken, we define
Wy = Z1 [VL(xr + arYepy, A1) — VIL(xx, Arg1)], (3.2)

which requires a new evaluation of gradients if o # 1.

We note that this finite-difference approach is very similar to the algorithm of Coleman and
Conn (1982, 1984). Starting at a point zz, the Coleman-Conn algorithm (with steplength aj = 1)
is given by

Zyps = —Z(z) By P2 (z)  g(21) (3.3)
Yipy = =Y (z)[A(z)T Y (21)] " Le(zr + Zipy) (3.4)
Zp41 = 2p + Zppy + Yipy. (3.5)

Let us now consider Algorithm I, and to better illustrate its similarity with the Coleman and
Conn method, let us assume that instead of (3.1), wy is defined by

wy = Z(xy, + Yipy ) g(xr + Yipy) — Z(x)  g(xr),

which differs from (3.1) by terms of order O(||py||). Then Algorithm I with o, = 1 is given by

Yipy = —Y(a:k)[A(xk)TY(xk)]_lc(xk). (3.6)
Zyps, = —Z(xx)By ' [Z(xr)" g(xr) + wy]
= —Z(x1)B; 2wk + Yipy) g(xr + Vipy)]. (3.7)



Tpy1 = Ty + Yepy + Zips. (3.8)

The similarity between the two approaches is apparent in Figure 1, especially if we consider the
intermediate points in the Coleman-Conn iteration to be the starting and final points, respectively.
In the Coleman-Conn algorithm, the approximation By to the reduced Hessian ZkT Wi Zy 18 ob-
tained by moving along the null space direction Zp,, and making a new evaluation of the function
and constraint gradients. To be more precise, Coleman and Conn define

yr = ZL [VL(zp + Zkpz, Ak) — VL(2, Ar)]

and s; = ZkT [¥+1 — @) and apply a quasi-Newton formula to update By. Algorithm I, using
finite differences, amounts essentially to the same thing. To see this, note that if Formula (3.2)

is used in (1.33), then
Y = ZF [VL(2p11, Aeg1) — VL(zp + apYipy, A1),

which represents a difference in reduced gradients of the Lagrangian along the null space direction
Zype.-

Byrd (1990) and Gilbert (1989) showed that the sequence {z; + Zpz} (but not the sequence
{z1}) generated by the Coleman-Conn method converges one-step Q-superlinearly. If Algorithm
I always computed the correction terms wj and g by finite differences, its cost and convergence
behavior would be similar to those of the Coleman-Conn method. However, we will often be able
to avoid these additional gradient evaluations by using the more economical approach discussed
next.

3.2. Using Broyden’s Method to Compute w; and wy,

We can approximate the rectangular matrix ZkT Wi by a matrix S, updated by Broyden’s
method, and then compute wy and wy, by post-multiplying this matrix by Yz py or by a multiple
of this vector. As discussed in §1, it is reasonable to impose the secant equation (1.20) on this
Broyden approximation, which can therefore be updated by the formula (cf. Fletcher (1987))

(gx — Sk5k)5E

Sk41 = Sp + ———, (3.9)
Sk Sk
where
Ur = Z1 [VL(xg 41, Aet1) — VI(xg, Apr1)] (3.10)
and
Sp = Xpy1 — Xp. (311)
We now define
wr = S Yipy and W = akSk+1Yka~ (312)

It should be noted that this approach requires the storage of the (n — m) x n matrix Sg.
For problems where n — m 1s small, this expense is far less than the storage of a full Hessian
approximation to W. On the other hand, if n — m is not very small, it may be preferable to use
a limited-memory implementation of Broyden’s method. Here the matrices S are represented
implicitly, using, for example, the compact representation described in Byrd, Nocedal, and Schn-
abel (1992). The advantage of the limited memory implementation is that it requires the storage
of only a few n—vectors to represent S.



Since is no guarantee that the Broyden approximations S; will remain bounded, we need to
safeguard them. At the beginning of the algorithm we choose a positive constant I' and define

i py /2 (3.13)

]l

{ Wy if |wg|| < WHPYH
wy =

Wy otherwise.

The correction w; will be safeguarded in a different way. We choose a sequence of positive
numbers {v;} such that %2, y; < 0o, and we set

(3.14)

Wy, 2P e erwise.

_ { Wk if ||wk|| < akaYH/ Yk
Wy =
Ve [@e |l

As the iterates converge to the solution, py — 0, so that from (3.12) and from the boundedness
of Y we see that these safeguards allow the Broyden updates S to become unbounded, but
in a controlled manner. We will show in §4 and §5 that with the safeguards (3.13) and (3.14)
Algorithm I is locally and R-linearly convergent and that this implies that the Broyden updates
Sy do, in fact, remain bounded, so that the safeguards become inactive asymptotically.

Our Broyden approximation to the correction terms wy, and w; was motivated by recent work
of Gurwitz (1993). She approximates ZF W, 7, by the BFGS formula with

sk = 2} [Tr1 — k]

and
Y = 2L [VL(xpg1, Mer1) — VEI(2k, Ay1)]

and approximates ZkT WiYs by a matrix Dy, using Broyden’s formula (3.9) with
S = YkT[l‘k_H — l‘k]

Uk = 2§ [VL(xkg1, Arg1) — VL(2k, Ae1)] — Bepz.

Since the updates may not always be defined, Gurwitz proposes to sometimes skip the update of
By or Dy. She shows 1-step Q-superlinear convergence if and only if one of the updates is taken
at each iteration. We will argue below that it is preferable to update an approximation to ZkT Wi,
as 1s done in Algorithm I, instead of an approximation to ZkT WYy, as proposed by Gurwitz.

A related method was derived by Coleman and Fenyes (1992). Their partitioned Lower Half
Update (LHU) simultaneously updates approximations to 7} Wy Z), and Z{ W;Y}, by means of a
new variational problem. The resulting updating formula requires the solution of a cubic equation,
and its roots can correspond to cases where updates should be avoided (e.g., sgyk < 0). The
drawback of this approach is that choosing the correct root is not always easy.

Finally, an earlier proposal by Tagliaferro (1989) consists of approximating the matrix

(ZEWh Z ZF Wi Y]

using a formula that can be viewed as an extension to the PSB update. One disadvantage of
this approach is that the matrices generated by this updating procedure may become very ill
conditioned.

10



3.3. Update Criterion

It is well known that the BFGS update (1.24) is well defined only if the curvature condition
5{ yr > 0 1s satisfied. This condition can always be enforced in the unconstrained case by perform-
ing an appropriate line search; see, for example, Fletcher (1987). When constraints are present,
however, the curvature condition 5% yr > 0 can be difficult to obtain, even near the solution.

To show this, we first note from (1.33), (1.28), and (1.32) and from the Mean Value theorem
that

1
Yk ZkT |:/ VixL(l‘k + Tagdy, /\k+1)d7' apdy — Wy,
0

= ZkTWkakdk — Wg

= ZkTWkaSk + OszkTWkYkpy — Wk, (315)
where we have defined .
Wk = / VixL(l‘k —|—T0zkdk,/\k+1)d7'. (316)
0
Thus R R
sTyp = T (Z,ZWka) sp + aps? (Z,ZWkYk) oy — i@y (3.17)

Near the solution, the first term on the right-hand side will be positive, since ZkTWka can
be assumed positive definite. Nevertheless, the last two terms are of uncertain sign and can make
sgyk negative. Several reduced Hessian methods in the literature set wj, equal to zero for all &,
and update By only if py is small enough compared with s; that the first term in the right-hand
side of (3.17) dominates the second term (see Nocedal and Overton (1985), Gurwitz and Overton
(1989), and Xie (1991)).

