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AbstractIt is well known that the n-ary morphisms de�ned on projective algebraic curvessatisfy some strong local-to-global equational rules of derivation not satis�ed in generalby universal algebras. For example, every rationally de�ned group law on a cubiccurve must be commutative. Here we extract from the geometry of curves a �rst-order property (gL) satis�ed by all morphisms de�ned on these curves such that theequational consequences known for projective curves can be derived automatically froma set of six rules (stated within the �rst-order logic with equality). First, the rule(gL) is implemented in the theorem-proving program Otter. Then we use Otter toautomatically prove some incidence theorems on projective curves without any furtherreference to the underlying geometry or topology of the curves.AMS Subject Classi�cation (1991). Primary: 68T15, 08B05. Secondary:14H52,20N05.1 IntroductionThe term \equational logic" refers to the study of various metalogical notions related tothe processes of deriving new equations, say �, from given ones, say �, that is,� j= � (modulo, a class K):Here, the crucial concept is that of \deriving (modulo K)". In universal algebras, K isusually the class of all algebras of a speci�c type satisfying �; hence, in this case, � isderivable from � i� � formally follows from � by the now famous �ve rules of GarrettBirkho�. This is the so-called completeness theorem of equational logic (see, e.g., [12, p.180]).In a variety of situations, however, one works with special classesK of algebras of a giventype, usually richer in structure than the class of all models of that type. We mention a�Supported by an operating grant from NSERC of Canada (#A8215)ySupported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38. 1



famous example from classical algebraic geometry: Every group law de�nable on an ellipticcurve is commutative. In other words, we have the implicationfgroup axiomsg j= fxy = yxg (modulo K = \groups on elliptic curves"):If one uses the powerful fact that an elliptic curve is a one-dimensional Abelian variety, theabove implication is possible through a local-to-global lifting principle called the \rigidity"of regular (= rational) functions. However, since the starting assumption (i.e., being agroup) and the conclusion (i.e., being commutative) are both �rst-order algebraic, it isnatural to ask whether there is any \purely algebraic way" to prove such statements withinthe realms of �rst-order logic with equality. Here we answer this question in the a�rmativeby formalizing the rigidity principle. This results in the equational process \ =(gL)) ".Let us recall this local-to-global principle from, say, I. R. Shafarevich [10, p. 152]:Lemma. Let X be a projective curve and Y and Z be irreducible algebraic varieties, allde�ned over an algebraically closed �eld k. Let f be a regular mapping from X � Y into Zsuch that f(X � fy0g) is a singleton z0 for some y0 2 Y . Then f(X � fyg) is a singletonfor every y 2 Y .Proofs of this basic fact may be be found in [11, p. 156] or in [7, p. 104]. In this paperwe present one example, that of an elliptic curve, a one-dimensional Abelian variety.Elliptic Curves. Let p(x; y) be an irreducible cubic polynomial over an algebraicallyclosed �eld k. Then the curve � = f(x; y)jp(x; y) = 0g [ f1g is called an elliptic curve ifthe curve p(x; y) = 0 has no singular points in the projective plane over the �eld k.Now we turn the curve � into an algebra in the following natural way: Let A and B beany two points of �.(i) If A 6= B, then A � B is the unique third point where the chord AB intersects � (aline and a third-degree curve have only three common points).