
EVALUATION OF LARGE-SCALE OPTIMIZATION PROBLEMS ONVECTOR AND PARALLEL ARCHITECTURES�BRETT M. AVERICKy AND JORGE J. MOR�EzAbstract. We examine the importance of problem formulation for the solution of large-scaleoptimization problems on high-performance architectures. We use limited memory variable metricmethods to illustrate performance issues. We show that the performance of these algorithms is dras-tically a�ected by application implementation. Model applications are drawn from the MINPACK-2test problem collection, with numerical results from a super-scalar architecture (IBM RS6000/370),a vector architecture (CRAY-2), and a massively parallel architecture (Intel DELTA).Key words. optimization, large-scale, limitedmemory, variablemetric, performance evaluation,vector architecture, parallel architecture.AMS subject classi�cations. 65Y05, 65Y20, 65K05, 65K10, 90C06, 90C301. Introduction. Our aim is to explore performance issues associated with thesolution of large-scale optimization problems on high-performance architectures. Thesolution of these problems, where the number of variables ranges between 104 and 106,requires computer architectures with fast processors and large memories. We considerthree architectures with these features: the IBM RS6000/370workstation with 16 MWof memory is representative of a super-scalar architecture, the CRAY-2 with 512 MWof memory is representative of vector architectures, and the Intel DELTA (512 mesh-connected i860 processors) with a combined memory of 1024 MW is representative ofmassively parallel architectures.We examine the importance of problem formulation for model applications drawnfrom the MINPACK-2 test problem collection. This collection is representative oflarge-scale optimization problems arising from applications in elasticity, combustion,lubrication, optimal design, superconductivity, and other �elds of interest. Additionalinformation on the MINPACK-2 problems can be found in Averick et al. [1].Performance issues are illustrated with limited memory variable metric algo-rithms. These methods require minimal storage, lend themselves naturally to vectorand parallel implementations, and work well on a wide range of optimization prob-lems. See, for example, the comparisons of Nash and Nocedal [17], and Zou et al. [20].Our implementation of a limited memory variable metric algorithm, VMLM, followsthe approach of Liu and Nocedal [12]. In Section 3 we describe the key features of thiscode and its performance on the model applications of Section 2. The most noticeableaspect of these results is that on all the architectures under consideration, the cost ofevaluating functions and gradients dominates the overall solution time. The obviousconsequence of this observation is that improvements in performance can be obtainedonly if the implementation of function and gradient evaluations takes advantage ofthe architecture.�y Cooper Ne� Technologies, 3 Radnor Corporate Center, Suite 131, Radnor, Pennsylvania, 19087.This work was supportedby the Center for Research on Parallel ComputationunderNSF CooperativeAgreement No. CCR-8809615, and by the Army Research O�ce contract number DAALO3-89-C-0038 with the University of Minnesota Army High Performance Computing Research Center.z Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois,60439. Work supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38. 1

