
p4-Linda: A Portable Implementation of LindaRalph M. Butler �Alan L. Leveton Ewing L. Lusk yCollege of Comp. and Inf. Sci. Math. and Comp. Sci. DivisionUniversity of North Florida Argonne National LaboratoryJacksonville, FL 32246 Argonne, IL 60439rbutler@sinkhole.unf.edu lusk@mcs.anl.govAbstractFacilities such as interprocess communication andprotection of shared resources have been added to oper-ating systems to support multiprogramming and havesince been adapted to exploit explicit multiprocessingwithin the scope of two models: the shared-memorymodel and the distributed (message-passing) model.When multiprocessors (or networks of heterogeneousprocessors) are used for explicit parallelism, the di�er-ence between these models is exposed to the program-mer. The p4 tool set was originally developed to bu�erthe programmer from synchronization issues while of-fering an added advantage in portability, however twomodels are often still needed to develop parallel algo-rithms. We provide two implementations of Linda inan attempt to support a single high-level programmingmodel on top of the existing paradigms in order to pro-vide a consistent semantics regardless of the underly-ing model. Linda's fundamental properties associatedwith generative communication eliminate the distinc-tion between shared and distributed memory.1 IntroductionWe have implemented two compatible versionsof Linda on top of the p4 portable parallel pro-gramming system, one to take advantage of shared-memory architectures, the other to utilize a net-work of heterogeneous processors, o�ering an advan-tage in portability. Each implementation is basedon a di�erent programming model: an abstract data�This work was partially supported by National ScienceFoundation grant CCR-9121875.yThis work was supported by the Applied Mathematical Sci-ences subprogramof the O�ce of EnergyResearch, U.S. Depart-ment of Energy, under contract W-31-109-Eng-38.

structure called a monitor synchronizes access toshared data in shared-memory architectures, whereasprocesses in distributed-memory space communicatethrough message-passing operations. Both program-ming paradigms are high-level abstractions in them-selves and provide an intelligent means to constructparallel programs in diverse environments. The chal-lenge was to bootstrap the approaches to a higher levelof abstraction - that of the Linda model.Although shared-memory seems natural for Linda'stuple space, some means is required to make the opera-tions on tuple space atomic. During the brief momentin which a process either places a tuple into tuple spaceor consumes a tuple, the process must be assured ofbeing the sole process operating on the data. Moni-tors provide a coherent means to protect tuples fromsimultaneous access by processes executing in parallel.The message-passing programming model providesa means for distributed, loosely-coupled processes tocommunicate solely through messages. It supports animplementation of Linda that works on both shared-memorymachines and distributed machines that com-municate over a network. This model may run on alarge multicomputer, or on a collection of heteroge-neous machines, including a network of workstations.It provides a more portable system at the possible riskof su�ering some loss in performance.2 Linda BackgroundLinda is described in [8]. Gelernter introducesgenerative communication, which he argues is su�-ciently di�erent from the three basic kinds of concur-rent programming mechanisms of the time (monitors,message-passing, and remote operations) as to makeit a fourth model. It di�ers from the other models inrequiring that messages be added in tuple form to an

environment called tuple space where they exist inde-pendently until a process chooses to receive them.The abstract environment called tuple space formsthe basis of Linda's model of communication. A pro-cess generates an object called a tuple and places itin a globally shared collection of tuples called tuplespace. Theoretically, the object remains in tuple spaceforever, unless removed by another process [6].Tuple space holds two varieties of tuples. Processor \live" tuples are under active evaluation, incorpo-rate executable code, and execute concurrently. Datatuples are passive, ordered collections of data items.For example, the tuple (\mother",\age",56) containsthree data items: two strings and an integer. A pro-cess tuple that is �nished executing resolves into adata tuple, which may in turn be read or consumedby other processes [6].Four operations are central to Linda: out, in, rd andeval. Out(t) adds tuple t to tuple space. The elementsof t are evaluated before the tuple is added to tuplespace [1]. For example, if array[4] contains the value10, out(\sum",2,array[4]) adds the tuple (\sum",2,10)to tuple space and the process continues immediately.In(m) attempts to match some tuple t in tuplespace to the template m and, if a match is found,removes t from tuple space. Normally, m consistsof a combination of actual and formal parameters,where the actuals in m must match the actuals in t bytype and position and the formals in m are assignedvalues in t [1]. Thus, given the tuple noted above,in(\sum",?i,?j) matches \sum", assigns 2 to i, 10 toj, and the tuple is removed from tuple space. Rd issimilar to in except that the matched tuple remains intuple space. Unlike the other operators, the executingprocess suspends if an in or rd fails to match a tuple.Eval(t) is similar to out(t) with the exception thatthe tuple argument to eval is evaluated after t is addedto tuple space. A process executing eval creates a livetuple and continues. In creating the active tuple, evalimplicitly spawns a new process that begins to workevaluating the tuple [6]. For example, if the func-tion abs(x) computes the absolute value of x, theneval(\ab",-6,abs(-6)) creates or allocates another pro-cess to compute the absolute value of -6. Once eval-uated, the active tuple resolves into the passive tuple(\ab",-6,6) which can now be consumed or read by anin or rd. Eval is not primitive in Linda and is actuallyconstructed on top of out and provides Linda with amechanism to dynamically create multiple processesto assist in a task. Implementations of Linda existthat do not recognize the eval operation [1], includinga network model based on worker replication - n nodes

