Applications-Driven Parallel I/O *

N. Galbreath?

W. Gropp

D. Levine

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, I, 60439-4801

Abstract

We wnvestigate the needs of some massively paral-
lel applications running on distributed-memory par-
allel computers at Argonne National Laboratory and
identify some common parallel 1/0 operations. For
these operations, routines were developed that hide the
details of the actual implementation (such as the num-
ber of parallel disks) from the application, while pro-
viding good performance. An important feature is the
ability for the application programmer to specify that
a file be accessed either as a high-performance parallel
file or as a conventional Uniz file, simply by changing
the value of a parameter on the file open call. These
routines are examples of a parallel 1/0 abstraction
that can enhance development, portability, and per-
formance of I/O operations in applicalions. Some of
the specific issues in their design and implementation
m a distributed-memory toolset are discussed.

1 Introduction

In order to run Grand Challenge computational
science applications on massively parallel processor
(MPP) systems in a production mode, both high-
performance parallel I/O systems and programmer-
friendly software will be required. Unfortunately,
I/0 systems and software have been largely neglected
by both high-performance computing researchers and
vendors. Issues such as I/0 as a bottleneck, the scal-
ability of I/O architectures, and ease of use of 1/0
software remain largely unexplored. There has been
little experimental study of 1/O access patterns and
types of usage, particularly in the context of scientific
computing. We believe the first step in developing

*This work was supported by the Office of Scientific Com-
puting, U.S. Department of Energy, under Contract W-31-109-
FEng-38.

tCurrent address: Boston University.

appropriate parallel I/O (PIO) software is an analy-
sis of the I/O requirements of a few key application
domains. An equally important second step is the
evaluation of different implementation strategies. In
this paper we report on the results of a study of paral-
lel T/O requirements at Argonne National Laboratory
(ANL) and a distributed-memory system we have de-
veloped to support these requirements. In order to
meet the requirements, this system has been designed
to provide high-level 1/O operations, such as “write
array to parallel file,” rather than the more elemental
I/0 operations, such as “write byte stream to parallel
file.” This approach has the advantage that, to the ap-
plications programmer, parallel /O does not appear
very different from sequential I/O. This simplifies the
process of developing and debugging a program, as
well as investigating various algorithms for implement-
ing the high-level parallel I/O operation. Del Rosario
and Choudhary [?] provide a recent overview of many
issues in high-performance parallel 1/0.

This paper is laid out as follows. In Section 2 we
discuss the types of 1/O being done in some compu-
tational science applications at ANL and the methods
we use to abstract out the main ideas. In Section 3
we describe the PETSc/Chameleon package used in our
implementation and the parallel /O routines we have
developed. Finally, in Section 4 we make some con-
cluding remarks and discuss our future plans.

2 I/O Requirements of Computa-
tional Science Applications

2.1 Types of I/O Usage

To decide what types of parallel I/O functionality
we wanted in our system, we began by examining the
I/0 requirements of various Grand Challenge compu-
tational science applications at ANL that were run-
ning on distributed-memory computers. We chose to

focus on the T/O needs of the applications rather than
the expression of those needs in current code so as to
avoid being biased by code written for existing 1/0
interfaces.

Applications perform I/O for various reasons. The
most obvious is to output the results the program
computes. Some other reasons are to initialize the
program, to hold in temporary scratch files data struc-
tures that do not otherwise fit in main memory, and to
save the state of a job so that it can be restarted later.
While each of these requirements is routinely handled
in a sequential program, MPP systems raise a number
of questions. Among these are the following: What
programming model is being used? Should all pro-
cessors write to the same file, or each to its own file?
In what format should the data be stored (e.g., dif-
ferent formats may be needed depending on whether
the program is being debugged or run in production
mode)? Below we provide more detail about the 1/0
requirements of computational science applications at

ANL.

2.1.1 Input

Most programs need to read some data to initialize
a computation. The input data varies in size from
small files containing a few important parameters to
large data files that initialize key arrays and databases.
Also, some applications require periodic input, such
as boundary information or other datasets that occur
at some interval for the duration of a run, not just
initially.

Key questions include whether a replicated or dis-
tributed data structure is being read, and if a dis-
tributed data structure is being read, which data to
map to which processors, and whether each processor
executes the read or whether only one processor ex-
ecutes the read (and broadcasts to all others, in the
case of a distributed-memory programming model).

One application at Argonne is mesoscale climate
modeling. Future work with this model will investi-
gate four-dimensional data assimilation. This involves
input of data from observations and potentially also
weather radar. This data may be obtained in real
time or from tape. It is quite likely that the speed
and frequency of this data acquisition will become the
limiting step in the calculations unless the I/O capa-
bilities of the MPP machines being used can keep pace
with CPU performance.

2.1.2 Debugging

A common need for performing I/O arises when de-
bugging a parallel program. We note in particular the
somewhat complicated case where the parallel calcula-
tion of a distributed data structure is being compared
with the same calculation done by the original sequen-
tial program. Questions arise as to how to write the
parallel data structure so that it may “easily” be com-
pared with the sequential calculations and so that the
differences may be “easily” isolated.

As one example, an electromagnetics code in use at
ANL solves a nonlinear problem by repeatedly solving
a system of linear equations. In the parallel program
the matrix is distributed by rows. At each nonlinear
iteration, an iterative parallel linear solver is called
to solve the current system of equations. From the
solution a new matrix is generated and solved, and
this process continues until convergence. Debugging
the parallel code required comparing of the sequential
and parallel versions of the matrix to see whether they
were the same. In a second example, subtle boundary
condition errors were occurring on the faces of a cube
in a three-dimensional superconductivity code. Again,
to isolate the parallel bug required comparisons of the
sequential and parallel values of those faces, which
changed each time step.

