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1 IntroductionThe e�cient solution of nonlinear systems of equations that arise in �nite el-ement modeling of convective-di�usive ow is a basic objective in computationaluid dynamics. One commonly used approach is to employ implicit Newton-likeschemes to solve the coupled system of Navier-Stokes and continuity equations,where the di�culty of indirect speci�cation of pressure necessitates considera-tion. Speci�cally, if the primitive variables of velocity and pressure are used indirect discretization of the problem, zero terms are produced on the diagonal ofthe Jacobian matrix. To remedy this situation, researchers have devoted muche�ort to the development of reorderings and modi�cation of the diagonal terms.Alternatively, we develop a primitive variable formulation that overcomes thedi�culty of indirect pressure linkage and its detrimental e�ects on the Jacobianmatrix by incorporating an auxiliary pressure equation derived from the Navier-Stokes and continuity equations. We consider explicit formation of the Jacobianmatrix both analytically and with the use of �nite di�erencing approximations.Development of the subsidiary pressure equation extends the �nite elementwork of Rice and Schnipke [1], which is itself based on the SIMPLER �nitedi�erence technique of Patankar [2], where similar equations are derived withinthe context of a segregated solution approach. As described, for example, byChorin [3], a distinguishing characteristic of segregated solution methods is thatthe governing partial di�erential equations are repeatedly solved in sequencerather than concurrently. This feature o�ers the advantage of relatively modestmemory requirements, since the coe�cient matrix for only one linearized system2



must be stored at a given time. However, segregated solvers sometimes cannotadequately handle strong coupling because of the approximations that producethe linearized systems. In addition, since the segregated solution approachreduces the residual only locally at each step, the number of iterations requiredfor convergence and the computational e�ort tend to increase signi�cantly asgrids are re�ned (see, e.g., [4]).We maintain the favorable features of the Rice-Schnipke �nite element for-mulation and incorporate the bene�ts of solving a fully coupled nonlinear sys-tem in which the residual is reduced globally at each iteration. The resultingdiscretized pressure equation is symmetric positive de�nite, and equal-orderinterpolation functions can be employed for all variables instead of the usuallower-order interpolation for pressure. As shown by Rice and Schnipke [1],the segregated solution variant of this problem formulation eliminates spuriouspressure modes that often arise for simple multilinear elements when constantpressures would be required to satisfy the Babuska-Brezzi stability condition.We evaluate the e�ectiveness of the new velocity-pressure-temperature for-mulation in the context of approximate Newton methods for solving ow prob-lems with varying degrees of nonlinearity. Numerical results are presented forseveral standard test problems, including developing duct ow, ow over abackward-facing step, and natural convection. The Newton-like methods arecompared with the corresponding segregated solution technique in terms of so-lution accuracy, rate of convergence, and overall e�ciency.3



2 Problem FormulationIn this section we de�ne the class of problems under consideration, namely,those arising in the modeling of incompressible, laminar, Newtonian uid ow.The �nite element discretization of the governing partial di�erential equationsis presented, and the subsidiary pressure equation is derived.2.1 Governing Partial Di�erential EquationsWe consider the three-dimensional steady-state partial di�erential equationsthat govern incompressible, laminar, Newtonian uid ow. The conservation ofmass equation, or continuity equation, is given byr � �u = 0; (2:1)where � and u = [u1; u2; u3]t respectively denote density and velocity, with thesuperscript t indicating the vector transpose. The continuity equation is coupledwith the Navier-Stokes equations and the thermal energy equation with no heatgeneration, which in the Cartesian coordinate system are given respectively by�u � ruj = r � (�ruj) + �ĝj � @p@xj ; j = 1; 2; 3; (2:2)and �cpu � rT = r � (krT ): (2:3)Here T; ĝ; �; k; and cp respectively denote temperature, gravitational force,viscosity, thermal conductivity, and speci�c heat, where the last three variablesare known functions of temperature and pressure. All uid properties are as-sumed to be constant within an element, so that r�u = 0 on an element basis.4