2 B. M. AVERICK AND J. J. MOR�EVectorization issues are treated in Sections 4 and 5. We show that vectorizationof the function and gradient evaluation for our applications requires an appropriatepartitioning of the element functions. These partitioning techniques are of interestbecause they are applicable to any partially separable function. In our applicationsthey improve computing times by at least a factor of 10.Sections 6 and 7 are concerned with distributed memory architectures. Section 6shows that it is possible to develop algorithms for the function and gradient eval-uation that are scalable in the sense that as the number of variables increases andthe number of processors increases, the computing time remains reasonably constant.Section 7 shows that the implementation of the VMLM code is scalable in terms ofthe computing time per iteration. In Section 7 we also compare the performance ofthe VMLM code on all three architectures by determining when the DELTA is fasterthan the other two machines.Performance evaluations of limited memory codes have also been performed byNocedal [18] and Maier [13]. The issues brought out in these studies di�er, in par-ticular, because Nocedal deals only with shared memory architectures, while Maier'sevaluation on the SIMD architecture of the CM-200 does not address scalability issues.We end the paper by discussing possible extensions of this work. In particular,we point out that the performance issues that we have raised are also applicable totruncated Newton methods because for these methods the cost of evaluating functionsand gradients is likely to dominate the computing time.2. Large-Scale Optimization Problems. The optimization problems that weconsider arise from the need to minimize a function f of the formf(v) = ZD �(x; v;rv) dx;where D is some domain in IR2, and � is de�ned by the application. In all cases f iswell de�ned if v : D 7! IRp belongs to H1(D), the Hilbert space of functions such thatv and krvk belong to L2(D). This is the proper setting for examining existence anduniqueness questions for the in�nite-dimensional problem.Finite element approximations to these problems are obtained by minimizing fover the space of piecewise linear functions v with values vi;j at zi;j, 0 � i � ny + 1,0 � j � nx + 1, where zi;j 2 IR2 are the vertices of a triangulation of D with gridspacings hx and hy. The vertices zi;j are chosen to be a regular lattice so that thereare nx and ny interior grid points in the coordinate directions, respectively.Lower triangular elements TL are de�ned by vertices zi;j ; zi+1;j ; zi;j+1, while uppertriangular elements TU are de�ned by vertices zi;j ; zi�1;j; zi;j�1. The values vi;j areobtained by solving the minimization problemminnX�fLi;j(v) + fUi;j(v)� : v 2 IRno ;where fLi;j and fUi;j are the �nite element approximation to the integrals in the elementsTL and TU , respectively.Our problems are taken from the collection described in Averick et al. [1]. Thisreport contains additional information on these problems; in particular, parametervalues are chosen as in this report.Steady State Combustion (SSC). The study of the steady state in solid fuelignition models leads to the optimization problemminff�(v) : v 2 H10 (D)g;

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 3where f� : H10(D) 7! IR is the functionalf�(v) = ZD �12krv(x)k2 � � exp[v(x)]	 dx;and � � 0 is a parameter. The �nite element approximation is de�ned byfLi;j(v) = hxhy2 �12d+i;j(v) � ��+i;j(v)	 ; fUi;j(v) = hxhy2 �12d�i;j(v) � ���i;j(v)	 ;where d�i;j(v) = �vi�1;j � vi;jhx �2 + �vi;j�1 � vi;jhy �2 ;��i;j = 13 fexp(vi;j) + exp(vi�1;j) + exp(vi;j�1)g :We use � = 2 for our numerical experiments.Minimal Surface Area (MSA). The determination of the surface with minimalarea and given boundary values in a convex domain D is an optimization problem ofthe form minff(v) : v 2 Kg;where f : K 7! IR is the functionalf(v) = ZD �1 + krv(x)k2�1=2 dx;and the set K is de�ned byK = �v 2 H1(D) : v(x) = vD(x) for x 2 @D	for some boundary data function vD : @D 7! IR. We consider the Enneper minimalsurface de�ned on D = (�12 ; 12)� (�12 ; 12) byvD(�1; �2) = u2 � v2;where u and v are the unique solutions to the equations�1 = u+ uv2 � 13u3; �2 = �v � u2v + 13v3:The �nite element approximation is de�ned byfLi;j(v) = hxhy2 �1 + d+i;j(v)	1=2 ; fUi;j(v) = hxhy2 �1 + d�i;j(v)	1=2 ;where d�i;j(v) = �vi�1;j � vi;jhx �2 + �vi;j�1 � vi;jhy �2 :Optimal Design with Composites (ODC). The optimal design problem re-quires determining the placement of two elastic materials in the cross-section of a rod

