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11. Introduction.The extended linear-quadratic programming (ELQP), in its standardminimax form,is to �nd a saddle point of the LagrangianL(û; v̂) = p̂�û+ 12 û�P̂ û+ q̂�v̂ � 12 v̂�Q̂v̂ � v̂�R̂û over Û � V̂ ; (1:1)where Û and V̂ are polyhedral sets in lRk̂ and lRl̂; respectively, and P̂ 2 lRk̂�k̂ andQ̂ 2 lRl̂�l̂ are symmetric positive semide�nite matrices [1]. The associated primaland dual problems areminimize f(û) over all û 2 Û ; where f(û) := supv̂2V̂ L(û; v̂);(P̂) maximize g(v̂) over all v̂ 2 V̂ ; where g(v̂) := infû2Û L(û; v̂):(Q̂)The problem is called fully quadratic if both P and Q are positive de�nite.The number 
 := kQ̂� 12 R̂P̂� 12 k (1:2)introduced by Rockafellar [2] is an important parameter for the problem in the fullyquadratic case. (We use the Euclidean norm for vectors and the associated operatornorm for matrices unless otherwise speci�ed.) It serves as a Lipschitz constant forthe mappings F : lRk̂ ! lRl̂ and G : lRl̂ ! lRk̂ de�ned asF (û) = argmaxv̂2V̂ L(û; v̂) and G(v̂) = argminû2Û L(û; v̂);respectively [2]. It also plays a central role in the convergence results of severalnewly developed algorithms for large scale ELQP problems.Let "� = f(u�)� g(v�) be the �-th duality gap related to the primal-dual pairof iterates (u� ; v�): Rockafellar proved that the sequence f(u� ; v�)g generated bythe �nite-envelope algorithm [2] satis�es"�+1"� � 1� 14(1 + 
2) : (1:3)In [10], Zhu proved that the sequence f(u�; v�)g generated by certain variants ofthe primal-dual steepest descent algorithm (PDSD) developed in [9] satis�es"�+1"� � ( 
22�
2 if 0 � 
2 < 12 ;1� 12
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2One of the variants uses a \�xed step length" strategy [10], where the step lengthsare also related to 
: In [6, 7], S. J. Wright described interior point algorithms forlinear complementarity problems (LCP). If the ELQP is formulated as an LCP andif the standard conjugate gradient algorithm is used to solve the resulting linearequations, the convergence rate for the \inner iterations" [8] will be"�+1"� � 1� 21 + (1 + 
2) 12 : (1:5)The right-hand sides of (1.3){(1.5) all depend on the parameter 
 of the problem.The smaller the value of 
; the faster the convergence for these algorithms.In this paper, we consider the ELQP resulting from discretizing a continuous-time optimal control problem with time-independent data. As we show in Section2, the matrix R̂ for such problem consists of a large number of nonzero blocks,each of which is a product of in�nite series in terms of the matrices in the originalcontinuous-time problem. It is usually impractical to compute 
 from the de�nition(1.2). Actually, a primary goal in algorithm design is to avoid computations involv-ing the R̂ matrix, because of its size and density. All three of the above mentionedalgorithms for the discretized ELQP could be implemented in such a way that thisgoal is reached by taking advantage of the discretized system dynamics in theircomputations [3,4,8].Mathematically, however an unanswered question is the dependence of 
 onthe data of the original continuous-time problem and on the number of subintervalsused in the discretization. Zhu and Rockafellar [9] observe that the number ofiterations needed for their algorithms to converge remains essentially unchanged asthe discretization is re�ned. This observation suggests strongly that the value of 
approaches a constant, or is at least bounded above, as the number of subintervalsincreases. In this paper, we will prove this conjecture on 
: In Section 2, we deriveexpressions for the matrices P̂ ; Q̂; and R̂ in the Lagrangian (1.1) for the discretizedproblem. In Section 3, we give an estimate of 
 in terms of the matrices in theoriginal continuous-time extended linear-quadratic problem of optimal control |an estimate that is independent of the mesh width.