are given n copies of a program, thereby obviating theneed for dynamic process creation.Tuple members are usually simple data types: char-acters, one-dimensional strings, integers, or oats. Insome Linda implementations tuples can include morecomplex data types (e.g., integer arrays) [6]. Thesedata structures are removed from or added to tuplespace just like the more fundamental types.Operations which insert or withdraw from tuplespace do so atomically. In theory, nondeterminism isinherent; it is assumed that the tuples are unorderedin tuple space so that, given a template m and match-ing tuples t1, t2 and t3, it can not be determinedwhich tuple will be removed by in(m) [8]. In prac-tice, implementations of tuple space fall short of purenondeterminism. Some ordering is inescapable but re-mains implementation dependent. It is in the spiritof Linda programming not to presuppose any order-ing of tuples in the underlying mechanism. Sequenc-ing transactions upon tuple space is facilitated usinga sequencing key as an additional tuple element [10],a method employed to program distributed arrays inLinda. Thus the ith element of vector \A" is accessedvia in("A",i,<some_number>)while the ith + 1 element is added to tuple space without("A",i+1,<some_number>)Several properties distinguish Linda. Generativecommunication simply means that a tuple generatedby process p1 has independent existence in tuple spaceuntil removed by some process p2. This property facil-itates communication orthogonality because a receiverhas no prior knowledge about a sender and a senderhas none about the receiver - all communication ismediated through tuple space. Spatial and temporaluncoupling also mark Linda. Any number of processesmay retrieve tuples, and tuples added to tuple spaceby out remain in tuple space until removed by in [8].A property called structured naming deserves spe-cial consideration. Given the operations out(t1) andin(m1), all actuals in t1 must match the correspondingactuals in m1 for matching to succeed. The actuals int1 constitute a structured name or key and, looselyspeaking, make tuple space content addressable. Forexample, if (\sum",10,9) is a tuple in tuple space,then the success of the operation in(\sum",?x,10) ispredicated upon the structured name [\sum",10]. Weare reminded both of the restriction operation in rela-tional databases and instantiation in logic languages[8]. The structured name should not be confused withthe logical name, which is simply the initial

3 p4 Backgroundp4 [4] [2] [9] is a set of parallel programming toolsdesigned to support portability across a wide rangeof multiprocessor/multicomputer architectures (hencethe name \Portable Programs for Parallel Proces-sors"). Three parallel processing paradigms are sup-ported:� shared-memory multiprocessors;� a set of processors that communicate solelythrough messages (typically, a distributed-memory multiprocessor, or a group of machinesthat communciate over a network);� communicating clusters (sets of large multiproces-sors that communicate via shared-memory locallyand via message-passing remotely).The tools that support these paradigms achieveportability by hiding machine dependent details insideC procedures.Programming multiprocessors in which processescan communicate via globally shared-memory requiresthat shared objects must be protected against un-safe concurrent access. One approach to program-ming such systems involves the use of an abstractdata type called a monitor to synchronize access toshared objects. Monitors coordinate e�cient use oflocking mechanisms to guarantee exclusive access toshared resources and protect critical sections of codeat any one time. They are responsible for suspendingprocesses that wish to enter the monitor prematurely,and releasing processes blocked on the condition queuewhen the resource is free and use of the monitor relin-quished.p4 includes high-level monitor operations built ontop of low-level, machine-dependent primitives. Onespecial-purpose mechanism is called the askfor mon-itor. A common pattern in multiprocessing, some-times called agenda parallelism [6], focuses on a listof tasks to be performed and is epitomized in themaster/worker paradigm. A master process initializesa computation and creates worker processes capableof performing, in parallel, a step in the computation.Workers repeatedly seek a task to be performed, per-form the task, and continue to seek tasks until an ex-haustion state is reached. The askfor monitormanagesjust such a pool of tasks and is invoked with:askfor(<monitor_name>,<num_processes>,<get_problem>,<task>,<reset>)

