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2famous Ginzburg-Landau equations that are the subject matter of all the articlesin this section.The newly discovered superconductors belong to the class of Type-II supercon-ductors, characterized by a large value for a certain parameter, �, that appearsin the Ginzburg-Landau equations. Typically, � is in the range of 100 and above.Back in 1957, Abrikosov showed the existence of vortices of supercurrent in Type-II superconductors. The practical implication of these vortices is the one of themost active topic of investigation in the study of superconductors.The papers in this section represent recent e�orts by mathematicians to studythe Ginzburg-Landau model. Du, Gunzburger, and Peterson discuss various vari-ations of the classical model. Chapman investigates the development of the in-terface between normal and superconducting regions in a Type-I material. Kwongdescribes some numerical experiments in solving the static Ginzburg-Landau equa-tions. Du and E each looks at the time-dependent Ginzburg-Landau equations andstudies the dynamics of vortices. The authors, M. Jones, P. Plassmann, and S.Wright, of the talk \Inexact Newtons methods and the Ginzburg-Landau modelfor Type-II superconductors" would like to refer the readers to their recent article"Solution of large, sparse systems of linear equations in massively parallel applica-tions", Proceedings of Supercomputing '92, Minneapolis, Nov. 16{22, pp. 551{560,IEEE Computer Society Press, Los Alamitos, California.The most current �ndings in experimental physics indicate that modi�cationsto the original Ginzburg-Landau theory is needed to adequately describe the phe-nomena exhibited by the new superconductors, which have a layered structure atthe atomic level and possess high anisotropy. Impurities in the material act as pin-ning centers for vortices and random thermal noise tends to depin them. Theoret-ical physicists have even suggested the existence of more phases: the vortex-liquidand vortex-glass phases, but the debate is still going on.The papers presented here serve to give a better understanding of the classicalmodel and will surely shed some light on how to modify it to accommodate thenewer theories.



[Page 3]AsymptoticAnalysis of theGinzburg-LandauModel ofSuperconductivity:Reductionto a FreeBoundaryModelS. J. Chapman�yAbstract. A formal asymptotic analysis of the Ginzburg-Landau model of superconduc-tivity is performed and it is found that the leading order solution satis�es a vectorialversion of the Stefan problem for the melting or solidi�cation of a pure material. The�rst order correction to this solution is found to contain terms analogous to those of sur-face tension and kinetic undercooling in the scalar Stefan model. However, the \surfaceenergy" of a superconducting material is found to take both positive and negative values,de�ning type I and type II superconductors respectively, leading to the conclusion thatthe free boundary model is only appropriate for type I superconductors.1991 Mathematics Subject Classi�cation: 35R35, 82D55.1. IntroductionIt is observed experimentally that the magnetic �eld in the interior of a ma-terial in the superconducting state is zero, even though there may be a non-zero�eld in the region adjacent to the superconductor (this e�ect is usually knownas the Meissner e�ect). However, a superconductor can only exclude �elds belowa certain magnitude, known as the critical magnetic �eld Hc. If the �eld in theadjacent region exceeds the critical magnetic �eld, then superconductivity will bedestroyed and the sample will gradually be converted back to the normally con-ducting (normal) state, with the �eld gradually penetrating it. While this conver-sion is occurring the superconductor might consist of an expanding normal regionseparated from the remaining superconducting region by a smooth boundary �.* The author gratefully acknowledges the �nancial support of the SERC during theperiod that this research was carried out.y Present address: Mathematical Institute, 24-29 St. Giles, Oxford OX1 3LB.



4 S.J. ChapmanThe following free boundary model for this situation was derived in [6]:@H@t = r2H in the normal region; (1)H = 0 in the superconducting region; (2)jH j = Hc on �N ; (3)curl H ^ n = �vnH on �N ; (4)together with suitable initial and boundary conditions, where �N denotes theinterface � approached from the normal region, and vn is the normal velocityof the interface. This model is derived from Maxwell's equations, neglecting thedisplacement current. Latent heat and Joule heating e�ects are also neglected, sothat the conversion is assumed to occur under isothermal conditions. Equation(2) describes the Meissner e�ect, equation (3) describes the critical magnetic �eld,and equation (4) follows from ux conservation across the interface �.The model (1)-(4) is similar in form to a one-phase Stefan problem, albeit ina vectorial form, which is itself the simplest macroscopic model that could bewritten down for the evolution of a phase boundary in the theory of the melting orsolidi�cation of a pure material [7] (in certain two-dimensional situations (1)-(4)reduces exactly to a one-phase Stefan model [16]. In its simplest dimensionlesstwo-phase form, the Stefan model is@T@t = r2T in both solid and liquid phases; (5)T = Tm on �; (6)�@T@n �LiquidSolid = �Lvn; (7)where T is the temperature, Tm is the melting temperature, L is the latent heat,and [ ] denotes the jump in the enclosed quantity across the phase boundary �.When the melting temperature is constant this model is know to be well-posedjust as long as neither superheating nor supercooling occurs, i.e. Tsolid < Tm,Tliquid > Tm [15]. In the superconductivity problem this corresponds to jH j> Hcin the normal region. If either of these conditions is violated the model is ill-posedand thus needs to be regularised [8]. A popular way of doing this is to includesurface tension (Gibbs-Thompson) and/or kinetic undercooling e�ects [19] so thatTm is not constant, but given byTm = ��~�� �vn; (1:8)where ~� is the mean curvature of the interface, with a suitable sign, and � and � arepositive constants; � is known as the surface energy. An analogous regularisation ofthe model (1)-(4) was proposed in [17] in which it was suggested that the interfacecondition (4) should be modi�ed tojH j= Hc � Hc2 �~�; (1:9)



Asymptotic Analysis of the Ginzburg-Landau Model 5as � is approached from the normal region, where � is the surface energy of a nor-mal/superconducting interface. The physical justi�cation for the addition of sucha term in the superconductivity model is not as clear as that for the solidi�cationmodel.An alternative regularisation of the Stefan model is the phase �eld model [1]in which the free boundary is smoothed out altogether by the introduction of anorder parameter F 2 [�1; 1], such that (5) is replaced by@T@t + L2 @F@t = r2T: (1:10)The order parameter represents the mass fraction of material to have changedphase from solid (F = �1) to liquid (F = 1). Equation (10) is coupled with anevolution equation for F , obtained by equating the time variation of F to thevariational derivative of a suitably chosen free energy functional, in the form�@F@t = ��2r2F + 12a (F � F 3) + 2T ; (1:11)here �, � and a are all positive constants. Numerical simulations of (10)-(11)have been performed which seem to indicate their well-posedness [3]. Their mostintriguing feature from the present point of view however, is their ability to reduceformally to the classical and modi�ed Stefan models as a, � and in some cases �tend to zero [2].We aim here to perform a similar analysis of the superconductivity problem.We �rst introduce the Ginzburg-Landau equations of superconductivity, in whichthe phase boundary is smoothed as in the phase �eld model. We then perform anasymptotic analysis as certain parameters in the model tend to zero, and retrievethe vectorial Stefan model at leading order. An examination of the magnitudeof the magnetic �eld at �rst order will reveal the emergence of \surface tension"and \kinetic undercooling terms", as in the modi�ed Stefan model. However, the\surface energy" of a normal/superconducting interface can take both positive andnegative values, de�ning type I and type II superconductors respectively, and sois not always a stabilizing inuence.2. AsymptoticAnalysisFor a more complete introduction to the Ginzburg-Landau theory of supercon-ductivity the reader is referred to [6,9,13,14] and the references therein. Here wemerely state the dimensionless, time-dependent Ginzburg-Landau equations as���2 @	@t � ��i� 	� +��r� i�A�2	 = 	(j	 j2 �1); (12)��2(curl)2A = �2�@A@t +r��+ i��2 (	�r	�	r	�)+ j	 j2 A; (13)



6 S.J. Chapmanwhere 	 is the (in this case complex) superconducting order parameter (with 	�denoting its complex conjugate), and A and � are the magnetic vector and electricscalar potential respectively, which are such thatH = curl A; E = �@A@t �r�; (14)A is unique up to the addition of a gradient; once A is given � is unique up tothe addition of a function of t. Here �, � and � are positive material constants;� is known as the penetration depth, � as the coherence length. The ratio of theselengthscales is the Ginzburg-Landau parameter � = �=�.Equations (12)-(14) are gauge invariant, in the sense that they are invariantunder transformations of the typeA! A +r!; �! �� @!@t ; 	! 	ei!=��:We may write the equations in terms of real variables by introducing the new,gauge invariant potentialsQ = A� ��r�; � = �+ ��@�@t ; (15)where 	 = fei�. We then obtain the following equations for f , Q and �:��� @f@t + �2r2f = f3 � f + f jQj2�2 (10)�f2�+ div �f2Q� = 0; (17)��2(curl)2Q = �2�@Q@t +r��+ f2Q: (18)We seek limiting behaviour as �, � ! 0. We have the following proposition.Proposition. In the formal asymptotic limit of the Ginzburg-Landau model (16)-(18) as �, � ! 0, with � = �=� �xed, the leading order solution satis�es thefree-boundary model (1)-(4).We assume that the solution comprises normal and superconducting domainsseparated by thin transition regions. Away from any transition regions we seekasymptotic expansions of the formf � f (0) + �f (1) + � � � ; (19)Q � Q(0) + �Q(1) + � � � ; (20)H �H(0) + �H(1) + � � � ; (21)� � �(0) + ��(1) + � � � : (22)We then �nd that either f (0) = 0 or Q(0) = 0, corresponding to normal andsuperconducting regions respectively. Proceeding to second order in these outerexpansions we �nd that f (1) = 0 in the normal region, and hence@Q(0)@t +r�(0) = �(curl)2Q(0); H(0) = curl Q(0);



Asymptotic Analysis of the Ginzburg-Landau Model 7so that @H(0)@t = r2H(0); (23)there, as in (1). In the superconducting region we �nd H(0) = 0, and f (0) = 1.It remains to consider a local analysis of a transition layer between two suchregions. When local coordinates parallel and perpendicular to the transition regionare introduced, as in [4] we �nd that the leading order solution corresponds to astationary, one-dimensional transition, providing the velocity and curvature of the`interface' are not too large. We �nd that the magnetic �eld and the potential areboth parallel to the interface, and that at leading orderf 00 = �2(f3 � f + fQ2); (24)Q00 = f2Q; (25)H = Q0; (26)where H and Q are the magnitudes of the magnetic �eld H and vector potentialQ respectively, and 0 = d=dz where z is the (stretched) coordinate normal to thetransition layer. In order for the solution to these equations to match with thepreviously derived outer solutions in the normal and superconducting regions, werequire f ! 1; Q! 0; as z !�1 (superconducting); (27)f ! 0; as z !1 (normal): (28)Integrating (24)-(25) once it is now easy to deduce1H ! 1p2 as z !1: (29)By matching, this means that, as we approach the phase boundary from the normalregion, the magnitude of the magnetic �eld tends to 1=p2, which is equal to thecritical magnetic �eld in these units. Thus we have recovered the free-boundarycondition (3).Beyond this level the asymptotic analysis becomes more intricate. By proceed-ing to �rst order in the transition layer equations it is possible to show thatlimz!1(@H(1)i@z + ~�(0)i H(0)i ) = �v(0)n limz!1H(0)i ; i = 1; 2; (30)where, to leading order, v(0)n is the normal velocity of the phase boundary, ~�(0)1and ~�(0)2 are the principal curvatures of the phase boundary, and H(0)1 and H(0)2are the components of the magnetic �eld in the principal directions. By matchingwith the outer normal region these conditions can be shown to imply (4).We have thus arrived at the free-boundary model (1)-(4) at leading order.1 For a rigirous demonstration of this result see [5].