(ii) If A = B, then A � B is the unique point where the tangent at A meets the curveagain.It is clear that the algebra h�; �i satis�es the following two laws: x �y = y �x and x �(y �x) = y.Moreover, an element e 2 � is idempotent i� e � e = e i� the tangent at e meets the curve� again at e, in other words, i� e is a point of inexion (see Figure 1).This is the classical binary operation of chord-tangent construction on a cubic curve. Itis well known that � is a \nice" algebraic variety, in fact, a one-dimensional Abelian varietyand hence, in particular, satis�es the above rigidity lemma for all its morphisms, includingthose in the clone of the \�" (cf. [10, p. 148] or [11, Example 5, p. 34]).2 Methodology and TheoremsWe now rewrite the rigidity lemma as a formal implication:19y09z08x(f(x; y0) = z0)) 8x8y8z(f(x; y) = f(z; y)) (gL)1(gL) for \Local to global", \geometric Logic", \geometric Law".2



We view the rule (gL) as an equation-deriving principle extending the scope of the usualequational logic: whenever the program meets the local equality f(x; y0) = z0 for some wordf and some elements y0, z0, it churns out the global multivariable identity f(x; y) = f(z; y)(multivariable because here x, y, or z could be vectors, namely, x = (x1; x2; ::; xm), becausex, y, or z could themselves be product spaces). This idea of viewing (gL) as an inference rulewas �rst stated and systematically used by R. Padmanabhan in [8]. See R. W. Quackenbush[9] for the history of a closely related and recently discovered concept of \term condition".We use the following notation. If � is a set of identities and if � is an identity in thelanguage of �, then we write� =(gL)) �if � [ (gL) ) � in the usual equational logic. Whenever convenient, we also say that theaxioms � \(gL)-implies" �, etc.Using the rule (gL), let us now give a \mindless" proof of the powerful four-variablemedian law just from the relatively weak two-variable Steiner quasigroup laws fx � (y � x) =y; (y � z) � z = yg.Theorem 1. fx(yx) = y; (yz)z = yg =(gL)) f(xy)(zt) = (xz)(yt)g.Proof. De�ne the 5-ary composite operation f(x; y; z; t; u) by f := ((xy)(zt))(u((xz)(yt))).Now we have, by the law x(yx) = y, f(x; c; c; t; d) = d for all x. Thus by the rule (gL), the5-ary expression f(x; y; z; t; u) does not depend upon x for all y; z; t; u. In particular, wehave f(x; y; z; t; u) = f(x1; y; z; t; u) 8x8x1i.e., ((xy)(zt))(u((xz)(yt)))= ((x1y)(zt))(u((x1z)(yt))) 8x8x1= (((yz)y)(zt))(u(((yz)z)(yt))) letting x1 = yz= t(ut) by the Steiner laws= u= ((xz)(yt))(u((xz)(yt)))and hence one right-cancellation of the common term (u((xz)(yt))) immediately yields thedesired median law (xy)(zt) = (xz)(yt).Let us now apply this to the geometry of plane cubic curves without any further referenceto the geometry or the topology of curves.Corollary 1. Every binary morphism \�" de�ned on a nonsingular cubic curve � overan algebraically closed �eld satisfying the Steiner quasigroup identities must be medial (see,e.g., Figure 2).Historical remark. This corollary was �rst proved for plane cubic curves by I. M. S.Etherington using the classical Bezout theorem (see [1]). In [8], Padmanabhan gave a prooffor elliptic curves over an arbitrary algebraically closed �eld k. (See Otter's more generalproof in the Appendix).Proof. A nonsingular cubic curve is an Abelian variety and hence, as mentioned in theintroduction, satis�es (the rigidity lemma and consequently) the rule (gL) for all morphisms.3