where monitor name is a unique name of the monitor,num processes is the number of processes that sharethe task pool, get problem is a user-de�ned functionthat provides the logic required to remove a task fromthe pool, task is the actual piece of work removed fromthe pool, and reset is the logic required to reinitializethe pool. Askfor includes the logic required to delayand continue processes if tasks cannot be taken fromthe pool.Message-passing is the most widespread method forcoordination of cooperating processes. In message-passing, we create parallel processes and all data struc-tures are maintained locally. Processes do not sharephysical memory, but communicate by exchangingmessages. Processes must send data objects from oneprocess to another through explicit send and receiveoperations. For algorithms that can be formulated assuch, the p4 package includes the following primitives:p4_send(<type>,<id>,<msg>,<size>)p4_recv(<type>,<id>,<msg>,<size>)where id is the process identi�cation of the intendedrecipient of the message (for send) or the process id ofthe sender (for receive), type is the message type, andsize is the length of the message. The message typeactually points to a structure in which the messageis 'packetized' and must be of a consistent speci�edformat across all nodes that use the particular messagetype. p4 sendr (send with rendezvous), an alternativeto send, forces the sending process to suspend until itreceives acknowledgement from the recipient.Processes are cre-ated in p4 via p4 create procgroup(). It reads a �le,called the procgroup �le, to determine on which ma-chines processes are to be started, and the number oneach machine.4 Interface to p4-LindaLinda operations must adhere to a strict format inour implementations. In particular, a format stringor mask, must be present as the �rst argument tosome of the Linda operations; it should not be con-fused with the tuple elements themselves. This maskis unusual in our implementation, but is typical formany C libraries that contain functions which acceptvariable length argument lists (e.g., printf). The rangeof valid data types for tuples include integers, one-dimensional strings, oats (doubles), and aggregates(arrays of any of the other types). The value of each

element is formatted according to the codes embed-ded in the mask. For simple actuals (actuals thatare not aggregates), the mask format speci�cation is< %Type >, where Type is d (integer), f (double),or s (string). For aggregates the format speci�cationis <: Type >. The Linda operations must distinguishbetween actuals and formals; thus a di�erent type sep-arator is used for simple formals: <?Type >, wheretype is again d, f, or s. Another restriction is that the�rst tuple element (the logical name) must be a stringor integer actual. Out is exempli�ed in the followingcode:func(){ int i, num, big[10];int size = 10;char buf[20],mask[20];num = 100;strcpy(buf,"anything");for (i=0; i < 20;i++)big[i] = i;...out("%s%s%d:d","key",buf,num,big,size);}A necessary limitation of our model is that tuplearguments to out must be actuals. Furthermore, atuple may contain one more element than type identi-�ers because aggregates require an integer dimensionfollowing the array name. When the parser recognizesthe aggregate type separator, it automatically popsthe dimension (size) o� the argument stack. Giventhe same declarations and assignments, when execut-ing in("%s?s?d:d","key",buf,&num,big,&size)the parser interprets all arguments as formals, exceptthe key. Since all formals are addresses of C variables,ampersands are required for the integers (names forstrings and arrays are the addresses for these types).Note that the �rst tuple argument is the only one usedfor matching criteria. If we executein("%s?s%d:d","key",buf,2,big,&size)then the matching criteria consists of \key" and \2".One may wonder why the type separator for an aggre-gate formal (:) is the same as its actual counterpart.In our implementation, aggregate arguments to rd andin are restricted to formals and no distinguishing spec-i�er is necessary.

