
Applications of the Aurora ParallelProlog System to ComputationalMolecular BiologyEwing LuskArgonne National LaboratoryArgonne, IL 60439U. S. A.lusk@mcs.anl.govShyam MudambiECRC GmbHArabellastr. 17D-81925, MunichGermanymudambi@ecrc.deRoss OverbeekArgonne National LaboratoryArgonne, IL 60439U. S. A.overbeek@mcs.anl.govP�eter SzerediIQSOFTH-1142 BudapestTeleki Blanka u. 15-17.Hungaryszeredi@iqsoft.huAbstractWe describe an investigation into the use of the Aurora parallel Prolog sys-tem in two applications within the area of computational molecular biology.The computational requirements were large, due to the nature of the appli-cations, and were carried out on a scalable parallel computer, the BBN \But-tery" TC-2000. Results include both a demonstration that logic program-ming can be e�ective in the context of demanding applications on large-scaleparallel machines, and some insights into parallel programming in Prolog.

1 IntroductionAurora [8] is an OR-parallel implementation of full Prolog. The system isnearing maturity, and we are beginning to use it for application work. Thepurpose of this paper is to present the results of our experiences using it forcomputational molecular biology, an area in which logic programming o�ersa particularly appropriate technology.The problems encountered in this area can be large in terms of data sizeand computationally intensive. Therefore one needs both an extremely ro-bust programming environment and fast machines. Aurora can now providethe former. The fast machine used here is the BBN TC-2000, which pro-vides fast individual processor speeds, a large shared memory, and a scalablearchitecture (which means that access to memory is non-uniform).We begin with a brief discussion of why molecular biology is a particu-larly promising application area for logic programming. We then summarizesome recent enhancements to Aurora as it has evolved from an experimen-tal, research implementation to a complete, production-oriented system. Wedescribe in some detail two di�erent problems in molecular biology, and de-scribe the approaches taken in adapting each of them for a parallel logicprogramming solution. In each case we present results that are quite en-couraging in that they show substantial speedups on up to 42 processors,the maximum number available on our machine. Given the sizes of theproblems that are of real interest to biologists, the speedups are su�cient toconvert a batch-oriented research methodology into an interactive one.2 Logic Programming and BiologyMany large-scale scienti�c applications running on parallel supercomputersare fundamentally numeric, are written in Fortran, and run best on machinesoptimized for operating on vectors of oating-point numbers. One notableexception is the relatively new science of genetic sequence analysis. Newtechnologies for extracting sequence information from biological materialhave shifted the scienti�c bottleneck from data collection to data analysis.Biologists need tools that will help them interpret the data that is beingprovided by the laboratories. Logic programming, and Prolog in particular,is an ideal tool for aiding analysis of biological sequence data for severalreasons.� Prolog has built-in pattern expression, recognition, and manipulationcapabilities unmatched in conventional languages.� Prolog has built-in capabilities for backtracking search, critical in ad-vanced pattern matching of the sort we describe here.� Prolog provides a convenient language for constructing interactive userinterfaces, necessary for building customized analysis tools for the

working biologist.� (The Aurora hypothesis) Prolog provides a convenient mechanism forexpressing parallelism.Prolog has not traditionally provided supercomputer performance on scal-able high-performance computers. The main point of this paper is that thisgap is currently being closed.3 Recent Enhancements to AuroraAurora has been evolving from a vehicle for research on scheduling algo-rithms into a solid environment for production work. It supports the fullProlog language, including all the normal intrinsics of SICStus Prolog, afull-featured system. Certain enhancements for advanced synchronizationmechanisms, modi�cations to the top-level interpreter, and parallel I/O,have been described in [5]. Here we mention two recently-added featuresthat were used in the present work.3.1 Aurora on NUMA MachinesAurora was developed on the Sequent Symmetry, which has a true shared-memory architecture. Such architectures provide a convenient programmingmodel, but are inherently non-scalable. For that reason, the Symmetryis limited by its bus bandwidth to about 30 processors, and previously-published Aurora results were similarly limited. Recent work by ShyamMudambi, continuing that reported in [9], has resulted in a port of Aurorato the BBN TC-2000, a current scalable architecture with Motorola 88000processors. The results here were carried out on the machine at ArgonneNational Laboratory, where 42 processors at a time can be scheduled. We arecurrently planning to explore the performance of this version of the systemon larger TC-2000's.Aurora, with its shared-memory design, could be ported to the BBN in astraightforward way since the BBN does provide a shared-memory program-ming model. However, the memory-access times when data is not associatedwith the requesting processor are so much worse than when data accessesare local, it is critical to ensure a high degree of locality. This has been donein the Buttery version of Aurora by a combination of duplicating read-onlyglobal data and allocating WAM stack space locally. Details can be found in[9]. The three-level memory hierarchy of the BBN also a�ects the interface toforeign subroutines, critical in the applications described here. In particular,it was necessary to change the original design of the C interface, which putdynamically-linked code in shared memory. Since on the Buttery sharedmemory is not cached, we modi�ed the design so that both code and dataare allocated in non-shared memory and can therefore be cached.

