
Uniform Strategies:The CADE-11 Theorem Proving Contest1EWING L. LUSK and WILLIAM W. MCCUNEMathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illi-nois, 60439-4844, U.S.A.E-mail: flusk,mccuneg@mcs.anl.gov.Abstract. At CADE-10 Ross Overbeek proposed a two-part contest to stimulate andreward work in automated theorem proving. The �rst part consists of seven theorems to beproved with resolution, and the second part of equational theorems. Our theorem proversOtter and its parallel child Roo proved all of the resolution theorems and half of theequational theorems. This paper represents a family of entries in the contest.Key Words. Automated theorem proving, resolution, paramodulation, Knuth-Bendixcompletion, strategy.1 IntroductionThe Conference on Automated Deduction (CADE) has been for nearly twenty years ameeting where both theoreticians and practitioners present their work. Feeling perhaps thatthe conference was becoming dominated by the theoreticians, Ross Overbeek proposed atCADE-10 in 1990 a contest to stimulate work on the implementation and use of automatedtheorem-proving systems. The challenge was to prove a set of theorems, and do so with auniform approach. That is, one was not allowed to set parameters in the system to specializeit for individual problems. There were actually two separate contests, one represented by aset of seven problems designed to test basic inference components, and the other representedby a set of ten problems designed to test equality-based systems.This paper describes the results of our preparation to enter the contest with Otter[6, 7] and Roo [1, 2], two systems developed at Argonne National Laboratory. Roo is aparallel version of Otter but has such di�erent behavior in some cases that we treat themas separate entries. We entered each of them in both contests. Both programs proved allof the theorems in the basic set and the �rst �ve theorems in the equality set.Some of the problems are di�cult; and although many of the problems had been donebefore with Otter, in each case we had set Otter's many input parameters in a waycustomized to the problem at hand, and we had chosen a set of support that appeared to usto be most natural. It was a challenge to come up with a uniform set of parameter settingsand a uniform algorithm for picking the set of support that would allow Otter to provethe theorems. Indeed Otter has sometimes been criticized for presenting the user with toomany choices. The settings described here answer that criticism by providing a collection ofparameter settings and a uniform algorithm for picking the set of support that can be usedas a \default" set of choices. This relatively diverse set of problems can be used a startingpoint for further exploration.1This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38.

2 The TheoremsIn this section we give informal statements of the theorems. The exact inputs to Otter2.2 are given in Appendices A and B.2.1 The Basic TheoremsTheorems 1, 2, and 3 below, although normally thought of as equational theorems, arestated in the P-formulation, in which a ternary predictate, say P (a; b; c), is an alternativerepresentation of a � b = c. Equality is still required and is indeed quite useful for demodu-lation. Although not explicitly stated in the contest rules, we believe that demodulation ispermitted, but that paramodulation is not. This has been the traditional approach whenusing the P-formulation [5, 4], and we have followed it.Theorem 1. x2 = e groups are commutative, stated in the P-formulation.Theorem 2. The commutator theorem: if a group has the property x3 = e, then [[x; y]; y] =e, where [x; y] = xyx�1y�1. The theorem is stated in the P-formulation.Theorem 3. x2 = x rings are commutative, stated in the P-formulation.Theorem 4. XGK is a single axiom for the equivalential calculus. More precisely,let XGK=e(x; e(e(y; e(z; x)); e(z; y))) and PYO=e(e(e(x; e(y; z)); z); e(y; x)); thenXGK ! PYO by condensed detachment.Theorem 5. The formula i(i(i(x; y); z); i(i(z; x); i(u; x))) implies the formulai(i(x; y); i(i(y; z); i(x; z))) by condensed detachment. We refer to this theorem as Imp-4, and it is CD-67 of the problem set in [9].Theorem 6. The formula i(i(x; y); i(i(z; x); i(z; y))) is a theorem in the many-valued sen-tential calculus. This is theorem CD-57 in [9].Theorem 7. The formula i(i(x; y); i(n(y); n(x))) is a theorem in the many-valued senten-tial calculus. This is theorem CD-60 in [9].2.2 The Equality TheoremsTheorem EQ-1. The commutator theorem (see Theorem 2 above) in the equality formu-lation.Theorem EQ-2. If a Robbins algebra has the property (9c; c + c = c), then it is also aBoolean algebra.Theorem EQ-3. Consider the 5 standard axioms for ternary Boolean algebra. If axiom 3is removed, then f(x; g(x); y) = y still holds.Theorem EQ-4. The equality f(x; i(f(f(i(f(i(y); f(i(x); w))); z); i(f(y; z))))) = w im-plies that f is associative. (The equality is, in fact, a single axiom for group theory.)Theorem EQ-5. The equality i(i(i(x; y); i(y; x)); i(y; x)) = T holds in an equational for-mulation of the many-valued sentential calculus. This is the Wajsberg algebra formu-lation of a conjecture of Lukasiewicz. 2