While the density, �, is usually removed from (2.1) for incompressible ow, weretain it to ensure conservation of mass for nonisothermal ows, where densitymay vary according to a particular constitutive equation.To discuss derivation of the auxiliary pressure equation, we focus �rst on thecoupling of the steady-state continuity and incompressible Navier-Stokes equa-tions. Thus, we initially consider two-dimensional isothermal ow, for whichthe temperature and density variables remain constant, to discuss the problemformulation. This form can then easily be extended to include the additionalvelocity, temperature, and density variables for three-dimensional nonisother-mal ow. The corresponding boundary value problem is as follows: Given thebounded spatial domain 
 � <2, with a smooth boundary � and unit outwardnormaln, �nd u(x) and p(x) satisfying (2.1) and (2.2) as well as the appropriatewell-posed boundary conditions. Typical Dirichlet and di�usive-ux Neumannboundary conditions for velocity are expressed byu = g(x); x 2 �g and �ru �n = h(x); x 2 �h; (2:4)where g and h are given functions, and �g and �h are subsets of the boundary� such that �g[�h = �; �g \ �h = ;: (2:5)Note that outow boundary conditions for incompressible ow are subject todi�erent interpretations, as discussed by Gresho [5].2.2 Finite Element DiscretizationFinite element discretization of the ow equations yields a nonlinear system5



of the form F (w) = A(w)w � b(w) = 0; (2:6)where F : <2 ! <2. Using the primitive variables of velocity and pressure, wcan be partitioned accordingly:w = [u1; u2; p]t: (2:7)The matrix A in (2.6) has block diagonal structure, which for two-dimensionalisothermal ow is given byA = 24 Au1 Au2 Ap 35 ; (2:8)where Au1 and Au2 indicate the coe�cient matrices corresponding to the mo-mentum equations, and Ap is the coe�cient matrix of the auxiliary pressureequation. The contents of these matrices and the corresponding components ofb will be discussed in this section.Consider the application of the �nite element method to (2.2), where forsimplicity we �rst discuss the scalar convection-di�usion equation. This equa-tion is restated as follows in terms of the general variable �, denoting either u1or u2: �u � r� = r � (�r�) + �ĝj � @p@xj ; (2:9)where j denotes the corresponding spatial dimension 1 or 2. We wish to solvethe following boundary value problem: Given the bounded domain 
 � <2,with smooth boundary � such that (2.5) holds and has unit outward normal n,�nd the function � that satis�es (2.9) and the boundary conditions� = g(x); x 2 �g and �r� �n = h(x); x 2 �h: (2:10)6



The variational formulation is determined by taking the weighted averageof (2.9), where the spaces of admissible trial and weighting functions are givenrespectively by S � f (x) :  2 H1(
);  j�g = gg (2:11)and V � f ̂(x) :  ̂ 2 H1(
);  ̂j�g = 0g: (2:12)The variational formulation thus becomes: Find � 2 S such that for all �̂ 2 Va(�; �̂) = L(�̂); (2:13)where the bilinear form a(�; �̂), which is nonsymmetric for the convection-di�usion problem, is given bya(�; �̂) = Z
 �u � r��̂d
+ Z
 �r� � r�̂d
; (2:14)and the linear form L(�̂) is given byL(�̂) = Z
(�ĝj � @p@xj )�̂d
+ Z�h h�̂d�: (2:15)The streamline upwind Petrov-Galerkin (SUPG) approach of Brooks andHughes [6], with enhancements by Hughes, Mallet, and Mizukami [7], is in-corporated for accurate modeling of convective e�ects. A modi�ed weightingfunction is introduced so that a streamline upwind perturbation exists only inthe ow direction. An additional term, acting in the direction of the solutiongradient, is used to capture discontinuities.The problem domain 
 is partitioned into E discrete regions 
e, where�
 = E[e=1 �
e and E\e=1
e = ;: (2:16)7