8 S.J. ChapmanIf we continue with the asymptotic analysis we �nd that up to second order thematching condition for the magnitude of the magnetic �eld as the phase boundaryis approached from the normal region isjH j!Hc � �Hc2 n�v(0)n + �(~�(0)1 + ~�(0)2 )o ; (31)where � and � are constants determined by the structure of the solutions to (24)-(25) (� is the `surface energy' of a normal/superconducting interface). As expectedthere is a correction proportional to the normal velocity and a correction pro-portional to the mean curvature of the interface. However, the surface energy �may take both positive and negative values according to whether � < 1=p2 or� > 1=p2, de�ning type I and type II superconductors respectively. The constant� also depends on the size of � in (16)-(18), but again may take positive andnegative values.We recall that when the corresponding constants were positive in the modi�edStefan model, they stabilised what would have been an ill-posed problem in theirabsence. Here it seems that the second term at least is only stabilising when� < 1=p2, i.e. for type I superconductors. Even in this case, because the stabilizingterms appear only at �rst order they will not appreciably a�ect the solution untilthe interface curvature or normal velocity becomes very large. Thus we expectquite intricate morphologies, even for solutions to the Ginzburg-Landau equations.Numerical simulations and experimental results seem to support this conjecture[11,18,10,20].For type II superconductors the correction terms are destabilizing, and thuseven in situations in which the free-boundary model is well posed, it may notaccurately represent the solution to the Ginzburg-Landau equations. A commonobservation for type II superconductors is that the normal regions form `cores' ofsize comparable to the thickness of a domain boundary [12]. In such a situationthe preceding asymptotic analysis, and therefore the free-boundary model, is notvalid. References[1] Caginalp, G., The Dymanics of a conserved Phase Field System: Stefan-like, Hele-Shaw and Cahn-Hilliard Models as Asymptotic limits. IMA J. Appl. Math. 44, 77-94(1990).[2] Caginalp, G., Stefan and Hele-Shaw Type Models as Asymptotic Limits of the PhaseField Equations. Phys. Rev. A39, 5887 (1989).[3] Caginalp, G. & Lin, J., A numerical analysis of an anisotropic phase �eld model.IMA J. Appl. Math. 39, 51-66 (1987).[4] Chapman, S. J., Asymptotic Analysis of the Ginzburg-Landau Model of Supercon-ductivity: Reduction to a Free Boundary Model. Preprint (1992).[5] Chapman, S. J., Howison, S. D., McLeod, J. B. & Ockendon, J. R., Normal-super-conducting transitions in Ginzburg-Landau theory. Proc. Roy. Soc. Edin. 119A, 117-124 (1991).



Asymptotic Analysis of the Ginzburg-Landau Model 9[6] Chapman, S. J., Howison, S. D. & Ockendon, J. R., Macroscopic Models of Super-conductivity. To appear, SIAM Review (1992).[7] Crank, J. C., Free and Moving Boundary Problems. Oxford (1984).[8] Crowley, A. B. & Ockendon, J. R., Modelling Mushy Regions. Appl. Sci. Res. 44, 1-7(1987).[9] Du, Q., Gunzburger, M. D. & Peterson, S., Analysis and Approximation of theGinzburg-Landau Model of Superconductivity. SIAM J. Appl. Math. 34, 54-81(1992).[10] Faber, T. E., The Intermediate State in Superconducting Plates. Proc. Roy. Soc.A248, 461-481 (1958).[11] Frahm, H., Ullah, S. & Dorsey, A. T., Flux Dynamics and the Growth of the Super-conducting Phase. Phys. Rev. Lett. 66, 23, 3067-3070, (1991).[12] Essmann, U. & Tr�auble, H., The Direct Observation of Individual Flux Lines in TypeII Superconductors. Phys. Lett. A24, 526 (1967).[13] Ginzburg, V. L. & Landau, L. D., On the Theory of Superconductivity. J.E.T.P. 20,1064 (1950).[14] Gor'kov, L. P. & �Eliashberg, G. M., Generalisation of the Ginzburg-Landau equationsfor non-stationary problems in the case of alloys with paramagnetic impurities. SovietPhys. J.E.T.P. 27, 328 (1968).[15] Howison, S. D., Lacey, A. A. & Ockendon, J. R., Singularity Development in MovingBoundary Problems. Q. J. Mech. Appl. Math. 38, 343-360 (1985).[16] Keller, J. B., Propagation of a magnetic �eld into a superconductor. Phys. Rev. 111,1497 (1958).[17] Kuper, C. G., Philos. Mag. 42, 961 (1951).[18] Liu, F., Mondello, M. & Goldenfeld, N., Kinetics of the Superconducting Transition.Phys. Rev. Lett. 66, 23, 3071-3074 (1991).[19] Luckhaus, S., Solutions for the two-phase Stefan problem with the Gibbs-Thomsonlaw for the melting temperature. EJAM 1, 101-112 (1990).[20] Tr�auble, H. & Essmann, U., Ein hochau�osendes Verfahren zur Untersuchung mag-netischer Strukturen von Supraleitern. Phys. Stat. Sol. 18, 813-828 (1966).



[Page 10]Time-dependentGinzburg-Landaumodels for superconductivityQiang Du* yAbstract. We discuss analytical and numerical results for the initial-boundary valueproblems of the time-dependent nonlinear Ginzburg-Landau equations which are evo-lutionary macroscopic models of superconductivity. We present theorems on the well-posedness of the equations and the convergence of semidiscrete �nite dimensional Galerkinapproximations. Fully-discrete schemes are also studied here together with numerical ex-periments.1991 Mathematics Subject Classi�cation: 82D55, 35A05, 35A40, 81J05.0. IntroductionThe time-dependent Ginzburg-Landau equations for superconductivity were de-rived by Gor'kov and Eliashberg [15] based on an averaging of the BCS theory(see also [2] and [25]). The equations are nonlinear evolutionary di�erential equa-tions for the complex order parameter  , the real vector magnetic potential Aand the real scalar electric potential �. These models have been widely used tostudy the dynamics of the superconducting transition, especially for the type-IIsuperconductors [1] where the generation and the interaction of \ux vortices" areof great interests.Here, we briey discuss some recent works on the time dependent Ginzburg-Landau (TDGL) equations. The paper is organized as follows: �rst, we presentsome analytical results concerning the well-posedness of the initial boundary valueproblems for the TDGL equations. Then, we consider the �nite dimensional ap-proximations. Both semi-discrete and fully-discrete approximations will be dis-cussed. Finally, we present some preliminary results from our numerical experi-ments. Due to space limitations, our discussion is not complete and proofs areomitted. For more discussion, we refer to [6] and future reports.* This author gratefully acknowledges the assistance from the session organizers, Dr.M.K. Kwong and Dr. C.Y. Chan.y Present address: Department of Mathematics, Michigan State University, E. Lansing,MI 48824, U.S.A.. Email: du@mth.msu.edu



Time-dependent G-L model for superconductivity 111. Time dependent Ginzburg-Landau equationsThe time dependent Ginzburg-Landau models of superconductivity are closelyrelated to the steady state Ginzburg-Landau models. The latter can be found inmany classic books on superconductivity, e.g., [2,25]. For a recent survey on thesteady state models, we refer to [7]. More results and references on the steadystate models may be found in [4,5,8-11,13,18,19] and [26]. The relations betweenthe time dependent equations and the basic hypotheses of the Ginzburg-Landautheory of superconductivity were discussed in [6]. In [22] and its subsequent works,J. Neu studied the asymptotic behavior of the vortex structure and its dynamicsfor similar time-dependent G-L equations. For time-dependent models, see also[4,5,12,17,21] and [23].In order to present the models with simplicity, let us introduce a nondimen-sionalized form of the free energy functional given byG( ;A) = Z
 ���� i�r �A ��2 + 12(j j2 � 1)2 + jcurl A �Hj2� d
 : (1:1)where � is the Ginzburg-Landau parameter andH the external �eld. For simplicity,H is assumed to be constant here.The steady-state Ginburg-Landau equations are the Euler-Lagrange equationsfor the minimizers of the functional G. The time dependent equations may beformulated as�@ @t + i��� + �� i�r�A�2 �  + j j2 = 0 in 
 ; (1:2)curl curl A = �E � i2� ( �r �  r �)� j j2A in 
 ; (1:3)where E = @A@t +r� : (1:4)The boundary conditions are� i�r +A � � n = 0 on � ; (1:5)curl A� n = H � n on � (1:6)and E � n = 0 on � : (1:7)The initial conditions are  (x; 0) =  0(x) in 
;and A(x; 0) = A0(x) in 
:



12 Qiang DuWe assume that j 0(x)j � 1; a:e:, which means that the magnitude of the initialorder parameter does not exceed the value at superconducting state.One can naturally rewrite the equations as�@ @t + i��� = � �G� ;@A@t = � �G�Awhere � denotes the �rst variation of the functional. The term i�� maintains thegauge invariance of the equations [6].A more general system of mathematical equations than (1.2-1.4) is given by:�@ @t + i�� +� i�r+A�2 � �(1 � j j2) = 0 ; (1:8)� @A@t � rdiv A+ curl curl A+ �r� = � i2� ( �r �  r �)� j j2A ; (1:9)and, often, augmented by div A = 0. The parameters �; ; � and � are usuallyreal while �; �; � may take either real or complex values. Various special caseshave been studied in many areas. For example, (1.8) gives the complex Landau-Ginzburg equations in the hydrodynamic stability theory when A and � are set tobe zero. In the context of superconductivity, J. Neu studied cases where � = � =0; � = 1; � 6= 0, and � = 1 or i, corresponding to either irreversible or reversibleprocesses. We shall study the above general equations and their physical meaningsin the future. However, here we focus on (1.2-1.4), which is the only possible formof (1.8-1.9) where the so called gauge invariance of the equations is perserved.Throughout, for any non-negative integer s, Hs(D) denotes the Sobolev spaceof real-valued functions having square integrable spatial derivatives of order up tos in a domain D. The corresponding spaces of complex-valued or vector-valuedfunctions are denoted by Hs(D) and Hs(D) respectively. A similar notationalconvention holds for other Sobolev spaces [3]. The following subspaces of H1(
)are also used: H1n(
) = fQ 2 H1(
) : Q � n = 0 on � g ;H1n(div ; 
) = fQ 2 H1(
) : div Q = 0 in 
 and Q � n = 0 on � g :To take into account the time-dependence, we let S = L2(0; T ;L2(
)) andV = L1(0; T ;H1n(
)) \H1(0; T ;L2(
)) :Also, we let S = L2(0; T ;L2(
)) andV = L1(0; T ;H1(
)) \H1(0; T ;L2(
)) :



Time-dependent G-L model for superconductivity 13For convenience of study �nite element approximations, we assume that 
 isa bounded convex polygon or convex polyhedron in RI d, where d = 2 or 3. Resultscan be extended to domains with smooth boundary if curved �nite element spacesare used. 2. Well-posed gauge choicesThe time-dependent Ginzburg-Landau equations (1.2)-(1.6) with the prescribedboundary conditions have the gauge invariant property, see [6,25]. Consequently,it indicates that the time-dependent Ginzburg-Landau equations given above lackuniqueness and thus are not well-posed. One must �x the gauge in order to obtainmathematically well-posed equations. Such a procedure was done in [6]. Severalpossible gauge choices were given, corresponding to one of the following conditionson the solutions: � div A = 0; or� div A = �; or� � = 0.Here, we focus our attention to the third gauge which eliminates the electricpotential �. This is one of the most frequently used gauge choice in numericalsimulations, see, for example, [21]. All results apply to other gauges by means ofgauge transformations. In this gauge, the equations become:�@ @t +�� i�r�A�2 �  + j j2 = 0 in 
 ; (2:1)@A@t + curl curl A = � i2� ( �r �  r �)� j j2A in 
 : (2:2)The boundary conditions are r � n = 0 on � ; (2:3)curl A� n = H� n on � ; (2:4)A � n = 0 on � ; (2:5)and at t = 0, div A = 0 in 
.First, the solution ( ;A) 2 V�V of equations (2.1)-(2.5) satis�es the followingweak formulation:� ddt ( ; ~ ) + (�� i�r �A � ; �� i�r ~ �A ~ �)+ ([j j2 � 1] ; ~ ) = 0 ; 8 ~ 2 H1(
) ; (2:6)



