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Abstract. The number v := HQ_%RP_% || is an important parameter for the ex-
tended linear-quadratic programming (ELQP) problem associated with the
Lagrangian L(u,0) = p-a + %ﬁ-]sﬁ +§-0— %ﬁ-@ﬁ — &R over polyhedral sets U x V.
Some fundamental properties of the problem, as well as the convergence rates of
certain newly developed algorithms for large-scale ELQP, are all related to ~.

In this paper, we derive an estimate of 4 for the ELQP problems resulting from
discretization of an optimal control problem. We prove that the parameter v of the
discretized problem is bounded independently of the number of subintervals in the
discretization.
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1. Introduction.

The extended linear-quadratic programming (ELQP), in its standard minimax form,
is to find a saddle point of the Lagrangian
L(t,8) = pii + L0-Pii + §6 — 10-Qd — 0-Rii  over U x V, (1.1)

where U and V are polyhedral sets in R* and ]Ri, respectively, and Pe RF** and
Q e R™ are symmetric positive semidefinite matrices [1]. The associated primal

and dual problems are

(75) minimize f(4) over all @ € U, where f(a) :=sup L(a,0),
eV

(Q) maximize ¢(v) over all ¢ € V, where ¢(0) := inf L(u,).
uelU

The problem is called fully quadratic if both P and () are positive definite.

The number

v:=||Q *RP™z| (1.2)

introduced by Rockafellar [2] is an important parameter for the problem in the fully
quadratic case. (We use the Euclidean norm for vectors and the associated operator

norm for matrices upless opherwise sp(i;ciﬁed.) It serves as a Lipschitz constant for
the mappings F : R* — R and G : R! — IR* defined as
F(a) = argmax L(a,0) and G(v)= argmin L(u,0),
eV ael
respectively [2]. It also plays a central role in the convergence results of several
newly developed algorithms for large scale ELQP problems.
Let ¢, = f(u”) — g(v”) be the v-th duality gap related to the primal-dual pair

of iterates (u”,v"). Rockafellar proved that the sequence {(u”,v")} generated by
the finite-envelope algorithm [2] satisfies

Ev+1 1
<l— —. 1.3
e T Hl+9?) (13)

In [10], Zhu proved that the sequence {(u”,v")} generated by certain variants of

the primal-dual steepest descent algorithm (PDSD) developed in [9] satisfies

2
- 2
Svdl ZZﬁ if 0 <% <4,

g 1 . 2
Ey {1—m lf’y Z%

(1.4)



One of the variants uses a “fixed step length” strategy [10], where the step lengths
are also related to 4. In [6, 7], S. J. Wright described interior point algorithms for
linear complementarity problems (LCP). If the ELQP is formulated as an LCP and
if the standard conjugate gradient algorithm is used to solve the resulting linear

equations, the convergence rate for the “inner iterations” [8] will be

Ev+1 <1_ 2

e 1+ (1+7%)7

(1.5)

The right-hand sides of (1.3)—(1.5) all depend on the parameter v of the problem.

The smaller the value of v, the faster the convergence for these algorithms.

In this paper, we consider the ELQP resulting from discretizing a continuous-
time optimal control problem with time-independent data. As we show in Section
2, the matrix R for such problem consists of a large number of nonzero blocks,
each of which is a product of infinite series in terms of the matrices in the original
continuous-time problem. It is usually impractical to compute v from the definition
(1.2). Actually, a primary goal in algorithm design is to avoid computations involv-
ing the R matrix, because of its size and density. All three of the above mentioned
algorithms for the discretized ELQP could be implemented in such a way that this
goal is reached by taking advantage of the discretized system dynamics in their
computations [3,4,8].

Mathematically, however an unanswered question is the dependence of ~ on
the data of the original continuous-time problem and on the number of subintervals
used in the discretization. Zhu and Rockafellar [9] observe that the number of
iterations needed for their algorithms to converge remains essentially unchanged as
the discretization is refined. This observation suggests strongly that the value of +
approaches a constant, or is at least bounded above, as the number of subintervals
increases. In this paper, we will prove this conjecture on ~. In Section 2, we derive
expressions for the matrices ]5, Q, and R in the Lagrangian (1.1) for the discretized
problem. In Section 3, we give an estimate of v in terms of the matrices in the
original continuous-time extended linear-quadratic problem of optimal control —

an estimate that is independent of the mesh width.