Skipping the BFGS update may appear to be a crude heuristic, but we argue that it gives
rise to a sound algorithm. First of all, the last two terms in (3.17) normally converge to zero
faster than the first term, so that the right-hand side of (3.17) will often be positive and BFGS
updating will take place frequently. Furthermore, if the right-hand side of (3.17) is negative, the
range space step Yipy is relatively large, resulting in sufficient progress towards the solution.
These arguments will be made more precise in §5.

We conclude that skipping the BFGS update is desirable in some circumstances, and we now
present a strategy for deciding when to do so. Recall that o, defined by (1.34), converges to zero
if the iterates converge to ..

Update Criterion I
Choose a constant a4 > 0 and a sequence of positive numbers {vi} such that X32 ,y; < oo (this
is the same sequence {v} that was used in (3.14)).

o Ifwy; is computed by Broyden’s method, and if both sgyk >0 and

v I < 73 llpall (3.18)

hold at iteration k, then update the matriz By by means of the BFGS formula (1.24) with
sk and yr given by (1.32) and (1.33). Otherwise, set Byy1 = By.

o Ifwy; is computed by finite differences, and if both sgyk >0 and

lpvll < vrallpall /oy (3.19)

hold at iteration k, then update the matriz By by means of the BFGS formula (1.24) with
sk and yr given by (1.32) and (1.33). Otherwise, set Byy1 = By.

11



Note that oy requires knowledge of the solution vector z, and is therefore not computable.
However, we will later see that o3 can be replaced by any quantity that is of the same order as
the error ey, for example, the optimality conditions (|| Z¥ gx||+||ck||). Nevertheless, for convenience
we will leave oy in (3.19).

We now closely consider the properties of the BFGS matrices By when Update Criterion I is
used. Let us define .

St Bk Sk
skl Nl Besell”
which, as we will see, is a measure of the goodness of the null space step Zypz;. We begin by
restating a theorem from Byrd and Nocedal (1989) regarding the behavior of cosfl;, when the
matrix By is updated by the BFGS formula.

cos Oy, =

(3.20)

Theorem 3.1 Let { By} be generated by the BFGS formula (1.24) where, for all k > 1, s;; 0

and

> m>0 (3.21)

< M. (3.22)

cost; > B (3.23)
B;s
J

hold for at least f%k] values of j € [1, k].

This theorem refers to the iterates for which BFGS updating takes place; but since, for
the other iterates, Byyi = By, the theorem characterizes the whole sequence of matrices {Bg}.
Theorem 3.1 states that, if sT y; is always sufficiently positive, in the sense that Conditions (3.21)
and (3.22) are satisfied, then at least half of the iterates at which updating takes place are such
that cos6; is bounded away from zero and Bjs; = O(||s;]|). Since it will be useful to refer easily
to these iterates, we make the following definition.

Definition 3.1 We define J to be the set of iterates for which BFGS updating takes place and for
which (3.23) and (3.24) hold. We call J the set of “good iterates” and define J, = JN{1,2,... k}.

Note that if the matrices By are updated only a finite number of times, their condition number
is bounded, and (3.23)-(3.24) are satisfied for all k. Thus in this case all iterates are good iterates.

We now study the case when BFGS updating takes place an infinite number of times. Let
us assume that all functions under consideration are smooth and bounded. If at a solution point
z, the reduced Hessian Z*TW* 7, 18 positive definite, then for all z; in a neighborhood of z, the
smallest eigenvalue of ZkTWka is bounded away from zero (Wk is defined in (3.16)). We now
show that in such a neighborhood Update Criterion T implies (3.21)—(3.22).

Let us first consider the case when @y, is computed by Broyden’s method. Using (3.17), (3.18),
and (3.14), and since v; converges to zero, we have

> Cllssll = 02 llsell®) = O llsel)
> mllsi (3.25)

\Y

T
Sk Yk
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for some positive constants C,m. Also, from (3.15), (3.18), and (3.14) we have that

O([lskll) + O(vicllsill) + OCyllselD)
O(llswD- (3.26)

lysll - <
<

We thus see from (3.25)—(3.26) that there is a constant M such that for all & for which updating
takes place,
(Al
y{ Sk
which together with (3.25) shows that (3.21)—(3.22) hold when Broyden’s method is used.
If wy, is computed by the finite-difference formula (3.2), we see from (1.33) and the Mean
Value theorem that there is a matrix Wy such that

<M,

ZEVL(xg41, Mey1) — VEI(2k + axYipy, Arg1)]
ZkTWkaSk

Yk

Reasoning as before we see that (3.25) and (3.26) also hold in this case, and that (3.21)—(3.22)
are satisfied in the case when finite differences are used. These arguments show that, in a
neighborhood of the solution and whenever BFGS updating of By, takes place, 5{ yx 1s sufficiently
positive, as stipulated by (3.21)-(3.22).

3.4. Choosing p; and (g

We will now see that by appropriately choosing the penalty parameter uj; and the damping
parameter ( for wg, the search direction generated by Algorithm I is always a descent direction
for the merit function. Moreover, for the good iterates .J, it is a direction of strong descent.

Since dj, satisfies the linearized constraint (1.11), it is easy to show (see Eq. (2.24) of Byrd
and Nocedal (1991)) that the directional derivative of the ¢; merit function in the direction dj, is
given by

Dy, (215 dr) = g5 di — pxllexl]r- (3.27)

The fact that the same right inverse of A7 is used in (1.26) and (1.31) implies that
gngpY = /\gck. (3.28)
Recalling the decomposition (1.28) and using (3.28), we obtain

Doy (xr;dr) = gt Zips — pellexlls + M cx
(ZF g1 + Crwr) pr — Gowi pr — pnllenlls + A e (3.29)

Now from (1.32) and (1.27) we have that
Bisp = —a(Z{ g + Crwy). (3.30)
Substituting this in (3.20), we obtain

—(ZL g + Cowi) T py
128 g% + Crwr|| [|pzl]

(3.31)

cos Oy, =
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Recalling the inequality ALe, < ||Ag|lcollck|l1, and using (3.31) in (3.29), we obtain, for all k,
Dy (e di) < =175 g + Crwn | p2]] cos O — Cewi po — (e — Ak lloo) ekl (3.32)
Note also from (3.30) and (1.32) that

bsell _ el
1Besell ~ 1ZF g + Gewnl

(3.33)

We now concentrate on the good iterates J, as given in Definition 3.1. If 7 € J, we have from

(3.33) and (3.24) that
Lyor () Lr
6_||Zj g5 + Gwill < llpz"1l < =17 g5 + Gwjl. (3.34)
3 B
Using this and (3.23) in (3.32), we obtain, for j € J,
1 :
Déuy(asids) < —gol1Z] 0y + Gl cos 05 = G b = g = Ileo)lles

2¢; cosb;
B3

where we have dropped the nonpositive term —CJZ cosf;||w;||?/Bs. Since we can assume that
B3 > 1 (it is defined as an upper bound in (3.24)), we have

IN

B ;
—gnzfgjnz - (o7 Zywi) — GuTpsd) = (g = I lleo)lles

B ;
D¢uj<xj;dj>s—g||zfgj||2+ 2¢; cos 0; |97 Zyw;| — Gulpi| — (g — A lleo)lles]1-

It 1s now clear that if

2 cos 05197 Zws) = Gl v < pllesy, (3.35)
for some constant p, and if
pi = Ajlleo + 2p, (3.36)
then for all j € J,
P
Dy, (25;dy) < —EHZ]'T%HQ—PHCJHL (3.37)