4 B. M. AVERICK AND J. J. MOR�Eso as to maximize the resulting torsional rigidity. The problem is formulated in termsof a family of problems of the formminff�(v) : v 2 H10 (D)g;where f� : H10(D) 7! IR is the functionalf�(v) = ZDn � (krv(x)k) + v(x)o dx;and � : IR 7! IR is the piecewise quadratic �(t) = 8<: 12�2t2; 0 � t � t1;�2t1(t� 12t1); t1 � t � t2;12�1(t2 � t22) + �2t1(t2 � 12 t1); t2 � t;with the breakpoints t1 and t2 de�ned byt1 = �2��1�2�12 ; t2 = �2��2�1�12 :We consider the problem of minimizing f� for a �xed value of � = 0:008. In ournumerical results we used �1 = 1 and �2 = 2 so that t21 = �, t22 = 2�. The �niteelement approximation is de�ned byfLi;j(v) = hxhy2 � � �e+i;j(v)� + 13(vi;j + vi+1;j + vi;j+1)� ;fUi;j(v) = hxhy2 � � �e�i;j(v)� + 13(vi;j + vi�1;j + vi;j�1)� ;where e�i;j(v) = (�vi�1;j � vi;jhx �2 + �vi;j�1 � vi;jhy �2)1=2 :3. Limitedmemory variable metric algorithms. Given an initial iterate x0,variable metric methods generate iterates byxk+1 = xk � �kHkrf(xk);where �k > 0 is determined by a line search algorithm, and the matrix Hk is deter-mined by an updating procedure. In a limited memory method the matrix Hk is notstored explicitly; instead, it is de�ned implicitly in terms of a �xed number of vectors.In our implementation of the limited memory method, the search parameter �k isdetermined by the csrch subroutine of Mor�e and Thuente [15]. The matrix Hk+1 isde�ned, as in Liu and Nocedal [12], in terms of a scaling parameter �k and informationgathered during the previous m iterations. Givenyj = rf(xj+1)�rf(xj); sj = xj+1 � xj; �j = yTj sj ; k �m + 1 � j � k;the product q = Hk+1w for any w 2 IRn is computed with the pseudo-code

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 5q wdo i = min(k;m); : : : ; 1l i+max(0; k�m)�i (sTl q)=�lq q � �iylend doq �qdo i = 1; : : : ;min(k;m)l i+max(0; k�m)q q + sl ��i � (yTl q)=�l�end doFor most applications, the computational cost of limited memory algorithms isdominated by the cost of evaluating f(xk) and rf(xk), where we measure cost interms of oating-point operations, or ops. In addition, our limited memory variablemetric algorithm, VMLM, costs (8m + 1)n ops for the computation of Hkrf(xk),and 11n ops for the remainder of the algorithm. Memory requirements are (2m+3)nwords of storage.Table 3.1 shows timing results (in seconds) for the solution of the test problemsof Section 2 by VMLM with m = 5. The most striking feature of these results is thefraction of computing time required for the function evaluations. On one node of theDELTA the function evaluations require 75% of the solution time, on the CRAY-2the function evaluations are responsible for over 90% of the overall solution time, andon the IBM RS6000 the functions require about 60% of the solution time. We obtaindi�erent ratios because the relative cost (in terms of ops) of evaluating the functionsdi�er drastically from machine to machine. We shall address this point in Section 5.Another reason for the di�erence in ratios on the CRAY-2 is that the VMLM codevectorizes while the function evaluation code does not.Table 3.1Initial timings (seconds) for n = 40;000DELTA (1 node) CRAY-2 IBM RS6000/370Problem function algorithm function algorithm function algorithmMSA 484 641 125 134 74 132SSC 307 384 132 136 62 91ODC 510 636 109 116 66 112It is worthwhile noting that for our problems the number of VMLM iterationstends to grow like n1=2. This can be seen clearly in Figure 3.1, where we have plottedthe number of iterations against n1=2 for all three test problems. We also note thatthe linear dependence on n1=2 for the number of iterations seems to be typical oftwo-dimensional grid problems. Another interesting observation on these problems,is that in most cases the line search only requires one function evaluation, with theratio of function evaluations to number of iterations always less than 1:05.As a consequence of the above remarks, the time to solve grid problems withVMLM grows like n3=2 on serial architectures. However, for parallel architecturesour aim is to avoid the growth in time resulting from increasing problem size, byincreasing the number of processors. By developing a scalable (constant time periteration) algorithm, the time to solve grid problems with VMLM grows like n1=2.In the remainder of the paper we look at several ways to improve the overallsolution time of VMLM. Table 3.1 shows that in order to do this we must concentrate