2. Data Matrices in the Lagrangian for the Discretized Problem.

The continuous-time extended linear-quadratic problem of optimal control (with

time-independent data and normalized time interval) is
(Peom)  minimize F(ue,u) =

/0 [pu(t) + tu(t)Pu(t) — ca(t)|dt + [petie + tue-Pette — cer(1)]

+ /0 g old— Calt) = Dulh))dt + py. o (4 — Coal1) — Do)
over the state trajectory
#(t) = Ax(t) + Bu(t)+ b ae., 2(0)= Beuc+be (x(t) € R™),
with the control space
U= {(ue,u) € R* x £3°[0,1] |ue € Ue,u(t) €U ace. }

(Rockafellar [1]). Here U, U,, V, and U, are polyhedral convex sets, and P, P, @,

and (). are symmetric positive semidefinite matrices. Each p term, defined as

prols) = sup{sv — juQu},
vEV

is a lower semicontinuous convex piecewise linear-quadratic function [1, Proposition

2.3]. The dual problem is
(Q°") maximize G(v,v,) =
/OI[Q'v(t) — $v()Qu(t) = by(t)ldt + [geve + 4veQeve — bey(0)]
- /01 IOU,P<BTy(t) +D"o(t) — p)dt — PU. P, (BeTy(O) +Dlv— pe)
over the state trajectory
i) = ATyt CTolt) t e ae,  y() = Clu, e (y(1) €R™),
with the control space

V= {(v,v.) € £L0,1] x Rl |v(t) € V ace., v, € V,},




where

pu,p(r) = sup{ru — ju-Pu}.
uelU

Problems (P") and (Q™") differ from the conventional linear-quadratic models
in optimal control in that they allow for piecewise linear-quadratic penalty terms
in the objective functionals, as well as constraints on the controls. See Rockafellar

[1] for a detailed presentation.

Problems (P") and (Q™) are equivalent to a saddle point problem under

certain finiteness conditions (which will be satisfied if, for example, the matrices P,
Q, P., and Q., are positive definite) [1, Theorem 6.1 and Corollary 6.4]. The saddle

point problem is
(Scont) minimax(ue,u)eu,(v,ve)ev j(uev U5, ve),
where
1
T(te,u;v,0.) = / J(u(t),v(t))dt + Je(ue,ve) — ((ve,u); (v,ve)),
0

with
J(u,v) = pu+ tu-Pu+ qgv — 3v-Qv —v-Du for u € R* v e R
Je(te,ve) = pette + LttePetie + qeve — 10 Qeve for u, € ]Rke,v € ]Rle,

and
((tte): (v,0)) = / (HH(CTo(t) + )it + 2(D(C o, + )
= [0 Butt) 4 b+ OB+ )

A numerical solution of (§°°"") can be obtained by discretizing the problem

into the following approximate version [4, 5]:
(Sgont) minimaxy .y T (e, u;v,0,),

where

-1
Up = {(ue,u) el ‘ u(t) is constant on (T 71) ,T=1,...,n},

n n

-1
Vo ={(v,v) €V ‘ v(t) is constant on (T 71) ,T=1,...,n}.

n n



S

T—1 T
n 'n

If we denote the constant values of u(t) and v(t) on ( ) by u, and v,
respectively, for 7 = 1,...,n, problem (S°") can be written in the form of a

finite-dimensional discrete-time saddle point problem as

(Sdisc) minimaxy; sy Jn(te, Uty ... Uni V1,. .., Un, Ve,
where
Tn(Uey Uty .o Up; V14 n ey Up, V)
" 2.1
= 3 Talitrs ) eterv) = (st (o1t vy
=1
with
Jn(u7'7 vr) =PpUr + gnvr + %UT'PTLUT - %UT'QTLUT —vrDypur + dny ( )
2.2
Je(”ey ve) = Pele + QeVe + %ue'Peue - %ve'Qevea
and
(Ueytpyeneytin); (V1o UnyUe)),
= Z yr—l—l'(Bnur + bn) + yl'(Beue + be)
=1 (23)