Theorem EQ-6. The fragment fB,W,Mg of combinatory logic contains �xed point com-binators.Theorem EQ-7. Rings in which x3 = x are commutative.Theorem EQ-8. The fragment fB,Wg of combinatory logic contains �xed point combi-nators.Theorems EQ-9. On three Moufang identities and nonassociative rings. See [11] for astatement of the theorem.Theorems EQ-10. On right alternative nonassociative rings. As far as we know, this isstill an open problem. See [11] for a statement of the theorem.3 ResultsOtter and Roo proved all seven theorems in the basic set and the �rst �ve of the tenproblems in the equality set. See Section 4 for the options and set of support used.Tables 1 and 2 list the results for the two sets with Otter, with Roo running on 8processors, and with Roo running on 12 processors.The Otter jobs were run on a SPARCstation 2. We used Otter 2.2, the version thatwas released in July 1991. The Roo jobs were run on an Alliant 2800 with 12 (Intel i860)processors. The version of Roo we used is based on Otter 2.2xa+ (June 1992).4 Settings and Set of SupportWithin each set, all of the Otter jobs used the same settings. However, the settings forthe basic set were substantially di�erent from those for the equality set. The Roo jobs usedsettings slightly di�erent from the Otter jobs, and (for small technical reasons) the Roosettings for the basic set varied slightly, depending on whether equality is present.For the basic set, the initial set of support consisted of the positive input clauses, exceptx = x. For the equality set, the initial set of support depended on whether the theorem hasan obvious special hypothesis: if so, then the set of support was the special hypothesis andthe denial of the conclusion; if not, the set of support consisted of all input clauses exceptx = x.The rules for the equality set state that an ordering on the symbols may be included withthe input clauses. The ordering is typically used to orient equality literals. Our general rulefor ordering symbols is \nonSkolem constants � Skolem constants � nonde�ned functionsymbols (by nonincreasing arity) � de�ned function symbols". See Appendix B for thespeci�c orderings that were used.Our choices for the settings re
ect long-term experience and a small amount of experi-mentation on the theorems of the contest. 3

Table 1: Results for Basic TheoremsOtter Roo-8 Roo-12Theorem 1: x2 = e Groupproof time (sec.) 0.20 0.32 0.32generated 222 2300 1867kept 13 30 40memory (K) 31 728 564Theorem 2: Commutatorproof time (sec.) 35.60 26.89 25.97generated 20575 88838 131429kept 4505 3684 1697memory (K) 1564 12515 12670Theorem 3: x2 = x Ringproof time (sec.) 145.41 35.57 38.18generated 56025 134744 221890kept 13990 4316 2736memory (K) 4342 14333 18739Theorem 4: XGKproof time (sec.) 407.50 159.87 55.37generated 177109 663722 263233kept 15320 16519 9466memory (K) 8047 19539 22189Theorem 5: Imp-4 (CD-67)proof time (sec.) 7711.98 1051.55 909.95generated 8341570 7171447 8182376kept 17862 14855 17666memory (K) 10729 13983 15098Theorem 6: MV-1 (CD-57)proof time (sec.) 17.68 4.37 14.71generated 16687 24159 114051kept 4837 1024 2000memory (K) 2171 6479 12161Theorem 7: MV-2 (CD-60)proof time (sec.) 2184.96 427.89 152.53generated 3214280 4311090 1997084kept 16250 12374 10750memory (K) 7216 13664 137554