3.2 Visualization of Parallel Logic
Figure 1: Investigating grain size with upshotOne can often predict the behavior of ordinary programs by understandingthe algorithms employed, but the behavior of parallel programs is notoriouslydi�cult to predict. Even more than sequential programs, parallel programsare subject to \performance bugs", in which the program computes the cor-rect answer, but more slowly than anticipated. With this in mind, a numberof tools have been added to Aurora in order to obtain a visual representationof the behavior of the parallel program. The �rst of these was wamtrace,which provided an animation of Aurora's execution. More recently, a num-ber of other visualization systems have been integrated into Aurora. All ofthese tools provide post-mortem analysis of log �les created during the run.Two of the tools have been used in tuning the applications presented here.They are upshot, which allows detailed analysis of events on a relativelysmall number of processes [6], and gsx, which is better suited to providingsummary information on runs involving large numbers of processes. OtherAurora tools are visandor and must. An example snapshot of an upshotsession is shown in Figure 1. Here we see a background window showing thedetails of individual processor activities, and, superimposed, subwindowsproviding a primitive animation of process states and histograms of statedurations.Output from gsx for one of the applications will be shown in Figure 3.

4 Use of Pattern Matching in Genetic SequenceAnalysisWhen trying to extract meaning from genetic sequences, one inevitablyends up looking for patterns. We have implemented two pattern matchingprograms|one for DNA sequences and one for protein sequences. Althoughthese could certainly be uni�ed, it is true that the types of patterns onesearches for in DNA are quite distinct from those used for proteins. For ageneral introduction to genetic sequences, see [7].4.1 Searching DNA for Pseudo-knotsDNA sequences are represented as strings composed from the charactersfA,C,G,Tg, each one of which represents a nucleotide. For example, an in-teresting piece of DNA might well be represented by TCAGCCTATTCG.... Thetypes of patterns that are often sought involve the notion of complementarysubstrings, which are de�ned as follows:1. The character complement of A is T, of C is G, of G is C, and of T isA.2. The complement of a string a1a2a3 : : : an is cn : : : c3c2c1, where ci isthe character complement of ai.To search for two 8-character substrings that are complementary andseparated by from 3 to 8 characters, we would use a pattern of the formp1=8...8 3...8 ~p1which might be thought of as saying \Find a string of length 8 (from 8 to8) and call it p1, then skip from 3 to 8 characters, and then verify that thestring that follows is the complement of p1."The signi�cance of complementary substrings lies in the fact that com-plementary characters form bonds with each other, consecutive sets of whichform biologically signi�cant physical structures.One particularly interesting type of pattern is called a pseudo-knot, whichhas the form1. a string (call it p1),2. a �ller,3. a second substring (call it p2),4. a �ller,5. the complement of p1,6. a �ller, and

7. the complement of p2.These patterns correspond to stretches of the DNA sequence that look likethe diagram in Figure 2.
p1

p2Figure 2: A pseudo-knotSuch patterns are often equally interesting when the complements of p1and p2 are only approximate (i.e., most of the characters are complements,but there may be some that are not). We have implemented a language(based on the work of David Searls [10]) for expressing such patterns and forrapidly scanning DNA strings for matches. For a search to be well-speci�ed,one has to express limits on the sizes of all substrings and �llers, as well asa level of tolerance when looking for complements. For example,p1=9...9 2...9 p2=9...9 0...4 ~p1[1,0,0] 12...19 ~p2[1,0,0]would represent a pattern in which p1 and p2 are 9 characters long, onecharacter of each complement can mismatch (but there can be no insertionsor deletions), and the three �llers are 2-9, 0-4, and 12-19 characters long,respectively.4.2 Searching Protein SequencesProtein sequences are strings over a 20-character alphabet, each character ofwhich represents an amino acid. Amos Bairoch [1] has created a remarkableset of patterns that identify functionally signi�cant sections of protein se-quences. These patterns are composed of a sequence of pattern units, wherea pattern unit can be1. any character in a speci�ed set, ([list of characters])2. any character not in a speci�ed set, (flist of charactersg)3. a �ller of length from a speci�ed range. (x)Pattern units can also have repetition counts (in parentheses). For example,[LIVMFYWC]-[LIVM](3)-[DE](2)-x-[LIVM]-x(2)-[GC]-x-[STA]