= Z xr—l'(Cgvr + Cn) + wn'(CeTve + Ce)-

=1

The trajectories are given by the discretized system dynamics

vy =Anxr—1 + Byur 40, for =1,...,n, x9=DBcu.+b (z,€R™),
Yr = Agy,._H + C’gvr +ep for 7=1,....n, Ypt1 = C’Zve +ce (yr € R™),

(2.4)
where we impose
(Ue, Uty ... tty) € Uy :=U, x (U)" C RFe x (]Rk)",
(V1,0 0p,0e) € Vi i =(V) x V, C (]Rl)" x IR,
The transformation of the data is
A, =T+ M,A, (2.5a)

B, =M,B, b, =M,b, (2.5b)



C,=CM,, cn:Mgc,

1
D, = -D+CS.B,  dy=—cSyb,
22
1 1
Pn:_P7 pn:—p—BTSgC,
22 22
1 1
Qn = EQ’ qn = —q — CSyb,

where

n

Snzz,lG) A2 M, = 1I—|—A5n.

o)
-1\ n

1=2

(Wright [4, 5]). The associated primal and dual problems are

(Pdise)  minimize f(u) over u € U, where
flue,ury .o uy) = max Jp(te, tr, ...y Un; 1, ..
veEV,
and
(Qdise)  maximize g(v) over v € V,, where
g1, 0p,ve) i= min Jp(te, g, ...y Up; v1, ..
uel,

oy Un,y Ve)

oy U,y Ve ).

Problems (P3¢} and (Qd15¢) are ELQP in the multistage format, which could

be solved directly by the techniques mentioned in Section 1 without forming the

huge R matrix in the Lagrangian (1.1) of its standard form. However, in order

to get an expression for v in terms of the matrices A, B, C, D, P, and () from

the continuous-time problem, we eliminate the state variables x, and y, in the

expression of J,. From the discretized system dynamics (2.4), we obtain

Le i Be Ue be
€1 AnBe Bn Uy Anbe + bn
T LA"B, A" 'B, --- A,B, B, Up Atbe + Ao, 4.
r 7 B.u, b
An I Bnul bn
LA Anlo 4, T Bty by

+ by,

(2.7)



By substituting (2.7) in the second expression of (2.3), we obtain

<(u67u17 7un);(v17 7vn7v€)>n
K Te (o c, - Te
L1 Mo
B c ‘ " v Cn
n n Ce ]
Lced Lap Ve Ln
_cn_ i Be i ue
. AnBe Bn U1
cn . . .
Leel LANB, Az_an A.B, B,l Lu,
rvr] [ ChnBe
. C,A,B. C,.B.,
_I_ . .
vn . . .
Lved LC.ADB. CeAz_an CcC.A,B, C.B,
for 1 T Cn be
. CrA, Chr by,
vn . . .
Lo, Looan ¢ an C.A, C.] Lo,
rep,] [ 1 be
. A, I by
cn . . . .
Leel LAY Az_l A, I by
Similarly, we have from (2.2) that
> Tnltir,ve) 4 Je(te, ve)
=1
DPe Ue dn U1 Ue Pe
B . . v 2
Qn k13 Pn
Pn Up qe Ve Up

Uy

Un

(2.8)

Uy

Un



U1 Q U1
1
2 Un Qn Q Un
Ve ¢ Ve
vl 0 _Dn Ze
: 1
I N : (2.9)
Un 0
Ve Un

By substituting (2.8) and (2.9) in (2.1), we obtain equality of J, with the
Lagrangian L(u,0) in (1.1) by noting the identities

P:diag[P&Pﬂv”'an]v Q:diag[an”'iner]v (210)
r CLIB. D, 7
CnA,B. CnIB, D,
) C,A%B, C.,A,B, C,IB, D,
R= : : : . (2.11)
c,A"'B, C,A""’B, : - -« CuIB, D,
. C.A"B., C.,A" !B, : - - C.A,B, C.IB,]
o r Ble, +...+ BI(AT"=1c, + BI (A, 1
ge Blen+ ...+ BI(AT)"2¢, + BI(AT)" e,
ﬁ = : - )
Ble,+BlI'AT¢,
- P L BTe, J
T Crnbe 1
I CuAnbe + Cuby,
qA = - ’
In CrA" b, + C A" 2b, + ... + Cpby
et | CLATh, 4+ CeAT by £ .+ Ceby
with
U= (Uey Uty Up), 0= (1, ", Un,Ve).