32. Data Matrices in the Lagrangian for the Discretized Problem.The continuous-time extended linear-quadratic problem of optimal control (withtime-independent data and normalized time interval) isminimize F(ue; u) =(Pcont) Z 10 [p�u(t) + 12u(t)�Pu(t)� c�x(t)]dt + [pe�ue + 12ue�Peue � ce�x(1)]+ Z 10 �V;Q�q � Cx(t) �Du(t)�dt+ �Ve;Qe�qe � Cex(1) �Deu�over the state trajectory_x(t) = Ax(t) +Bu(t) + b a.e., x(0) = Beue + be (x(t) 2 lRm);with the control spaceU = f(ue; u) 2 lRke � L1k [0; 1] ��ue 2 Ue; u(t) 2 U a.e. g(Rockafellar [1]). Here U; Ue; V; and Ue are polyhedral convex sets, and P; Pe; Q;and Qe are symmetric positive semide�nite matrices. Each � term, de�ned as�V;Q(s) = supv2V fs�v � 12v�Qvg;is a lower semicontinuous convex piecewise linear-quadratic function [1, Proposition2.3]. The dual problem ismaximize G(v; ve) =(Qcont) Z 10 [q�v(t) � 12v(t)�Qv(t) � b�y(t)]dt + [qe�ve + 12ve�Qeve � be�y(0)]� Z 10 �U;P �BTy(t) +DT v(t) � p�dt� �Ue;Pe�BTe y(0) +DTe v � pe�over the state trajectory� _y(t) = AT y(t) + CTv(t) + c a.e., y(1) = CTe ve + ce (y(t) 2 lRm);with the control spaceV = f(v; ve) 2 L1l [0; 1]� lRle �� v(t) 2 V a.e., ve 2 Veg;



4where �U;P (r) = supu2Ufr�u� 12u�Pug:Problems (Pcont) and (Qcont) di�er from the conventional linear-quadratic modelsin optimal control in that they allow for piecewise linear-quadratic penalty termsin the objective functionals, as well as constraints on the controls. See Rockafellar[1] for a detailed presentation.Problems (Pcont) and (Qcont) are equivalent to a saddle point problem undercertain �niteness conditions (which will be satis�ed if, for example, the matrices P;Q; Pe; and Qe; are positive de�nite) [1, Theorem 6.1 and Corollary 6.4]. The saddlepoint problem is(Scont) minimax(ue;u)2U ;(v;ve)2V J (ue; u; v; ve);where J (ue; u; v; ve) = Z 10 J(u(t); v(t))dt + Je(ue; ve) � h(ue; u); (v; ve)i;with J(u; v) = p�u+ 12u�Pu+ q�v � 12v�Qv � v�Du for u 2 lRk; v 2 lRlJe(ue; ve) = pe�ue + 12ue�Peue + qe�ve � 12ve�Qeve for ue 2 lRke ; v 2 lRle ;and h(ue; u); (v; ve)i = Z 10 x(t)�(CTv(t) + c)dt+ x(1)�(CTe ve + ce)= Z 10 y(t)�(Bu(t) + b)dt + y(0)�(Beue + be):A numerical solution of (Scont) can be obtained by discretizing the probleminto the following approximate version [4, 5]:(Scontn ) minimaxUn�VnJ (ue; u; v; ve);where Un = f(ue; u) 2 U ��u(t) is constant on �� � 1n ; �n� ; � = 1; : : : ; ng;Vn = f(v; ve) 2 V �� v(t) is constant on �� � 1n ; �n� ; � = 1; : : : ; ng:



5If we denote the constant values of u(t) and v(t) on � ��1n ; �n� by u� and v� ;respectively, for � = 1; : : : ; n; problem (Scontn ) can be written in the form of a�nite-dimensional discrete-time saddle point problem as(Sdiscn ) minimaxUn�VnJn(ue; u1; : : : ; un; v1; : : : ; vn; ve);whereJn(ue; u1; : : : ; un; v1; : : : ; vn; ve)= nX�=1Jn(u� ; v� ) + Je(ue; ve)� h(ue; u1; : : : ; un); (v1; : : : ; vn; ve)in; (2:1)with Jn(u� ; v� ) = pn�u� + qn�v� + 12u��Pnu� � 12v� �Qnv� � v� �Dnu� + dn;Je(ue; ve) = pe�ue + qe�ve + 12ue�Peue � 12ve�Qeve; (2:2)and h(ue; u1; : : : ; un); (v1; : : : ; vn; ve)in= nX�=1 y�+1�(Bnu� + bn) + y1�(Beue + be)= nX�=1x��1�(CTn v� + cn) + xn�(CTe ve + ce): (2:3)The trajectories are given by the discretized system dynamicsx� = Anx��1 +Bnu� + bn for � = 1; : : : ; n; x0 = Beue + be (x� 2 lRm);y� = ATny�+1 + CTn v� + cn for � = 1; : : : ; n; yn+1 = CTe ve + ce (y� 2 lRm);(2:4)where we impose(ue; u1; : : : ; un) 2 Un :=Ue � (U)n � lRke � (lRk)n;(v1; : : : ; vn; ve) 2 Vn :=(V )n � Ve � (lRl)n � lRle:The transformation of the data isAn = I +MnA; (2:5a)Bn = MnB; bn =Mnb; (2:5b)