means any of L,I,V,M,F,Y,W,C followed by three occurrences of any one ofL,I,V,M, followed by two occurrences of any one of D,E, followed by any onecharacter, etc.This particular pattern identi�es a \Purine/pyrimidine phosphoribosyltransferases signature". Given this somewhat more constrained matchingproblem, one can easily construct programs to search for such patterns. Themost common problem is of the form \given a set of protein sequences andabout 600 such patterns, �nd all occurrences of all patterns".5 Evaluation of Experiments5.1 The DNA Pseudo-knot ComputationA non-parallel program was already written (in Prolog) to attack the pseudo-knot problem. It ran on Sun workstations and had part of the searchingalgorithm written in C to speed up the low-level string traversal. The maincontribution of Aurora in this application was to provide a Prolog interface(desirable since the user interface was already written in Prolog) to a high-performance parallel machine so that larger problems could be done.The parallelization strategy was straightforward. A speci�c query asksfor a restricted set of pseudo knots to be extracted from the database ofDNA fragments. Almost all of the parallelism comes from processing thesequence fragments in parallel. Aurora detects and schedules this parallelismautomatically.The fact that we were porting a sequential program with C subroutinesrequired us to take some care in handling the interface between Prolog andC. The structure of the mixed Prolog-C program is the following. The Prologcomponent parses a user query and through several interface routines passesthe information on the pattern to be searched to the C-code. The Prologside then invokes the actual search routine in C. The results of the searchare transferred back to the Prolog component through appropriate interfaceroutines again.Several such searches are to be run in parallel independently of eachother. For each search a separate memory area is needed in C. Since the orig-inal application wasn't programmed with parallel execution in mind, staticC variables were used for storing the information to be communicated fromone C subroutine to another. Conceptually we need the static C memoryarea to be replicated for each of the parallel processes.In an earlier, similar application, we transformed the C program by re-placing each static variable by an array of variables. Each of the parallelsearches used one particular index position for storing its data. Indices wereallocated and freed by the Prolog code at the beginning and at the end ofthe composite C computation tasks.For the present application we chose a simpler route. Using sequentialdeclarations we ensured that no parallel execution took place during a sin-

gle composite search task, i.e. it was always executed by a single process(worker). Consequently, all we had to ensure was that each process had alocal piece of memory allocated for the C routines.This goal was achieved in di�erent ways on the two multiprocessor plat-forms we worked with. The Sequent Symmetry version of Aurora, like Quin-tus and SICStus, normally uses dynamic linking in the implementation ofthe foreign-language interface. Due to limitations in the Symmetry operat-ing system, the dynamic linking process ignores the shared annotation onC variables, making them either all shared or all local. Because of this lim-itation Aurora loads the foreign code into shared memory on the Sequent,making all C variables shared by all the processes. Local allocation of vari-ables can be thus achieved only by statically linking the C code with theemulator. This is what we did for the pseudo-knot application. The ini-tial fork that creates multiple Aurora workers thus provided the requiredseparate copies of the global variables.On the BBN TC-2000, the situation was a little more complicated. Inthe �rst place, shared memory is not cached, so it was important to placethe C code (and the Prolog WAM code as well) into the private memoryof each processor. This was done, even with dynamic linking, by modifyingAurora so that after code was loaded, it was copied into each process's privatememory. This provided both local copies of variables and cachability of allvariables.We ran a series of queries on the BBN Buttery TC-2000, each of themdesigned to identify a collection of pseudo-knots (such as in Figure 2) ofdi�erent sizes in a database of 457 DNA sequences, varying in length from22 to 32329 characters. The following queries all ask for collections of pseudo-knots of varying sizes. Table 1: Pseudo-knot queriesGoals Patternsps1 2 p1=11...11 2...9 p2=11...11 0...4 p1[2,0,0] 14...21 p2[2,0,0]ps2 1 p1=9...9 2...9 p2=9...9 0...4 p1[1,0,0] 12...19 p2[1,0,0]ps2 2 p1=9...9 2...9 p2=9...9 0...4 p1[1,0,0] 12...19 p2ps3 p1=7...7 2...9 p2=7...7 0...4 p1 10...17 p2ps5 p1=11...11 2...20 p2=11...11 2...20 p1[2,0,0] 14...23 p2[2,0,0]The speci�c pseudo-knot queries used in our tests are shown in Table 1.The times in seconds for these queries, run with varying numbers of pro-cesses on the TC-2000, are shown in Table 2. The �gures in parentheses arespeedups. Each value is the best of three runs.The gsx summary of the one ps3 query with 32 workers is shown inFigure 3. The various shades of gray (colors on a screen) indicate states ofthe Aurora parallel abstract machine. This particular picture indicates that