14 Qiang Duddt (A; ~A) + (curl A; curl ~A) + (j j2A; ~A)+ ( i2� ( �r �  r �); ~A) = (H; curl ~A) ; 8 ~A 2H1n(
) : (2:7)Concerning the weak form, we haveTheorem 1. Given T > 0, if  0 2 H1(
), A0 2H1n(div ; 
) and j 0(x)j � 1; a:e:,then there exists a unique solution ( ;A) 2 V � V to the equations (2.1-2.3).Moreover, it satis�esG( (t);A(t)) + Z t0 "@A@t (� )20 + � @ @t (� )20# d� = G( 0;A0) ; 8 t 2 (0; T );and there exists a constant c > 0, only depend on the initial condition, such thatkdiv A(t)kL1(0;T ;L2(
)) � c ;j j � 1 ; a:e: ;k kL2(0;T ;H2(
)) � c ;kcurl AkL2(0;T ;H1(
)) � c ;and div @A@t L2(0;T ;L2(
)) � c : utThe above results were �rst proved in [6] (Theorem 3.13 and Lemma 3.14) us-ing techniques in [20,24]. They were also presented in [11]. Continuous dependenceon the initial data and other related results may also be found in [6]*. To studythe existence and uniqueness of the solutions of the above system, the followingmodi�ed problem was introduced [6]:Find ( �;A�) 2 V �V such that� ddt( �; ~ ) + (�� i�r � �A� �� ; �� i�r ~ �A� ~ �)+ ([j �j2 � 1] �; ~ ) = 0 8 ~ 2 H1(
) ; (2:6�)ddt(A�; ~A) + (curl A�; curl ~A) + �(div A�;div ~A) + (j �j2A�; ~A)+ <�� i�r �;  � ~A�� = (H; curl ~A) 8 ~A 2H1n(
) (2:7�)* After the Congress, the author received a similar existence result given by Z. Chen,K.H. Ho�mann and J. Liang for the TDGL equations in the second gauge � = div Aon domains with C2 boundary. They obtained an interesting H2 regularity result forthose domains and used techniques that are di�erent from those in [6].



Time-dependent G-L model for superconductivity 15and the initial conditions are the same as the original equations, so that they areindependent of �.Here, � > 0 is an arbitrary parameter. Note that the above modi�ed systemreduces to the original system (2.6)-(2.7) when � = 0.3. Semi-discrete �nitedimensional approximationHere, we present the semi-discrete Galerkin �nite dimensional approximation of thetime-dependent Ginzburg-Landau equations in the zero electric potential gauge.By semi-discrete, we mean only the discretization in spatial variables is considered.In [6], we have studied abstract �nite dimensional Galerkin approximationsfor the system (2:6�); (2:7�). Let �n and Zn be n-dimensional subspaces of H1n(
)and H1(
) respectively such that[�n is dense in H1n(
), and [Zn is dense in H1(
) :The standard Galerkin �nite dimensional approximation may be given by:Find ( �n(t);A�n(t)) 2 Zn � �n such that(r �n(0);r ~ n) + ( �n(0); ~ n) = (r (0);r ~ n) + ( (0); ~ n) 8 ~ n 2 Zn ; (3:1�)(rA�n(0);r ~An) + (A�n(0); ~An) = (rA(0);r~An) + (A(0); ~An) ; (3:2�)for any ~An 2 �n and� ddt ( �n; ~ n) + (�� i�r �n �A�n �n� ; �� i�r ~ n �A�n ~ n�)+ ([j �nj2 � 1] �n; ~ n) = 0 8 ~ n 2 Zn ; (3:3�)ddt(A�n; ~An) + (curl A�n; curl ~An) + �(div A�n;div ~An) + (j �nj2A�n; ~An)+ <�� i�r �n;  �n ~An�� = (H; curl ~An) 8 ~An 2 �n : (3:4�)The following result was proved in [6].Theorem 2. Given T > 0, if  0 2 H1(
), j 0(x)j � 1; a:e: and A0 2H1n(div ; 
),then for � � 0;, f( �n;A�n)g converges weakly in L2(0; T ;H1(
))�L2(0; T ;H1(
))to the unique solution ( �;A�) of (2:6�)� (2:7�) as n!1. In addition, for � > 0,( �n;A�n) converges strongly in L2(0; T ;H1(
)) � L2(0; T ;H1(
)) to the solution( �;A�) of (2:6�)� (2:7�) as n!1. ut



16 Qiang DuIn [6], it was also shown that solutions of the modi�ed problems convergeto the solution of the original system as � ! 0. Note also the �rst part of theconclusion applies to the original TDGL where � = 0.If we replace �n and Zn by �h and Zh, where �h and Zh are C0 �nite elementsubspaces of H1n(
) and H1(
) respectively, de�ned on a regular quasi-uniformmesh, parametrized by a parameter h that tends to zero, the corresponding solutionsequence ( �n;A�n) becomes a sequence of semi-discrete �nite element solution( �h;A�h). Assume that the spaces �h and Zh are constructed in a standard wayand h is some measure of the size of the �nite elements in the mesh. We assumethat the subspaces satisfy the following approximation properties:inf h2Zh k �  hk1 ! 0 as h! 0 8  2 H1(
) ; (3:5)infAh2�h kA�Ahk1 ! 0 as h! 0 8 A 2H1n(
) ; (3:6)One may consult [14] for conditions on the �nite element partitions such that(3.5)-(3.6) are satis�ed.Therefore, by the theorem, we haveCorollary 3. Under the conditions of the previous theorem, for any � � 0,the semi-discrete �nite element approximation ( �h;A�h) exists in [0; T ]. More-over, ( �h;A�h) is uniformly bounded in V � V, independent of h and �. Fur-thermore, for any � � 0, , the sequence ( �h;A�h) converges weakly or weakly *in V � V (and therefore strongly in S � S ) to the unique solution ( �;A�) of(2:6�) � (2:7�) as n ! 1. In addition, for � > 0, ( �h;A�h) converges strongly inL2(0; T ;H1(
)) � L2(0; T ;H1(
)) to ( �;A�) as n!1. utThe �nite dimensional dynamical system (3:3�) � (3:4�) is a gradient system[16], since the functional G� serves as a Lyapunov functional. Hence, we haveTheorem 4. Under the conditions of the previous theorem and the above assump-tions, the !-limit set of the system (3:3�) � (3:4�) is a subset of the equilibriumpoints which consists of solutions of the following equations:(�� i�r �h �A�h �h� ;�� i�r ~ h �A�h ~ h�)+([j �hj2 � 1] �h; ~ h) = 0 ; 8 ~ h 2 Zh ; (3:7�)(curl A�h �H; curl ~Ah) + �(div A�h;div ~Ah) + (j �hj2A�h; ~Ah)+ <�� i�r �h;  �h ~Ah�� = 0 ; 8 ~Ah 2 �h : (3:8�)utSolutions of (3:7�)� (3:8�) are the �nite element approximations of the steadystate Ginzburg-Landau equations. For a complete analysis, see [7] and [9].



Time-dependent G-L model for superconductivity 174. Fully-discrete approximationsSemi-discrete approximations only deal with spatial discretization and the result-ing equations form a system of ODEs. Fully discrete approximations may indicatehow the ODEs can be solved. Here, we use the implicit Euler method as an illus-tration. A interesting feature is the existence of a discrete Lyapunov like functionalcorresponding to such type of approximations which may be very useful for longtime integration.Let t0 = 0, and tn+1 = tn +�tn where �tn is the step size at the step n. Theinitial approximation is given by H1 projection. De�ne ( h0 ;Ah0 ) 2 Zh ��h by(r h0 ;r ~ h) + ( h0 ; ~ h) = (r (0);r ~ h) + ( (0); ~ h) 8 ~ n 2 Zn ; (4:1)(rAh0 ;r ~Ah) + (Ah0 ; ~Ah) = (rA(0);r ~Ah) + (A(0); ~Ah) 8 ~Ah 2 �h : (4:2)For n � 0, we have the implicit Euler scheme:�� hn+1 �  hn�t ; ~ h�+��� i�r hn+1 �Ahn+1 hn+1� ; �� i�r ~ h �Ahn+1 ~ h��+ ([j hn+1j2 � 1] hn+1; ~ h) = 0 ; 8 ~ h 2 Zh ; (4:3)�Ahn+1 �Ahn�t ; ~Ah�+ (curl Ahn+1 �H; curl ~Ah)+ �(div Ahn+1;div ~Ah) + (j hn+1j2Ahn+1; ~Ah)+ � i2� ( h�n+1r hn+1 �  hn+1r h�n+1); ~Ah� = 0 ; 8 ~Ah 2 �h : (4:4)Let us de�neJ hn ( ;A) = G( ;A) + Z
 ��jdiv Aj2 + ( �  hn)2�t + (A�Ahn)2�t � d
 : (4:5)One may show that J hn has at least one minimizer in Zh ��h which, in fact,is a solution of (4.3)-(4.4). Hence,Theorem 5. For any h > 0, �t > 0 and � � 0, there exists a solution to thesystem (4.3)-(4.4) for any n. Moreover, 8 n = 0; 1; :::,J hn ( hn+1;Ahn+1) � J hn ( hn;Ahn) :Lemma 6. Let C > 0 be a constant. If �t and �th�d=2 are su�ciently small,then for any � � 0, the functional J hn is convex for any ( h;Ah) in the setM = f( h;Ah) 2 Zh ��h j k hk0;4 � C ; kAhk0 � C ;and  i�r hn+1 +Ahn+1 hn+10 � Cg : ut



18 Qiang DuFrom theorem 5, uniform a priori estimates can be obtained for k hk0;4, kAhk0and k i�r hn+1 +Ahn+1 hn+1k0. Using the convexity of the functional, we can getTheorem 7. If �th�d=2 is su�ciently small, then for any � � 0, the functionalJ hn has a unique global minimizer which is a solution of (4.3) and (4.4). utRemark. In case � is taken to be a positive constant, independent of h, then, theproof of the above theorem may be modi�ed to show that if �t is small enough,then the global minimizer of J hn is unique for any h > 0, i.e., we do not need toassume that �th�d=2 is small. Detailed discussion will be given in future reports.Remark. In fact, the same proof is valid for the solution of the following problemwhich, by itself, is a time-discretized version of the original time-dependent G-Lequations:�� n+1 �  n�t ; ~ �+ ��� i�r n+1 �An+1 n+1� ; �� i�r ~ �An+1 ~ ��+ ([j n+1j2 � 1] n+1; ~ ) = 0 ; 8 ~ 2 H1(
) ;�An+1 �An�t ; ~A�+ (curl An+1 �H; curl ~A)+ �(div An+1;div ~A) + (j n+1j2An+1; ~Ah)+ � i2� ( �n+1r n+1 �  n+1r �n+1); ~A� = 0 ; 8 ~A 2 H1n(
) :Further analysis also gives the following result that is useful in implementingnumerical methods.Corollary 8. There is no local maxima for the functional J hn . utFor given h;�t; � > 0, the asymptotic behavior of the �nite element solution( hn;Ahn) can be studied. Using compactness, it is straightforward to getLemma 9. If �t is small enough, the limit set of the sequence f( hn;Ahn)g is asubset of the solution of (3:7�)� (3:8�). utThe solution set of (3:7�) � (3:8�) does not consist of only isolated points,even with � > 0 because of the U (1) symmetry in the order parameter. One canshow, however, for almost all �, there are only �nite number of isolated solutionsto (3:7�)� (3:8�), modulus the U (1) symmetry. It remains to be seen whether thiswill imply that the sequence f( hn;Ahn)g is convergent for almost all �.5. Numerical experimentsSome preliminary numerical experiments have been performed on a Sun Sparcsta-tion using a two-dimensional �nite element code similar to the one developed in[9] and [10]. The code may be used to study the formation and evolution of thevortices as well as ux pinning in inhomogeneous media. More extensive reports