We employ the �nite element analogue of the space S, as given bySh � f h 2 C0(
) :  hj
e 2 ~P k(
e) 8 
e 2 h;  hj�g = gg; (2:17)where ~P k(
e) is the space of polynomials of degree k � 0 on 
e, and h denotesthe partitioning used for a given problem. There is no continuity requirementacross interelement boundaries, so that the weighting function�̂SUPG = �̂+ ŵ; (2:18)is contained in W h, whereW h � f ̂h 2 C�1(
) :  ̂hj
e 2 ~P k(
e) 8 
e 2 h;  ̂hj�g = 0g: (2:19)Here �̂ 2 C0 is the standard Bubnov-Galerkin weighting function (correspondingto the interpolation function) and ŵ 2 C�1 is a discontinuous perturbation of�̂ which includes weighting functions for upwinding and discontinuity-capturinge�ects: ŵ = �1u � r�̂+ �2�u � r�̂: (2:20)The locally de�ned upwinding and discontinuity-capturing terms, given respec-tively by �1 and �2, have the dimension of time, so that ŵ is nondimensional.While various techniques have been developed for determining �1 and �2, whichare functions of velocity, material properties, and element parameters, we em-ploy the method given in [7]. Also, �u denotes the projection of u on r�h, asgiven by �u = ( u�r�hjr�hj2 r�h if r�h 6= 00 otherwise. (2:21)8



A discrete approximation of the variational problem then becomes: Find�h 2 Sh such that for all �̂ 2W ha� (�h; �̂) = L� (�̂); (2:22)wherea� (�h; �̂) = a(�h; �̂) + EXe=1 Z
e [�u � r�h +r � (��r�h)] ŵd
; (2:23)and the summation notation indicates that the element quantities are placedin global positions according to the node numbering scheme. The linear formL� (�̂) is given by L� (�̂) = L(�̂) + Z
(�ĝj � @p@xj )ŵd
; (2:24)and ŵ is given by (2.20). Because the perturbations introduced by the SUPGformulation are restricted to the element interiors, they a�ect neither boundarynor continuity conditions.Note that a� cannot be interpreted as a global integral over 
 because of thedi�usive term r � (��r�h)ŵ, which is properly de�ned only over the elements
e. Hughes and Brooks [8] indicate the circumstances under which this termof (2.23) vanishes: the medium of interest is isotropic, so that � = ��ij , multi-linear isoparametric interpolation functions are employed, and the elements arerectangular. This is the case for all problems considered in this work.2.3 Derivation of the Auxiliary Pressure EquationWe extend the segregated velocity-pressure approach of Rice and Schnipke[1] to derive the new pressure equation. As previously discussed, the method of9



weighted residuals is employed to discretize the momentum eqs. (2.2). We nextturn to the continuity eq. (2.1), by which pressure is indirectly determined.Speci�cally, if the correct pressure is substituted in the momentum equations,then the resulting velocity �eld satis�es the continuity condition. While manytechniques attempt to remedy the problem of indirect pressure linkage, most ofthese produce either unstable or inaccurate solutions. In our method the prob-lem of indirect pressure speci�cation is solved by manipulating the momentumand continuity equations to derive a subsidiary Poisson equation for pressure.Derivation of the auxiliary pressure equation begins with consideration ofthe weak form of the element continuity equation,Z
e Nr � �ud
 = 0; (2:25)where for Galerkin's method of weighted residuals the weighting functions andinterpolants are identical. Applying the chain rule and Green's formula to thisequation and approximating the velocity components by their interpolated val-ues then produce in the two-dimensional caseZ
e � 2Xk=1 @N@xkN tukd
 = Z�e �N 2Xk=1uknkd�; (2:26)where the nk denote the components of the unit vector normal to �, and in thiscontext the uk are element vectors. Note that the surface integrals are zeroeverywhere except for the inow and outow boundaries, where they representmass ux crossing the boundaries.At this point the pressure variable is introduced into the system. First,the form of the discretized system of equations for momentum is modi�ed to10