Table 2: Results for Equality ProblemsOtter Roo-8 Roo-12Theorem EQ-1: Commutatorproof time (sec.) 1.49 0.76 0.86generated 542 1727 2144kept 114 91 89memory (K) 255 1208 1460Theorem EQ-2: Robbins, c + c = cproof time (sec.) 98.19 18.63 13.43generated 50001 56067 59151kept 4548 2450 1235memory (K) 5652 12676 13342Theorem EQ-3: TBAproof time (sec.) 16.78 4.10 3.16generated 3945 9307 11170kept 1030 620 378memory (K) 1564 4880 5043Theorem EQ-4: Group single axiomproof time (sec.) 44.12 10.56 9.25generated 3417 11778 16118kept 2507 1015 863memory (K) 4470 13889 17110Theorem EQ-5: Wajsberg algebraproof time (sec.) 2248.86 425.99 491.67generated 1012625 971543 1437272kept 5897 4374 4022memory (K) 6801 13376 14525
5

4.1 Settings for the Basic SetOtter: basic set Roo: basic with equality Roo: basic without equalityset(index for back demod)set(hyper res) set(hyper res) set(hyper res)set(back demod) set(back demod)set(dynamic demod all) set(dynamic demod all)assign(pick given ratio,5) assign(pick given ratio,5) assign(pick given ratio,5)clear(print kept) clear(print kept) clear(print kept)assign(max mem,20000) assign(max mem,32000) assign(max mem,32000)set(control memory) set(control memory) set(control memory)4.2 Settings for the Equality SetOtter: equality set Roo: equality setset(knuth bendix) set(knuth bendix)set(index for back demod) set(index for back demod)set(process input) set(process input)assign(max mem,16000) assign(max mem,32000)set(control memory) set(control memory)set(lex rpo) set(lex rpo)clear(print kept) clear(print kept)clear(print new demod) clear(print new demod)clear(print back demod) clear(print back demod)4.3 Description of the Settingsset(hyper res). This option activates the inference rule hyperresolution.set(back demod). When new equalities are deduced, this option causes them to be usedas rewrite rules.set(dynamic demod all). This option has Otter use all new orientable equalities asrewrite rules.assign(pick given ratio,5). By default Otter chooses each new given clause based onits symbol count. Hence, a heavy clause that is needed for the proof cannot be useduntil all lighter clauses have been used. We have recently found it useful to mixthis strategy with a breadth-�rst strategy by choosing some percentage of the givenclauses according to the order in which they are generated rather than by weight. Thisparticular setting causes the search to be �ve parts (i.e., given clauses) shortest-�rstto one part breadth-�rst.clear(print kept). clear(print new demod). clear(print back demod). These op-tions suppress output, saving �le space and a little time.assign(max mem,20000). This setting restricts memory usage to 20 megabytes. It isused in conjunction with the following parameter.set(control memory). This setting causes Otter and Roo to periodically analyze mem-ory usage and to automatically adjust the weight threshold of subsequent clauses ifmemory usage is high. The adjusted weight threshold is a function of the weightdistribution of the clauses in the set of support list. See [9].6