6 B. M. AVERICK AND J. J. MOR�E
50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

o ODC

* MSA

x SSC

Square root of the number of variables

Ite
ra

tio
ns

 o
f L

M
V

M

Fig. 3.1. Number of iterations of VMLM on grid problems as a function of n1=2on improving the function and gradient evaluations.4. Evaluating functions and gradients on vector architectures. The re-sults of Section 3 clearly show that improving the performance of the VMLM code onthe CRAY-2 requires vectorization of the function and gradient evaluations. In thissection we show that this can be done by using partitioning techniques.The standard way to evaluate the functions and gradients for the optimizationproblems discussed in Section 2 is to �rst sweep through the triangular elements withthe pseudo-codedo j = 1; : : : ; nydo i = 1; : : : ; nxEvaluate fLi;j(v) and rfLi;j(v)f(v) f(v) + fLi;j(v)rf(v) rf(v) +rfLi;j(v)end doend dofollowed by similar code for the triangular elements TU . This code does not vectorizeand thus performs poorly on the CRAY-2. The di�culty arises because functions fLi;jand fLi+1;j share the variables vi+1;j and thus both contribute to the same gradientelement. More speci�cally, a vector dependency occurs because several elements tryto write into the same component of the gradient.The vector dependency can be eliminated by splitting the functions into groupssuch that no functions in a group depend on the same variable. This idea was sug-gested by Mor�e [14] for treating synchronization issues on shared memory architec-tures, but can easily be extended to vector architectures.The partition problem of splitting the functions fLi;j into groups so that functionsin a group do not have variables in common is equivalent to partitioning the trianglesTL into groups so that triangles in a group do not intersect. For our test problems, ifS = f(i; j) : 0 � i � nx; 0 � j � nyg ;

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 7
@@@ @@@@@@ @@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@

@@
@@@@@@@@@@@@@

@@
@@@@@@@@@@@@@

@@ @@@@@@@@@@@@ @@@@@@@@@ @@@@@@ @@@S1 S1 S1S1 S1S1 S1S1 S1 S1S1 S1
Fig. 4.1. Triangular elements TL in S1then the three setsS1 = f(i; j) 2 S : i = mod(j; 3) + 3k; k = 0; 1; : : :g ;S2 = f(i; j) 2 S : i = mod(j + 1; 3) + 3k; k = 0; 1; : : :g ;S3 = f(i; j) 2 S : i = mod(j + 2; 3) + 3k; k = 0; 1; : : :g ;de�ne a suitable partition. For example, the triangular elements TL associated withS1 are marked in Figure 4.1.The approach that we have outlined partitions the functions fLi;j; fUi;j into sixgroups. This is the smallest number of groups as long as one of the variables isshared by six functions; in our case, all the variables appear in six functions. Astandard red-black partitioning into four groups is therefore not possible. Of course,if we reformulate the optimization problem so that a function is associated with eachsquare, then a standard red-black partitioning would be possible.Table 4.1 shows the improvements that can be obtained on the CRAY-2 with theabove partitioning. We used n = 40; 000 variables on all problems and noted the timets to evaluate the standard f and rf , and the time tp to evaluate the partitioned fand rf . Table 4.1Function evaluation times (seconds) on the CRAY-2 for n = 40;000Problem ts tpMSA 0.31 0.017SSC 0.66 0.017ODC 0.34 0.036The increase in speed obtained by partitioning varies with each problem. Forthe MSA problem there is a speedup of 18, which is what we expect when comparingvectorized code with scalar code on the CRAY-2. The SSC problem shows a speedup of39. This improvement is due not only to the partitioning, but also to the replacementof ��i;j = 13 fexp(vi;j) + exp(vi�1;j) + exp(vi;j�1)g