p4-Linda requires that the user program include aheader �le and invoke initialization and terminationprocedures. Processes are created as part of the ini-tialization procedure, by reading a procgroup �le thatincludes the following information:� the name of each (remote) machine on which pro-cesses are to be created� the number of processes that are to be createdand share memory on each remote machine� the full path name of the remote program on eachmachineWe wanted to design a Linda model, not a completeLinda kernel; hence, the fundamental decision to codethe Linda operations as functions. Further, we ob-served that much of what is standard in C (i.e. thelibrary of I/O functions) are procedures built on topof a minimal set of instructions and we simply viewedthe p4-Linda primitives as an extension of this stan-dard. This decision resulted in certain limitations oneval and out. A Linda kernel cited in [7] allows evaltuples to have more than two elements. For example,a typical eval may appear as:eval("key",i,primes(i))which spawns a process to compute whether or noti is prime. After the tuple is evaluated, the tuple(\key",i,< result >) is added to tuple space. In ourimplementation it is impossible to defer the evaluationof primes(i) - the function will return a value prior toprocess creation. Instead we use:out("prime_args",i)eval("key","primes")where \primes" is the name of a function which isfound in a table supplied by the user at initializa-tion. The primes procedure would then obtain its ar-guments by doing:in("prime_args",&i)Also, our implementationof eval does not place a tuplein tuple space, rather the invoked procedure (primesin this case) is responsible for doing an out operationwhen it completes.In p4-Linda, the arguments to out are restricted toactuals. Some Linda kernels allow for inverse struc-tured naming, in which formals are permitted as ele-ments in tuple space. Although the monitors modelcan be enhanced to include a restricted form of inverse

naming (the formals would have to be shared vari-ables), without special locators or distributed point-ers this is would be quite di�cult to implement in aloosely-coupled environment.5 Design of the Shared-Memory Im-plementationTuples are stored in shared-memory as self-contained data structures. The representation of tu-ples includes not only data, but also typing informa-tion required for matching and retrieving the tuple.The �rst element of the tuple structure, called thehanger, contains the data, i.e. formals or actuals thatconstitute the tuple. The tuple mask is the secondelement and contains the typing information requiredto process the tuple. Note that all elements are actu-als, a necessary restriction placed on out in our imple-mentation. Actuals that are integers, oats, or simplestrings are copied into the hanger. For actuals thatare aggregates, a global copy is made and a pointerto the copy is stored in the tuple hanger. The tuplestructure is hashed into any one of 256 linked lists.These hash lists, in their entirety, are at any time thephysical embodiment of tuple space.We considered two possible implementationsfor eval in the shared-memory model. Onemethod dynamically creates processes as needed, i.e.eval(\key",func) would cause a new process to be cre-ated. The other method would cause a set of processesto be created at initialization. These processes wouldthen share the task of handling any new work that isgenerated, remaining active until termination of theuser's program. The latter approach was selected be-cause it follows the established p4 model which as-sumes that process create/destroy may be an expen-sive operation on many machines.The four basic Linda operations are implementedas functions in the shared-memory model. A singlemonitor protects two resources: a queue of uneval-uated functions and the linked list representation oftuple space. Two askfors control respective access totuple space and process-to-task initiated by eval.Out is relatively easy to process. A statement ofthe formout(mask,arg1,arg2,...,argN)invokes a function which examines each argument forits type based on the relative position in mask. Themask informs the function how to build the hanger.All that remains is to claim access to the monitor,

link the tuple structure to the appropriate hash list,and relinquish the monitor.In and rd are more complicated because a processmust suspend if no tuple matching occurs. A state-ment of the formin(mask, arg1, arg2,...,argN)where the arguments are a collection of actuals andformals, invokes a function that constructs a local tem-plate based on typing information in mask. The pro-cess must then gain exclusive access to the tuple spacemonitor to search for a matching tuple. The askformonitor provides the answer. Recall that one of theparameters to askfor is < getproblem >, a pointer toa routine whose purpose is to return a task from apool of work. In our case that routine includes thefollowing logic:� search the appropriate hash list for a matchingtuple� if a match is found, delete the tuple structurefrom the hash list and return success to askfor� if no match is found, return failure to askforTwo characteristics of askfor are crucial to the p4-Linda operations. If a match is found, the matchedtuple is returned in < task >, another of the parame-ters to askfor. If no match is found, the askfor monitorautomatically delays the process on a monitor queue.Rd initiates a similar process, except that the tuplestructure is not deleted from the hash list.Eval's basic design is best explained by example.Suppose we have de�ned a function to compute thenumber of primes within the range 2 to N. If primesis a pointer to a function, eval(\some tag",\primes")spawns a process that calls the function. Argumentsto the function are passed via tuple space - the processexecuting the eval adds the arguments to tuple space;the process allocated by eval removes the argumentsfrom tuple space. The example is coded in our systemas: main(){ /* masks omitted for convenience */out("prime_arg",3);eval("prime_test","primes");/* collect primes with *//* "is_prime" tag */}