Time-dependent G-L model for superconductivity 19on the experiments will be given in a joint report with M. Gunzburger and J.Peterson. Here, let us describe a simple experiments in which the TDGL equationsare solved using the above fully discrete schemes on a two-dimensional square box.The code uses piecewise biquadratic polynomials on a uniform spatial mesh. TheGinzburg-Landau parameter is � = 3 with external �eld at H = 1:5. The solutionshould correspond to a vortex state in this setting. The penetration depth is takento be three-tenth of the box size. For the particular experiment described here,initial conditions correspond to a pecfect superconducting state. We hereby includea few plots. Figure 1 shows the decay of the free energy and the magnetizationin time. Figure 2 and Figure 3 give contour plots of the magnitude of the orderparameter. Vortices �rst start to form near the midpoint of the boundary and thensettle down in the interior.
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[Page 22]Ginzburg-Landau typemodels for superconductivityyQiang Du1, Max Gunzburger2, and Janet Peterson3Abstract. Three di�erent models for superconductivity are presented. All are based onthe �rst, the Ginzburg-Landau model for superconductivity in bounded, homogeneous,isotropic samples. The second is a periodic model for which the physical variables areasssumed to be periodic with respect to some prescribed lattice in the plane. The thirdmodel is for variable thickness thin-�lms; this model may be useful in the study of uxpinning mechanisms.1991 Mathematics Subject Classi�cation: 81J05, 35J60.1. IntroductionThe Ginzburg-Landau model for superconductivity, introduced in 1950, hasmet with great success in describing macroscopic physical phenomena in super-conducting materials. The model introduced by Ginzburg and Landau pertainedto samples of �nite size that, insofar as their material properties were concerened,were isotropic and homogeneous. In Section 2, we briey describe this model.y We gratefully acknowledge the e�orts of the session organizers, Dr. C.Y. Chan andDr. M.K. Kwong.1 Department of Mathematics, Michigan State University, East Lansing, MI 48824,USA. E-mail: du@mth.msu.edu2 Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA. E-mail:gunzburger@vtcc1.cc.vt.edu. This author ackowledges the support of the Air ForceO�ceof Scienti�c Research and the Los Alamos National Laboratory.3 Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA. E-mail:peterson@vtcc1.cc.vt.edu. This author ackowledges the support of the Los AlamosNational Laboratory.



Ginzburg-Landau type models for superconductivity 23For various reasons, variations to the basic model introduced by Ginzburg andLandau are neceesary in order to successfully describe phenomena in supercon-ductors. For example, for type-II superconductors, the appearance of vortex-likesructures over length scales of a few hundred Angstroms obviates the use of �nitesize samples in a computational simulation. For this reason, the great majority ofsuch simulations have been carried out using periodic models for superconductiv-ity; these models have also been extensively used in analytical studies. Here, inSection 3, we describe a periodic model for superconductivity in the plane.Real superconducting thin-�lms are not necessarily of constant thickness, andindeed, there are reasons why one may want to purposely introduce thicknessvariations in such samples. In Section 4, we describe a variable thikness thin-�lmmodel.We should mention that there are other variants of the basic Ginzburg-Landaumodel that have been proposed and studied. For example, there are models foranisotropic superconductors such as the Lawrence-Doniach layered model and theanisotropic mass model. We do not cnsider these here, nor do we cosider timedependent models. Also, we assume that the reader has some familiarity with thebasic Ginzburg-Landau model for bounded samples.2. The �nite sampleGinzburg-Landau modelThere are many avaiable expositions of the Ginzburg-Landau model for supercon-ductivity in �nite samples; see, e.g., [1], [3], [4], [8], [14], [17], and [18]. Here, forthe sake of completeness, we simply state the governing equations for the model.The dependent variables of the Ginzburg-Landau model are the complex andscalar-valued order parameter  and the real and vector-valued magnetic potentialA. The nondimensionalized physical variables of interest are the magnetic �eldh = curlA, the current j = curlh, and the density of superconducting chargecarriers Ns = j j2. The sample occupies the domain 
 whose boundary is denotedby �. The Ginzburg-Landau equations are given by� i�r+A�2  �  + j j2 = 0 in 
and j = curlh = curl curlA = � i2�( �r �  r �)� j j2A+ curlH in 
 ;where H denotes the applied �eld and � denotes the Ginzburg-Landau parameter.We have the boundary conditions( i�r +A ) �n = 0 on � ; (2:1)and curlA� n = H� n on � :



24 Qiang Du and Max GunzburgerWe note that these equations may be derived by minimizing the Gibbs free energyG( ;A) = Z
 fn � j j2 + 12 j j4 + ����� i�r+A� ����2 + jhj2 � 2h �H! d
over a suitable function space. We note that generalizations of the boundary con-dition (2.1) have also been proposed; these stipulate that the vanishing right-handside be replaced by a term proportional to the order parameter.3. A periodicGinzburg-Landau modelWe now turn to a periodic Ginzburg-Landau type model for superconductivity.This model, or variants of it, has been extensively used in analytical and compu-tational studies of superconductivity. See, e.g., [2], [6], [9], [10], [11]-[13], [15], and[16]. Details concerning the presentation given below may be found in [9] and [10].Given two arbitrary vectors t1 and t2 that span RI 2, we say that a functionf(x) is periodic with respect to the lattice determined by t1 and t2 iff(x + tk) = f(x) for k = 1; 2 and 8 x 2 RI 2 :Given any point P 2 RI 2, a cell of the lattice with respect to the point P is theopen parallelogram 
P � RI 2 having a vertex at P and two sides aligned with thelattice vectors t1 and t2. We assume that the ectermal �eld is directed normal tothe plane of the lattice so that H = (0; 0; H)T and then also h = (0; 0; h)T .The basic assumption of the periodic Ginzburg-Landau model for supercon-ductivity concerns the periodic nature of the physical attributes of the supercon-ductor, i.e.,the density of superconducting charge carriers Ns, the magnetic�eld h, the current j, and the free energy density are periodic withrespect to the lattice vectors t1 and t2.In terms of the magnetic potential A and order parameter  , these infer thatcurlA ; j j ; and �1�grad��A� are periodic ; (3:1)where � denotes the phase of the order parameter, i.e.,  = j jei�. Note thatthe magnetic potential and order parameter themselves are not assumed to beperiodic.Another important notion is that of uxoid quantization. In the present con-text, we have that � �Bj
j = 2�n ; (3:2)where n denotes the integer number of uxoids associated with the lattice cell 
P ,j
j is the area of the lattice cell, and �B = (1=j
j) R
P h d
 denotes the averagemagentic �eld over the lattice cell.



Ginzburg-Landau type models for superconductivity 25The pairs ( ;A) and (�;Q) are said to be gauge equivalent if there exists a� 2 H2loc(RI 2) such that� =  ei� and Q = A+ 1�grad� :We then have the following result which allows one to deal with a periodic reducedmagnetic potential.Proposition 3.1 Let A and  = j jei� satisfy (3:1). LetA0 = �B2 � x2�x1� :Let Q be de�ned by�Q = �curl curlA 8 x 2 RI 2 and Q periodicand let � =  ei� = j jei(�+�) = j jei! ;where ! = �+ � and � 2 H2loc(RI 2) satis�es1�grad� = Q�A�A0 :Then, ( ;A) is gauge equivalent to (�;Q � A0). Moreover, Q and curlQ areperiodic, Q is uniquely determined, divQ = 0, and, ifgk(x) = � �B2 (x� tk) ; k = 1; 2 ;then A0(x+ tk)�A0(x) = �grad gk(x) ; k = 1; 2and !(x + tk)� !(x) = �gk(x) ; k = 1; 2 :Furthermore, the magnetic �eld h and the density of superconducting charge car-riers may be recovered from � and Q through the relationsh = curlA = curlQ+ �B and Ns = j j2 = j�j2 :The Gibbs free energy is invariant to gauge transformations, so that, withrepect to the lattice cell 
P , it may be written in the formG(�;Q) = Z
P �f0 � j�j2 + 12 j�j4+ ����� i�grad +Q�A0� �����2 + jcurl (Q�A0)j2! d
 ; (3:3)



26 Qiang Du and Max Gunzburgerwhere �, Q, and A0 satisfy the results of Proposition 3.1.Denote the right, left, top, and bottom sides of the parallelogram 
P by �+1,��1, �+2, and ��2, resepctively. Note that for k = 1 or 2, �+k is the locus ofpoints y 2 RI 2 such that y = x + tk for x 2 ��k.The \periodic" Ginzburg-Landau model is then to minimize the free energy(3.3) over all appropriate functions � and Q, i.e., functions having one squareintegrable derivative that also satisfy�(x + tk) = �(x)ei�gk (x) 8 x 2 ��k, k = 1; 2 ; (3:4)Q(x + tk) = Q(x) 8 x 2 ��k, k = 1; 2 ; (3:5)and divQ = 0 in 
P : (3:6)These constraints are motivated by Proposition 3.1.Standard techniques of the calculus of variations then yield the di�erentialequations curlcurlQ+ j�j2Q+<���( i�grad �A0)�� = 0 in 
Pand ( i�grad �A0) � ( i�grad�A0)� + (jQj2 + j�j2 � 1)�+ 2Q � ( i�grad �A0)� = 0 in 
Pand the natural boundary conditions�grad j�j�jx+tk = �grad j�j�jx 8 x 2 ��k; k = 1; 2 ;curl (Q�A0)jx+tk = curl (Q�A0)jx 8 x 2 ��k; k = 1; 2 ;and j�j�grad !̂ � �(Q�A0)�jx+tk= j�j�grad !̂ � �(Q�A0)�jx 8 x 2 ��k; k = 1; 2 ;where ! denotes the phase of �. Of course, (�;Q) also satisfy the essential condi-tions (3.4)-(3.6). The various boundary conditions imply that the magnetic �eld,the current, and the density of superconducting charge carriers are periodic acrossa lattice cell.



Ginzburg-Landau type models for superconductivity 27An examination of the periodic Ginzburg-Landau model indicates that themodel is uniquely speci�ed once �,A0, g1(x), g2(x), and 
P are chosen. Note thatA0 is determined once the average magnetic �eld �B is speci�ed and gk(x), k = 1; 2,are determined once �B and the lattice vectors tk, k = 1; 2, are speci�ed. Of course,these lattice vectors and a speci�cation of the point P completely determine thelattice cell 
P . Thus, choosing particular values for �, �B, P, t1, and t2 su�ces touniquely specify the model. However, not all of these may be chosen independently;they are related through the uxoid quantization condition (3.3) which containsthe additional parameter n, the number of uxoids associated with the lattice cell
P .It is known that an equilateral triangular arrangement of vortex-like struc-tures having one uxoid associated with each vortex yields the smallest value forthe Gibbs free energy. Thus, the preponderance of calculations employing peri-odic Ginzburg-Landau models have been carried out for such an arrangement.For example, one could choose n = 1 and use lattice vectors corresponding to aequilateral tringular lattice, i.e., t1 and t2 having the same length and having anangle of �=3 between them. Alternately, one could choose n = 2 and a rectangularlattice de�ned by orthogonal lattice vectors having lengths in the ratio of p3. Ineither case, the absolute lengths of the lattice vectors are then determined from �,�B, n, and the uxoid quantization condition (3.3).Note that we are specifying the average �eld �B, and not the external �eldH; this is a matter of convenience. Note that once (�;Q) is determined (from aparticular choice for �B), one may deduce the corresponing external �eld througha quadrature; see [5].A variety of results concerning solution of the periodic Ginzburg-Landau modelmay be found in [9]. The analysis of �nite element approximations for this model,as well as the results of some computational experiments are found in [10].4. A variable thickness thin-�lmmodelThin-�lms of superconducting material are often modeled as two-dimensional ob-jects. The third dimension, i.e., that across the �lm, is eliminated by an averagingprocedure. If the material properties of the material, viewed as a three-dimensionalobject, are homogeneous, and the thickness of the �lm is invariant with position,then the result of the averaging process will be a two-dimensional model havingconstant material properties. This is exactly the type of situation addressed bythe great majority of the analyses and approximations extant in the literature.