6Cn = CMn; cn =MTn c; (2:5c)Dn = 1nD +CSnB; dn = �c�Snb; (2:5d)Pn = 1nP; pn = 1np �BTSTn c; (2:5p)Qn = 1nQ; qn = 1nq � CSnb; (2:5q)where Sn = 1Xi=2 1i! � 1n�iAi�2; Mn = 1nI +ASn: (2:6)(Wright [4, 5]). The associated primal and dual problems areminimize f(u) over u 2 Un where(Pdiscn ) f(ue; u1; : : : ; un) := maxv2VnJn(ue; u1; : : : ; un; v1; : : : ; vn; ve)and maximize g(v) over v 2 Vn where(Qdiscn ) g(v1; : : : ; vn; ve) := minu2UnJn(ue; u1; : : : ; un; v1; : : : ; vn; ve):Problems (Pdiscn ) and (Qdiscn ) are ELQP in the multistage format, which couldbe solved directly by the techniques mentioned in Section 1 without forming thehuge R̂ matrix in the Lagrangian (1.1) of its standard form. However, in orderto get an expression for 
 in terms of the matrices A; B; C; D; P; and Q fromthe continuous-time problem, we eliminate the state variables x� and y� in theexpression of Jn: From the discretized system dynamics (2.4), we obtain26664 xex1��xn 37775 = 26664 BeAnBe Bn� � � � �� � � � � �AnnBe An�1n Bn � � � AnBn Bn 3777526664 ueu1��un 37775+ 26664 beAnbe + bn��Annbe +An�1n bn + : : :+ bn 37775= 26664 IAn I� � � � �� � � � � �Ann An�1n � � � An I 377750BBB@26664 BeueBnu1��Bnun 37775 + 26664 bebn��bn 377751CCCA : (2:7)



7By substituting (2.7) in the second expression of (2.3), we obtainh(ue; u1; : : : ; un); (v1; : : : ; vn; ve)in= 26664 cn��cnce 37775 �26664 xex1��xn 37775 + 26664 v1��vnve 37775 �264Cn � � � Cn Ce 37526664 xex1��xn 37775= 26664 cn��cnce 37775 �26664 BeAnBe Bn� � � � �� � � � � �AnnBe An�1n Bn � � � AnBn Bn 3777526664 ueu1��un 37775+ 26664 v1��vnve 37775 �26664 CnBeCnAnBe CnBn� � � � �� � � � � �CeAnnBe CeAn�1n Bn � � � CeAnBn CeBn 3777526664 ueu1��un 37775+ 26664 v1��vnve 37775 �26664 CnCnAn Cn� � � � �� � � � � �CeAnn CeAn�1n � � � CeAn Ce 3777526664 bebn��bn 37775+ 26664 cn��cnce 37775 �26664 IAn I� � � � �� � � � � �Ann An�1n � � � An I 3777526664 bebn��bn 37775 : (2:8)Similarly, we have from (2.2) thatnX�=1Jn(u� ; v� ) + Je(ue; ve)= 26664 pepn��pn 37775 �26664 ueu1��un 37775+ 26664 qn��qnqe 37775 �26664 v1��vnve 37775+ 12 26664 ueu1��un 37775 �264Pe Pn � � � Pn 37526664 ueu1��un 37775



8� 12 26664 v1��vnve 37775 �264Qn � � � Qn Qe 37526664 v1��vnve 37775� 26664 v1��vnve 37775 �264 0 Dn� � � � � �0 Dn0 37526664 ueu1��un 37775 (2:9)By substituting (2.8) and (2.9) in (2.1), we obtain equality of Jn with theLagrangian L(û; v̂) in (1.1) by noting the identitiesP̂ = diag[Pe; Pn; � � � ; Pn]; Q̂ = diag[Qn; � � � ; Qn; Qe]; (2:10)R̂ = 266666664 CnIBe DnCnAnBe CnIBn DnCnA2nBe CnAnBn CnIBn Dn� � � � � � �� � � � � � � �CnAn�1n Be CnAn�2n Bn � � � � � CnIBn DnCeAnnBe CeAn�1n Bn � � � � � CeAnBn CeIBn 377777775 ; (2:11)p̂ = 26664 pepn��pn 37775 � 2666664 BTe cn + : : :+BTe (ATn )n�1cn +BTe (ATn )nceBTn cn + : : : +BTn (ATn )n�2cn +BTn (ATn )n�1ce��BTn cn +BTnATn ceBTn ce 3777775 ;q̂ = 26664 qn��qnqe 37775� 2666664 CnbeCnAnbe + Cnbn��CnAn�1n be + CnAn�2n bn + : : :+ CnbnCeAnnbe +CeAn�1n bn + : : :+ Cebn 3777775 ;with û = (ue; u1; � � � ; un); v̂ = (v1; � � � ; vn; ve):(The additive constants in Jn are dropped since they play no role in the problem.)