3 Otter and Implementation of the Rule (gL)Otter [3, 4] is a computer program that attempts to prove theorems stated in �rst-orderlogic with equality. Here we restrict our attention to its capabilities in equational logic. Theuser inputs axioms and the denial of the goal(s), and Otter searches for a contradictionby working both forward from the axioms and backward from the goal(s). Equational rea-soning is accomplished by paramodulation and demodulation. Paramodulation is equalitysubstitution extended with uni�cation: if the two terms in question can be made identicalby instantiating variables, then equality substitution is applied to the corresponding in-stances. Demodulation is the use of equalities as rewrite rules to simplify other equalities.The following example illustrates the interplay between paramodulation and demodulation.Consider ff(x; f(g(x); y)) = y; f(u; g(u)) = e; f(w; e) = wg, with e nullary; Otter caninfer x = g(g(x)) \in one step" by unifying f(u; g(u)) and f(g(x); y)) (which instantiates uto g(x) and y to g(g(x))), replacing f(g(x); g(g(x))) with e, and then demodulating withf(w; e) = w.The rule (gL) was implemented in a special version of Otter2 in two ways that areanalogous to paramodulation and demodulation. Let f be the operator to which (gL)applies, and let F [a1; x] represent a term in f that contains a subterm a1 at a particularposition, with x representing everything else in the term. Suppose we have F [a1; x] =F [a2; y], (i.e., a1, and a2 are in corresponding positions), with a1 and a2 uni�able. By (gL)we infer F [z; x0] = F [z; y0], where z is a new variable, and x0 and y0 are the appropriateinstances of x and y. For example, fromf(f(x; y); f(z; f(x; z))) = f(u; f(y; u));we can (gL)-inferf(f(x; y); f(z; w)) = f(f(x; z); f(y; w))by unifying u and f(x; z). We also use (gL) as a rewrite rule whenever possible. That is,we rewrite F [a; x] = F [a; y] to F [z; x] = F [z; y] (again, z is a new variable).Otter Proof Notation. Variables are distinguished from constants by starting withu, v, w, x, y, or z. Proofs are by contradiction, and the denials of the goals containconstants, that is, objects for which the goal fails to hold. The justi�cation for each stepis in brackets and speci�es the inference rule and any rewriting that occurs. The inferencerules are \para from" (substitute into the second equality), \para into" (substitute into the�rst equality) and \gL". Rewriting is speci�ed with either \demod, ..." (simpli�cation with...) or \gL-id".Theorem 2. Let � be a nonsingular cubic curve de�ned over an algebraically closed�eld and let e be an inexion point on �. Then the binary morphism of chord-tangentconstruction on � is completely charactererized by the identitiesA = ff(x; y) = f(y; x); f(x; f(y; x)) = y; f(e; e) = eg:2Write to the second author or send electronic mail to otter@mcs.anl.gov for information on obtaining aversion of Otter with (gL). 4



Proof. Let f and g be two binary morphisms satisfying the laws in the set A. Let C =ff(x; y) = f(y; x); f(x; f(y; x)) = y; f(e; e) = e; g(x; y) = g(y; x); g(x; g(y; x)) = y; g(e; e) =eg. Then we claim that C =(gL)) g(x; y) = f(x; y). Here is Otter's proof completewith input and output �les (line 21039 has the desired conclusion: it is a direct proof).Input to Otter:set(para_from).set(para_into).set(para_from_vars).set(para_into_vars).set(order_eq).set(geometric_rule).set(geometric_rewrite).set(lex_rpo).lex([a,b,e,f(x,x),g(x,x)]).lrpo_lr_status([f(x,x),g(x,x)]).assign(pick_given_ratio, 5).assign(max_weight, 130).assign(max_mem, 16000).clear(print_kept).clear(print_back_sub).list(usable).x = x.end_of_list.list(sos).f(x,y) = f(y,x).f(x,f(y,x)) = y.f(e,e) = e.g(x,y) = g(y,x).g(x,g(y,x)) = y.g(e,e) = e.end_of_list.list(passive).g(a,b) != f(a,b).end_of_list.Output (Otter 2.2xb, (gL)-version):UNIT CONFLICT at 137679.71 sec ----> 21040 [binary,21039,8] $F.---------------- PROOF ----------------2 [] f(x,y)=f(y,x).3 [] f(x,f(y,x))=y.4 [] f(e,e)=e.5 [] g(x,y)=g(y,x).6 [] g(x,g(y,x))=y.7 [] g(e,e)=e.8 [] g(a,b)!=f(a,b).21 [para_from,7,2] f(x,g(e,e))=f(e,x).5