primes(){ int i,result;in("prime_arg",i)/* compute result and *//* put in tuple space */out("is_prime",result);}With these restrictions in mind, the design of evalonly has to assign unevaluated live tuples to waitingprocesses. A separate askfor is used to this end. Evalis basically a three step operation: enter the eval-uation monitor, add the function name to the poolof tasks (a linked list of pointers to functions), andexit the monitor. Note that we have slightly alteredthe traditional semantics of eval. Heeding the caveat,process creation may be expensive on many machines,we decided to create N processes up front where N isthe number of processes speci�ed by the user in theprocgroup �le. This permits us to \reuse" processesrather than repeatedly create them. The p4 proce-dure p4 create procgroup() spawns processes which be-gin execution at a procedure that invoke an askforthat manages the assignment of unevaluated tuples toavailable processes, and then invoke the function inthe tuple retrieved from the pool.6 Design of the Message-Passing Im-plementationA p4-Linda program based on message-passing re-quires a minimum of two processes: a master processto initialize the environment and a process to act astuple space manager. Of course, if there are not otherprocesses, then the master process will be the only pro-cess to alter tuple space. All communication betweenthe master process and slaves is mediated through p4-Linda operations and tuple storage handled by themanager.A fundamental decision in the message-passingmodel was whether tuple space should be centralized,distributed, or even replicated. We opted for a cen-tralized tuple space because the alternative methodsrequire building fast deletion and broadcast protocols,an e�ort beyond the scope of the project. For an in-teresting discussion of these schemes see [5].Tuples are stored as structures in the local memoryof the tuple space manager. A tuple structure includesthe following elements: a mask contains the typing in-formation; the hanger contains the data correspond-

ing to simple data types; a type identi�er indicateswhether a request is in, rd, or out; size identi�ers storethe tuple and aggregate lengths; and a separate areastores aggregate data. Note that all data, includingaggregates, are copied into the tuple structure's dataareas; pointer storage is meaningless in distributed-memory space. Once again, a tuple structure is hashedinto any one of 256 linked lists. A similar structure,which we call the tuple channel, serves as the primarymessage type through which processes communicatetuple information to the tuple manager.The initial steps of in and rd require argument ex-amination and template construction. The tuple chan-nel is used to send the template to the tuple spacemanager and to receive the actual tuple from tuplespace. The two statements:p4_send(type,manager_id,channel,size)p4_recv(type,from_id,channel,size)not only communicate a matched tuple to the processexecuting the in or rd, but suspend the process until amatch is found. A process retains a copy of the tem-plate, and defers the assignment of actuals to formalsuntil receiving a matched tuple. Send was preferredto sendr because the dialogue between a Linda processand the manager uses self-synchronizing pairs - a sendis immediately followed by a receive in any processexecuting rd or in. Out examines the argument list,populates the tuple channel and uses send to commu-nicate the information to the tuple manager.The tuple manager takes the place of the monitorin the message-passing implementation. It's sole jobis to receive a request on tuple space, process the re-quest dependent on the tuple type, and iterate. If thetuple type is rd or in, the manager searches the appro-priate hash list. If a match is found, data is packedinto the tuple channel and returned to the suspendedprocess. When no match is found the identity of therequester, the tuple type and the template are linkedto a wait queue. Upon receipt of a tuple of type out,the manager �rst searches the wait queue, satisfyingall pending requests (there may be several rd's wait-ing on the same tuple) until the �rst matched in isencountered or the search is exhausted. If no in isencountered, the information in the tuple channel iscopied into a tuple space structure and linked to theappropriate hash list. The manager serves requestsuntil it receives a special tuple of type END whichsignals termination.