Table 2: Results of pseudo-knot queryGoals Workers1 16 32 36 42ps1 2 2973.43 196.37(15.1) 104.46(28.5) 90.06(33.0) 79.43(37.4)ps2 1 2775.75 185.10(15.0) 96.75(28.7) 86.76(32.0) 74.49(37.3)ps2 2 2774.66 182.69(15.2) 96.66(28.7) 88.78(31.3) 73.45(37.8)ps3 1771.56 120.62(14.7) 64.45(27.5) 59.51(29.8) 50.03(35.4)ps5 16601.91 1047.12(15.9) 528.32(31.4) 472.28(35.2) 403.28(41.2)� 26897.31 1733.68(15.5) 892.23(30.1) 799.56(33.6) 681.61(39.5)the 32-worker machine was in the \work" state almost 90% of the time.In these runs we used upshot to help us optimize the program. It showedus that the grain size of the parallel tasks varied enormously due to thevariation in the size of the sequence fragments. If a large task is started latein the run, all other processes can become idle waiting for it to �nish. Weaddressed this problem by pre-sorting the sequence fragments in decreasingorder of length. This allows good load balancing from the beginning of therun to the end.Table 3 shows the speed improvements obtained by pre-sorting sequence-fragments for selected queries. They are small but de�nitely signi�cant.Table 3: Percentage improvements due to sortingGoals Workersexecuted 16 32 36 42ps1_2 2.6% 6.7% 12.0% 8.0%ps2_1 3.1% 5.0% 6.7% 9.2%ps2_2 3.2% 5.7% 8.3% 11.7%ps3 3.3% 1.2% 0.1% 3.4%5.2 The Protein Motif Search ProblemThis problem involves �nding all occurrences of some \protein motif" pat-terns in a set of proteins. The test data contains about 600 motifs and 1,000proteins, varying in length from a few characters to over 3700. The algo-rithm for this task was designed with consideration for parallel execution;therefore we describe it in more detail.The search algorithm is based on frequency analysis. The set of proteinsto be searched is pre-processed to determine the frequency of occurrence ofeach of the characters representing the amino acids. Subsequently a proba-

File: "ps3_32_new.gsx" Processors: 32

work bckt sleep search other srch-p

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 10 20 30 40 50 60 70 sec

File: "ps3_32_new.gsx" Processors: 32 [39544804.89]

Figure 3: E�ciency of pseudo-knot query on TC-2000bility is assigned to each character, inversely proportional to the frequencyof occurrence in the proteins.The protein motif patterns are originally given in the form described inSection 4.2. This form is then transformed to a Prolog clause, such asprosite_pattern('PS00103',[any("LIVMFYWC"),any("LIVM",3),any("DE",2),arb,any("LIVM"),arb(2),any("GC"),arb,any("STA")]).For each pattern a \most characteristic" character position is selected,i.e. the position with the smallest probability of matching. As the patternmatching algorithm will start at this most characteristic position, the patternis split to three parts: the characters before, at, and after the given position,with the \before" part reversed. The split form is represented by one ormore Prolog clauses, one for each choice for the characteristic position. TheASCII code of the character in this position is placed as the �rst argumentof the clause, for the purpose of fast indexing.The above example pattern has the any("GC") position as the most