42 [para_into,3,3] f(f(x,y),x)=y.97 [para_into,6,6] g(g(x,y),x)=y.98 [para_into,6,5] g(x,g(x,y))=y.100 [para_into,6,5] g(g(x,y),y)=x.395 [para_from,97,4] f(e,g(g(x,e),x))=e.447 [para_into,98,42] f(f(x,g(y,g(y,z))),x)=z.1601 [para_into,21,100] f(e,g(g(x,y),y))=f(x,g(e,e)).12584 [gL,1601] f(e,g(g(x,e),y))=f(x,g(e,y)).12652 [para_into,12584,395] f(x,g(e,x))=e.13120 [para_into,12652,5] f(x,g(x,e))=e.13300 [para_from,12652,447] f(e,g(e,x))=x.16821 [para_into,13120,13120,gL-id] f(x,g(x,z))=f(y,g(y,z)).20249 [para_into,13300,16821] f(x,g(x,y))=y.21039 [para_into,20249,98] g(x,y)=f(x,y).21040 [binary,21039,8] $F.------------ end of proof -------------Corollary 2. Any two group laws de�ned on � di�er by a constant. That is, if(+;�; 0) and (�;�1; e) are both group laws on the curve �, then (x+ y)� (xy) is a constant.Proof. De�ne f(x; y) = �x � y + 3e and g(x; y) = x�1y�1, where 3e = e + e + e issome �xed element of �. It is clear that both f and g satisfy the axioms C, for example,f(x; f(y; x)) = �x� (�y�x+3e)+3e = y. Also, g(e; e) = e and f(e; e) = �e� e+3e = e.Thus by Theorem 2, we obtain the equality �x � y + e = x�1y�1. Putting y = e, we get�x = x�1. So �x�y+e = (�x)(�y). Replacing x by �a and y by �b, we get a+b+e = ab.Thus any two group laws must di�er only by a constant. In the literature this is often statedas follows (see, e.g., J.S. Milne, \Abelian Varieties" [7, Remark 2.3 on p. 105]): \A groupstructure on � is uniquely determined by the choice of the zero element". In fact, in theabove calculation, if e = 0, then a+ b = ab itself.Theorem 3. Let e be an inexion point on �. Then the binary morphism f(x; y) = x �yof chord-tangent construction on � is characterized by the single identity (x � ((z � (x � y)) �(e � y))) � (e � e) = z:Proof. By Theorem 2, it is enough if we prove thatfx � (y � x) = y; x � y = y � x; e � e = eg ((gL)) (x � ((z � (x � y)) � (e � y))) � (e � e) = z:De�ne the ternary composite function g(x; y; z) := (x((z(xy))(ey)))(ee). Now g(x; e; e) =(x � ((e � (x � e)) � e)) � e = (x � (x � e))e = e and hence, by the rule (gL), we obtain the identityg(x; y; z) = g(u; y; z) = g(e; y; z) = (e � ((z � (e � y)) � (e � y))) � e = (e � z) � e = z. See theAppendix for the complete Otter proofs.Corollary 3. Let e be an inexion point on a nonsingular cubic curve �. Then forall points x; y; z on the curve �, the three points fx � ((z � (x � y)) � (e � y)); z; eg are alwayscolinear, where \�" is the binary operation of chord-tangent construction (see Figures 3 and4). Corollary 4. The equational theory of the algebra h�; �i contains all the identitiessatis�ed by the double inversion operation x�1y�1 true in every Abelian group.W. McCune has shown (in [5]) that the single 3-variable identity on the right sidecharacterizes the binary operation of double inversion x � y = x�1y�1 in Abelian groups6



with the element e as the group identity. The converse is also true, namely, that theequational theory of G is precisely the set of all identities true for x�1y�1 in every Abeliangroup. In fact, even the set of all implications valid in these two classes of algebra are thesame. This was proved by Harry Lakser and R. Padmanabhan in [2].4 Concluding RemarksThe rule \ =(gL)) " viewed as an inference rule to derive stronger equations from relativelyweaker ones is, in a sense, custom-made for the equational theory of Abelian varieties. Ifthis process meets a set of laws, it tries to solve them so that the set can be interpretedin group theory and then, if it succeeded, it gets all the laws true for that interpretationin Abelian groups. All the con�guration theorems on cubic curves are of this category andhence provable by this process. To further illuminate this