set(knuth bendix). This option causes Otter and Roo to automatically set a collec-tion of options that approximate a Knuth-Bendix completion procedure. Under thisoption, the theorem prover orders equalities, paramodulates from left sides into leftsides, and back demodulates.set(index for back demod). This option causes indexing to be used when searching forterms to which a new rewrite rule can be applied. Roo requires this \option" wheneverback demodulation is enabled. Otter frequently bene�ts from this option.set(process input). This option causes all input clauses to be processed (subsumption,demodulation, equality ordering, back demodulation) as if they were generated clauses.set(lex rpo). This option speci�es the lexicographic recursive path ordering for comparingterms when attempting to orient equalities.lex(list of symbols). This command speci�es an ordering on constant, function, and pred-icate symbols, with smallest �rst. For the experiments described in this paper, theordering is used to attempt to orient equalities.lrpo lr status(list of symbols). This command speci�es that function symbols are to becompared left to right when applying the lexicographic recursive path ordering.5 Failures on Equality Theorems 6{10Theorem EQ-6. The fragment fB,W,Mg of combinatory logic contains �xed point com-binators. This is not a di�cult theorem, and Otter has found a proof, but thesettings were di�erent from those used in theorems EQ-1 through EQ-5. The im-portant di�erence was that the initial set of support consisted of the denial only (sothat all generated clauses were negative), and paramodulation was allowed into botharguments of equality literals. The following input �le causes Otter 2.2 to �nd aproof of EQ-6 in about 27 seconds.set(para_into).clear(para_from_right).set(order_eq).assign(max_mem, 16000).set(lex_rpo).clear(print_kept).lex([B,W,L,M,a(x,x),f(x)]).lrpo_lr_status([a(x,x)]).list(usable).(x = x).(a(a(a(B,x),y),z) = a(x,a(y,z))).(a(a(W,x),y) = a(a(x,y),y)).(a(M,x) = a(x,x)).end_of_list.list(sos).(a(y,f(y)) != a(f(y),a(y,f(y)))) | $Ans(y).end_of_list. 7

list(demodulators).(a(a(a(B,x),y),z) = a(x,a(y,z))).end_of_list.Theorem EQ-7. Rings in which x3 = x are commutative. As far as we know, Otter hasnever found a proof of this theorem, except with highly specialized settings and weighttemplates. (We have a new theorem prover, based on Otter and with associative-commutative uni�cation and matching, that can easily prove this theorem.)Theorem EQ-8. The fragment fB,Wg of combinatory logic contains �xed point combina-tors. This theorem is much more di�cult than EQ-6, and the strategy above thatworks for EQ-6 fails for EQ-8. The kernel method [8], which was developed for thistype of problem, �nds a proof of EQ-8 within a few seconds.Theorems EQ-9 and EQ-10. On Moufang identities in nonassociative rings (EQ-9), andon right alternative nonassociative rings (EQ-10). The complicated de�nitions in thesetheorems cause terms in the conclusion to be greatly expanded. Otter cannot copewith the complex conclusions, because it likes to focus on simple terms. As with (EQ-7), we believe that associative-commutative uni�cation would be helpful for thesetheorems.6 ConclusionThe ideal entry in the contest would have the program and its strategy �xed before at-tempting any of the theorems, but today's programs are simply not powerful or generalenough to meet that challenge. We were able to devise nearly uniform strategies, whichare not particularly complicated, for proving all of the theorems in the basic set and �veof the ten theorems in the equality set. However, two parts of the strategy for the equalityproblems, set of support speci�cation and symbol ordering, do involve some guidance fromthe user.The program Otter was not enhanced in any way for the contest; the �nal strategieswere achieved with existing parameters. The program Roo is very experimental and muchless predictable than Otter; it required several small modi�cations to prove the theoremswith uniform settings.We thank Ross Overbeek for proposing this exercise, and we hope that others found it asuseful as we did. The contest has taken us a bit further toward the goal of general-purpose,easy-to-use automated theorem provers.AppendicesA Inputs to Otter 2.2 for the Basic SetA.1 Theorem 1: x2 = e Groups are Commutative (P-form)set(hyper_res).set(back_demod). 8