8 B. M. AVERICK AND J. J. MOR�Eon all interior elements by ��i;j = exp(vi;j):Since each variable is a member of six elements, this modi�cation does not change theSSC function (boundary values are handled separately). The ODC problem showeda speedup of 9. In this case vectorization of the function computation required amodi�cation to the original code that increased the op count.The partitioning approach can be extended to general partially separable func-tions, that is, functions of the formf(v) = npXk=1fk(v);where each fk depends on only a few of the variables vi. For general partially separablefunctions, the partitioning problem can be formulated as a graph coloring problem.For details and references, see Coleman and Mor�e [5]. Other references in this areainclude Coleman, Garbow, and Mor�e [4] on software for the partition problem, Gold-farb and Toint [7] on the partition problem for matrices that arise from �nite elementapproximations, Jones and Plassmann [10] on the use of partitioning techniques forthe iterative solution of sparse linear systems, and Averick et al. [2] on computinglarge sparse Jacobian matrices using automatic di�erentiation.5. Performance evaluation on vector architectures. We have shown thatpartitioning techniques can be used to improve the performance of the function andgradient evaluation algorithms on vector architectures. We now examine the perfor-mance of the VMLM code on the SSC problem on the basis of two measures: the timeper iteration (titer) and the Mop rate.We already noted in Section 3 that the VMLM code requires (8m + 12)n oper-ations per iteration, in addition to the ops needed to evaluate f(xk) and rf(xk).For the SSC problem, the evaluation of f(xk) and rf(xk) requires 38n operationsand n evaluations of the exponential. The cost of evaluating the exponential func-tion was determined experimentally by computing the times required to evaluate theSSC problem when a multiplication replaces the exponential function. We found thatfor our compiler options during these tests, an exponential evaluation costs (approx-imately) 20 multiplications on the IBM RS6000, 40 multiplications on the CRAY-2,and 130 multiplications on the DELTA.An implementation of the exponential function is likely to require at least 30oating point operations. See, for example, the implementation described by Codyand Waite [3]. Thus, the number of operations on the CRAY-2 look about right,while the number for the IBM probably reects an extremely careful implementation.The DELTA is an experimental architecture, so the implementation of the intrinsicfunctions may not have received su�cient attention.Table 5.1 presents the time per iteration (titer) and the Mop rate on the IBMRS6000 and the CRAY-2. We have included the IBM RS6000 because these resultsare indicative of the performance that can be obtained with minimal e�ort on a high-performance workstation. Note, in particular, that the IBM results do not requirepartitioning of the function and gradient evaluation algorithms. We do not presentresults for the problem with n = 2:56 106 because it is too large for the 16 MWmemory.

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 9Table 5.1Performance evaluation of the VMLM codeIBM RS6000/370 CRAY-2n titer Mop titer Mop10,000 0.06 17.5 0.01 13740,000 0.26 17.7 0.04 141160,000 1.03 17.9 0.15 144640,000 4.10 18.1 0.62 1432,560,000 � � � � � � 2.36 145The performance results in Table 5.1 show that there is a slight increase in speedwith increasing vector length and that the time per iteration scales linearly with n.The overall Mop rates are quite satisfactory. For example, Dongarra and van derVorst [6] mention that an unpreconditioned conjugate gradient iteration on a sytem oflinear equations with n = 106 variables achieves 21.1 Mops on an IBM RS6000/550and 149 Mops on the CRAY-2.6. Evaluating functions and gradients on distributedmemory architec-tures. Evaluation of the function and the gradient of a partially separable functionon shared memory architectures has been discussed by Mor�e [14]. The issues aremore complicated on distributed memory architectures; the discussion below followsthe work of Jones and Plassmann [11].The �rst issue that must be considered is that the work must be distributedamong the processors so as to obtain good load balancing. In our test problems thisamounts to distributing the evaluations of fLi;j and fUi;j evenly among the processors.Second, the variables need to be distributed among the processors so that the ratioof computation to communication remains high. That is, if a processor is responsiblefor computing fLi;j, it should own as many variables required by fLi;j as possible.Since the test problems are grid problems and the DELTA is a mesh connectedmachine, the distribution of variables is fairly straightforward. We simply lay a gridof processors over the rectangular �nite element mesh, as shown in Figure 6.1, dis-tributing the grid points as evenly as possible. In this �gure each processor owns sixvariables.Any element that has all of its vertices within one processor is an interior element;those elements with vertices in two or more processors are shared elements. Anyelement that has a vertex that lies on the boundary of the grid is a boundary element.It is possible to be a shared-boundary element, but these elements are to be consideredshared.Each processor is responsible for computing the function in all of its interiorelements and in those shared elements for which the processor contains the rightangle vertex. Processors that contain a vertex of a boundary element compute thatboundary elements contributions to the function. Lastly, the function contributionsof the bottom left and top right elements are computed by the appropriate processor.After each processor has computed its contribution to the function, the results areadded to get the global function value.Evaluating the gradient is less complicated. Each processor is responsible forcomputing each of the gradient components corresponding to the variables that lie