(The additive constants in 7, are dropped since they play no role in the problem.)



3. Estimation of the Parameter ~ of the Discretized Problem.

In this section, we prove the following estimate of the parameter v of the discretized

problem in terms of the continuous-time problem data.

Theorem 3.1. Suppose the matrices P, (), P., and (). in the continuous-time
extended linear-quadratic problems (P™) and (Q™) of optimal control are pos-
itive definite. Then the parameter 7y, of the discretized versions (P3¢} and (Qdis¢)

satisfies

Y < |QTEC|[|| B F |04/

+[1QC T CL || BPH[|em=DIAN Q7 2 ¢, ||| B P 7 |l
L1 — en=DlAll/n

~tpp-+ -4 -} -1
HIQTEDPTH 4| ECNBP I s + 07, (3)

where n is the number of equal-length subintervals used in the discretization. More-
over,

1 1 A
limsupy, < Q2 C|[|BLP: ? ||

+ Qe P C | BPE || M 4 ||Qc P ||| BoP 2 A

o ollAl g

+HlQT=DP 2|+ Q™= C[|[BP2 | (3.2)

Two conclusions follow immediately from Theorem 3.1:

(i) The parameter ~, of the discretized problem, as a function of n, is bounded
above when n — oo. Hence for the algorithms with their convergence rates hav-
ing an upper bound determined solely by ~,, the number of iterations needed for
convergence should remain essentially the same as n increases. If, in addition, the
algorithm has only O(n) operations in each iteration, then the total CPU time
needed for convergence should be proportional to n. These results are consistent
with the observations of Zhu and Rockafellar [9].

(ii) The only part of the original data that has an exponential contribution to v,
is the norm of the matrix A in the system dynamics as the coefficient of the state
variables. The norms of all the other matrices contribute linearly.

Before proving the theorem, we first state two simple propositions. The proofs

of these propositions are elementary and therefore skipped.
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Proposition 3.2. Suppose matrix E can be partitioned as

Ell E12 T Els
E=| . .
Erl Er2 Tt Ers
Then L.
IBI <> 1B
=1 j=1

Proposition 3.3. Suppose matrix F is of block diagonal form
F = diag[El, EQ, e Er]

Then
B0 = mas {151}

Proof of the Theorem. Let I' := Q= 2RP~%. Then ~, = ||I|. Observe that
the matrix R in (2.11) is block lower Hessenberg, while the matrices P and Q in
(2.10) are block diagonal with the corresponding block structure. Hence the matrix
I'= Q_%RP_% is also of block lower Hessenberg with the same block structure as

that of R. Partition T as

Pne Pnn
b= [ree ren] ’ (39)
where N 1
Q.2C,IB.P. ?
Q,2C,A,B.P. *?
ro— : Tee=[Q-%C.A"B,P 7], (3.4)
| Q7 *C, A" B, P |
Tew=[Qr3C. A B P - QTFC.ABLPY QIPC.IB,P Y], (35)
and
- (3.6)
Qn’D, Py 7
Qn?C.IB.P; Qn'D, P

Qu¥CaAl?BuP ™t QuPChANTB,PTE o QuPCLIB,P;

[N
[N

Qn’> Dy Py
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It follows from (2.6) that

>~ 1/1\" . 1
= - - Az—2 - 7 —3 ]
? = <n> szl T O, (3.7a)
1 1 .
M, =-I+AS,==-I+0(n"?). (3.7b)
n n

Hence by equations (2.5), we have the following first order approximations for the

matrices in the discretized problem:

An:I—|-MnA:;5<;> — Aln, (3.8q)
1
B, =M,B=-B+0(n?), (3.8b)
n
1
Cp=CM,=—-C+0(n"?), (3.8¢)
n
1 1
D,=-D+CS,B=—D+0(n?), (3.8d)
n n
1
P, = —P, :
- (3-8p)
1
n

Applying Proposition 3.2 to the partitioned form of I' in (3.3), we have
ITI < W Tnell + [Teell + [Tenll 4 [[Tnnll (3.9)

Now we estimate the norms on the right-hand side of (3.9). The matrix I';,. in (3.4)

can be written as

-

1 _1
2

e = diag[Qn *CoBPr *, Qu?CoAnBeP %, . QuCo A" B, P77)[T - I)7.

(3.10)

However

1

diag]Qn  CoB PO %, Qn  CrAnB. P2, .., Qn  Cr A" B, P 2|

— " A B.P” 3
0<r{l<a;<1{HQ Cn I}

-

< n2 ? 2
y 2 {1Qn* Cull|44]11BP* )

< 1@ Culll|BP: 2H anax |4, "}

< QT CulllBPT* HmaX{la [EW (3.11)
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by Proposition 3.3. It follows from (3.8a) and (3.8¢) that

| A4a]" 7" < elnm DAl /m (3.12)
1Qn 2 Coll = n~Y2|Q™3C|| + O(n™3/?). (3.13)

Substituting (3.12) and (3.13) in (3.11), and using ||[I --- I]7|| = nZ?, we obtain
ITacll < (1QEC] + OB P * | max{1, etn= DA/,
< |Q EC||||BP Z|[en DI 4 O(n ), (3.14)
We can show in a similar way that
IDeull < Q2 ClI[BP~ | =041/ 4 O(n ), (3.15)
For the matrix I'c., it is obvious by (3.8a) that

ITeell = Qe *Cee BLP | < Q™ Ce|| B P 7 el (3.16)

Next, we estimate |[T',]|. Let T be the matrix obtained by zeroing out all
the blocks of T'y,, except the diagonal blocks. Let 1“5},1, : = 1,...,n—1, be the
matrix obtained by zeroing out all the blocks of T',,,, except the blocks on the :th
subdiagonal. Then by Propositions 3.2 and 3.3, we have

1T = 1Qn > D P 2| = |Q 2DP ™% + O(n™")
and
. _1 . _1 ]_ 1 . 1
ITO | = |Qn *CrAT B, Py ? || = —||Q™2Ce VA" BP ™3| + O(n™?)
n

for i = 1,...,n — 1, where the first-order approximations in (3.8) are used to get
the right-hand sides. Hence

n—1
Il < ITEI+ D TSI
=1

n—1
1 1 1 1 ; 1
= Q7 2DP 7|+ = > ||Q 2Ce " "VAMBPT3 ||+ O(n!
1Q I+— ) llQ7=Ce I+0™)

=1

n—1
11 1, .1 _1 iV A/n _
< |Q7=DP7=| + Q7= Cl|BP D leTIAR 4 O,

=1
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But
1 — (n=DIAll/n

n—1 n—1
(i—1)A/n (=DIA|l/n _
Z;He I SZ;e = T .IAl/n

Therefore

1 — o(n=DlAll/n

<1O-3DP"3 . —3
Tl < Q™ DP=H |+ 1Q ¥ CIIBP I

+ 0™,  (3.17)

Substituting (3.14), (3.15), (3.16), and (3.17) in (3.9), we get the inequality (3.1)
in Theorem 3.1. Taking lim sup on both sides of (3.1), we obtain (3.2). O

In all the above discussions, we assume time-independent data in the optimal
control problem. As a final remark, we point out that it would not be difficult to
derive a similar bound for the ELQP arising from the Euler difference scheme when
the optimal control data is time-dependent. Actually the proof of Theorem 3.1,

with minor adaptations, still works in this latter case if the data elements in

A(t)v B(t)v C(t)v D(t)v b(t)v c(t)v P(t)v Q(t)v p(t), Q(t)v U(t)v V(t)

are all Lipschitzian in . A detailed exposition for this kind of time-dependent case

will be presented elsewhere.
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