93. Estimation of the Parameter 
 of the Discretized Problem.In this section, we prove the following estimate of the parameter 
 of the discretizedproblem in terms of the continuous-time problem data.Theorem 3.1. Suppose the matrices P; Q; Pe; and Qe in the continuous-timeextended linear-quadratic problems (Pcont) and (Qcont) of optimal control are pos-itive de�nite. Then the parameter 
n of the discretized versions (Pdiscn ) and (Qdiscn )satis�es
n � kQ� 12CkkBeP� 12e ke(n�1)kAk=n+ kQ� 12e CekkBP� 12 ke(n�1)kAk=n + kQ� 12e CekkBeP� 12e kekAk+ kQ� 12DP� 12 k+ kQ� 12CkkBP�12 k1� e(n�1)kAk=nn(1 � ekAk=n) +O(n�1); (3:1)where n is the number of equal-length subintervals used in the discretization. More-over, lim supn!1 
n � kQ� 12CkkBeP� 12e kekAk+ kQ� 12e CekkBP� 12 kekAk + kQ� 12e CekkBeP� 12e kekAk+ kQ� 12DP� 12 k+ kQ� 12CkkBP�12 kekAk � 1kAk : (3:2)Two conclusions follow immediately from Theorem 3.1:(i) The parameter 
n of the discretized problem, as a function of n; is boundedabove when n ! 1: Hence for the algorithms with their convergence rates hav-ing an upper bound determined solely by 
n; the number of iterations needed forconvergence should remain essentially the same as n increases. If, in addition, thealgorithm has only O(n) operations in each iteration, then the total CPU timeneeded for convergence should be proportional to n: These results are consistentwith the observations of Zhu and Rockafellar [9].(ii) The only part of the original data that has an exponential contribution to 
nis the norm of the matrix A in the system dynamics as the coe�cient of the statevariables. The norms of all the other matrices contribute linearly.Before proving the theorem, we �rst state two simple propositions. The proofsof these propositions are elementary and therefore skipped.



10Proposition 3.2. Suppose matrix E can be partitioned asE = 264E11 E12 � � � E1s� � � � � �� � � � � �Er1 Er2 � � � Ers 375 :Then kEk � rXi=1 sXj=1 kEijk:Proposition 3.3. Suppose matrix E is of block diagonal formE = diag[E1; E2; : : : Er]:Then kEk = max1�i�rfkEikg:Proof of the Theorem. Let � := Q̂� 12 R̂P̂� 12 : Then 
n = k�k: Observe thatthe matrix R̂ in (2.11) is block lower Hessenberg, while the matrices P̂ and Q̂ in(2.10) are block diagonal with the corresponding block structure. Hence the matrix� = Q̂� 12 R̂P̂� 12 is also of block lower Hessenberg with the same block structure asthat of R̂: Partition � as � = ��ne �nn�ee �en � ; (3:3)where �ne = 26666664 Q� 12n CnIBeP� 12eQ� 12n CnAnBeP� 12e���Q� 12n CnAn�1n BeP� 12e 37777775 ; �ee = �Q� 12e CeAnnBeP� 12e � ; (3:4)�en = �Q� 12e CeAn�1n BnP� 12n � � � Q� 12e CeAnBnP� 12n Q� 12e CeIBnP� 12n � ; (3:5)and�nn = (3:6)266664 Q� 12n DnP� 12nQ� 12n CnIBnP� 12n Q� 12n DnP� 12n� � � � �� � � � � �Q� 12n CnAn�2n BnP� 12 Q� 12n CnAn�3n BnP� 12 � � � Q� 12n CnIBnP� 12n Q� 12n DnP� 12n 377775 :