This means that if (3.35) and (3.36) hold, then for the good iterates j € J, the search direction d;
is a strong direction of descent for the £; merit function in the sense that the first-order reduction
is proportional to the KKT error.
We will choose (i so that (3.35) holds for all iterations. To show how to do this, we note
from (1.27) that
Pz = =By 2 gr — ¢ By Mw,

so that, for j = k, (3.35) can be written as
Cr[2 cos Orlgi Zrwi| +wi By ' Zi gk + Gewi By hwi] < pllexllr (3.38)

Clearly this condition is satisfied for a sufficiently small and positive value of (;. Specifically, at
the beginning of the algorithm we choose a constant p > 0 and, at every iteration k, define

e = min{1, (i}, (3.39)
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where CAk is the largest value that satisfies (3.38) as an equality.
The penalty parameter pj, must satisfy (3.36), so we define it at every iteration of the algo-
rithm by
Y if prp—1 > [[Akloo +2p
He = { [|Ae|leo +3p otherwise. (3.40)
The damping factor (; and the updating formula for the penalty parameter p; have been
defined so as to give strong descent for the good iterates J. We now show that they ensure that
the search direction is also a direction of descent (but not necessarily of strong descent) for the
other iterates, & € J. Since (3.35) holds for all iterations by our choice of (3, we have in particular

—Cewp pz < pllexllr-
Using this and (3.40) in (3.32), we have
Déyy (wr; di) < =12 g + Cwil||Ipa]| cos 0 — prllex]]s- (3.41)

The directional derivative is thus nonpositive. Furthermore, since w; = 0 whenever ¢; = 0
(regardless of whether wy, is obtained by finite differences or through Broyden’s method), it is
easy to show that this directional derivative can be zero only at a stationary point of problem

(1.1)-(1.2).

3.5. The Algorithm

We can now give a complete description of the algorithm that incorporates all the ideas
discussed so far and that specifies the only remaining question, namely, when to apply finite
differences and when to use Broyden’s method to approximate the cross term. The idea is to
consider the relative sizes of py and p;. Update Criterion I generates the three regions Ri, Rs,
and Rs illustrated in Figure 2. The algorithm starts by computing wy through Broyden’s method
and by calculating py and py. If the search direction is in Ry or R3, we proceed. Otherwise we
recompute wy by finite differences, use this value to recompute py, and proceed. The reason for
applying finite differences in this fashion is that in the middle region Rs Broyden’s method is not
good enough, nor is the convergence sufficiently tangential, to give a superlinear step. Therefore
we must resort to finite differences to obtain a good estimate of wy. The motivation behind this
strategy will become clearer when we study the rate of convergence of the algorithm in §6.

Note from Updating Criterion I that the BFGS update of By is skipped if the search direction
is in R3. A precise description of the algorithm follows.

Algorithm II

1. Choose constants n € (0,1/2), p > 0 and 7,7 with 0 < 7 < 7’ < 1, and positive constants
I and ;4 for Conditions (3.13) and (3.19), respectively. For Conditions (3.14) and (3.18),
select a summable sequence of positive numbers {3 }. Set k := 1, and choose a starting
point x1, an initial value p; for the penalty parameter, an (n — m) x (n — m) symmetric
and positive definite starting matrix By and an (n — m) x n starting matrix S;.

2. Evaluate ft, gz, ¢z, and Ag, and compute Yz and Z;.
3. Set findiff = false and compute py by solving the system

(ALY )py = —c. (range space step) (3.42)

15



10.

11.
12.

13.

14.

15.

Calculate wy, using Broyden’s method, from Equations (3.12) and (3.13).

. Choose the damping parameter (; from Equations (3.38) and (3.39), and compute pz from

Brps = —[Z1 g1 + Cewp]. (null space step) (3.43)

. I (3.19) is satisfied and (3.18) is not satisfied, set findiff = true and recompute wy from

Equation (3.1).

If findiff = true, use this new value of wp to choose the damping parameter {; from
Equations (3.38) and (3.39), and recompute pz from Equation (3.43).

. Define the search direction by

de = Yipy + Zipe, (3.44)
and set oy = 1.

Test the line search condition
Gun (2 + apdy) < ¢py (1) + nag Doy, (2 dy). (3.45)
If (3.45) is not satisfied, choose a new «ay, € [Ty, 7o) and go to 9; otherwise set
Tpa1 = T + opdy. (3.46)

Evaluate fry1,gr41, k41, Ar41, and compute Yy oy and Zp44.

Compute the Lagrange multiplier estimate
Aegt = =YV Aepr] ™ Y gkt (3.47)

and update pj so as to satisfy (3.40).

Update Si41 using Equations (3.9) to (3.11). If findiff = false, calculate Wy by Broyden’s
method through Equations (3.12) and (3.14); otherwise calculate wy by (3.2).

If sy, <0 orif (3.19) is not satisfied, set Byy, = By. Else, compute
Sy = appz, (3.48)

Y = ZL [VI(xp41, Met1) — V(2 A1) — T, (3.49)
and compute By by the BFGS formula (1.24).
Set k:=k+ 1, and go to 3.

We mentioned in §3.1 that, when using finite differences, there are various ways of defining
wy and wy, but for concreteness we now assume in steps 6 and 13 that they are computed by
(3.1) and (3.2), respectively. We should also point out that the curves in Figure 2 may intersect,
creating a fourth region, and in practice we should stipulate a new set of conditions in this region.
We discuss these conditions in another paper that considers the implementation of the algorithm
(Biegler, Nocedal, and Schmid (1993)).

In the next sections we present several convergence results for Algorithm II. The analysis,
which does not assume that the BFGS matrices By or the Broyden matrices S; are bounded,
is based on the results of Byrd and Nocedal (1991), who have studied the convergence of the
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Coleman-Conn updating algorithm. We also make use of some results of Xie (1991), who has
analyzed the algorithm proposed by Nocedal and Overton (1985) using nonorthogonal bases YV
and Z. The main difference between this paper and that of Xie stems from our use of the
correction terms wy and wy, which are not employed in his method.

4. Semi-Local Behavior of the Algorithm

We first show that the merit function ¢ decreases significantly at the good iterates J and that
this gives the algorithm a weak convergence property. To establish the results of this section, we
make the following assumptions.

Assumptions 4.1 The sequence {21} generated by Algorithm IT is contained in a convex set D
with the following properties:

(I) The functions f : R” — R and ¢ : R” — R™ and their first and second derivatives are
uniformly bounded in norm over D.

(IT) The matrix A(x) has full column rank for all # € D, and there exist constants vy and fy
such that

1Y (2)[A@)TY ()] 7Y <70, (12(2)]] < B, (4.1)
for all z € D.
(ITT) For all k£ > 1 for which By is updated, (3.21) and (3.22) hold.

(IV) The correction term wy, is chosen so that there is a constant « > 0 such that for all &,

[Jwill < llexl] 2. (4.2)

Note that Condition (T) is rather strong, since it would often be satisfied only if D is bounded,
and 1t is far from certain that the iterates will remain in a bounded set. Nevertheless, the con-
vergence result of this section can be combined with the local analysis of §5 to give a satisfactory
semi-global result. Condition (II) requires that the basis matrices Y and Z be chosen carefully,
and is important to obtain good behavior in practice. Note that (4.1) and (3.42) imply that

1Yepy |l < yollexll (4.3)

Condition (IIT) is justified in the last paragraphs of §3.3, where it is shown that (3.21) and
(3.22) are satisfied whenever BFGS updating takes place in a neighborhood of a solution point.
Condition (TIT) and Theorem 3.1 ensure that at least half of the iterates at which BFGS updating
takes place are good iterates.