emphasize the pressure variable. These equations becomeAe��e = f̂ej � Z
e ~N @p@xj d
; (2:27)where Ae� indicates the coe�cient matrix corresponding to the bilinear form(2.14) and f̂ ej = Z�eN�r� �nd�+ Z
e ~N�ĝjd
: (2:28)Note that for SUPG convection modeling~N = N + �1�u1@N@x1 + u2@N@x2�+ �2��u1 @N@x1 + �u2@N@x2� : (2:29)We introduce an approximation by assuming that the pressure gradient remainsconstant over a given element and thus can be removed from the integral. Hence,the following explicit representation of the velocity results:�e = �Ae���1�f̂ ej � Z
e ~Nd
 @p@xj� : (2:30)Next, velocity is expressed in terms of the pressure gradient and is substitutedinto the continuity equation. We assume that the pressure gradients can beexpressed as constants at each node of a given element, as given by the vectorce� in the following equation: �e = ��e � ce� @p@xj ; (2:31)where ��e are considered to be partial velocities, as determined by the momen-tum equations with the e�ect of pressure removed.Equating terms that represent the pressure contributions to velocity in theeqs. (2.30) and (2.31) and then assembling the appropriate global systems pro-duce the following set of equations, which can be used to calculate the pressure11



coe�cients c�: A�c� = s; (2:32)where c� =PEe=1 ce� and s = EXe=1 Z
e ~Nd
: (2:33)Instead of solving the linear system (2.32) to obtain the pressure coe�cients,these nodal values are approximated byci = siaii ; i = 1; : : : ; n; (2:34)where A� = [aij], c� = [c1; : : : ; cn]t, and n indicates the global system dimen-sion. Note that if �i is speci�ed as a Dirichlet boundary condition, then (2.31)indicates that �i = ��i = �b:c:, so that ci = 0. Next, substitution of (2.31) into(2.26) for the element vectors uk and interpolation of the pressure gradientsenable the element pressure vector, p, which is considered constant for a givenelement, to be placed outside the integrals. The following system results:Aeppe = f ep; (2:35)where the coe�cient matrix is symmetric positive de�nite, as given byAep = Z
e � 2Xk=1N tceuk �@N@xk @N@xk t� d
; (2:36)and fep = Z
e � 2Xk=1�@N@xkN t�uk�d
� Z�e �N 2Xk=1 (uknk) d�: (2:37)We next consider the formation of the partial velocities �uk; which are usedto compute the right-hand-side vector fep of (2.35). The nodal form of (2.30) is12



given by�ei = 1aii 0BB@� nXl=1l6=i (ail�el ) + f̂eji � Z
e ~Nid
 @p@xj1CCA ; 1; : : :n; (2:38)where the notation f̂eji indicates the ith component of the vector f̂ej . The com-ponents of the partial velocity �� = [��1; : : : ; ��n]t can thus be represented by��i = 1aii 0BB@� nXl=1l6=i (ail�l) + f̂ji1CCA ; i = 1; : : : ; n: (2:39)Note that the algebraic form of the partial velocities developed in the segregatedsolution approach of Rice and Schnipke [1] is retained, although the intermediatelinearized momentum systems are not solved to obtain trial velocities for use inthe row sums.3 Formation of the Jacobian MatrixWe next consider analytic formation of the Jacobian matrix correspondingto (2.6), which is given byF 0(w) = A(w) + A0(w)w � b0(w); (3:1)where b0(w) = h @bi@wj i. Note that if the jth column of A is denoted by aj(w),then the matrix-vector product A(w)w can be written asA(w)w = nXj=1wjaj(w); (3:2)so that A0(w)w can be formed as a linear combination of its columns' Jacobianmatrices: A0(w)w = nXj=1wja0j(w): (3:3)13



As shown by Curfman [9], the Jacobian contributions corresponding to themomentum equations are formed as expected. We present details only for theauxiliary pressure equation, where (3.3) implies@Aep@uk p = nvXl=1 pl @ap el@uk ; k = 1; 2; (3:4)and nv denotes the number of nodes of an element, taken here to be four forthe quadrilateral case. The element Jacobian is given by@apl e@uk = �@ap eli@ukj � ; k = 1; 2; (3:5)and the two-dimensional nodal form of (2.36) indicatesap eli = Z
e � @Ni@x1 @Nl@x1 nvXm=1 Nmsmau1mm + @Ni@x2 @Nl@x2 nvXm=1 Nmsmau2mm ! d
; (3:6)where Nmsmaukmm ; k = 1; 2; is replaced by zero if ukm is speci�ed as a Dirichletboundary condition. Partial di�erentiation of (3.6) produces@ap eli@ukj = Z
e �"@Ni@x1 @Nl@x1 nvXm=1��Nmsm(au1mm)2 @au1mm@ukj + Nmau1mm @sm@ukj � + (3:7)+@Ni@x2 @Nl@x2 nvXm=1��Nmsm(au2mm)2 @au2mm@ukj + Nmau2mm @sm@ukj �# d
;The term sm is given by (2.33), so that@sm@ukj = EXe=1 Z
e @ ~Nm@ukj d
; (3:8)where@ ~Nm@ukj = @�1@ukj �u1 @Nm@x1 + u2@Nm@x2 � + �1Nj @Nm@xk (3:9)+ @�2@ukj ��u1@Nm@x1 + �u2 @Nm@x2 � + �2� @�u1@ukj @Nm@x1 + @�u2@ukj @Nm@x2 � :14