28 Qiang Du and Max GunzburgerIn practice, superconducting thin �lms are not of constant thickness. Varia-tions in thickness have signi�cant e�ects on the electromagnetics of the supercon-ductor, e.g., there is evidence that vortices can be trapped within narrow regions.One would like to develop a two-dimensional model that can account for thick-ness variations. Any such model would result from some sort of averaging processacross the �lm. This averaging process will vary from point-to-point in the plane ofthe �lm, and introduce the variable thickness into the coe�cients of the resultingtwo-dimensional model. Details concerning the derivaition of the model discussedbelow, as well as a variety of results concerning the model, may be found in [7].Here, we consider the case where a three dimensional thin layer in RI 3 issymmetric with respect to the (x; y)-plane. The z-axis is thus perpendicular to thesymmetry plane of the �lm. Thus, the thin-�lm 
� can be de�ned by
� = f(x; y; z) 2 RI 3 j (x; y) 2 
0 � RI 2; z 2 (��a(x; y); �a(x; y)) g ;where � is small parameter and a(x; y) is assumed to be smooth and a(x; y) �a0 > 0 for all (x; y) 2 
0. The external �eld is directed perpendicular to the planeof the �lm, i.e., H = (0; 0; H)T . Our interest is to study the G-L functional andits minimizers de�ned on 
� as �! 0.We de�ne the modi�ed free energy for the �lm byF�( ;A) = Z
�  12(j j2 � 1)2 + ������ i�r�A� ����2! d
+ Z
� �jcurlA�Hj2 + jdivAj2� d
 :We shall see that the inclusion of the last term merely designates a particular classof gauge choices for the magnetic potential. We also letF0( ;A) = lim�!0 12�F�( ;A) :Formally, we write  (x; y; z) =Xj=0 j(x; y)zjand A(x; y; z) =Xj=0Aj(x; y)zjfor z small, i.e., � small. In the sequel, we let ~V and V̂ denote the projections ofa three-vector V 2 RI 3 onto the (x; y)-plane and the z-axis; note that ~V � V̂ = 0and ~V + V̂ = V.



Ginzburg-Landau type models for superconductivity 29It can be shown thatF0( ;A) = lim�!0 12�F�( ;A)= Z
 a 12(j 0j2 � 1)2 + ����� i� ~r+ ~A0� 0����2! d
+ Z
 a�jcurl ~A0 �Hj2 + j ~A1j2 + a�2jdiva ~A0j2� d
 :This result motivates us to de�ne the functional~F0( 0; ~A0) = Z
0 a 12(j 0j2 � 1)2 + ����� i� ~r+ ~A0� 0����2! d
+ Z
0 �ajcurl ~A0 �Hj2 + a�1jdiva ~A0j2� d
 :Note that ~F0 involves only an integration over the two-dimensional planform 
0of the �lm, and that it also depends only on a two-dimensional magnetic potential~A0(x; y). Formally, one can show that if ( ;A) is a minimizer of F0 in H1(
�)�H1n(
�), then ( 0; ~A0) is a minimizer of ~F0 in H1(
0)�H1n(
0). Moreover,minH1(
�)�H1n(
�)F0 = minH1(
0)�H1n(
0) ~F0 :For a domain D in RI 2 or RI 3, let us introduce the function spaceH1n(D) = fQ 2H1(D) : Q � n = 0 on @D g :Also, H1(D) denotes the space of complex-valued functions whosse real and imag-inary parts belong to H1(D). Then, we have the following results. First, we havea result about the equivalence of minimizers of F0 and ~F0.Next, we have an existence result about minimizers of ~F0.Theorem 4.1. ~F0 has a minimizer ( 0; ~A0) in H1(
0)�H1n(
0). Moreover, everyminimizing sequence of ~F0 in H1(
0)�H1n(
0) has a subsequence which convergesstrongly to a minimizer of ~F0 in H1(
0)�H1n(
0).One may now derive the Euler-Lagrange equation for the minimizer of ~F0 inH1(
0)�H1n(
0); these constitute the variable-thickness Ginzburg-Landau equa-tions and are given by� i� ~r+ ~A0� � a� i� ~r+ ~A0� 0 + a(j 0j2 � 1) 0 = 0 in 
0 ;curl (acurl ~A0) + ar(div ~A0) + ar(a�1ra � ~A0)=� i2�a( �0r 0 �  0r �0) � aj 0j2 ~A0 + curl (aH) in 
0 ; (4:1)



30 Qiang Du and Max Gunzburger( i�r 0 + ~A0 0) � n = 0 on �0 ;and curl ~A0 = H on �0 :If we choose the the gague div (a ~A0) = 0then (4.1) simpli�es tocurl (acurl ~A0) = � i2�a( �0r 0 �  0r �0)� aj 0j2 ~A0 + curl (aH) in 
0 :A comparison of these equations with those of Section 2, the latter restrictedto the planar case, reveals the role of the thickness function a(x; y) in the variablethickness model. Note that if we set a = 1 in the above equations we recover thoseof Section 2.We now turn to the question of the consistincy of the variable thickness model.We have denoted a minimizer of ~F0, i.e., a solution of the variable thicknessGinzburg-Landau equations by ( 0; ~A0). For any � > 0 we denote a minimizerof the functional F�, �.e., a solution of the constant coe�cient, three-dimensionalGinzburg-Landau equations over the three-dimensional domain 
�, by ( �;A�).We want to show that, in an appropriate sense, ( 0; ~A0) is the limit of the sequenceof minimizers f( �;A�)g as �! 0.To this end, let� �(x; y) = 12�a Z �a��a  �(x; y; z)dz ; 8 (x; y) 2 
0and �A� = 12�a Z �a��aA�(x; y; z)dz ; 8 (x; y) 2 
0 :Thus, for any (x; y) 2 
0, � � and �A� are the averages across the �lmof the solutionsof the three-dimensional Ginzburg-Landau equations in the �lm, the latter viewedas a three-dimensional object. We then have the following consistency result.Theorem 4.2. The sequence f( � �; �A�)g converges strongly to a minimizer ( 0; ~A0)of ~F0 in H1(
0)�H1n(
0).This shows that the average of the solution in a three-dimensional thin-�lmconverges, as the thickness parameter � goes to zero, to the solution of the two-dimensional variable thickness thin-�lm model we have derived.
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[Page 32]DynamicsofVortices in Superconductors�Weinan E yAbstract. We study the dynamics of vortices in type-II superconductors from the pointof view of time-dependent Ginzburg-Landau equations. We outline a proof of existence,uniqueness and regularity of strong solutions for these equations. We then derive reducedsystems of ODEs governing the motion of the vortices in the asymptotic limit of largeGinzburg-Landau parameter.1991 Mathematics Subject Classi�cation: 65F05, 65N22, 82D55.1. IntroductionIn this paper, we report some of our results on the study of time-dependentGinzburg-Landau (TDGL) equations with application to the modeling of super-conductors. The present paper contains two topics: the well-posedness of TDGL(including existence, uniqueness and regularity) and the derivation of dynamicalequations governing the evolution of vortex solutions.The basic phenomenology of superconductivity is described by the Ginzburg-Landau free energy density [5]:f = 12m� ������hir� e�c A�'����2 + �j'j2+ �2 j'j4 + B28� (1:1)Here m� and e� are the e�ective mass and charge of the \Cooper pairs", ' is acomplex order parameter, with j j2 representing the density of super-electrons, Bis the induced magnetic �eld, A is the vector potential: B = r�A. In the absenceof �elds and gradients, f is reduced to the condensation energy: f = �j'j2+ �2 j'j4,where the temperature-dependent constants �(T ) and �(T ) satisfy:�(T ) � �0� TTc � 1� ; �(T ) > 0; �0 > 0: (1:2)Therefore for T > Tc, the minimum free energy occurs at j j2 = 0 (normal state),whereas for T < Tc, the minimum free energy occurs at j j2 = ��=� (supercon-ducting state). Tc is the transition temperature.* This work was partially supported by the Applied Mathematical Sciences subpro-gram of the O�ce of Energy Research, U.S., Department of Energy, under contractW-31-109-Eng-38



Dynamics of Vortices in Superconductors 33(1.1) de�nes two length scales: the penetration depth �(T ) which is the char-acteristic length scale associated with the variation of the magnetic �eld, and thecoherence length �(T ) which is associated with the variation of the order parameter : �2(T ) = �h22m�j�(T )j ; �2(T ) = m�c24�j'j2e�2 : (1:3)These two length scales are typically temperature-dependent, and diverge as T !Tc. However, their ratio � = �(T )�(T ) (1:4)is a roughly temperature-independent quantity and characterize the property ofthe material. � is called the Ginzburg-Landau parameter. It is known that if � <1=p2, the surface energy of a normal-superconducting interface is positive, and thematerial is called a type-I superconductor. If � > 1=p2, then the surface energyis negative and the material is called a type-II superconductor.Type-II superconductors exhibit an additional phase, called the mixed state,besides the usual normal and superconducting phases. This occurs when the exter-nal �eld H is between the lower and the upper critical �elds Hc1 and Hc2 . In themixed state, a superconducting bulk sample is shredded by tiny tubes of normalstates where magnetic �eld penetrates. These tiny tubes are called vortices sincethere is a screening current owing around each of the vortex.When a transport current is applied to the sample, the vortices will move be-cause of the various forces acting on them. From a phenomenological view point,the vortices typically experience the Lorentz force, the Magnus force and the vis-cous drag force. It is established that the motion of vortices causes resistance.Therefore, there is major theoretical as well as practical interest in studying thedynamics of vortices.In this paper we derive reduced system of ODEs which govern the dynamicsof the vortices in the asymptotic limit � � 1. We remark that typical high tem-perature superconductors such as YBCO and BiSCCO have rather large values of� (between 100 and 200). Although the Ginzburg-Landau equations have to bemodi�ed to describe the phenomenology of high Tc materials, the techniques wedevelop are su�ciently general that we expect similar results can also be derivedfor the high Tc materials, using for example the layered models [2].