We have left some freedom in the choice of wy, since (4.2) suffices for the analysis of this section.
Relation (4.2) holds for the finite-difference approach, since (3.1) implies that wy = O(Yipy) and
since (T) ensures that {||cx||} is uniformly bounded (see (5.21)). Furthermore, the safeguard (3.13)
and (4.3) immediately imply that (4.2) is satisfied when the Broyden approximation is used.

The following result concerns the good iterates J, as given in Definition 3.1.

Lemma 4.1 If Assumptions 4.1 hold and iof p; = p ts constant for all sufficiently large j, then
there 1s a positive constant v, such that for all large j € J,

;) = bulajan) 2 v (127 9511 + llej ] - (4.4)
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Proof. Using (3.37), we have for all j € J

Dy (w5 dy) < =ba [17] g5 |I” + llej ] (4.5)
where by = min(31 /03, p). Note that the line search enforces the Armijo condition (3.45),

Su; () = b (wj41) 2 —ne Doy, (w5 dj). (4.6)

It is then clear from (4.5) that (4.4) holds, provided the «;, j € J, can be bounded from below.
Suppose that a; < 1, which means that (4.6) failed for a steplength a:

¢uj(l’j +ad;) — ‘/’uj(l’j) > naDey; (zj;d5), (4.7)

where
TONz < Oz]' (48)

(see Step 10 of Algorithm IT). On the other hand, expanding to second order, we have
Gu; (2j + ady) = ¢y () < GDGy; (51 dy) + &balld; 1%, (4.9)
where b, depends on p;. Combining (4.7) and (4.9), we have
(n = 1)aDg; (w53 dj) < 67b ||d;|*. (4.10)
Next we show that, for j € J,
i 11* < bs[l1Z] g 11 + lles ], (4.11)
for some constant b3. To do this, we make repeated use of the following elementary result:
a,b>0 = a+ 2ab+b* < 3a®+ 30%. (4.12)

Using (3.44), (4.12), (4.1), and (4.3), we have

11> < 1120907 + 2012595 ) 11508 + 1Y;08 |2
< 312 1P + 117
< 3 (BRI + B les ] (4.13)

Also by (3.34), (4.12), and (4.2) and noting that || - || < || - |]1 , we have that for j € J

, 1
11> < ?[||Z]ng||2+2Cj||Z]'ng||||wj||+C]'2||wj||2]
2
3
< @[||ZJT9J||2+CJZ||MJ||2]

2
3

< 7 12 511 + &2lles [l ]
2

since ¢; < 1. Since ||¢j||1 is uniformly bounded on D, we see from this relation and (4.13) that

(4.11) holds, where
b = max{99/ 83, 33w58/ 9+ 28 sup )]}
vE
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Combining (4.10), (4.5), and (4.11), and recalling that n < 1, we obtain

- (L=mn)by
— 4.14
o > bibs ( )
This relation and (4.8) imply that the steplengths «; are bounded away from zero for all j € J.
Since by assumption p; = p for all large j, we conclude that (4.4) holds with v, = nbs min{1, (1 -
1)7ba/(b1b3)}.
O

It is now easy to show that the penalty parameter settles down and that the set of iterates is
not bounded away from stationary points of the problem.

Theorem 4.2 If Assumplions 4.1 hold, then the weights {ur} are constant for all sufficiently
large k and
tim (|27 gl + flex]) = 0.

Proof. First note that by Assumptions 4.1 (I)—(IT) and (3.47) that {||Az]|} is bounded. Therefore,
since the procedure (3.40) increases pjp by at least p whenever it changes the penalty parameter,
it follows that there are an index k¢ and a value p such that for all k > ko, pr = p > || A&l] + 2p.

If BFGS updating is performed an infinite number of times, by Assumptions 4.1-(ITI) and
Theorem 3.1 there is an infinite set J of good iterates, and by Lemma 4.1 and the fact that ¢, (zx)
decreases at each iterate, we have that for k > ko,

k
Su(wre) = u(zier) = Y (dulxj) — dulwjs))
J=ko
> Y (Gulxy) = dulwjp)
jeIN[ko,k]
> v >, W27l +lleslhd.
jeIN[ko,k]

By Assumption 4.1(I) ¢,(z) is bounded below for all « € D, so the last sum is finite, and thus
the term inside the square brackets converges to zero. Therefore

lim (|7 g1 + llejl1) = 0. (4.15)

j—oo

If BFGS updating is performed a finite number of times, then, as discussed after Definition 3.1,
all iterates are good iterates, and in this case we obtain the stronger result

Jim (175 gull + llewll) = 0.

5. Local Convergence

In this section we show that if z, is a local minimizer that satisfies the second-order optimality
conditions, and if the penalty parameter py is chosen large enough, then z, 1s a point of attraction
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for the sequence of iterates {aj} generated by Algorithm II. To prove this result, we will make
the following assumptions. In what follows, G denotes the reduced Hessian of the Lagrangian
function, namely,

Gr=2ZIV2, Lxr, \e) 2. (5.1)

Assumptions 5.1 The point z, is a local minimizer for problem (1.1)—(1.2), at which the fol-
lowing conditions hold.

(1) The functions f : R® — R and ¢ : R® — R™ are twice continuously differentiable in a

neighborhood of z., and their Hessians are Lipschitz continuous in a neighborhood of z,.

(2) The matrix A(x.) has full column rank. This implies that there exists a vector A, € R™
such that
V(2 Ar) = g(24) + A(z)As = 0.

(3) Forall g € R*™™, ¢ # 0, we have ¢7 G.q > 0.
(4) There exist constants yg, 8y, and 7. such that, for all # in a neighborhood of .,
1Y (2)[A@)TY (@)] 7 <70, [1Z(2)]] < o, (5.2)

and

Y (2) Z(2)] 7| < e (5.3)

(5) Z(x) and A(x) are Lipschitz continuous in a neighborhood of #,.. That is, there exist
constants vz and 7, such that

[1A(z) = Al
12(2) = Z(2)l]

yalle ==, (5.4)

<
< ’yZHl‘—ZH,

for all x, z near x,.

Note that (1), (3), and (5) imply that for all (z, A) sufficiently near (z., A.), and for all ¢ € R"~™,
mllgl* < ¢" Gz, \)g < MljqlP?, (5.6)

for some positive constants m, M. We also note that Assumptions 5.1 ensure that the conditions
(3.21)(3.22) required by Theorem 3.1 hold whenever BFGS updating takes place in a neighbor-
hood of z,, as argued at the end of §3.3. Therefore Theorem 3.1 can be applied in the convergence
analysis.

The following two lemmas are proved by Xie (1991) for very general choices of ¥ and 7.
Their result generalizes Lemmas 4.1 and 4.2 of Byrd and Nocedal (1991); see also Powell (1978).

Lemma 5.1 If Assumptions 5.1 hold, then for all x sufficiently near z,
T
nllz — 2| < lle(a)ll + [12(2)" g(@)l] < yallz — 2.]l, (5.7)
for some positive constants y1,72.