10 B. M. AVERICK AND J. J. MOR�E
Fig. 6.1. Partitioning variables into processorswithin the processor. This means that a processor will have to compute the gradientcontributions of some shared elements even though the processor does not computethe corresponding function.Figure 6.2 shows a typical processor with six variables. This processor is respon-sible for computing the function for all the elements shown. The gridpoints labeledG, frequently called ghostpoints, are needed to compute the contribution to the func-tion and the component of the gradient for the variables owned by the processor.The ghostpoints must be obtained from the processors directly above, directly below,immediately to the right, and immediately to the left. These data must be commu-nicated to the processor before it can compute the functions or gradient componentsthat depend on the ghostpoints. Communication is handled by the Chameleon par-allel programming tools developed by Gropp and Smith [8]. These tools can be usedto develop code that is portable to a variety of computing environments.

G

G

GGG

G

G

G G G G G

GGFig. 6.2. Processor with ghostpointsLetmx andmy be the number of grid points in the respective coordinate directionsowned by the processors so that nvp = mxmy is the number of variables stored ineach processor. We store the vector of variables x as an (my+2)� (mx+2) array andthe gradient as an my �mx array. The extra rows and columns in x allow space forthe ghostpoints. This strategy worked well for our problems but may be impracticalin terms of storage for three-dimensional problems or for elements of high order.For a �xed problem size the computing time for evaluating the SSC function andgradient depends on the number of variables nvp stored in each processor. Figure 6.3shows the time for nvp set to 5; 000; 10; 000; and 20; 000. The computing times de-crease as nvp decreases since more processors are being used; however, it is not alwayspossible or convenient to use all the DELTA processors, so the results for nvp = 20; 000

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 11
10

4
10

5
10

6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

* NVP = 5,000

o NVP = 10,000

x NVP = 20,000

P=2 P=8 P=32 P=128

P=1 P=4 P=16 P=64

P=2 P=8
P=32

Number of variables

T
im

e
(s

ec
on

ds
)

Fig. 6.3. Evaluation of the SSC function on the DELTAare of interest although they do not lead to the fastest computing times.Figure 6.3 shows that the function and gradient evaluation algorithm is scalablein the sense that as the number of variables increases and the number of processorsincreases, the computing time remains reasonably constant. Furthermore, the unifor-mity with which the plots are spaced indicate that the communication time neededto do the evaluation is almost negligible, even for small values of nvp.7. Performance evaluation on parallel architectures. We have noted thatthe evaluation of the function and gradient on a distributed memory architecturerequires that the vector x of variables and the gradient vector g be distributed amongthe processors. Implementation of the VMLM code also requires that the 2m vectorsyi and si be distributed among the processors. All other information is local toeach processor. With this strategy processors are required to store vectors of lengthproportional to nvp.Global communication is required to compute the quantities gT s and yT s. Theline search needs gT s, and yT s is used to determine the scaling parameter. Globalcommunication is also needed to compute sTi q and yTi q during the computation of thedirection d (see the algorithm in Section 3). Thus, each iteration of the VMLM coderequires 2(m + 1) global dot products. These computations are performed with theChameleon package of Gropp and Smith [8].The line search routine requires very few ops except for function and gradientevaluations, which we have already shown to be amenable to parallel implementation.As a result each processor performs exactly the same line search in our VMLM im-plementation, and parallelism is obtained through the parallelism in the function andgradient evaluations.Table 7.1 presents the performance data for the VMLM code with nvp = 5000.The time per iteration (titer) is virtually constant, indicating scalability of perfor-mance. There is an increase in the time per iteration for the largest problem; itis generally believed that at the time these results were obtained, the DELTA hada faulty communication channel. Results were also obtained for nvp = 10; 000 andnvp = 20; 000. The results scale almost linearly with those shown in Table 7.1. For