34 Weinan E2. PreliminariesOur starting point for the dynamics of vortices is the TDGL equation: �'t + i e��h V '� = �� R fd3x�' (2:1)together with Maxwell's equation c4�r�B = J: (2:2)Here V is the electric potential, J is the total current. The time-derivative of 'has to enter in the combination 't + i e��h V ' because of the requirement of gaugeinvariance: If (';A; V ) is a solution of (2.1)-(2.2), then ('0; A0; V 0) should also bea solution where '0 = 'e�i e��hc �; A0 = A�r�; V 0 = V + 1c �t (2:3)and � is an arbitrary scalar function. The total current consists of two parts: thenormal part Jn which obeys Ohm's law and a super-current Js:J = Jn + Js = �nE + e�j'j2vs (2:4)Here �n is the normal state conductivity, E is the electric �eld, vs is the super-electron velocity: E = �1c At �rV; vs = 1m� ��hr� � e�c A� (2:5)� is the phase of the order parameter '.We nondimensionalize these equations by choosing new variables: x �! �x0,' �! '0'0, A �! �H0p2A0, t �! t0t0, V �! V0V 0, where '20 = ��=�,H0 = (�4��)1=2'0, t0 = 4��n�2=c2, V0 = �2H0p2=(t0c) The nondimensional-ized equations are (omitting the primes)8><>: �( 1�'t + iV ') = ( 1i�r�A)2'+ (1� j'j2)'At +rV = �r�r�A + j'j2(r�� �A) (2:6)where � = �e�V0�h�� depends on the properties of the material been studied.(2.6) holds inside the sample 
. Naturally, we associate (2.6) with the follow-ing boundary conditions on @
:� i�r'+A'� � n = 0 (2:7)r� A� n = H � n (2:8)E � n = 0 (2:9)



Dynamics of Vortices in Superconductors 35Here n is the outnormal on @
, H is the external �eld. (2.7) is a consequenceof (2.1) in nondimensionalized variables. (2.8) is a statement that there is nosurface current present at the boundary. Therefore the tangential component ofthe magnetic �eld should be continuous. We should also assign an initial data to(2.6)-(2.9): ' = '0(x); A = A0(x): (2:10)Clearly the solutions of (2.6) � (2.10) cannot be unique because of the freechoice of gauge. It is sometimes important to �x the gauge. It turns out thatone convenient way of �xing the gauge, particularly for the purpose of numericalcomputations, is to make the electric potential zero.In the rescaled variables, we have as � �! +1,Hc1 � `n�� ; Hc2 � �: (2:11)Therefore under a wide range of magnetic �elds, the material is in the mixedstate. Before studying the dynamics of vortices in this state, we will prove thebasic well-posedness theorems for the initial-boundary value problem (2.6)-(2.10).3. Existence, Uniqueness and RegularityIn this section we outline the argument and a priori estimates needed to establishexistence, uniqueness and regularity of strong solutions for (2.6)-(2.10). The keyto all of these is the observation that with the choice of gauge such that the scalarpotential is zero, (2.6)-(2.9) can be written as8>><>>: At = ��F (A;')�A�'t� = ��F (A;')�' (3:1)where F (A;') = Z f����( 1i�r� A)'����2 � j'j2 + 12 j'j4++ (r� A)2 � 2(r� A) �Hgd3x (3:2)(3.1) implies thatddt Z F (A;')d3x+ �� Z �����F�' ����2 d3x+ Z �����F�A ����2 d3x = 0: (3:3)



36 Weinan EIf F (A0; '0) < +1, we obtain from (3.3)F (A(�; t); '(�; t))+ Z t0 Z n �� ����F�' ���2 + �����F�A ����2od3xdt� F (A0; '0): (3:4)This is the basic energy estimate.Next let ' = fei�; f > 0. Using (2.6) we obtain an equation for f :8>><>>: �� ft = 1�2�f + (1� f2)f � ����r�� � A����2 f@f@n = 0 at @
 (3:5)where 
 is the domain occupied by the sample. A standard application of themaximum principle gives: If 0 � f(x; 0) � 1, then we have for t > 0,0 � f(x; t) � 1: (3:6)(3.4) gives control on the L2-norm of B = r�A. To control A, we also needto estimate r �A. From (2.6), we have(r �A)t = �(j'j2r �A+rj'j2 �A)� i2� ('�'� '�') (3:7)This, together with (3.4) and (3.6), gives an additional estimate for r �Amax0�t�T Z (r �A)2d3x � C(T ): (3:8)(3.4), (3.6) and (3.8) are the key a priori estimates needed to establish the existenceand uniqueness of strong solutions. Since the rest of the details are more or lessstandard, we will omit them and refer the interested reader to the paper of Du [3]who has independently found these estimates and proved the following result:Theorem Assume that '0; A0;H 2 H1(
). Then exists a unique solution (';A)of (2.6)-(2.10) (with V = 0), such that for any T > 0; ' 2 L1(0; T ;H1(
)) \L2(0; T ;H2(
)), A 2 L1(0; T ;H1(
));r�A 2 L1(0; T ;L2(
))\L2(0; T ;H1(
)):



Dynamics of Vortices in Superconductors 374. Dynamics of Interacting VorticesIn this section we derive reduced systems of ODEs which govern the evolutionof interacting vortices in the asymptotic limit as � �! 1. One di�culty in thisasymptotic analysis is the scaling of the di�erent time scales. Since ' and A havedi�erent length scales, we expect that their typical time scales can also be verydi�erent. However, the relative time scale of ' and A is a material-dependentquantity, and it is di�cult to decide how it should behave as � �! +1. Thereforewe will take the relative time scale of ' and A as another parameter � and studythe distinguished limit as � and 1� �! 0. Here we will only study the case when� = O(1). We refer the interested reader to [4] for details of the other distinguishedlimits.In this paper we will restrict ourselves to the following situation: an in�-nite cylindrical sample is placed in an external �eld parallel to the axis of thecylinder. In this case, the vortices are columnar and we only have to consider atwo-dimensional problem in the plane perpendicular to the axis of the cylinder.The basic phenomenology is the following. We have N vortices moving in theplane. Their core sizes are of O( 1� ), and they are O(1) distance apart. Let � = 1� ,we write (2.6) as �(�'t + iV ') = (�i�r� A)2'+ (1� j'j2)' (4:1)At +rV = �r�r�A+ j'j2(�r� � A) (4:2)where  = �=�.We will restrict ourselves to the case when � = 1. Rescale time t = t0�  andomit the primes we get�2't + iV ' = (�i�r�A)2' + (1� j'j2)'� At +rV = �r �r�A + j'j2(�r� �A): ((4:3))We proceed to analyze (4.3) using matched asymptotics. For simplicity we choosethe zero-electric potential gauge. It can be checked easily that the procedure wefollow does not depend on the gauge.Outer solutions:It is well-known that the ux carried by each vortex is quantized: Let usestimate the magnitude of the ux quanta. Away from the vortex core, the super-electron velocity is essentially zero. Therefore we haveI vs � d` = 0 (4:4)where the line integral is evaluated su�ciently far from the vortex core. Sincevs = �r� �A, we get I A � d` = � I r� � d` = 2�n�: (4:5)



38 Weinan EHere n = 12� H r�d` is the Poincare index of the vortex. It is known that if � > 1p2 ,then vortices with multiple indices (jnj > 1) are unstable. Therefore we will assumethat the Poincare index of the vortices satisfy jnj = 1.Denote by �j(t) the location of the j-th vortex and nj its Poincare index. Thetotal magnetic ux Z
 Hd2x = I@
 A � d` = 2��Xj nj (4:6)is of O(�). Based on this information, we make the following ansatz:'(x; t) = '0(x; t) + �'1(x; t) + �2'2(x; t) + : : :A(x; t) = �a1(x; t) + �2a1(x; t) + : : :H(x; t) = �h1(x; t) + �2h2(x; t) + : : : ((4:7))(4.7) should hold outside the cores of the vortices. Substituting (4.7) into (4.3) andcollecting equal powers of �, we get a hierarchy of equations. The O(�0) equationis: (1� j'0j2)'0 = 0 (4:8)(4.8) implies that j'0j = 1; '0 = ei�0(x;t): (4:9)The O(�) equations are: Re('0'1) = 0 (4:10)�r�r� a1 � a1 = 0 (4:11)or �h1 � h1 = 0 (4:12)(4.12) holds in the punctuated region outside the vortex cores. The boundarycondition for h1 near these cores are obtained from the inner solutions.Inner solutions:To study the inner solution in the core of the j-th vortex, we introduce thestretched coordinates X = x��j(t)� , and expand the variables as follows:' = �0(X; t) + � �1(X; t) + : : :A = � A1(X; t) + �2A2(X; t) + : : :H = � H1(X; t) + �2H2(X; t) + : : : (4:13)We immediately see that A1 should be zero since otherwise it will contribute toO(1) terms in H. Substituting (4.13) into (4.3) and collecting equal powers of �,we get, at O(�0): ��0 +�0(1� j�0j2) = 0 (4:14)



Dynamics of Vortices in Superconductors 39�r�r�A2 � i2h�0r�0 � �0r�0i = 0 (4:15)or �H1 � i2r� h�0r�0 � �0r�0i = 0: (4:16)These equations describe the leading order core structure. We look for solutionswhich take the form:�0(X; t) = f0(R)einj�;H1(X; t) = H1(R; t) (4:17)where (R; �) is the polar coordinate of X;nj = �1. (4.14) and (4.16) become:f 000 + 1Rf 00 + �1� f20 � 1R2�f0 = 0 (4:18)H001 + 1RH 01 + nj 2f0f 00R = 0: (4:19)Since the order parameter should vanish at the center of the core, and match tothe outer solution outside the core, f0 satis�es the boundary conditions:f0(0) = 0; f0(+1) = 1: (4:20)It can be proved [1] that such solution exists and satis�es1� f20 (R) � 1R2 = O( 1R4 ); for R� 1: (4:21)Since ZR2 2f0f 00R d2X = 2� +1Z0 2f0f 00dR = 2� (4:22)we have as R �! +1, H1(R) = �nj logR +C� + o(1) (4:23)where C� is a constant determined from matching to the outer solution.We now turn to the O(�) equations:� _�j � r�0 = ��1 +�1(1� 2j�0j2) ��20�1 (4:24)�r�r�A3 � i2h�1r�0 +�0r�1 � ��1r�0 +�0r�1�i = 0: (4:25)Let �1 = f1einj�. Then (4.24) becomes� _�1(f 00 cos � � inj f0R sin �) � _�2(f 00 sin � + inj f0R cos �)= �f1 + 2injrf1 � r� � 1R2f1 + (1� 2f20 )f1 � f20 f1: (4:26)Let f1 = A(R) cos � + B(R) sin � and separate real and imaginary parts:A(R) = Ar(R) + iAi(R); B(R) = Br(R) + iBi(R);



40 Weinan Ewe obtain the following equations for the real functions Ar(R); Br(R); Ai(R), andBi(R): � _�1f 00 = A00r + 1RA0r + �1� 3f20 � 2R2�Ar � nj 2BiR2 (4:27)� _�2f 00 = B00r + 1RB0r + �1� 3f20 � 2R2�Br + nj 2AiR2 (4:28)�n _�2 f0R = A00i + 1RA0i +�1� f20 � 2R2�Ai + nj 2BrR2 (4:29)n _�1f0R = B00i + 1RB0i + �1� f20 � 2R2�Bi � nj 2ArR2 : (4:30)Here we have adopted a slight abuse of notation: �j = (�1; �2).The solutions of these equations can be obtained through:Ar = _�1Z; Ai = _�2njWBr = _�2Z; Bi = � _�1njW (4:31)where Z and W satisfy�f 00 = Z00 + 1RZ 0 +�1� 3f20 � 2R2�Z + 2WR2 (4:32)�f0R = W 00 + 1RW 0 + �1� f20 � 2R2�W + 2ZR2 (4:33)As R �! +1, the asymptotic behavior of W and Z is given byW = �12R logR+ C0R+O(logR) (4:34)Z = � 12R logR+ O� 1R� (4:35)Here C0 is a �xed constant which can be determined numerically from the pro�leof f0.Turning now to (4.25), we have�1r�0 + �0r�1 � (�1r�0 +�0r�1)= (f1 � f1)f 00rR+ 2injf0r�(f1 + f1) + f0r(f1 � f1) (4:36)Therefore, we can write (4.25) as�H2 + 2R cos �hf 00Bi + njf 00Ar + njf0A0ri+ 2R sin �h�f 00Ai + njf 00Br + njf0B0ri = 0 (4:37)Hence we have H2 = G1(R) cos � +G2(R) sin �; (4:38)