This result states that, near z., the quantities ¢(z) and Z(z)? g(z) may be regarded as a
measure of the error at . The next lemma states that, for a large enough weight, the merit
function may also be regarded as a measure of the error.
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Lemma 5.2 Suppose that Assumptions 5.1 hold at x.. Then for any p > [|A:]|oo there exist
constants v3 > 0 and ya4 > 0, such that for all x sufficiently near z,

Yalle — 2l < Gul@) = dulaa) < ya [12(2) g (@)I* + lle()ll] - (5.8)

Note that the left inequality in (5.8) implies that, for a sufficiently large value of the penalty
parameter, the merit function will have a strong local minimizer at z,.. We will now use the
descent property of Algorithm IT to show convergence of the algorithm. However, because of
the nonconvexity of the problem, the line search could generate a step that decreases the merit
function but that takes us away from the neighborhood of #,.. To rule this out, we make the
following assumption.

Assumption 5.2 The line search has the property that, for all large k, ¢,((1 — 8)zp + fzpy1) <
¢u(xy) for all 6 € [0,1]. In other words, x41 is in the connected component of the level set
{z: ¢u(z) < ¢u(zp)} that contains zy.

There is no practical line search algorithm that can guarantee this condition, but it is likely
to hold close to .. Assumption 5.2 is made by Byrd, Nocedal, and Yuan (1987) when analyzing
the convergence of variable metric methods for unconstrained problems, as well as by Byrd and
Nocedal (1991) in the analysis of Coleman-Conn updates for equality constrained optimization.

Lemma 5.3 Suppose that the iterates generated by Algorithm II are contained in a conver region
D satisfying Assumptions 4.1. If an ilerate xy, is sufficiently close to a solution point x, that
satisfies Assumptions 5.1, and if the weight pp, is large enough, then the sequence of ilerates
converges 10 Tx.

Proof. By Assumptions 4.1 (I)—(IT) and (3.47) we know that {||Az||} is bounded. Therefore the
procedure (3.40) ensures that the weights py, are constant, say p, = p for all large k. Moreover, if
an iterate gets sufficiently close to z., we know by (3.40) and by the continuity of A that g > [|A.]|.
For such value of i, Lemma 5.2 implies that the merit function has a strict local minimizer at
z,. Now suppose that once the penalty parameter has settled, and for a given ¢ > 0, there is an
iterate xp, such that

2k, — 2.l < ==,
Y2470
where 4g is such that || - |1 < Jol| - ||. Assumption 5.2 shows that for any & > ko, 3 is in the

connected component of the level set of x, that contains z,, and we can assume that € is small
enough that Lemmas 5.1 and 5.2 hold in this level set. Thus since ¢,(z)) < ¢, (23, ) for k > ko,
and since we can assume that ||ZkTngD|| < 1, we have from Lemmas 5.1 and 5.2, for any k > kg

_L 1
[|lzr — 2]] < 732(¢u(xk)_¢u($*))2
_1 1
< 732(¢N(xk‘0) ¢u(x*))2

i 1

4\ 2 1

< (2) 020nl? + llew )

Y3

i 1

74 2 R =

: 7_3) 125,950 I1” + Follr, 1] 2
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1
Y2Y4Y0 2
7—3||l‘ku — x|

€.

IN

IN

This implies that the whole sequence of iterates remains in a neighborhood of radius € of z,. If
¢ is small enough, we conclude by (5.8), by the monotonicity of {¢,(zx)}, and by Theorem 4.2
that the iterates converge to z,.

O

The assumptions of this lemma, which is modeled after a result in Xie (1991), are restrictive
— especially the assumption on the penalty parameter. One can relax these assumptions and
obtain a stronger result, such as Theorem 4.3 in Byrd and Nocedal (1991), but the proof would
be more complex and is not particularly relevant to Algorithm II since it is based only on the
properties of the merit function. Therefore, instead of further analyzing the local convergence
properties of the new algorithm, we will study its rate of convergence.

5.1. R-Linear Convergence

For the rest of the paper we assume that the iterates generated by Algorithm II converge
to ., which implies that for all large k, g, = p > ||A«||. The analysis that follows depends on
how often BFGS updating is applied. To make this concept precise, we define U to be the set of
iterates at which BFGS updating takes place,

U= {k‘ : Bk+1 = BFGS(Bk,Sk,yk)}, (59)

and let
U, =UnA{1,2,...,k}. (5.10)

The number of elements in Uy, will be denoted by |Ug|.

Theorem 5.4 Suppose that the iterates {ap} generated by Algorithm II converge to a point x,
that satisfies Assumptions 5.1. Then for any k € U and any j > k

|le; — x.]] < CrlU (5.11)
for some constants C' > 0 and 0 < r < 1.

Proof. Using (4.4) and (5.8), we have for i € J,
v
Su(@i) = Gul@it1) > 7—: [Gu(@i) = Pul(a)] (5.12)
Let us define r = (1 — ’yu/'y4)%. Then for i € J

u(wiv1) = du(r.) < v [Pu(wi) — dulr.)]. (5.13)

We know that the merit function decreases at each step, and by (5.8) we have, for j > k and
kelU,

[T
[T

(Gu(z)) = Sulrs))
(Gu(r) = D))

[l = ] 7s

IN

=
[N

< vs
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We continue in this fashion, bounding the right-hand side by terms involving earlier iterates, but
using now (5.13) for all good iterates. Since by Theorem 3.1 at least half of the iterates at which
updating takes place are good iterates (i.e., |J;| > %|Uk|), we have

Y I O ¢u<x*>>]%

IN
Nl

15 [P 6u(e1) = 6u(a.))

[N

< [ P (du(a1) — bul@n)) 2]
CrlUxl,

O

This result implies that if {|Uz|/k} is bounded away from zero, then Algorithm IT is R-linearly
convergent. However, BFGS updating could take place only a finite number of times, in which
case this ratio would converge to zero. It is also possible for BFGS updating to take place an
infinite number of times, but every time less often, in such a way that |Ug|/k — 0. We therefore
need to examine the iteration more closely.

We make use of the matrix function ¢ defined by

$(B) = tr(B) — In(det(B)), (5.14)
where tr denotes the trace, and def the determinant. It can be shown that
In cond(B) < #(B), (5.15)

for any positive definite matrix B (Byrd and Nocedal (1989)). We also make use of the weighted
quantities

g =G Py, 5 = G sy, (5.16)
By = GI By G, (5.17)

~T 1 ~

. B
s 0 = —ok kT (5.18)
(1B [lllsk
and .