characteristic, and thus the following representation is produced (note that67 is ascii C and 71 is ascii G):/*prosite_dpat(Code, BeforeReversed, After, Name).*/prosite_dpat(67,[arb(2),any("LIVM"),arb,any("DE",2),any("LIVM",3),any("LIVMFYWC")],[arb,any("STA")],'PS00103').prosite_dpat(71,[arb(2),any("LIVM"),arb,any("DE",2),any("LIVM",3),any("LIVMFYWC")],[arb,any("STA")],'PS00103').The search algorithm has three levels of major choice-points: selectionof a protein, selection of a pattern and the selection of a position within theprotein where the matching is attempted. The introduction of the charac-teristic position helps in reducing the search space by e�cient selection ofpatterns that can be matched against a given position in a given protein.This implies a natural order of search shown in Figure 4.Select Proteins: select a protein, say P ,Select Positions: select a position within this protein, say N , with a char-acter C ,Select Patterns: select a pattern M which has C as the most characteristicelement,Check: check if pattern M matches protein P before and after position N .Figure 4: The search space of the protein motif problemWe have implemented the protein motif search program based on theabove algorithm and data representation. With the test case containing1000 proteins and 600 patterns, in principle there is abundant parallelism inexploring the search space. Over 11000 matches are found in the database,so collecting the solutions also requires some caution.Let us �rst examine how easy it is to exploit the parallelism found in theproblem. Table 4 shows the execution times in seconds (and the speedups inparentheses) for the search program run in a failure driven loop. This meansthat the the search space is fully explored, but solutions are not collected.The �rst line of the table is for the original database of proteins. Althoughthe results are very good for smaller numbers of workers, the speedup for 42workers goes below 90% of the ideal linear speedup.Now we examine the search space as shown in Figure 4, and try topinpoint the reasons for the disappointing speedups. First, we can deducethat the coarse grain parallelism of the Proteins level is not enough to

Table 4: Exploring the Search Space in the Protein Motifs QueryProgram Workersvariant 1 16 24 36 421. 2962.50 186.76(15.9) 127.14(23.3) 89.50(33.1) 79.72(37.2)2. 2965.79 185.49(16.0) 123.83(24.0) 82.89(35.8) 71.03(41.8)3. 2952.18 185.39(15.9) 125.10(23.6) 86.31(34.2) 75.67(39.0)4. 2952.54 184.45(16.0) 123.00(24.0) 82.22(35.9) 70.80(41.7)1 = original program 2 = sorted data 3 = bottom-up 4 = bothallow for uniform utilization of all workers throughout the computation.Second, the �ner level parallelism at the level of Positions is not exploitedsu�ciently to compensate for the uneven structure of work on the proteinlevel.The �rst de�ciency of our program can be easily explained by reasonssimilar to those already described for the pseudo-knot computation: thedi�erent size proteins represent di�erent amounts of work. Consequently,if a larger protein is processed towards the end of the computation, thesystem may run out of other proteins to process in parallel before the longercomputation is �nished. The solution of sorting the proteins in decreasingorder of size has been applied and the results are shown in second row ofTable 4. The speedups are almost linear, being less than 1% below the idealspeedup. Although this change is enough on its own to solve our problemof poor speedup, the issue of exploiting �ner grain parallelism on the levelPositions is also worth exploring.The second level of choice in our search problem is the selection of aposition within the given protein to be used as a candidate for matchingagainst the most characteristic amino acid in each pattern. Since proteinsare represented by lists of characters standing for amino acids, this choice isimplemented by a recursive Prolog predicate scanning the list. The followingis a simpli�ed form of this predicate1, similar to the usual member/2.find_match([C|Right],Left) :-find_a_matching_pattern(C,Right,Left).find_match([C|Right],Left) :-find_match(Right,[C|Left]).The or-parallel search space created by this program is shown in part (a) ofFigure 5. When a search tree of this shape is explored in a parallel systemsuch as Aurora, a worker entering the tree will �rst process the leftmost leafand will make the second choice at the top choice-point available to other1We just show the search aspects of the program, omitting those parts which deal withreturning the solution.