Dynamics of Vortices in Superconductors 41where G1 and G2 satisfyG001 + 1RG01 � 1R2G1 + 2Rhf 00Bi + njf 00Ar + njf0A0ri (4:39)G002 + 1RG02 � 1R2G2 + 2Rh�f 00Ai + njf 00Br + njf0B0ri = 0 (4:40)Using (4.31), we obtain G1 = nj _�1G; G2 = nj _�2G (4:41)where G satis�esG00 + 1RG0 � 1R2G+ 2Rh�f 00W + f 00Z + f0Z 0i = 0 (4:42)As R �! +1, we have G = m1R+O(logR) (4:43)where m1 is a constant which can be determined from the functions f0;W and Z.In summary, we have obtained the following inner solution for H in the coreof the j-th vortex:H = �(�nj logR+ C�) + �2njm1 _�j �X + : : : (4:44)Outer solution revisited:Coming back to the outer solution, we let rj = jx � �j(t)j. From (4.23) wehave h1(x) �! �nj log rj; as rj �! 0: (4:45)The solution of (4.12) and (4.45) is given byh1(x) = �2� NXj=1 njK0(jx� �j(t)j) (4:46)Here K0(r) is the modi�ed Bessel function.The asymptotic behavior of K0(r) is given by:K0(r) � 8><>: 12�`nr; r �! 0� 12� ( �2r )1=2e�r ; r �! +1 (4:47)For rj � 1, we have locally:H1(x) = �nj log rj +C1 �0@Xi 6=j nirK0(j�j � �ij)1A � (x� �j(t)) +O(r2j ) (4:48)where C1 = Pi 6=jK0(j�j � �ij).Matching:



42 Weinan EWrite (4.44) asH = �(�nj log rj + nj log �+C� + njm1 _�j � (x� �j(t))) + : : : (4:49)Matching of (4.48) and (4.49) gives:C� = C1 � nj log � (4:50)njm1 _�j =Xi 6=j nirK0(j�j � �ij) (4:51)Ideally we should have included an order � log � term in the inner expansion. Butthis is only a matter of formality.(4.51) is the equation we are looking for. We can rewrite it asm1 _�j = �r�jH(�1; : : : �N ) (4:52)where H(�1; : : : �N ) =Xi 6=j ninjK0(j�i � �j j) (4:53)An immediate consequence is that the interaction between a pair of vortices isrepulsive if their indices have the same sign, and attractive if their indices havedi�erent sign.Acknowledgement: I am very grateful to Dr. Hans Kaper of the ArgonneNational Lab for initiating my interest on superconductivity and for a lot of stimu-lating discussions. Hans also provided the �nancial support at Argonne where thiswork was carried out. I would also like to thank Drs. Q. Du, M. Kwong, G. Leafand V. Vinokur for sharing generously with me their knowledge on this subject.References[1] M. S. Berger and Y. Y. Chen, Symmetric vortices for the Ginzburg-Landau equa-tions of superconductivity and the nonlinear desingularization phenomenon, J. Funct.Anal., 82, 259-295, 1989.[2] L. N. Bulaevskii, M. Ledvij and V. G. Kogan, Vortices in layered superconductorswith josephson coupling, preprint, to appear in Physical Review B.[3] Q. Du, Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity, preprint, 1992.[4] Weinan E, Dynamics of vortices in superconductors, preprint, submitted to Phys-ica D.[5] M. Tinkham, Introduction to Superconductivity, McGraw-Hill, 1975.



[Page 43]NumericalExperimentson theGinzburg-LandauEquationsMan Kam Kwong*Abstract. We report on some numerical experiments done on the Ginzburg-Landauequations of the theory of superconductivity. The equations under periodic boundaryconditions are solved numerically by using a nonstandard discretization and the sweepingalgorithm. The programs, written in Matlab and Fortran, work in an interactive modeand include graphics display.1991 Mathematics Subject Classi�cation: 65F05, 65N22, 82D55.1. IntroductionIn this article we report on experiments we did on solving the Ginzburg-Landau (GL) equations on a Sun Sparc II workstation. Our contributions consistof a careful formulation of the discrete form of the equations, a choice of a suitablegauge transformation to simplify the equations, a new \sweeping" algorithm, and apractical implementation of the solution procedure that includes run-time graphicsdisplay. More details will be given in a forthcoming paper [9].The GL equations arise in the theory of superconductivity. For a recent surveyof previous work done on the equations, see the articles [3] by Chapman, Howison,and Ockendon and [5] by Du, Gunzburger, and Peterson.* Present address: Mathematics and Computer Science Division Argonne NationalLaboratory Argonne, IL 60439-4844. This work was supported by the Applied Math-ematical Sciences subprogram of the O�ce of Energy Research, U.S. Department ofEnergy, under Contract W-31-109-Eng-38.



44 Man Kam KwongTheoretical physicists have long been able to extract useful information fromthe GL equations by constructing their solutions \analytically," based on seriesapproximations, or by ignoring certain unimportant variations in the solutions.One of the triumphs of this approach was the prediction by Abrikosov [1] thatcertain superconductors, classi�ed as Type II, admit vortices of supercurrent, afact con�rmed by experiments only ten years later. Numerical solution of thefull equations, especially for the simulation of vortices, has been successful only inrecent years. The di�erent approaches include simulated annealing (Doria et al.[4]),the relaxation method (Adler and Piran [2], Wang and Hu [13]), optimization(Garner et al. [7]), and �nite elements (Du, Gunzburger, and Peterson [5,6]).Although simulated annealing, being a Monte Carlo method, consumes manycomputing cycles, it carries a better assurance for �nding the global minimizerof the energy functional. All other approaches yield local critical points which,although they are solutions to the GL equations, may not be the physically mean-ingful global minimizer. The relaxation method is simple in theory, but time-consuming because small time steps are required to avoid instability of the nu-merical scheme. Wang and Hu applied it only to the case of a single vortex. Morerecent work by Maekawa, Kato, and Enomoto [12] employs the same technique totreat the time-dependent GL equations. The optimization approach makes use ofstate-of-the-art optimization and linear algebra techniques in advanced scienti�ccomputing and is the choice for designing large-scale production codes. The �niteelements method is important because it is applicable to arbitrary geometry andadmits higher-order re�nements, while the other methods are limited to �rst-order�nite di�erence approximations.Our work falls between the optimization and the �nite element approaches.Our code runs on a Sparc II with reasonable speed; it can be easily parallelized towork faster on larger computers. It gives the user more control over the experiment.For instance, parameters can be altered interactively and the experiment repeatedwithout having to recompile the program; The results are displayed graphicallyfor the user to monitor the progress. These capabilities are made possible by usingthe Matlab package, which provides a powerful programming environment. Thecode is able to employ �ner grids to give smoother solutions than those achievablein [6]. Unlike the optimization approach, our method can be and has actually beensuccessfully modi�ed to solve the time-dependent GL equations.



Numerical experiments, Ginzburg-Landau equations 452. TheDiscreteGLModelWe discuss only the two-dimensional case in this paper; the generalization tothe full three-dimensional case is straightforward. The superconducting materialis in the form of a thin �lm occupying a domain in R2. When placed in a magnetic�eld, with the direction of the �eld perpendicular to the �lm, Type-II super-conductors form vortices of superconducting current. Close to regular hexagonalarrangements of these vortices have been observed experimentally. Distortions canbe attributed to impurities and defects in the material. A typical numerical resultis shown in Figure 1. In the periodic GL model, it is assumed that, at least deepinto the interior of the domain when boundary e�ects are negligible, the magneticstate of a pure and homogeneous material varies doubly periodically: one can carveout a core region 
 such that the state of the entire superconductor, except for athin boundary layer, can be accurately reproduced by extending that of 
 peri-odically. Traditionally (see, for example, [4]), 
 is chosen to be a rectangle, suchas that shown on the left in Figure 1. In order to reproduce a regular hexagonallattice, the aspect ratio of the rectangle has to be 1 : p3.
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Figure 1. Core regionsDu, Gunzburger, and Peterson [6] suggested the more general parallelogramregion, such as that shown on the right of Figure 1. For a hexagonal lattice, theacute angle of the parallelogram is 60�. The two special choices shown here inFigure 1 are actually equivalent. To see this, we can dissect the parallelogram intotwo triangles as shown in Figure 2, and translate the upper one to form a rectanglethat is congruent to the rectangular region.



46 Man Kam Kwong
Figure 2. Equivalence of two special core regionsAccording to Ginzburg and Landau [8], the magnetic state of the material iscompletely determined by two functions, a complex-valued scalar function  anda (two-dimensional in our two-dimensional version) vector potential A = (A;B).The fundamental postulate is that for equilibrium these functions seek to minimizean energy functional, which, in dimensionless units, has the formG( ;A) = Z
� j j42 � j j2 + j(r� iA) j2 + �2jr �Aj2�dx; (2:1)where � is a constant characteristic of the metal. The superconductor is classi�edas Type II if � > 1=p2, and as Type I otherwise.The functional is invariant under the so-called gauge transformations. Let �be any real-valued function on 
. Then the transformed pair ( ;A) =  ei�; A = A+r�; (2:2)yields the same energy as that of ( ;A). Indeed, ( ;A) and ( ;A) are consideredas equivalent representatives of the same magnetic state of the material.This gauge invariance has more than one consequence. First, there is not onlyone single minimizer to the free energy, but an entire class of gauge equivalentsolutions. Second, the assumption that the magnetic state varies periodically doesnot imply that ( ;A) varies periodically, but only that they are gauge equivalenton opposite edges of 
. These facts gives rise to complications in the formulationof the boundary value problem, but they can also be used to our advantage. Wecan con�ne our search to solutions that have special properties. The technique hastraditionally been called \�xing a gauge." For instance, the London gauge requiresthat r�A = 0, and Wang and Hu note that B can be chosen independent of y. Anexcellent discussion of gauge �xing can be found in Du, Gunzburger, and Peterson[5]. In [9], we show the existence of a gauge stronger than that of Wang and Huand compatible with a simpli�ed set of \quasi-periodic" boundary conditions. Tosummarize:



Numerical experiments, Ginzburg-Landau equations 47A is fully periodic and is constant along the top edge,B and  are periodic with respect to the top and bottom edges,B is independent of y and has a jump of h on the vertical edges, and has a phase change eihy on the vertical edges.Here h = 2�n=Ly is a constant determined by the number of vortices n in 
and the length Ly of the vertical edge of 
. In turn, h determines the externalmagnetic �eld. The fact that B is independent of y signi�cantly reduces the totalnumber of unknowns to be solved. Another advantage of this choice of gauge isthat the ensuing di�erential equations for A and B are \decoupled" in the sensethat a cross-term involving B is absent in the equation for A and vice versa. Thismakes it simple to solve for A and B in each iterative step.Gauge �eld theorists do not use standard �nite di�erence methods on the con-tinuous form of the energy functional for numerical purposes. With such methods,the discretized form of the gauge transform no longer preserves the energy, as aresult of truncation errors. Field theorists have adopted the following modi�ca-tions (see, for example, [2]). Suppose that 
 is discretized as usual with a uniformrectangular grid, with grid spacings of hx and hy. The order parameter  takesvalues at each of the grid points. The x-component A of A takes values on thebond (line) joining a grid point with its right-hand neighbor, while B takes valueson the bond joining a grid point with its upper neighbor. To simplify the formulas,we de�ne U = eiAhx and V = eiBhy : (2:3)The free energy is then approximated by the discrete functionalGd = Xgrid j j42 � j j2 + ���� ! � U hx ����2 + ���� " � V  hy ����2+ �2 ����A" � Ahy ����2 + �2 ����B! � Bhx ����2!hxhy: (2:4)The arrow direction indicates the appropriate neighbors (boundary grid pointshave neighbors that are outside of 
, but these can be interpreted as the appropri-ate value on grid points lying on the the opposite edge, modi�ed according to thegiven boundary conditions). The conventional justi�cation for this formula is thatafter an expansion in Taylor series, (2.1) and (2.4) agree up to �rst-order terms.Invariance is restored under a discrete gauge transformation: =  ei�; A = A+ �! � �hx ; B = B + �" � �hy : (2:5)In [9] we give a new interpretation to the discrete functional, clarify what \Aand B are de�ned on the bonds" means, and show that the approximation o�eredby (2.4) is, in fact, of a higher order than is traditionally believed.