- 5, Brsy

= : 5.19

One can show (see Eq. (3.22) of Byrd and Nocedal (1989)) that if By, is updated by the BFGS

formula, then

5 _ 5, gell? Ui 3% 25
Y(Bry1) = ¢(Bk)+T—1—lnT+lncos 0,
Y, Sk S Sk
Ik qr
+ |1 - — + In — . 5.20
cos2 @y, cos2 @y, ( )

This expression characterizes the behavior of the BFGS matrices By and will be crucial to
the analysis of this section. Before we can make use of this relation, however, we need to consider
the accuracy of the correction terms. We begin by showing that when finite differences are used
to estimate w; and Wy, these are accurate to second order.
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Lemma 5.5 If at the iterate xy, the corrections wy and Wy are computed by the finite-difference
formulae (3.1)-(3.2), and if xy, is sufficiently close to a solution point x, that satisfies Assump-
tions 5.1, then

w = O([lpy D), (5.21)
lwr — ZI W Yipy|| = O(ollpy])) (5.22)

and
@y — ZEW.Yipyl| = O(olpv ). (5.23)

Proof. Recalling that VL(z, A) = g(z) + A(x)A, we have from (3.1) that

wp = T[VL(xk + Vipy, Ak) — VI(2r, Ap)]
= ZFVL(xr 4 Yipy, M) — VL(xr, A)] + ZL[(A(xr 4 Yipy) — Ax) A — M)

= zF [/ V2, L(xp + 7Vipy, A )dT | YVipy + ZF [(Alzr + Yipy) — Ap) (A — M)
= Zk WkYka + Zk [(A(l‘k + Ykpy) — Ak)(/\k — /\*)] (524)

Let us assume that zj is in the neighborhood of z, where (5.2)-(5.5) hold. Then [|A; — Ai|| =
O(Jlex]|) = O(oy), where oy, is defined by (1.34). Therefore the last term in (5.24) is O(||py||o),
which proves (5.21). Also, a simple computation shows that

[Zk Wi — ZI W)Yy = O(allpy|)). (5.25)

Using these facts in (5.24) yields the desired result (5.22). To prove (5.23), we note only that
ar < 1 and reason in the same manner.

O

Next we show that the condition number of the matrices By is bounded and that, at the

iterates U at which BFGS updating takes place, the matrices By are accurate approximations of
the reduced Hessian of the Lagrangian.

Theorem 5.6 Suppose thal the ilerales {x} generated by Algorithm II converge 1o a solution
point x, that satisfies Assumptions 5.1. Then {||By||} and {||Bk_1||} are bounded, and for all
kelU

(B — ZEW.Z )| = o([|dwl)- (5.26)

Proof. We will only consider iterates k& for which BFGS updating of By takes place. We have
from (3.49), (3.46), (3.44), (3.16), and (3.48)

Y = ZF[VL(xg41, Meg1) — VEI(2g, Apy1)] — T

Zk |:/ V l‘k + Takdk,/\k_H)dT apdy — Wy,

= ap ZEWi(Zipa + Yipy) — Tk
= ZEWiZisk + an(ZE Wy — ZE WO Yepy + (an ZE W Yipy — ). (5.27)

Since wy can be computed by Broyden’s method or by finite differences, we need to consider these
two cases separately.
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Part I. Let us first assume that wy, is determined by Broyden’s method. A simple computation
shows that ||ZkTWk — ZTW.,|| = O(ok), and from (3.14) we have that wy, = O(||py||/7%). Using
this and Assumptions 5.1 in (5.27), we have

v = ZEWiZpsi+ (or + 1+ 1/7)0(c|Ipv )
= (ZkTWka — G*)Sk + Gasy + (O'k + 1+ 1/’yk)0(0zk||py||) (528)

Recalling (5.16) and noting that i §; = y! sy, we have

Ui Sk = sk (2 Wi Zi — Gu)s + ||36l” + (0% + 1+ 1/72) 0ok |Ipy )]|5e].

since ||s3|| and ||si|| are of the same order. Therefore

~T ~ T T17

Ui Sk s3 (2 Wi Z, — Gy)si (HOZkPYH)

= = 1—|— — + (o +1+1 0] =

HE BE (#1100 T
:1+0@@+@H4+uwm(%g%). (5.29)

Similarly from (5.28) and (5.16) we have
T~ = - = —1/2) 1~ .
W < W2k — Gosel PIGTH + 2128 Wiz — GosilL 1G] 1561 + (152

L ~ —
2ok + 1+ 1/7)0 v DG | (J560+ 102 Wi — G)sellie= 1)
o+ 1+ 1/ Ol lawpx )

and thus
~ 112
||3{k||2 < 1_|_O(g-k)—|—(0'k+1+1/’yk)(1—|—0'k)0(HOHiPYH)
15k ] |5kl
2
Qapp
+wk+1+1h%f0<umg%L)~ (5:30)

At this point we invoke the update criterion and note from (3.18) that, if BFGS updating of
By, takes place at iteration k, then ||agpy|| < v7||sk||, where {7;} is summable. Using this, the
assumption that oy converges to zero, and (5.29), we see that for large k

G 3 =140(c
5 = B+ ), (5.31)
B
and using (5.30)
qu'lz =14+0(ok + 7).
15l
Hherelore Ll el 1512
Yk Yk Sk
S = —— =14+ 0(o% + 7). 5.32
50~ [5IF o5 (% + %) (5-32)

We now consider 1/)(Bk+1) given by (5.20). A simple expansion shows that for large &, In(1+
O(or + 7)) = O(or + v1). Using this, (5.31), and (5.32), we have
qk 4 n qk

cos2 @y, cos2 @y,

W(Bry1) = $(Bi) + Ok + v) + Incos? 0, + |1 — (5.33)
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Note that for > 0 the function 1 — z + Inz is nonpositive, implying that the term in square
brackets is nonpositive and that Incos? @ is also non-positive. We can therefore delete these
terms to obtain

Y(Br1) < U(Br) + O(ok + 7). (5.34)
Before proceeding further we show that a similar expression holds when finite differences are used.

Part II. Let us now consider the iterates & for which updating takes place and for which @y is
computed by finite differences. In this case (3.19) holds. Again we begin by considering (5.27),

Uk = Z8 Wi Zuse + an(Z8 Wi — ZI Wa)Yipy + (0 ZI W Yipy — ).
From (5.23) the last term is of order o3 (ar||pyl]), and so is the second term. Thus

Yr = ZkTWkaSk—l—O(O'kakayn)
(ZkTWka — G*)Sk + Gasy + O(UkozkayH). (535)

Noting once more that g7 5; = yI s, and recalling the definition (5.16), we have
Ui 8k = si (ZE WiZy = G+ |13l + Olowarllpy (I3,

since ||s3|| and ||si|| are of the same order. Therefore

sk _ - sE(ZE Wi 2y — G)sy 0 (0 IIakaII)
5% 117 lIsell® 15l
= 140(c1)+0 <ak ||ﬁ§fﬁ|l) . (5.36)

Similarly from (5.35) and (5.16) we have
Wie < W2 Wil = GselPIG |+ 22 Wiz = Gsell 1671 1l + 115
l ~ —
+000 (llpnllIG | 10l + 121 W22 = Goyselo= )
£ O(lasps)*

and thus

19 1? llopy | 2 (Nlowpy|l?

We now invoke Update Criterion T and note from (3.19) that, if BFGS updating of By takes

place at iteration k, then ||py|| < 'yfd||pz||/ai/2. Using this, (5.36), and the fact that o converges
to zero, we see that for large &

~T~
Ye Sk 1/2
L =140,
IR ¢
and using (5.37)
9w |I? 1/2
Z =140(5").
IR ¢
Hherelore Ul P 151
Yk Yk Sk 1/2
= 1= —— =14+ 0(o . 5.38
50~ 5l s (@) (5.38)
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We now consider ¢(By11) given by (5.20). Noting that In(1 + 0(0'11/2)) = O(O’i/z) for all large
k, we see that if updating takes place at iteration &
1/)(Bk+1) = ¢(Bk) + O(O’i/z) +Incos® by + |1 — I _ +1In 2k

cos? 6, cos? 0,

(5.39)

Since both In cos? §j, and the term inside the square brackets are nonpositive, we can delete them
to obtain

¥(Biyr) < U(Be) + O(%). (5.40)

We now combine the results of Parts I and II of this proof. Let us subdivide the set of iterates U
for which BFGS updating takes place into two subsets: U’ corresponds to the iterates in which
wy, is computed by Broyden’s method, and U” to the iterates in which finite differences are used.
We also define U, = U'N{L,2,..., k} and U} = U" n{1,2,..., k}.