set(dynamic_demod_all).assign(pick_given_ratio,5).clear(print_kept).assign(max_mem,20000).set(control_memory).list(usable).-P(x,y,u) | -P(y,z,v) | -P(u,z,w) | P(x,v,w).-P(x,y,u) | -P(y,z,v) | -P(x,v,w) | P(u,z,w).-P(x,y,u) | -P(x,y,v) | eq(u,v).eq(x,x).-eq(x,y) | eq(y,x).-eq(x,y) | -eq(y,z) | eq(x,z).-eq(u,v) | -P(u,x,y) | P(v,x,y).-eq(u,v) | -P(x,u,y) | P(x,v,y).-eq(u,v) | -P(x,y,u) | P(x,y,v).-eq(u,v) | eq(f(u,x),f(v,x)).-eq(u,v) | eq(f(x,u),f(x,v)).-eq(u,v) | eq(g(u),g(v)).end_of_list.list(sos).P(e,x,x).P(x,e,x).P(g(x),x,e).P(x,g(x),e).P(x,y,f(x,y)).P(x,x,e).P(a,b,c).-P(b,a,c).end_of_list.A.2 Theorem 2: The Commutator Theorem (P-form)set(hyper_res).set(back_demod).set(dynamic_demod_all).assign(pick_given_ratio,5).clear(print_kept).assign(max_mem,20000).set(control_memory).list(usable).-P(x,y,u) | -P(y,z,v) | -P(u,z,w) | P(x,v,w).-P(x,y,u) | -P(y,z,v) | -P(x,v,w) | P(u,z,w).-P(x,y,u) | -P(x,y,v) | eq(u,v).eq(x,x).-eq(x,y) | eq(y,x).-eq(x,y) | -eq(y,z) | eq(x,z).-eq(u,v) | -P(u,x,y) | P(v,x,y).-eq(u,v) | -P(x,u,y) | P(x,v,y).-eq(u,v) | -P(x,y,u) | P(x,y,v).-eq(u,v) | eq(f(u,x),f(v,x)). 9

-eq(u,v) | eq(f(x,u),f(x,v)).-eq(u,v) | eq(g(u),g(v)).-P(x,x,y) | P(x,y,e).-P(x,x,y) | P(y,x,e).end_of_list.list(sos).P(e,x,x).P(x,e,x).P(g(x),x,e).P(x,g(x),e).P(x,y,f(x,y)).P(a,b,c).P(c,g(a),d).P(d,g(b),h).P(h,b,j).P(j,g(h),k).-P(k,g(b),e).end_of_list.A.3 Theorem 3: x2 = x Rings Are Commutative (P-form)set(hyper_res).set(back_demod).set(dynamic_demod_all).assign(pick_given_ratio,5).clear(print_kept).assign(max_mem,20000).set(control_memory).list(usable).-S(x,y,u) | -S(y,z,v) | -S(u,z,w) | S(x,v,w).-S(x,y,u) | -S(y,z,v) | -S(x,v,w) | S(u,z,w).-S(x,y,u) | -S(x,y,v) | eq(u,v).eq(x,x).-eq(x,y) | eq(y,x).-eq(x,y) | -eq(y,z) | eq(x,z).-eq(u,v) | -S(u,x,y) | S(v,x,y).-eq(u,v) | -S(x,u,y) | S(x,v,y).-eq(u,v) | -S(x,y,u) | S(x,y,v).-eq(u,v) | eq(j(u,x),j(v,x)).-eq(u,v) | eq(j(x,u),j(x,v)).-eq(u,v) | eq(g(u),g(v)).-S(x,y,z) | S(y,x,z).-P(x,y,u) | -P(y,z,v) | -P(u,z,w) | P(x,v,w).-P(x,y,u) | -P(y,z,v) | -P(x,v,w) | P(u,z,w).-P(x,y,v1) | -P(x,z,v2) | -S(y,z,v3) | -P(x,v3,v4) | S(v1,v2,v4).-P(x,y,v1) | -P(x,z,v2) | -S(y,z,v3) | -S(v1,v2,v4) | P(x,v3,v4).-P(y,x,v1) | -P(z,x,v2) | -S(y,z,v3) | -P(v3,x,v4) | S(v1,v2,v4).-P(y,x,v1) | -P(z,x,v2) | -S(y,z,v3) | -S(v1,v2,v4) | P(v3,x,v4).-P(x,y,u) | -P(x,y,v) | eq(u,v).-eq(u,v) | -P(u,x,y) | P(v,x,y).-eq(u,v) | -P(x,u,y) | P(x,v,y). 10