metaprinciple, let us take, forexample,A = fx=e = x; e=(e=x) = x; x=x = egas our initial set of laws of type (2,0), with one binary \=" and one nullary e. Solving forthese, we �nd that the only group-interpretation of the laws A are x=y = xy�1 and e = 1.Thus we predict that A =(gL)) fall the axioms for Abelian groups with a=b = ab�1g.This is indeed the case. If an initial set of axioms ia not solvable in this way, then it will(gL)-imply x = y. (see Theorem 5 in the Appendix).AppendixTwo new proofs of Theorem 1 under much weaker assumptions were obtained by Otter.We mention just one example.Theorem 4. fx(ex) = eg =(gL)) f(xy)(zt) = (xz)(yt)g.Proof.----> UNIT CONFLICT at 7.11 sec ----> 987 [binary,986,5] $F.---------------- PROOF ----------------3 [] f(x,f(e,x))=e.5 [] f(f(A,B),f(C,D))!=f(f(A,C),f(B,D)).8 [para_into,3,3,gL-id] f(x,f(z,x))=f(y,f(z,y)).23 [para_into,8,8] f(f(x,y),f(z,f(x,z)))=f(u,f(y,u)).986 [gL,23] f(f(x,y),f(z,u))=f(f(x,z),f(y,u)).987 [binary,986,5] $F.------------ end of proof -------------Theorem 5. fx=e = x; e=(e=x) = x; x=x = eg =(gL)) fall the axioms for Abeliangroups with a=b = ab�1g.Proof. 7



----> UNIT CONFLICT at 130.34 sec ----> 10852 [binary,10851,9] $F.---------------- PROOF ----------------2 [] f(x,e)=x.3 [] f(e,f(e,x))=x.4 [] f(x,x)=e.9 [] f(a,f(f(a,b),f(c,b)))!=c.24 [para_into,4,2] f(f(x,e),x)=e.25 [para_into,4,2] f(x,f(x,e))=e.49 [para_from,24,2] f(x,f(f(y,e),y))=x.59 [para_into,25,25,gL-id] f(x,f(x,z))=f(y,f(y,z)).310 [para_into,59,3] f(y,f(y,x))=x.362 [para_into,310,2] f(x,f(f(x,e),y))=y.3535 [para_into,362,49,gL-id] f(x,f(f(x,u),y))=f(y,f(f(z,u),z)).10851 [para_into,3535,310] f(x,f(f(x,y),f(z,y)))=z.10852 [binary,10851,9] $F.------------ end of proof -------------Theorem 6. A cancellative (gL)-semigroup is commutative.Note that this theorem generalizes the well-known result that every (gL)-group is Abelian.Proof.----> UNIT CONFLICT at 97.00 sec ----> 1559 [binary,1558,3] $F.---------------- PROOF ----------------2 [] f(f(x,y),z)=f(x,f(y,z)).3 [] f(a,b)!=f(b,a).4 [] (f(x,y)=f(x,z))=(y=z).5 [] (f(y,x)=f(z,x))=(y=z).6 [para_into,2,2] f(f(f(x,y),z),u)=f(x,f(f(y,z),u)).7 [para_into,2,2] f(f(x,f(y,z)),u)=f(f(x,y),f(z,u)).14 [para_into,6,2] f(f(f(x,f(y,z)),u),v)=f(f(x,y),f(f(z,u),v)).539 [gL,14] f(f(f(x,f(y,z)),u),v)=f(f(x,u),f(f(z,y),v)).653 [para_into,539,7,demod,5] f(f(x,f(y,z)),u)=f(x,f(u,pf(z,y))).1019 [para_into,653,2,demod,4] f(f(y,z),u)=f(u,f(z,y)).1558 [gL,1019,demod,4] f(y,z)=f(z,y).1559 [binary,1558,3] $F.------------ end of proof -------------In fact, Otter has obtained a much stronger result, namely, that any cancellative (gL)-algebra satisfying just the two-variable consequences of associativity is commutative (andassociative). This proof, along with other aspects of associativity, will appear elsewhere.Readers are encouraged to try this on the (gL)-version of Otter (i.e., Otter 2.2xb).Theorem 7. No nontrivial (gL)-algebra contains a semilattice function in its clone ofoperations. In other words, ff(x; x) = x; f(x; f(y; z)) = f(y; f(z; x))g =(gL)) fx = yg.Note that the starting axioms themselves are consistent: take any Boolean algebra andde�ne f(x; y) as x ^ y. Similarly, for the next result, take f(x; y; z) as (x ^ y) _ (y ^ z) _8