Summing over the set of iterates in Uy, using (5.34) and (5.40), and noting that B; 41 = B;
for j ¢ Ug, we have

Y(Brt1) < ¥(B1) + Cy Z a;/2—|—02 Z o; +Cs Z’Yja (5.41)
Jjeuy Jjeu;, JEeu;]
for some constants C1, Ca, Cs. By (5.11) and since [U['| < |Uj],

Z 0]1/2 Z C112,1U51/2

jEU” jEU”

Z C/2plui12
jeUII
1o

_ Z 12,002
i=1

< 00.

IN

IN

Similarly
Z 0; < 00,
Jeu’

and since {71} is summable, we conclude from (5.41) that {¢(By)} is bounded above. By (5.14)
Y(Br) =Y i (li —=Inl;), where I; are the eigenvalues of By, and it is easy to see that this implies
that both || Bg|| and ||Bk_1|| are bounded.

/2

To prove (5.26), we sum relations (5.33) and (5.39), recalling that o3, y; and 0']1 are
summable, to obtain

¢(Bk+1)§0+z<lnc082§k+[l— LU P . D,

jer. cos? 0, cos? 0,

for some constant C'. Since ¢(Bk+1) > 0, and since both In cos? 8, and the term inside the square
brackets are nonpositive, we see that

lim In cos? HNk =0
k—oc

keU
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and _ _
lim [1— —% 42 | g

k—oo 2 2
o cos? 0y, cos? 0y,

Now, for # > 0 the function 1 — z + Inz is concave and has its unique maximizer at z = 1.
Therefore the relations above imply that

lim cos 0 = lim e = 1. (5.42)
k—o00 k—o0
keU keU
Now from (5.18)—(5.19)
G (By — Gopal)? By — D&)?
G (Be = Gopall”  _ [[(Br = D3kl
1GL 2p, |2 15511
_ IBeBkl|* — 25T Bk + 51 5k
= T
-9
= L9+ 1.
cos &

Tt is clear from (5.42) that the last term converges to 0 for & € U, which implies that (5.26) holds.
O

This result immediately implies that the iterates are R-linearly convergent, regardless of how
often updating takes place.

Theorem 5.7 Suppose thal the ilerales {x} generated by Algorithm II converge 1o a solution
point x, that satisfies Assumptions 5.1. Then the rate of convergence s at least R-linear.

Proof. Theorem 5.6 implies that the condition number of the matrices { By } is bounded. There-
fore, all the iterates are good iterates. Reasoning as in the proof of Theorem 5.4, we conclude
that for all j

llej — @] < O,

for some constants C' >0 and 0 < r < 1.
O

We can now show that the Broyden matrices S;, are bounded. This task is easy, since we have
established that the iterates {#} converge R-linearly. We make use of the well-known bounded
deterioration property for Broyden’s method (¢f. Lemma 8.2.1 in Dennis and Schnabel (1983)),
which states that under Assumptions 5.1

1Sk41 = ZIWll < (IS = ZI W | + Co,
for some constant C' > 0. As a result of the R-linear convergence of {z;}, we obtain
k
1Sker = ZIW.ll < (181~ ZE W+ CY o

i=1
< o0,
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which shows that the matrices Sj; remain bounded. We then see from (3.12) that the Broyden
corrections wy and wy satisfy

we = O(llpv[]) @k = O([lpv|)), (5.43)

and it is clear that the safeguards (3.13) and (3.14) become inactive for all large k. Therefore, the
algorithm will not modify the information supplied by Broyden’s method, asymptotically. This
i1s an important point in establishing superlinear convergence.

6. Superlinear Convergence

Without the correction terms wy and wy, and with appropriate update criteria, Algorithm IT
is 2-step Q-superlinearly convergent. This was proved by Nocedal and Overton (1985) assuming
that Y; and Zp are orthogonal bases and assuming that a good starting matrix B; is used.
This result has been extended by Xie (1991) for more general bases and for any starting matrix
B; > 0. In this section we will show that if the correction terms are used in Algorithm II, the
rate of convergence is 1-step Q-superlinear. This result is possible by Update Criterion I and by
the selected application of finite-difference approximations, which allow BFGS updating to occur
more frequently.

To establish superlinear convergence, we need to ensure that the steplengths aj have the
value 1 for all large k. When a smooth merit function, such as Fletcher’s differentiable function
(Fletcher (1973)) is used, it is not difficult to show that, near the solution, unit steplengths give
a sufficient reduction in the merit function and will be accepted. However, the nondifferentiable
£, merit function (1.7) used in this paper may reject steplengths of one, even very close to the
solution. This so-called Maratos effect requires that the algorithm be modified to allow unit
steplengths and to achieve a fast rate of convergence. We will not consider this modification
here, so as not to complicate our already lengthy analysis and since it does not affect the main
structure of the algorithm or its essential properties. In the companion paper (Biegler, Nocedal,
and Schmid (1993)), which is devoted to a numerical investigation of Algorithm II, we describe
how to incorporate the nonmonotone line search (or watchdog technique) of Chamberlain et al.
(1982) that allows unit steplengths to be accepted for all large k. The analysis of the modified
algorithm would be similar to that presented in §5.5 of Byrd and Nocedal (1991).

In the remainder of this section we assume that the iterates generated by Algorithm II con-
verge R-linearly to a solution and that unit steplengths are taken for all large k. We begin by
showing that the damping parameter (j, used in (3.43) to ensure that descent directions are
always generated, has the value of 1 for all large k.

We have shown in Theorem 5.6 that ||Bk_1|| is bounded above. Also, (5.21), (5.2), and (3.42)
show that, when finite differences are used, wp = O(||py||) = O(||ex||), and by (5.43) we see that
this is also the case when Broyden’s method is used. Using these facts, and noting that ||-|| < ||-]]1,
we see that there is a constant C' such that the left-hand side of (3.38) can be bounded by

Cr[2 cos O gy Zrwr| + wi By Zi g + Crwg By hwr] < [GeC(llewl] + Crllex DMllexl1,

since g1 Zr = O(||ex]|). As the iterates converge to the solution, and since (; < 1, the term inside
the square brackets is less than the constant p given in (3.38), showing that (; = 1 for all large k.
This and the remarks made at the end of §5 show that all the safeguards included in Algorithm 11
become inactive asymptotically.

We can show that the Broyden matrices satisfy the condition of Dennis and Moré (1974)
for superlinear convergence. Note from Algorithm II that a Broyden update of Sy is always
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performed, regardless of whether a BFGS update of By takes place or not. The following result
is a straightforward modification of a well-known property for Broyden’s method.