12 B. M. AVERICK AND J. J. MOR�ETable 7.1Performance evaluation of VMLM on the DELTA (nvp= 5; 000)n p titer Mop/p Mops10,000 2 0.12 9.3 1840,000 8 0.13 8.8 71160,000 32 0.13 8.3 267640,000 128 0.14 8.1 10442,560,000 512 0.18 6.3 3233example, the average time per iteration increases from 0.14 for nvp = 5; 000 to 0.26for nvp = 10; 000, and to 0.50 for nvp = 20; 000.Figure 7.1 compares the results in Table 7.1 with those presented in Table 5.1 forthe IBM RS6000 and the CRAY-2. We show DELTA results for nvp = 5; 000 andnvp = 10; 000. Initially both sequential machines are faster than the DELTA becauseof processor speed, but this situation is reversed as the problem size increases and theDELTA adds processors. First consider the case when nvp = 5; 000. The DELTA (4processors) becomes faster than the IBM RS6000 at n = 20; 000, while the DELTA(28 processors) becomes faster than the CRAY-2 at n = 140; 000. The crossing pointfor other values of nvp can be determined from this data because computing timesscale linearly with n and nvp. For example, with nvp = 10; 000, the DELTA (28processors) becomes faster than the CRAY-2 at n = 280; 000.
10

4
10

5
10

6
10

7
10

-2

10
-1

10
0

10
1

o IBM RS600/370

* CRAY-2

x Intel DELTA

NVP = 5,000

NVP = 10,000

Number of variables

T
im

e
(s

ec
on

ds
)

Fig. 7.1. Time (seconds) per iteration of VMLM as a function of n8. Concluding remarks. The performance issues that we have raised applyto truncated Newton methods because for these methods the cost of evaluating thefunction and gradient is likely to dominate the computing time. Nash and Nodedal[17] mention that a typical cost of the TN code of Nash [16] is 325n ops per iteration.This cost is certainly higher than for limited memory variable metric methods, but westill expect it to be a small fraction of the total computing cost for many applications.The cost of the truncated Newton method of Schlick and Fogelson [19]) depends on

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 13Table 8.1Evaluation of r2f(x)v (seconds) for the SSC problem on the CRAY-2n ts tp10,000 .18 .00440,000 .70 .015160,000 2.79 .061640,000 11.20 .244the preconditioner, so the situation is less clear with this code.Although we have concentrated on issues involving on the evaluation of the func-tion and gradient, many of these issues also apply to the evaluation of the Hessian-vector product r2f(x)v. This product is often required by, for example, truncatedNewton methods. In most codes, this product is approximated by di�erences of gra-dient values, but it is certainly possible and desirable to use the actual Hessian-vectorproduct, since this eliminates the dependence of the code on a di�erence parameter.The MINPACK-2 test problems include code for the evaluation ofr2f(x)v. Thesecodes raise the same issues as the gradient evaluation codes. In particular, on vectorarchitectures these codes have the same vector dependencies as the gradient evaluationcodes. These dependencies can be eliminated by the same partitioning techniquesdiscussed in Section 4. Table 8.1 shows the improvements that can be obtained withthese partitioning techniques. We used the SSC problem with n = 40; 000 variablesand noted the time ts to evaluate the standard r2f(x)v, and the time tp to evaluatethe partitioned r2f(x)v.Note that the computing time scales linearly with n. Moreover, note that Ta-ble 4.1 shows that the cost of evaluating the function and the gradient is about thesame as the cost of evaluating the Hessian-vector product. This is typical for ourapplications, and should hold in all cases. For a discussion of this point, in connectionwith automatic di�erentiation, see Iri [9].As a �nal remark we note that the evaluation of Hessian-vector products ondistributed memory architectures can also be done with the techniques discussed inSection 6, and that results were obtained for the SSC problem that were similar tothose shown in Figure 6.3.Acknowledgments. We thank Bill Gropp, Mark Jones, Barry Smith, and PaulPlassmann for sharing their parallel programming expertise, and Peter Tang for hisobservations on algorithms for evaluating intrinsic functions. Michelle Hribar deservesa special thanks for providing much of the initial programming for this project.REFERENCES[1] B. M. Averick, R. G. Carter, J. J. Mor�e, and G.-L. Xue, The MINPACK-2 test problemcollection, PreprintMCS-P153-0692, Argonne National Laboratory, Argonne, Illinois, 1992.[2] B. M. Averick, J. J. Mor�e, C. H. Bischof, A. Carle, and A. Griewank, Computinglarge sparse Jacobian matrices using automatic di�erentiation, Preprint MCS-P348-0193,Argonne National Laboratory, Argonne, Illinois, 1993.[3] W. J. Cody and W. Waite, Software Manual for the Elementary Functions, Prentice Hall,1980.[4] T. F. Coleman, B. S. Garbow, and J. J. Mor�e, Software for estimating sparse Jacobianmatrices, ACM Trans. Math. Software, 10 (1984), pp. 329{345.