(z ^ x). However, there are no group words that will model these equations; hence, by ourmetaprinciple, these identities must (gL)-imply x = y. Otter happily con�rms this, asshown below.Proof.----> UNIT CONFLICT at 19.96 sec ----> 1915 [binary,1914,4] $F.---------------- PROOF ----------------2 [] f(x,x)=x.3 [] f(x,f(y,z))=f(y,f(z,x)).4 [] a!=b.249 [para_into,3,2,gL-id] f(z,f(y,f(x,y)))=f(z,y).258 [para_into,3,2] f(x,f(y,x))=f(y,x).286 [gL,3] f(x,f(y,z))=f(x,f(z,y)).414 [para_into,249,2] f(x,f(x,f(y,x)))=x.1505 [para_into,414,258] f(x,f(y,x))=x.1726 [para_into,1505,258] f(x,y)=y.1730 [para_into,1505,286] f(x,f(x,y))=x.1888 [para_into,1730,1726] f(x,y)=x.1914 [para_into,1888,1726] x=y.1915 [binary,1914,4] $F.------------ end of proof -------------Theorem 8. No nontrivial (gL)-algebra contains a majority function in its clone ofoperations. In other words, ff(x; x; y) = f(x; y; x) = f(y; x; x) = xg =(gL)) fx = yg.Proof.----> UNIT CONFLICT at 6.28 sec ----> 398 [binary,397,5] $F.---------------- PROOF ----------------2 [] f(x,x,y)=x.3 [] f(x,y,x)=x.4 [] f(y,x,x)=x.5 [] a!=b.6 [para_into,2,2] f(f(x,x,y),f(x,x,y),z)=x.11 [para_into,4,3] f(f(x,y,y),z,f(x,y,y))=y.14 [para_from,4,2] f(x,f(y,y,z),f(y,y,z))=y.15 [para_into,6,6] f(x,f(f(x,x,y),f(x,x,y),z),u)=f(x,x,y).201 [para_into,11,4] f(x,y,f(z,x,x))=x.310 [para_into,14,2] f(x,y,f(y,y,z))=y.320 [para_into,14,2] f(x,f(y,y,z),y)=y.343 [para_into,15,320] f(x,x,y)=f(x,x,z).369 [gL,343] f(x,y,z)=f(x,y,u).371 [para_into,369,310] f(y,x,z)=x.374 [para_into,369,201] f(x,y,z)=x.397 [para_into,374,371] x=y.398 [binary,397,5] $F--------end of proof --------- 9



In particular, Theorems 7 and 8 show that no elliptic curve will admit binary or ternarymorphisms satisfying the respective assumptions in question. Theorem 7 is new, and Ot-ter's proof as given above is the �rst equational proof. The last result about the majoritypolynomial is really folklore among universal algebraists, albeit via the term condition (seereferences in [9]). Here we include them just to demonstrate the ease with which Otterhandles such equational proofs.References[1] I. M. S. Etherington. Quasigroups and cubic curves. Proc. Edinburgh Math. Soc.,14:273{291, 1965.[2] H. Lakser and R. Padmanabhan. Preprint, 1993.[3] W. McCune. Otter 2.0 Users Guide. Tech. Report ANL-90/9, Argonne NationalLaboratory, Argonne, Ill., March 1990.[4] W. McCune. What's New in Otter 2.2. Tech. Memo ANL/MCS-TM-153, Mathe-matics and Computer Science Division, Argonne National Laboratory, Argonne, Ill,,July 1991.[5] W. McCune. Single axioms for groups and Abelian groups with various operations.Journal of Automated Reasoning, 10(1):1{13, 1993.[6] N. S. Mendelsohn, R. Padmanabhan, and B. Wolk. Straight edge constructions oncubic curves. C. R. Math. Rep. Acad. Sci. Canada, 10:77{82, 1988.[7] J. S. Milne. Abelian varieties. In Arithmetic Geometry, pages 103{150. Springer-Verlag,New York, 1986.[8] R. Padmanabhan. Logic of equality in geometry. Discrete Mathematics, 15:319{331,1982.[9] R. W. Quackenbush. Quasi-a�ne algebras. Algebra Universalis, 20:318{327, 1985.[10] I. R. Shafarevich. Basic Algebraic Geometry. Springer-Verlag, New York, 1977.[11] T. A. Springer. Linear Algebraic Groups. Birkhauser, Boston, 1980.[12] W. Wechler. Universal Algebra for Computer Scientists. Springer-Verlag, New York,1992.
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Captions for Figures 1{4�Figure 1: The algebra of an eliptic curve.Figure 2: fx(yx) = yg =(gL)) f(xy)(zt) = (xz)(yt)g, that is, the validity of the mediallaw (xy)(zt) = (xz)(yt) for the binary operation \�" of the chord-tangent construction on acubic curve (Theorem 1).Figure 3: fx � (y � x) = y; e � e = eg ((gL)) (x � ((z � (x � y)) � (e � y))) � (e � e) = z, thatis, the validity of McCune's single identity for \double inversion in Abelian groups" on anonsingular cubic curve in the projective plane. In other words, let e be an inexion pointon the cubic curve. Then for all points x; y; z on the curve, the three points e, z, and(x � ((z � (x � y)) � (y � e))) are collinear. The point e is at in�nity.Figure 4: See the caption for Figure 3. The di�erence is that here, e is not at in�nity.
�The �gures are not available electronically.
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