7 An Example ProgramAs an example, we present a simple program whosemainline procedure puts MAXVAL items into tuplespace. For each item inserted, it evals the procedurenamed consumer to process the item, and then ex-tracts an acknowledgement from tuple space indicat-ing that the item was processed. To process an item,consumer simply removes it from tuple space and outsthe acknowledgement.#include "sr_linda.h"#define MAXVAL 1000main(argc,argv)int argc;char **argv;{ int primes();int last,i,ok;struct linda_eval_tbl linda_eval_funcs[2];linda_eval_funcs[0].ptr = consumer;strcpy(linda_eval_funcs[0].name,"consumer");linda_eval_funcs[1].ptr = NULL;linda_init(&argc,argv,linda_eval_funcs);for (i=0; i <= MAXVAL; i++){ out("%s%d","msg",i);eval("%s","consumer");in("%s%d","ack",i);}printf("mainline exiting\n");linda_end();}int consumer(){ int i,val;in("%s?d","msg",&val);out("%s%d","ack",val);return(1);}This program works with both versions of the code if wemerely replace the include for sr linda.h with mon linda.h.When the program executes linda init, p4 will spawn somenumber of processes to participate in the execution. Thenumber of processes spawned will be determined by thecontents of the p4 procgroup �le. The sr linda version

will use one of those processes to manage the tuple space.The mon linda version will use all processes to evaluatelive tuples and coordinate their access to tuple space viamonitors; each process will be in a loop looking for livetuples to evaluate. Thus, note that the mainline programdoes one eval for each number to be examined. Each evalcauses the procedure primes to be invoked as part of theevaluation.To reiterate an important point however, note that ifthe program is run in a message-passing environment, itcan run on a shared-memory machine, and p4 will han-dle message-passing through the shared-memory. The pro-gram could even run on a network of shared-memory ma-chines, and p4 would use shared-memory when possible,passing messages over the network only when necessary.Table 1 contains the run times for three executions ofthe program, one in which all communications are handledvia monitors, one in which communications are handled viamessage-passing through shared-memory, and one in whichall communications are handled via message-passing overa network. Note that the message-passing versions areslower because all ins and outs must be handled by anextra process, the tuple space manager.Synchronization Communication Time inMethod Medium SecondsMonitors Shared-memory 3Message-passing Shared-memory 25Message-passing Ethernet 70Table 1: Times for Example Program Executions8 A Semigroups ProblemThere exists a class of programs in which communica-tion costs decrease as execution time increases. The semi-groups problem [11] falls into this category, and thus is avery good candidate for p4-Linda's message passing imple-mentation. A short discussion of an algorithm suggestedby [3] follows the problem description.As input, the program is given a set of words and anoperation table that de�nes how to build new words fromexisting ones. The object is to build a unique set of wordsby applying the operation table to the original set andany newly derived words. The set of all possible words isusually very large when compared with the solution set.For example, if there are six unique values for a characterin a word, and a 6x6 operation table de�ning the productof a character pair, for a 36 element word one can derive 6to the 36th words. Eliminating duplicates yields a solutionset of only 223 words.

A p4-Linda parallel solution to the problem requires amaster and any number of slaves. For e�ciency, all slavesare required to build local copies of the word list and notwo slaves can receive the same piece of work, representedby an index into the local word list; thus, it is incumbentupon the master to communicate new words to slaves viatuple space. To meet this requirement, new-word tuplesare indexed by slave. Initially the master must communi-cate unique id's to each slave by placing into tuple space ntuples of the form (\id",i) where n is the number of slavesand i is some arbitrary integer. After the master placesthe operation table and initial word list into tuple space,it in's tuples of the form:("master",&type,&id,word);where type takes the value Candidate (a slave found aword it thinks is new) or Work request (a slave needs anoperand from which to generate new words). If the masterin's a Candidate that is indeed a new word, it adds theword to the master list and outs the tuple:(id,type,word,idx)where type is New word, id is the unique id of the targetslave, and idx is an indication of where word is to be placedin the local list.Slave processes in tuples of the form:(id,&type,word,&idx)where type contains one of two ags: New word, whichinforms the slave to add word to its local list; or Work,which prompts the slave to generate new words from theword pointed to by idx. If a derived word exists locally, itis discarded. If a derived word is not in the local list, theslave outs the tuple:("master",type,id,word)where type is Candidate. The master now searches theprimary list for the word. If the master discovers the wordis truly new, he adds it to the primary list and outs ncopies into tuple space, where n is the number of slaves.Communication costs are substantially curtailed bymaintaining a master list and several local lists. If eachslave's list is a subset of the master list, a slave can elimi-nate as many duplicates a possible on a local level, ratherthan communicate all generated tuples to the master.Some results for problems of two di�erent word sizesare recorded in Table 2. All processes were running ona shared-memory Sequent Symmetry. The results arepromising for loosely-coupled processors also because, asexecution time increases, generated words are more likelyfound in local lists, and communication through tuplespace only occurs infrequently.