workers. This choice is either taken up by someone else, or the �rst workertakes it after �nishing the leftmost leaf. In any case it can be seen thatthe granularity of tasks is rather �ne (the work at a leaf is often only a fewprocedure calls long) and the workers will be getting in each other's way,causing considerable synchronization overheads.
(a) (b)Figure 5: Alternative parallel search treesThe exploration of the search space is thus done by descending from topto bottom, an approach analogous to the topmost scheduling strategy ofearly parallel Prolog implementations [3, 4]. Later research showed that thistype of scheduling is rather ine�cient for �ner grain granularity problems[2]. In our problem, topmost scheduling is forced on the system by the shapeof the search tree, irrespectively of the scheduling strategy of the underlyingsystem2.To avoid top-to-bottom exploration, one would like the system to descend�rst on the recursive branch, thus opening up lots of choice-points. Theleft-to-right exploration of alternatives within a choice-point is, however, aninherent feature of most or-parallel systems. In fact, rather than to requirethe system to change the order of exploration, it is much easier to changethe order of clauses in the program and thus direct the system to explorethe search tree in a di�erent manner. This is analogous to the way users ofa sequential Prolog system inuence the search by writing the clauses of apredicate in appropriate order.In the case of the present search problem the desired e�ect of bottom-to-top exploration can be achieved by transposing find match's two clauses.This way the search tree will have the shape shown in part (b) of Figure 5.The �rst worker entering the tree will run down the leftmost branch open-ing up all choice-points, which then will be processed by backtracking frombottom towards the top. Several workers may cooperate in this process,thus sharing the work through public backtracking rather then the moreexpensive means of \major task switching" as described in [2].The third row of Table 4 shows the e�ect of bottom-to-top exploration2We actually used the Bristol scheduler with bottommost scheduling.

technique applied to the original database of proteins. The results are some-what better than in the corresponding �rst row, although not as good as theones achieved by tuning the coarse grain parallelism (second row). The �nalrow of the table shows the results obtained with both improvements applied,showing a small improvement over the second row.Having explored the issues of parallel search space traversal, let us nowturn to the problem of collecting the solutions. We have experimented withseveral variants of this program; the test results are shown in Table 5. Thevery �rst row, showing the times for the failure driven loop, is identicalto the last row of Table 4 and is included to help assess the overheads ofcollecting the solutions. The runs shown here were done using the bottom-to-top variant of the program with a sorted database. The last row of thetable is our �nal, best variant, showing a speedup of 40.3 with 42 workers,an e�ciency of 96%.Table 5: Results of the Protein Motifs QueryGoals Workersexecuted 1 16 24 36 42fail loop 2952.54 184.45(16.0) 123.00(24.0) 82.22(35.9) 70.80(41.7)1 setof 3072.26 232.26(13.2) 180.64(17.0) 150.16(20.5) 148.08(20.7)2 setof's 3114.44 198.96(15.7) 136.61(22.8) 97.39(32.0) 86.77(35.9)2 �ndall's 2971.16 188.30(15.8) 126.38(23.5) 86.26(34.4) 73.81(40.3)In the �rst variant of the program we used a single setof predicateto collect all the solutions (see the single setof row in Table 5). Ourvisualization and tuning tools (Figure 1) showed us that the low e�ciency weinitially attained was mainly due to the large number of solutions generatedby the query. Since the parallel version of the setof operation collectssolutions serially at the end of the query, this led to a long \tail" at the endof the computation in which one worker was collecting all the solutions. Inorder to parallelize the collection of solutions we replaced the single setofby a nested pair of setof's, i.e. the solutions for each protein were collectedseparately, and a list of these solution-lists was returned at the top levelof the search. The data for this improved version is shown in the doublesetof row of Table 5. Though this change resulted in a slight increase inthe sequential time, the overall parallel times improved a great deal sincemore of the solution-gathering activity could proceed in parallel.In this second variant of the program a separate setof predicate is in-voked for each protein. Since the setof scans its arguments in search forfree variables, this involves scanning the huge list representing the protein.To avoid this overhead, the setof calls were replaced by calls to findall,resulting in further improvement in performance, in terms of absolute timeand speedup as well. This �nal result is shown in the double findall row