48 Man Kam KwongThere is another disadvantage of working directly with the discretized form of(2.2). The order parameter  is a highly oscillatory function, as a result of largevariations of its phase. A moderately �ne spatial grid, as is allowable in practice, isusually not adequate to resolve  in regions of high oscillation. In such cases, the�nite di�erence ( ! � )=hx can be a very poor approximation for the derivative@ =@x. On the other hand, in (2.4) it is the di�erence between  ! and U that isbeing computed. As pointed out in [9], we are actually approximating the derivative@( eiRA)=@x by means of a central di�erence. The product function U oscillatesmuch less than  itself. We have, therefore, chosen (2.4) as the starting point ofour numerical method.The Euler equations corresponding to the minimization of (2.4) are thenU   � 2 + U� !h2x + V # # � 2 + V � "h2y + (1� j j2) = 0; (2:6)A" � 2A+A#h2y + = ( ! �U�)hx = 0; (2:7)and B � 2B +B!h2x + 1Ny Xcolumn = � " �V ��hy = 0; (2:8)where =(:) denotes the imaginary part of a complex number, and Ny is the numberof rows in the grid. Although (2.6) is probably known to everyone who uses thediscrete functional, it has not been mentioned in the literature. Note the simplicityof the linear operator on  represented by the �rst two terms (as compared to thecorresponding Euler equation obtained from (2.1)); it is a generalized discreteLaplace operator, having variable coe�cients instead of the familiar f1;�2; 1g.Each of (2.6) and (2.7) stands for as many equations as there are grid points,while (2.8) stands for only Nx equations. Note also that there would be an extraterm involving B in (2.7) and one involving A in (2.8), if we had not used ourspecial gauge.To conclude the section, we summarize the numerical problem we are tackling:Given a rectangular region 
 of suitable size (Lx�Ly), a grid (with Nx�Nypoints), and the number of vortices in 
 (n which is usually 2, 4, or 8), wewish to �nd the 2Nx�Ny +Nx unknown values:  (at each grid point), A (oneach bond), and B (on each column of bonds) that satisfy the GL equations(2.6){(2.7) and the appropriate boundary conditions.



Numerical experiments, Ginzburg-Landau equations 493. The Solution| the Sweeping AlgorithmWe describe in this section how the solution to the problem is computed by usingan iterative scheme. The system of equations (2.6){(2.8) are quasi-linear and canbe rewritten in the operator form:L = (j j2 � 1) = F ( ); (3:1)MA = f( ;A); (3:2)NB = g( ;B): (3:3)After inverting the linear operators, we obtain the following iterative formulas: n+1 = L�1F ( n); An+1 =M�1f( n; An); Bn+1 = N�1g( n; Bn): (3:4)For our initial triple ( 0; A0; B0), we take  0 to be random,A0 to be 0, and B0to be linear and increasing from �h=2 to h=2. The formulas (3.4) are used recur-sively to form the sequence of approximations ( n; An; Bn) until they converge.In our actual program, we employed some additional techniques to gain fasterconvergence. Rather than using (3.4), we solve (3.1){(3.3) by using a quasi-Newtonmethod. A damping factor is introduced to achieve stability. Also instead of taking( n; An; Bn) to be the starting point for the next iteration, a line search in thedirection of this triple is performed to obtain a better starting point with lowerenergy.Equation (3.3) is a cyclic tridiagonal linear system and can easily be solvedby the linear algebra package Matlab. Although (3.2) comprises more equationsthan (3.3), once the right-hand side is known (computed from the results from theprevious iterative step), the equations for each column of grid bonds are decoupledfrom those of another column. Thus, there are Nx systems of cyclic tridiagonallinear systems, each of which can be solved in exactly the same way as for (3.3).The more interesting and di�cult job is to invert L, a �ve-point stencil that isa linear combination of the values of  at each grid point and its four neighbors:left, right, down, and up. The general form of a �ve-point stencil isS[z] = Cz + Lz + Rz! +Dz# + Uz"; (3:5)where C, L,D, and U are coe�cients that can vary from one grid point to another.A nonhomogeneous stencil equation isS[z] = b; (3:6)where b is given at each grid point.



50 Man Kam KwongThe classical method for solving (3.6) is to treat it as a sparse linear systemof order equal to the total number of grid points. E�cient use of existing sparsematrix solvers can then be used. The technique, however, is not simple for manywho are not familiar with the subject area. In [10], we proposed an intuitivelymore straightforward method, the sweeping algorithm, for inverting certain regular�ve-point stencils including, L. The method is related to the shooting methodfor solving boundary value problems of ordinary di�erential equations. Regularforms of the method are not hard to implement, and Matlab programs have beensuccessfully written and reported in [11]. These Matlab programs are adequate forthe purpose of our experiments on solving the GL equations.One of the basic ideas of the sweeping algorithm is that once the values ofthe variable z is known on two columns (or rows) of grid points, its values onan adjacent column (row) can be computed from (3.6), provided that none of thestencil coe�cients vanishes. For instance, take the column to the right of the twoknown columns. Each grid point is a right-hand neighbor of some grid point onthe second column. Hence, from (3.6),z! = b� (Cz + Lz +Dz# + Uz")R : (3:7)Continuing in this way, we can compute the values of z on every column, and cansolved (3.6). The di�culty, of course, is to �gure out the values on the two initialcolumns.Our idea is to start with a wild guess, �nd out how much error we have made,and then �ne-tune the initial guess to obtain the correct answer. Since one wildguess is just as good (or as bad) as another, we pick the simplest one, namely, thatz = 0 on the two initial columns. We then compute z on the remaining columns.After we have �nished with the computation, we will have used Nx � 2 columnsof the stencil equations. There are two more columns of equations that have notbeen used; they are not likely to be satis�ed, however, since our initial guess israther haphazard. The discrepancy (from satisfying these remaining equations) isa vector E of order 2Ny and serves as a measure of how much we have missed thetarget and also as our guide for making corrections in the steps to come.We next sweep the homogeneous stencil for a unit variation in each of thegrid points on the two initial columns. The ensuing discrepancy in the last twocolumns of equations tells us what di�erence will be introduced by tuning each ofthe initial grid points. All this information is thee gathered to form a rectifyingmatrix R. The knowledge of E and R will inform us how to choose the values ofz on the initial columns correctly.This simple procedure works remarkably well for grids of moderate sizes. Forlarge grid sizes, some sophisticated modi�cations are needed to avoid instability(the rapid growth of z after repeated application of (3.7)). Two methods, multi-stage and partial sweepings, together with their implementations are described indetail in [10] and [11].



Numerical experiments, Ginzburg-Landau equations 51Besides its simplicity, the sweeping algorithm has other advantages. The com-plete information for constructing the inverse of the �ve-point stencil is stored inthe relatively small inverse of the 2Ny � 2Ny matrix R. There is also great poten-tial for exploiting parallelism in the algorithm, but further work needs to be donealong this line.To conclude this section, we make some remarks concerning local minimiz-ers of the GL equations. Although many people are apt to claim that, in theircomputation, they never see a critical point that is not the global minimizer, ourexperience seems to indicate the opposite. As the results in the next section show,the vortices appear at di�erent heights in the core region. However, if one startswith a symmetric initial guess, then, at least in theory, the nonannealing methodsshould lead to a symmetric solution with the two vortices located at the sameheight. One can argue that such a solution is normally \unstable," so that anysmall perturbation (such as those arising from rounding errors), is enough to shiftthe unstable solution to a stable one. Yet some numerical methods for solving non-linear equations, such as Newton's method, do not distinguish between stable andunstable solutions. Indeed, in our experience, this is what will happen if we use aquasi-Newton's method on (3.1) too early in the process. Our use of a random ini-tial  0 is an attempt to maximize the chance of starting near the correct solution.Also, our experiments indicate that, for regions containing many vortices, therecan be numerous locally stable con�gurations distinct from the global minimizer.



52 Man Kam Kwong4. Numerical ExperimentsThe main programs are written in Matlab to take advantage of its interactivefeatures. In order to achieve greater speed, those commands connected with thesweeping algorithm have been recoded in Fortran by A. J. Lindeman and thecompiled object �le have been dynamically linked to Matlab through the \mex"facility. Lindeman, who also helped with most of the experiments mentioned inthis section, is a participant in the summer 1992 Student Research ParticipationProgram at Argonne National Laboratory, and is currently a physics graduatestudent at Purdue UniversityA typical run of an experiment is as follows. One sets, either interactively orby using a Matlab script �le, the various parameters of the problem: the size of thedomain Lx and Ly , the number of vortices n, the superconductor constant �, thenumber of grid points Nx and Ny, the tolerance used to terminate the iteration,etc. The user needs to issue only two commands to get the experiment going. The�rst is a subroutine setup to set up the grid, to pick the initial state as a startingpoint for iteration, and to compute the various quantities needed to impose thequasi-periodic boundary conditions. The command setup calls an other subroutinerr automatically to compute the coe�cients of the �ve-point stencil equation (3.4)and the rectifying matrices for the sweeping algorithm. This command is neededonly at the beginning of the experiment. The second command, rn, performs theiteration process. It calls two subroutines, onep and oneAB, automatically andrepeatedly to accomplish each iteration step until the desired accuracy is reached.After each step, various information, such as the maximum value of  n, and thefree energy are printed on the screen. A contour plot of j nj is also displayed, forthe user to monitor the progress.In our experiments, we obtained plots of j j2 for various domain sizes. Twoof these are shown below. Both are computed with � = 5. The contour heights inthe graphs are (0.05,0.1,0.15,0.20) and (0.1,0.3,0.5,0.7,0.9), respectively.
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Numerical experiments, Ginzburg-Landau equations 53We have investigated whether a parallelogram core region with angle 60�,corresponding to a strict hexagonal lattice, gives the best vortex con�guration,with the lowest energy. To this end, we used core regions of the same area (=3� 3p3) but di�erent aspect ratios, and computed the least energy solutions foreach. At �rst we discovered, to our surprise, that 60� is not the optimal angle.A plot of the energy (minus 16.2295 against the aspect ratio of the core region(width/height) is shown below. We used a grid size of 24� 24 and � = 5.
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Figure 4. Energy against aspect ratio of core regionMore experimentation revealed that this was due to discretization error. In-creasing the grid size shifts the optimal angle towards 60�, and indeed an extrapo-lation with Nx; Ny !1 shows the optimal angle to be 60�, within approximationerror.We have experimented with the phenomenon of pinning. A pinning site iscaused by some defect in the superconducting material. It has a high resistivity tocurrents and so tends to pin down the center of a vortex. We modeled a pinningcenter by adding a penalty term j (x)j2 to the energy functional, where  is alarge positive constant and x is the location of the defect. This extra term altersthe stencil coe�cient C at the grid point corresponding to the pinning site. Ourmethod successfully simulated the phenomena by giving a solution that nearlyvanishes at the site.



54 Man Kam KwongFinally, we were also able to detect numerically the upper critical �eld. Anincrease in the external magnetic �eld corresponds to a more tightly packed vortexlattice, or a smaller core region. We solved the GL equations over core regions ofdi�erent sizes and discovered that the maximum of  falls as the area decreases.Below the bifurcation point, Ly = 2:68929, which corresponds to an upper critical�eld of Hc2 = 1:00316868, the trivial solution,  � 0, takes over as the globalminimizer. A plot of max j j against the external �eld H is given below.
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