Because of the analogous forms of @fp@u1 and @fp@u2 , we present only the submatrix@fp@u1 :@fp@u1 = EXe=1 Z
e ��@N@x1N t @�u1@u1 + @N@x2N t@�u2@u1� d
� EXe=1 Z�e �N @(u1n1)@u1 d�:(3:10)Di�erentiation of (2.39) yields@�uki@u1j = @@u1j 2664 1aukii 0BB@� nXl=1l6=i (aukil ukl) + f̂ki1CCA3775 (3:11)= 1aukii 0BB@(�ij � 1)�k1aukij � @aukii@u1j �ui � nXl=1l6=i @aukil@u1j ukl + @f̂ki@u1j1CCA; k = 1; 2;where �ij denotes the Kronecker delta. Note that if uki is speci�ed as a Dirichletboundary condition so that uki = �uki, then @�uki@ukj = �ij and @�uki@uk̂j = 0.4 Numerical ResultsThe objective of this section is to evaluate the e�ciency of the approximateNewton strategies for the solution of convective-di�usive ow problems withvarying degrees of nonlinearity when the previously described velocity-pressureformulation is employed. Of particular interest is a comparison between theNewton-like schemes and the segregated solution approach of Rice and Schnipke[1], since the velocity-pressure formulations of the two approaches are closelyrelated. All computational results were generated on a single processor of aCRAY Y-MP at the NASA Langley Research Center.15



4.1 Description of Test ProblemsWe employ three basic test problems: developing ow in a plane channel,ow over a backward-facing step, and natural convection within an enclosedregion. Since these cases have been previously examined by numerous otherresearchers, the accuracy of our solutions can easily be validated. We discretizeeach of these test problems with a coarse and �ne mesh of rectangular elements,and alter the uid properties to create varying degrees of nonsymmetry andnonlinearity.We �rst consider isothermal developing ow in a 1m by 100m rectangularplane channel at Reynolds numbers of 75, 150, 400, 800, and 1600. A uniformvelocity pro�le is speci�ed at the inlet, while zero pressure is imposed at theoutlet. No slip boundary conditions are given for the top wall, and a symmetrycondition exists at the bottom of the grid. These test cases are similar tocases considered by Rice and Schnipke [1] and Gosman et al. [10] as well asvarious other researchers, and are presented for benchmark comparisons of owfeatures. The meshes DUCT1 and DUCT2 are employed, which respectivelyhave the dimensions of 7�61 and 11�181.We examine isothermal ow over a backward-facing step, where the problemand mesh geometry are adapted from Rice and Schnipke [1] and Gartling [11].Although the problem geometry is simple, the ow exhibits complex featuresthat are found in many other cases of practical interest. The channel is 10.1mmby 200mm and has fully-developed ow speci�ed at its inlet, 0 � x2 � 5:2mm,so that the channel region upstream of the step is excluded. All solid walls are16