of Table 5).6 ConclusionThe success of parallel logic programming requires three things: scalable par-allel machines (bus-based \true" shared-memory machines are being eclipsedby fast uniprocessor workstations), a robust parallel logic programming sys-tem, and appropriate applications. Our preliminary experiments here indi-cate that the BBN TC-2000, the Aurora parallel Prolog system, and twoapplications in molecular biology represent such a combination.Beyond the potential contribution of parallel logic programming to large-scale scienti�c applications, the work reported on here is interesting becauseit reects a new and di�erent phase of the Aurora parallel Prolog project.In earlier papers on Aurora, we (and others) have written about Aurora'sdesign goals, its system architecture, and alternative scheduling algorithms.Each of these was an interesting and fruitful research topic in its own right.This paper reports on the use of Aurora. During this work there was no tin-kering with the system (except for the machine-dependent memory manage-ment work described in Section 5.1) or comparison of alternative schedulingmechanisms.The original goal of the Aurora project was to determine whether Prologby itself could be an e�ective language for programming parallel machines.C and Fortran programmers still must concern themselves with the explicitexpression of a parallel algorithm, despite considerable e�orts to produce\automatic" parallelizing compilers. It was hoped that the parallelism im-plicit in Prolog could be exploited by the compiler and emulator more e�ec-tively than is the case with lower-level languages. Our experiments here byand large con�rm this hypothesis: in both the pseudo-knot and the proteinmotif problems, good speedups were obtained with our initial Prolog pro-grams, written as if for a sequential Prolog system. On the other hand, wealso found that performance could be improved by altering the Prolog codeso as to \expose" more of the parallelism to the system (top-to-bottom vs.bottom-to-top scanning), eliminate unnecessary sequential bottlenecks (twosetofs vs. one) and permit load-balancing (pre-sorting of sequences). Thatwe were able to do this �ne-tuning at the Prolog level is a measure of successof the research into scheduling policies: when we gave the current Aurorasystem more freedom, it was able to exploit it to increase the amount ofparallel execution.Thus Aurora remains a tool for parallel algorithm research, but at theProlog level as opposed to the C level. At the same time, its ability to converthours of computation into minutes of computation on scienti�c problems ofreal interest attests to its readiness for a production environment.

AcknowledgmentsEwing Lusk and Ross Overbeek were supported in part by the O�ce ofScienti�c Computing, U.S. Department of Energy, under contract W-31-109-Eng-38. Shyam Mudambi's work was done while the author was atKnox College, Galesburg, Illinois. P�eter Szeredi and Ewing Lusk were bothpartially supported by the U.S.-Hungarian Science and Technology JointFund under project No. 031/90.References[1] A. Bairoch. PROSITE: a dictionary of sites and patterns in proteins.Nucleic Acids Res. 19:2241-2245(1991).[2] Anthony Beaumont, S Muthu Raman, P�eter Szeredi, and David H DWarren. Flexible Scheduling of Or-Parallelism in Aurora: The Bris-tol Scheduler. In PARLE91: Conference on Parallel Architectures andLanguages Europe, pages 403{420. Springer Verlag, June 1991. LectureNotes in Computer Science, Vol 506.[3] Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek,and Rick Stevens. Scheduling OR-parallelism: an Argonne perspective.In Proceedings of the Fifth International Conference on Logic Program-ming, pages 1590{1605, MIT Press, August 1988.[4] Alan Calderwood and P�eter Szeredi. Scheduling or-parallelism in Au-rora { the Manchester scheduler. In Proceedings of the Sixth Interna-tional Conference on Logic Programming, pages 419{435, MIT Press,June 1989.[5] Mats Carlsson, Ewing L. Lusk, and P�eter Szeredi. Smoothing roughedges in Aurora (Extended Abstract). In Proceedings of the FirstCOMPULOG-NOE Area Meeting on Parallelism and ImplementationTechnology. Technical University of Madrid, May 1993.[6] Virginia Herrarte and Ewing Lusk. Studying parallel program behaviorwith Upshot. Technical Report ANL{91/15. Argonne National Labora-tory, 1991.[7] Wen-Hsiung Li and Dan Graur. Fundamentals of Molecular Evolution.Sinauer and Associates, 1991.[8] Ewing Lusk, Ralph Butler, Terence Disz, Robert Olson, Ross Overbeek,Rick Stevens, D.H.D. Warren, Alan Calderwood, P�eter Szeredi, SeifHaridi, Per Brand, Mats Carlsson, Andrzej Ciepielewski, and Bogumi lHausman. The Aurora or-parallel Prolog system. New Generation Com-puting, 7(2,3):243{271, 1990.

[9] Shyam Mudambi. Performance of Aurora on NUMA machines. InKoichi Furukawa, editor, Logic Programming: Proceedings of the EighthInternational Conference on Logic Programming, pages 793{806, MITPress, 1991.[10] David Searls. Investigating the Linguistics of DNA with De�nite ClauseGrammars. In Ewing L. Lusk and Ross A. Overbeek, editors, LogicProgramming: Proceedings of the 1989 North American Conference,pages 189{208, MIT Press, 1989.