-eq(u,v) | -P(x,y,u) | P(x,y,v).-eq(u,v) | eq(f(u,x),f(v,x)).-eq(u,v) | eq(f(x,u),f(x,v)).end_of_list.list(sos).S(0,x,x).S(x,0,x).S(g(x),x,0).S(x,g(x),0).S(x,y,j(x,y)).P(0,x,0).P(x,0,0).P(x,y,f(x,y)).P(x,x,x).P(a,b,c).-P(b,a,c).end_of_list.A.4 Theorem 4: Equivalential Calculus, XGK ! PYOset(hyper_res).set(back_demod).set(dynamic_demod_all).assign(pick_given_ratio,5).clear(print_kept).assign(max_mem,20000).set(control_memory).list(usable).-P(x) | -P(e(x,y)) | P(y).end_of_list.list(sos).P(e(x,e(e(y,e(z,x)),e(z,y)))). % XGK-P(e(e(e(a,e(b,c)),c),e(b,a))). % the negation of PYOend_of_list.A.5 Theorem 5: Implicational Calculus Single Axiom, CD-67 (Imp-4)set(hyper_res).set(back_demod).set(dynamic_demod_all).clear(print_kept).assign(pick_given_ratio,5).assign(max_mem,20000).set(control_memory).list(usable).-P(x) | -P(i(x,y)) | P(y).end_of_list.list(sos). 11

P(i(i(i(x,y),z),i(i(z,x),i(u,x)))).-P(i(i(a,b),i(i(b,c),i(a,c)))).end_of_list.A.6 Theorem 6: Many-valued Sentential Calculus, CD-57set(hyper_res).set(back_demod).set(dynamic_demod_all).clear(print_kept).assign(pick_given_ratio,5).assign(max_mem,20000).set(control_memory).list(usable).-P(x) | -P(i(x,y)) | P(y).end_of_list.list(sos).P(i(x,i(y,x))).P(i(i(x,y),i(i(y,z),i(x,z)))).P(i(i(i(x,y),y),i(i(y,x),x))).P(i(i(n(x),n(y)),i(y,x))).-P(i(i(a,b),i(i(c,a),i(c,b)))).end_of_list.A.7 Theorem 7: Many-valued Sentential Calculus, CD-60set(hyper_res).set(back_demod).set(dynamic_demod_all).clear(print_kept).assign(pick_given_ratio,5).assign(max_mem,20000).set(control_memory).list(usable).-P(x) | -P(i(x,y)) | P(y).end_of_list.list(sos).P(i(x,i(y,x))).P(i(i(x,y),i(i(y,z),i(x,z)))).P(i(i(i(x,y),y),i(i(y,x),x))).P(i(i(n(x),n(y)),i(y,x))).-P(i(i(a,b),i(n(b),n(a)))).end_of_list. 12

B Inputs to Otter 2.2 for the Equality SetB.1 Theorem EQ-1: The Commutator Theoremset(knuth_bendix).set(index_for_back_demod).set(process_input).assign(max_mem, 16000).set(control_memory).set(lex_rpo).clear(print_kept).clear(print_new_demod).clear(print_back_demod).lex([a,b,e,f(x,x),g(x),h(x,x)]).lrpo_lr_status([f(x,x)]).list(usable).(x = x).(f(e, x) = x).(f(g(x), x) = e).(f(f(x, y), z) = f(x, f(y, z))).(h(x, y) = f(x, f(y, f(g(x), g(y))))).end_of_list.list(sos).(f(x, f(x, x)) = e).(h(h(a, b), b) != e).end_of_list.B.2 Theorem EQ-2: Robbins Algebra, (9c; c+ c = c)! Booleanset(knuth_bendix).set(index_for_back_demod).set(process_input).assign(max_mem, 16000).set(control_memory).set(lex_rpo).clear(print_kept).clear(print_new_demod).clear(print_back_demod).lex([a,b,c,o(x,x),n(x)]).lrpo_lr_status([o(x,x)]).list(usable).(x = x).(o(x,y) = o(y,x)).(o(o(x,y),z) = o(x,o(y,z))).(n(o(n(o(x,y)),n(o(x,n(y))))) = x).end_of_list. 13