Number of Processes Word Size 25 Word Size 361 3.5 31.52 2.3 19.64 2.3 11.3Table 2: Time (seconds) for Semigroup Problem9 Future DirectionsThe p4-Linda implementations provide a minimal set ofLinda operations: eval, out, in, and rd. Boolean versions ofthe primitives might prove useful to perform existence testson tuples in tuple space. Inp and rdp would attempt tolocate a matching tuple and return 0 if they fail; otherwisethey would return a 1 and perform the usual matching ofactuals to formals that are found in a normal in or rd.Constructing these predicate versions on top of in and rdwould require minimal modi�cation to the existing code.Our hashing scheme works best when tuples are re-stricted to a single unique key. Once such a key is iden-ti�ed in tuple space, the tuple will match any templatewith the same key. If the hash distribution is good, thistranslates into a match with the �rst tuple in the hashlist. Unfortunately, not all tuples fall into this category.In problems where the matching criteria include two tupleelements (the logical name and one or more additional ac-tuals) hashing on a combination of these elements shouldresult in a faster search for a matching tuple. Our hash-ing method is less than optimum for tuple patterns likethese, and we therefore recommend experimentation withconcatenated index schemes to alleviate potential searchbottlenecks.Finally, there is the issue of a distributed tuple space.Suppose we wished to add two matrices \A" and \B". Toinform matrix \A" of its row index and data we write:out("A",index,data).The logical \A" identi�es a speci�c vector, while indexpoints to a speci�c element of the vector. An element isretrieved by matching on the �rst two tuple members:rd("A",index,&data).The amount of searching can be reduced if we placed vector\A" in one segment of tuple space, thus eliminating theneed for combined keys. In the message-passing model,this translates into multiple tuple managers. A distributedaskfor, or use of several monitors, may provide the answerto distributed tuple spaces in the monitors model. A Lindakernel described in [10] implements multiple tuple spaces.

10 ConclusionsWe have implemented two compatible versions of Lindaon top of the p4 portable parallel programming system,one to take advantage of shared-memory architectures, theother to utilize resources of networked machines, o�eringan advantage in portability. We have described the advan-tages and disadvantages of each implementation and meth-ods in which the performance of each might be enhanced.We view these implementations as being prototypes andsuggest that if there is su�cient interest, we would liketo further develop them. The code for these systems isavailable in the pub/p4 directory at info.mcs.anl.gov.11 BibliographyReferences[1] S. Ahuja, N. Carriero, and D Gelernter. Linda andfriends. IEEE Computer, 19(8):26{34, August 1986.[2] James Boyle, Ralph Butler, Terrence Disz, BarnettGlickfeld, Ewing Lusk, Ross Overbeek, James Patter-son, and Rick Stevens. Portable Programs for ParallelProcessors. Holt, Rinehart, and Winston, 1987.[3] R. Butler and N. Karonis. Exploitation of parallelismin prototypical deduction problems. In Ninth Inter-national Conference on Automated Deduction, pages333{343, 1988.[4] Ralph Butler and Ewing Lusk. User's guide to the p4parallel programming system. Technical Report ANL-92/17, Argonne National Laboratory, Mathematicsand Computer Science Division, October 1992.[5] N. Carriero and D. Gelernter. The s/net's lindakernel. ACM Transactions on Computer Systems,4(2):110{129, May 1986.[6] N. Carriero and D. Gelernter. How to write parallelprograms. ACM Computing Surveys, 21(3):323{356,September 1989.[7] N. Carriero and D. Gelernter. Linda in context. Com-munications of the ACM, 32(4):444{458, April 1989.[8] D. Gelernter. Generative communication in linda.ACM Transactions on Programming Language Sys-tems, 7(1):80{112, January 1985.[9] Virginia Herrarte and Ewing Lusk. Studying paral-lel program behavior with Upshot. Technical ReportANL-91/15, Argonne National Laboratory, Mathe-matics and Computer Science Division, August 1991.[10] W. Leler. Linda meets unix. IEEE Computer,23(2):43{54, February 1990.[11] E. Lusk and R. McFadden. Using automated reason-ing tools: A study of the semigroup f2b2. SemigroupForum, 36(1):75{88, 1987.