assumed to be non-slip, and zero pressure is assumed at the outow boundary.The inow is speci�ed by u1(x2) = :222x2(5:2 � x2) for 0 � x2 � 5:2mm,producing an average inow velocity of u1 = 1mm/s. Fluid properties arevaried to produce ow at Reynolds numbers of 100 and 200, which duplicatethe experimental conditions of Armaly et al. [12]. Meshes of sizes 25� 43 and35� 63 are considered as test cases STEP1 and STEP2.While the previous ow problems include only the momentum and pressureequations, thermally driven cavity ow with the Boussinesq approximation in-corporates the thermal energy equation and a constitutive equation for density.The problem geometry is taken from the comparative study of de Vahl Davisand Jones [13], in which various numerical methods are considered for the nat-ural convection problem of air at a Prandtl number of .71 in a square cavitywith di�erentially heated vertical sides. The walls of the problem domain inthe x1-direction are insulated, while the walls in the x2-direction are held attemperatures T1 and T2, where T1 > T2. Gravitational force is assumed to actin the �x2 direction. In accordance with the work of Schnipke [14], we analyzethe problem on a uniform 25� 25 grid, labeled CONV1, for Rayleigh numbers103; 104; and 105 and on a uniform 41�41 grid, labeled CONV2, for the Raleighnumber 106. Our solution accuracy is compared with that of Schnipke [14] aswell as with the benchmark solution of de Vahl Davis [15].Table 1 contains various parameters of the analytically formed Jacobianmatrices associated with these test problems, including the mesh dimension,matrix dimension, and approximate number of nonzeros. Note that the Ja-17



cobian's nonzero structure tends to vary slightly for a given mesh accordingto ow parameters and even among di�erent Newton iterations of a particularproblem. However, this table provides adequate estimates for our purposes,since the number of nonzeros for an individual grid deviated a maximum of 0.5percent for all test problems.4.2 Solution ProcedureWe begin by generating an initial approximation for the Newton-like schemesby performing a variable number of iterations of the segregated solution ap-proach. Experimentation has shown that reduction of the relative residual norm,kF k2kF 0k2 < �1, to less than 0.5 works well for the developing duct ow and naturalconvection problems, while the slightly larger value of 1.0 is su�cient for thebackward-facing step problems.Analytic formation of the Jacobian matrix proved to be very e�cient, re-quiring only four to �ve times as long as a single evaluation of the residualvector F for the cases under consideration. Although the residual can be evalu-ated with little additional e�ort during the assembly of the Jacobian matrix, weelect to form the residual as the �rst step of each Newton iteration to monitorconvergence and to indicate whether evaluation of the Jacobian is necessary inthe Newton process. For all cases under consideration, we form a new Jacobianmatrix F 0(wk+1) only if jjF (wk)jj2jjF (wk�1)jj2 > :25 .In addition to analytic formation of the Jacobian matrix, we consider forwarddi�erencing approximations. Both techniques accurately capture the ow �eldfor the test cases; however, even with the use of strategies for minimizing the18



number of function evaluations, the di�erencing approach is much more costlythan analytic formation. Since for most ow problems of practical interest,the number of required function evaluations for the di�erencing approximationsigni�cantly exceeds �ve, the utility of the di�erencing approach is limited.The natural ordering of the nodes is used, where all unknowns for a par-ticular grid point are numbered before proceeding to the succeeding node. Wesolve the linearized Newton systems by banded LU decomposition using LA-PACK [16]. While inexact Newton methods that incorporate Krylov projectiontechniques for the solution of the linear systems are often preferable in termsof storage requirements and computational e�ort, these methods require ap-propriate preconditioning strategies and convergence monitoring. Since theseissues can complicate the solution process, particularly for nonsymmetric sys-tems, direct solution allows us to focus on the problem formulation withoutthese additional concerns.4.3 Comparison of ResultsConvergence and timing information for the segregated and simultaneoussolution approaches are presented in Tables 2, 3, and 4 for developing ductow, backward-facing step ow, and natural convection, respectively. Iterationcounts for the approximate Newton's method are given in the form a=b, wherea indicates the number of iterations of the segregated solver needed to generatean appropriate initial approximation, and b denotes the number of Newtoniterations. Damping is required within the approximate Newton approach onlyfor solution of the natural convection problem with a Raleigh number of 106.19