Lemma 6.1 Suppose that the iterates generated by Algorithm II converge R-linearly to a point
z, that satisfies Assumptions 5.1 and that the matrices Sy remain bounded. Then

1(Sk = 27 W )|
[1dill

=0. (6.1)

Proof. The proof is essentially given in Griewank (1986) and is also very similar to the analysis
in Dennis and Schnabel (1983, pp. 183-4), but we will give it here for the sake of completeness.
Using the Broyden formula (3.9), we have

— 57 T
Sksk
e — ZIW.sk)sh (ZTW, — Si)s,5k
= Sk—Z*TW*+(yk §T§ k>k+( —T*k)kk
% Sk SkSk

= (Se— ZI W) = 551 /5% 58) + (4r — ZI Wasi)st /54 5k

Defining Ej, = S, — ZI' W, applying Lemma 8.2.5 of Dennis and Schnabel (1983), recalling

(3.10)—(3.11), and using the Mean Value theorem, we obtain

1Berille < Eu(I = si5% /55 50)lp + O(ow)
= 112
< 1B - gt 4 O,
Rearranging this expression yields
% < 2| Exllr [1ExllF = |1 Ek4allr + O(o)], (6.2)

and since the elements of Sy, remain bounded, we have for some A that for all k > k, || Ex|| < A/2

and
FE.s ad
Z | Ll ﬁz” < AllEe + 3 O]
k=k

Since {0} converges R-linearly, the last term is summable, which implies that

i || Ex5x]]”
m ————— =
h—oo  [|5]]?

Noting that s = apdp gives the desired result.
O
This lemma shows that S}, is an accurate approximation to Z W, along dy,, and Theorem 5.6
shows that, when updating takes place, By, is an accurate approximation to Z1 W, Z, along py.
We will use these two facts and the following lemma, which is an application of the well-known

result of Boggs, Tolle, and Wang (1982).
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Lemma 6.2 Suppose that the iterates generated by Algorithm Il converge R-linearly to a point
z, that satisfies Assumptions 5.1, and suppose that oy, = 1 for all large k. If, in addition,
. Brpz + wp — ZIWidi||

lim =0, (6.3)
koo [|dx]

then the rate of convergence is 1-step Q-superlinear.

Proof. Nocedal and Overton (1985, Theorem 3.2) show that if an algorithm of the form

- %0]

Tpy1 = xp + dg,

converges to a point x, that satisfies Assumptions 5.1, and if

Sy — ZIW.)d
N [P

then the rate of convergence is superlinear. Algorithm II clearly satisfies the second equation in
(6.4), Agdk = —c¢p. Now, since dp = Yipy + Zgpy, we have

[V Z4]"Ydy = [ ZZ ] . (6.6)

Let us write wy = Typy for some matrix 7. Then, recalling that (; = 1 for all large k, we have
from (3.43) that
[T} B[V Zi) "ty = =73 gs.

Thus we can define Sy = [Ty, Bel[Yx Zx]~1, and the condition (6.5) for superlinear convergence is

fiy NZe Bl Ve 2]~ — ZE W) dil| _

0.
i I

However, using (6.6) and wy = Ty.py, we have that [Ty By ][Yx Zx]~'dy = Tppy+Brpz = wi+ Bipz,
giving the desired result.
O
We can now prove the final result of this section. The analysis is complicated by the fact that
BFGS updating may not always take place, and by the fact that the correction terms are some-
times computed by finite differences and sometimes by Broyden’s method. We therefore consider
the following three sets of iterates, based on Update Criterion I and illustrated in Figure 2.

o Ri= {1 < 2R8I,
o Ro={j¢ Ri|[I0Y)]] < I N1/} %,
o Ry = {1 > 1111/},
and note that both v; and o are summable.

Theorem 6.3 Suppose that the iterates generated by Algorithm II converge R-linearly to a point
z, that satisfies Assumptions 5.1, and suppose that oy = 1 for all large k. Then the rate of
convergence is 1-step Q-superlinear.
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Proof. Since di, = Yipy + Zipz, we have

[ g ] = [Ys Zi]~Yds.

Therefore, Assumption (5.3) implies that

oyl = OClldell), — llpzll = Oldxl])- (6.7)

Now

| Bepz + wi, — ZX Wi dy]| |Beps — 2 W Zpal| + Jwr — ZE W Yepy||

|Brpe — ZI Wi Zups|| + |lwr — ZE W Yipy||
+O(llexllpzl])-

Since by (6.7) the last term is of order o(||pz||) = o(||dx||), the objective of the proof is to show
that
| Bepz — 23 WaZupa|| + [Jwr — ZE WaYipy|| = of[|dx])), (6.8)

for this together with (6.3) will give the desired result. We consider the three regions Ry, Ra, and
R3 separately. Algorithm II is designed so that, in Rs, wy must be computed by finite differences.
On the other hand, since py is recomputed in Step 7, after which we can be in any of the three
regions, we see that in R and Rs wg may be computed by finite differences or by Broyden.

If k € Ry, we have that ||py|| = o(||pz|]) = o(||dk|]). We also know from (5.43) that w; =
O(]|py||) when the correction is computed by Broyden’s method, and by (5.21) this relation also
holds when wy is computed by finite differences. Therefore, for k € Ry,

ok — ZTW.Yipyll = o[l (6.9)
Furthermore, since updating always takes place in Ry, (5.26) holds:
| Bepz — ZL W Zopa|| = ol||di]]). (6.10)

We have thus established (6.8) for all k£ € R;.
Let us now suppose that £ € Rs, in which case w;, is computed by finite differences. Using
(5.22), we have that
Jwe — ZZWiYepy[| = ollpy () = o|ldx]]), (6.11)

where the last step follows from (6.7). Since updating always takes place in Rz, Equation (6.10)
also holds in this case, and we conclude that (6.8) holds for all £ € Ra.
Finally we consider the case when k € R3. Now py satisfies

pz = o(llpx[) = o(lldl])- (6.12)

If k € R3 and the correction term wy, is computed by Broyden’s method as wy, = S;Yipy (see
(3.12)), we have

llwy — ZS W Yipy|| 1(Sk = ZS W) Yipy||

1(Sk — ZIWa)d|| +1|(Sk — ZL W) Zepal|.

IN

Using (6.1), (6.12), and the boundedness of Sy, we see that the right-hand side is of order o(]|dx]|),
so that (6.11) holds. On the other hand, if wy, is computed by finite differences, we have directly
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from (5.22) that (6.11) holds. In addition, (6.12) and the boundedness of Bj show that (6.10)
holds for all £ € R3, regardless of whether finite differences or Broyden’s method are used.
O

7. Final Remarks

We have presented a new reduced Hessian algorithm for large-scale equality-constrained opti-
mization. The motivation for this work has been practical: our earlier reduced Hessian code, de-
signed for large problems, was often subject to instabilities, and we have aimed to develop a more
robust algorithm that resembles the full-space SQP method but is less expensive to implement.
In a forthcoming paper (Biegler, Nocedal, and Schmid (1993)), we discuss our computational
experience with the new method. That paper describes how to handle inequality constraints and
discusses numerous important details of implementation not considered here. These include the
choices of all constants and tolerances, the strategy for coping with the case when the basis matrix
C'in (2.1) changes, and the procedure for computing the damping parameter (i, which was only
outlined in (3.39). We also discuss in that paper how to apply the updating criterion away from
the solution. We believe that the new algorithm can be very useful for solving large problems,
especially those with few degrees of freedom.

We have focused only on convergence results that helped us in the design of the algorithm
and that revealed its main properties. The analysis was complicated by two factors. We did not
assume that the BFGS matrices By or the Broyden matrices S; were bounded, which required
careful consideration of their behavior. This analysis paid off by suggesting safeguards that are
useful in practice and ensure a superlinear rate of convergence. The other complicating factor
was the fact that the frequency of BFGS updating can vary drastically: it can take place at
every iteration, never, or in various patterns. As was found earlier by Xie (1991), it is necessary
to develop the theory in sufficient generality to cover all of these cases, and this significantly
increased the complexity of some of the results.

Acknowledgment. We thank R. Byrd for many interesting discussions on the subject of this
paper.
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Three regions generated by Update Criterion I
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