11It follows from (2.6) thatSn = 1Xi=2 1i! � 1n�iAi�2 = 12n2 I +O(n�3); (3:7a)Mn = 1nI +ASn = 1nI +O(n�2): (3:7b)Hence by equations (2.5), we have the following �rst order approximations for thematrices in the discretized problem:An = I +MnA = 1Xi=0 1i! �An�i = eA=n; (3:8a)Bn = MnB = 1nB +O(n�2); (3:8b)Cn = CMn = 1nC +O(n�2); (3:8c)Dn = 1nD + CSnB = 1nD +O(n�2); (3:8d)Pn = 1nP; (3:8p)Qn = 1nQ; (3:8q)Applying Proposition 3.2 to the partitioned form of � in (3.3), we havek�k � k�nek+ k�eek+ k�enk+ k�nnk: (3:9)Now we estimate the norms on the right-hand side of (3.9). The matrix �ne in (3.4)can be written as�ne = diag[Q� 12n CnBeP� 12e ; Q� 12n CnAnBeP� 12e ; : : : ; Q� 12n CnAn�1n BeP� 12e ][I � � � I]T :(3:10)Howeverkdiag[Q� 12n CnBeP� 12e ; Q� 12n CnAnBeP� 12e ; : : : ; Q� 12n CnAn�1n BeP� 12e ]k= max0�i�n�1fkQ� 12n CnAinBeP� 12e kg� max0�i�n�1fkQ� 12n CnkkAinkkBeP� 12e kg� kQ� 12n CnkkBeP� 12e k max0�i�n�1 kAnkig� kQ� 12n CnkkBeP� 12e kmaxf1; kAnkn�1g (3:11)



12by Proposition 3.3. It follows from (3.8a) and (3.8c) thatkAnkn�1 � e(n�1)kAk=n; (3:12)kQ� 12n Cnk = n�1=2kQ� 12Ck+O(n�3=2): (3:13)Substituting (3.12) and (3.13) in (3.11), and using k[I � � � I]Tk = n 12 ; we obtaink�nek � �kQ� 12Ck+O(n�1)�kBeP� 12e kmaxf1; e(n�1)kAk=ng;� kQ� 12CkkBeP� 12e ke(n�1)kAk=n +O(n�1): (3:14)We can show in a similar way thatk�enk � kQ� 12e CekkBP� 12 ke(n�1)kAk=n +O(n�1): (3:15)For the matrix �ee; it is obvious by (3.8a) thatk�eek = kQ� 12e CeeABeP� 12e k � kQ� 12e CekkBeP� 12e kekAk: (3:16)Next, we estimate k�nnk: Let �(0)nn be the matrix obtained by zeroing out allthe blocks of �nn except the diagonal blocks. Let �(i)nn; i = 1; : : : ; n � 1; be thematrix obtained by zeroing out all the blocks of �nn except the blocks on the ithsubdiagonal. Then by Propositions 3.2 and 3.3, we havek�(0)nnk = kQ� 12n DnP� 12n k = kQ� 12DP� 12 k+O(n�1)and k�(i)nnk = kQ� 12n CnAi�1n BnP� 12n k = 1nkQ� 12Ce(i�1)A=nBP� 12 k+O(n�2)for i = 1; : : : ; n � 1; where the �rst-order approximations in (3.8) are used to getthe right-hand sides. Hencek�nnk � k�(0)nnk+ n�1Xi=1 k�(i)nnk= kQ� 12DP� 12 k+ 1n n�1Xi=1 kQ� 12Ce(i�1)A=nBP� 12 k+O(n�1)� kQ� 12DP� 12 k+ 1nkQ� 12CkkBP�12 k n�1Xi=1 ke(i�1)A=nk+O(n�1):



13But n�1Xi=1 ke(i�1)A=nk � n�1Xi=1 e(i�1)kAk=n = 1� e(n�1)kAk=n1� ekAk=n :Thereforek�nnk � kQ� 12DP� 12 k+ kQ� 12CkkBP�12 k1� e(n�1)kAk=nn(1 � ekAk=n) +O(n�1): (3:17)Substituting (3.14), (3.15), (3.16), and (3.17) in (3.9), we get the inequality (3.1)in Theorem 3.1. Taking lim sup on both sides of (3.1), we obtain (3.2).In all the above discussions, we assume time-independent data in the optimalcontrol problem. As a �nal remark, we point out that it would not be di�cult toderive a similar bound for the ELQP arising from the Euler di�erence scheme whenthe optimal control data is time-dependent. Actually the proof of Theorem 3.1,with minor adaptations, still works in this latter case if the data elements inA(t); B(t); C(t);D(t); b(t); c(t); P (t); Q(t); p(t); q(t); U(t); V (t)are all Lipschitzian in t: A detailed exposition for this kind of time-dependent casewill be presented elsewhere.Acknowledgments. The author is indebted to S. J. Wright and the associateeditor for their helpful comments and suggestions, and to an anonymous referee forremarks on the time-dependent case. The �nal remark in the last section was dueto this referee.
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