Within the segregated solver a variable-band Cholesky factorization method[17] is used to solve the symmetric pressure equation. In addition, a tridiagonalmatrix algorithm [2], [14] is employed for the momentum equations.Our experiments indicate that for all test problems the approximate New-ton method, using the velocity-pressure formulation discussed in Section 2, de-termines the ow solution both rapidly and accurately. Di�erences betweensolutions obtained by the segregated solution technique and the approximateNewton method uctuate only according to the speci�ed strictness of the con-vergence criteria. Key ow features agree with those discussed by Rice andSchnipke [1], Gosman et al. [10], and Armaly et al. [12].The new velocity-pressure-temperature formulation overcomes the di�cultyof indirect pressure linkage inherent in the coupled system of Navier-Stokes andcontinuity equations. The auxiliary pressure equation generates nonzero termsfor all diagonal elements of the Jacobian matrix, thereby facilitating the use ofrapidly converging Newton-like methods without requiring reordering strategiesor modi�cation of the diagonal terms.This approach is particularly useful for �nely discretized problems with highdegrees of nonlinearity. As discussed by MacArthur and Patankar [4], since thesegregated solver reduces the residual only locally at each step of the solutionprocess, its convergence rate is strongly inuenced by the number of unknowns.In addition, the decoupling inherent in the segregated solver causes relativelyslow transmission of boundary data throughout the problem domain. In con-trast, the Newton-like schemes reduce the residual for the entire domain and20
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Table 1: Test Problem ParametersProblem Mesh Jacobian Number ofName Dimension Dimension NonzerosDUCT1 7 � 61 1,281 33,750DUCT2 11 � 181 5,973 181,355STEP1 25 � 43 3,225 105,380STEP2 35 � 63 6,615 225,710CONV1 25 � 25 3,125 108,600CONV2 41 � 41 8,405 291,875
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Table 2: Comparison of Solution Techniques:Problems DUCT1 and DUCT2Problem: DUCT1 Problem: DUCT2Reyn. Solution# Method # of Time kF k2kF 0k2 # of Time kF k2kF 0k2Iter (sec) (� 10�7) Iter (sec) (� 10�7)75 Seg. 43 6.86 7.75 43 31.29 9.16Newton 2/4 1.56 0.70 2/5 8.60 3.58150 Seg. 47 7.50 8.24 51 37.13 8.53Newton 2/4 1.56 1.80 3/6 9.17 5.91400 Seg. 60 9.59 8.43 64 46.85 9.89Newton 3/7 1.77 1.78 3/5 11.39 1.44800 Seg. 73 11.77 8.39 81 59.84 9.67Newton 3/5 2.12 0.26 2/6 12.04 4.731,600 Seg. 83 13.50 9.55 107 79.76 9.20Newton 5/6 2.39 3.41 2/5 15.02 6.10Seg.: Segregated SolutionNewton: Approximate Newton's MethodConvergence Criterion: jjF jj2jjF 0jj2 < 10�625



Table 3: Comparison of Solution Techniques:Problems STEP1 and STEP2Problem: STEP1 Problem: STEP2Reyn. Solution# Method # of Time kF finalk2kF 0k2 # of Time kF finalk2kF 0k2Iter (sec) (� 10�7) Iter (sec) (� 10�7)100 Seg. 127 51.96 9.00 231 191.64 9.87Newton 4/8 9.01 6.96 4/7 20.03 2.67200 Seg. 179 73.02 9.58 306 255.55 9.00Newton 4/8 13.37 8.19 4/8 32.74 2.75Seg.: Segregated SolutionNewton: Approximate Newton's MethodConvergence Criterion: jjF jj2jjF 0jj2 < 10�6
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Table 4: Comparison of Solution Techniques:Problems CONV1 and CONV2Solution # of Time kF finalk2kF 0k2Problem Method Iter (sec) (� 10�7)CONV1-103 Seg. 90 41.48 9.93Newton 2/6 14.20 2.61CONV1-104 Seg. 120 57.34 9.79Newton 3/7 15.67 3.92CONV1-105 Seg. 143 67.01 9.88Newton 3/8 19.32 8.81CONV2-106 Seg. 253 152.43 9.39Newton 4/10 44.11 5.33Seg.: Segregated SolutionNewton: Approximate Newton's MethodConvergence Criterion: jjF jj2jjF 0 jj2 < 10�6
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