list(sos).(o(c,c) = c).(o(n(o(a,n(b))),n(o(n(a),n(b)))) != b). % denial of Huntington axiomend_of_list.B.3 Theorem EQ-3: On Ternary Boolean Algebraset(knuth_bendix).set(index_for_back_demod).set(process_input).assign(max_mem, 16000).set(control_memory).set(lex_rpo).clear(print_kept).clear(print_new_demod).clear(print_back_demod).lex([a,b,c,f(x,x,x),g(x)]).lrpo_lr_status([f(x,x,x)]).list(usable).(x = x).end_of_list.list(sos).(f(f(v,w,x),y,f(v,w,z)) = f(v,w,f(x,y,z))).(f(y,x,x) = x).(f(x,x,y) = x).(f(g(y),y,x) = x).(f(a,g(a),b) != b).end_of_list.B.4 Theorem EQ-4: Group Theory Single Axiomset(knuth_bendix).set(index_for_back_demod).set(process_input).assign(max_mem, 16000).set(control_memory).set(lex_rpo).clear(print_kept).clear(print_new_demod).clear(print_back_demod).lex([a,b,c,f(x,x),i(x)]).lrpo_lr_status([f(x,x)]).list(usable).(x = x). 14

end_of_list.list(sos).(f(x,i(f(f(i(f(i(y),f(i(x),w))),z),i(f(y,z))))) = w).(f(a,f(b,c)) != f(f(a,b),c)).end_of_list.B.5 Theorem EQ-5: On Wajsberg Algebraset(knuth_bendix).set(index_for_back_demod).set(process_input).assign(max_mem, 16000).set(control_memory).set(lex_rpo).clear(print_kept).clear(print_new_demod).clear(print_back_demod).lex([a,b,T,i(x,x),n(x)]).lrpo_lr_status([i(x,x)]).list(usable).(x = x).end_of_list.list(sos).(i(T,x) = x).(i(i(x,y),i(i(y,z),i(x,z))) = T).(i(i(x,y),y) = i(i(y,x),x)).(i(i(n(x),n(y)),i(y,x)) = T).(i(i(i(a,b),i(b,a)),i(b,a)) != T).end_of_list.References[1] E. Lusk and W. McCune. Experiments with Roo, a parallel automated deductionsystem. In B. Fronh�ofer and G. Wrightson, editors, Parallelization in Inference Sys-tems, Lecture Notes in Arti�cial Intelligence, Vol. 590, pages 139{162, New York, 1992.Springer-Verlag.[2] E. Lusk, W. McCune, and J. Slaney. Roo|a parallel theorem prover. Tech. MemoANL/MCS-TM-149, Mathematics and Computer Science Division, Argonne NationalLaboratory, Argonne, Ill., 1991.[3] E. Lusk and R. Overbeek. The automated reasoning system ITP. Tech. Report ANL-84/27, Argonne National Laboratory, Argonne, Ill., April 1984.15

[4] J. McCharen, R. Overbeek, and L. Wos. Complexity and related enhancements forautomated theorem-proving programs. Computers and Mathematics with Applications,2:1{16, 1976.[5] J. McCharen, R. Overbeek, and L. Wos. Problems and experiments for and with auto-mated theorem-proving programs. IEEE Transactions on Computers, C-25(8):773{782,August 1976.[6] W. McCune. Otter 2.0 Users Guide. Tech. Report ANL-90/9, Argonne NationalLaboratory, Argonne, Ill., March 1990.[7] W. McCune. What's New in Otter 2.2. Tech. Memo ANL/MCS-TM-153, Mathe-matics and Computer Science Division, Argonne National Laboratory, Argonne, Ill.,July 1991.[8] W. McCune and L. Wos. The absence and the presence of �xed point combinators.Theoretical Computer Science, 87:221{228, 1991.[9] W. McCune and L. Wos. Experiments in automated deduction with condensed de-tachment. In D. Kapur, editor, Proceedings of the 11th International Conference onAutomated Deduction, Lecture Notes in Arti�cial Intelligence, Vol. 607, pages 209{223,New York, June 1992. Springer-Verlag.[10] B. Smith. Reference manual for the environmental theorem prover: An incarnation ofAURA. Tech. Report ANL-88-2, Argonne National Laboratory, Argonne, Ill., March1988.[11] Hantao Zhang. Automatic proofs of equality problems in Overbeek's competition.Journal of Automated Reasoning, this issue.

16