14 B. M. AVERICK AND J. J. MOR�E[5] T. F. Coleman and J. J. Mor�e, Estimation of sparse Jacobian matrices and graph coloringproblems, SIAM J. Numer. Anal., 20 (1983), pp. 187{209.[6] J. J. Dongarra and H. A. van der Vorst, Performance of various computers using stan-dard sparse linear equation solving techniques, in Computer Benchmarks, J. J. Dongarraand H. A. van der Vorst, eds., North-Holland, 1994, pp. 177{191.[7] D. Goldfarb and P. L. Toint, Optimal estimation of Jacobian and Hessian matrices thatarise in �nite di�erence calculations, Math. Comp., 43 (1984), pp. 69{88.[8] W. Gropp and B. Smith, Users manual for the Chameleon parallel programming tools, ReportANL-93/23, Argonne National Laboratory, Argonne, Illinois, 1993.[9] M. Iri, History of automatic di�erentiation and rounding error estimation, in AutomaticDi�erentiation of Algorithms, A. Griewank and G. F. Corliss, eds., Society for Industrialand Applied Mathematics, 1992, pp. 3{16.[10] M. T. Jones and P. E. Plassmann, Scalable iterative solution of sparse linear systems,Preprint MCS-P277-1191, Argonne National Laboratory, Argonne, Illinois, 1991.[11] , Computation of equilibrium vortex structures for type-II superconductors, Internat. J.Supercomputing Applications, 7 (1993). To appear.[12] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,Math. Programming, 45 (1989), pp. 503{528.[13] R. S. Maier, Large-scale minimization on the CM-200, Optimization Methods and Software,1 (1992), pp. 55{69.[14] J. J. Mor�e, On the performance of algorithms for large-scale bound constrained problems, inLarge-Scale Numerical Optimization, T. F. Coleman and Y. Li, eds., Society for Industrialand Applied Mathematics, 1991, pp. 31{45.[15] J. J. Mor�e and D. J. Thuente, Line search algorithms with guaranteed su�cient decrease,Preprint MCS-P330-1092, Argonne National Laboratory, Argonne, Illinois, 1992.[16] S. G. Nash, Preconditioning of truncated Newton methods, SIAM J. Sci. Statist. Comput., 6(1985), pp. 599{616.[17] S. G. Nash and J. Nocedal, A numerical study of the limited memory BFGS method and thetruncated Newton method for large scale optimization, SIAM J. Optimization, 1 (1991),pp. 358{372.[18] J. Nocedal, The performance of several algorithms for large-scale unconstrained optimiza-tion, in Large-Scale Numerical Optimization, T. F. Coleman and Y. Li, eds., Society forIndustrial and Applied Mathematics, 1991, pp. 138{151.[19] T. Schlick and A. Fogelson, TNPACK { A truncated Newton minimization package forlarge-scale problems: I. Algorithms and usage, ACM Trans. Math. Software, 18 (1992),pp. 46{70.[20] X. Zou, I. M. Navon, M. Berger, K. H. Phua, T. Schlick, and F. X. Le Dimet,Numerical experience with limited-memory quasi-Newton and truncated Newton methods,SIAM J. Optimization, 3 (1993), pp. 582{608.