It is typical in debugging a sequential program to
compare results before and after a “fix”. On Unix
systems a common way to do this is using the diff
command to test for differences. An aim of our system
is to provide the user the capability when debugging
to have a parallel file written in a conventional Unix
format so that traditional debugging methods may be
used.

2.1.3 Scratch Files

Scratch files are often used to hold data structures
containing intermediate calculations that do not fit
into main memory or that a user does not wish to
recompute. Speed of access and file size are usually
the important considerations for these files.

For example, at the heart of a computational chem-
istry program is an iterative algorithm to compute the
lowest eigenvector and eigenvalue of a large, sparse
symmetric matrix. The algorithm requires the com-
putation of matrix-vector products of the matrix with
various trial vectors. The matrix is not stored, but
rather the matrix-vector products are computed using
knowledge of the underlying structure of the matrix.
However, the trial vectors and corresponding matrix-
vector products must be stored during the iterative

procedure. These vectors are stored by distributing
them across the memories of the processors. In order
to study larger molecular systems, an efficient means
to handle larger vectors must be developed. This will
require paging of the distributed vectors to secondary
storage, and caching in main memory only a small
fraction of these vectors at each node. For such a
scheme to work, the algorithms, software, and hard-
ware involved must be efficient and robust so that the
I/O activity involved at each iteration does not be-
come an overwhelming bottleneck.

A similar storage requirement arises in the n-body
portion of a computational biology application. A
portion of the calculation requires the determination
of forces on the atoms resulting from quantum me-
chanical effects. The calculation of the quantum me-
chanical effects can require the evaluation of tens of
millions of integrals. Since the value of these inte-
grals remains constant for a particular configuration
of atoms, a tradeoff is to either store the integrals to
disk or recalculate them in order to avoid expensive
I/O accesses. The number of integrals required in-
creases as the cube of the number of electrons. The
ability to access these integrals from main memory can
make a difference in calculation speed by at least one
to two orders of magnitude. Hence, the type of calcu-
lations that are feasible is partly limited by the I/0O
access speed.

2.1.4 Checkpoint/Restart

For long-running production codes, it is desirable to
have the ability to save the state of the computation
in order to continue computing from that point at a
later date. Most operating systems on traditional, se-
quential high-performance computers provide such a
capability at the operating system level. Sometimes
an application may have such a facility built into the
logic of the program.

In a distributed-memory context, a checkpoint re-
quires saving one or more distributed arrays as well as
(usually replicated) scalars. A key question is whether
to save to one file or many and, if so, in what order.
Another consideration is, whether the restart can be
done independently of the number of processors the
checkpoint was taken on. This is the most general
case. However, it requires that only one checkpoint file
be written. This in turn requires that the distributed
data structures be written to a single file in their nat-
ural sequential format. Most users implementing their
own parallel checkpoint /restart capabilities have tried
to avoid this single file approach because of the code
complexity involved in having each processor calcu-

late the global location(s) for its data values. As a
result, most current checkpoint/restart efforts are de-
pendent upon the number of processors used. Finally,
an additional complication arises if checkpoint/restart
capabilities are already designed and deeply incorpo-
rated within an existing sequential code. Here, the
parallel programmer is faced with the prospect of rip-
ping out all the old sequential code and designing a
new parallel version.

2.1.5 Output

Output from a program takes many forms; it can be a
small file with a few results or a large file containing all
the values from several arrays. Sometimes the output
1s postprocessed and only a small subset of the data
actually used. Often time-dependent data is involved,
and large files are generated periodically.

As examples, two codes used to model high-
temperature superconductivity and global climate
change, respectively, at ANL are time-dependent and
three-dimensional. In both codes, the algorithmic ker-
nel 1s the numerical solution of a time-dependent par-
tial differential equation. The main computational
data structure is a grid, and users are interested in
the value of one or more parameters defined at each
grid point.

These codes produce several types of output: (1)
“small” result files containing the values of a few “in-
teresting” parameters every k time steps; (2) files con-
taining those “interesting” parameters sampled more
frequently and output in a form for use in a post-
processing tool that plots the value of the parameter
as a function of the time step; and (3) files that hold
results for each grid point for several different param-
eters of interest. An individual file is created for each
discrete time step, and the results are analyzed with
the aid of a postprocessing graphics package.

2.2 I/0O Abstractions

Abstraction is a key 1dea in contemporary computer
science. The idea is to use a series of layers so that
the higher layers mask the inconvenience of working
directly with the lower layers. A common example
is the translation of high-level languages to assembly
language and then to machine code. Abstractions are
also commonly used in T/O where, for the high-level
language programmer, they can hide details such as
buffering, actual layout of a file on a device, or even
the type of storage media being used.

We believe abstractions to be even more important
for parallel 1/O because of the additional complica-

tions. First, there are hardware considerations. Mod-
ern parallel systems have a wide variety of storage
devices intended to provide both high-performance
and large capacity. Currently, there are as many ap-
proaches to parallel I/O on MPP systems as there are
MPP vendors. Second are the software considerations.
Parallel computing introduces a number of new con-
cepts such as distributed and replicated data struc-
tures. This situation is further complicated by the
wide variety of parallel programming models in cur-
rent use.

One decision that must be made early in the design
of a parallel file system 1s how the bytes are mapped
from the application to the file. For example, a simple
striping system to eight disks may say that the j** byte
of the file is placed on disk (j/blocksize) mod 8. This
mapping 1s determined at the time a file is opened;
some proposals for parallel file systems provide ways
for the user to control the mapping on a file basis. We
have observed that often it is more convenient if the
mapping is based on the object rather than a file. For
example, two arrays written to the same file may have
different “natural” mappings. An example of such a
case includes adaptive computations where the size of
the data may vary during the computation. Crockett
[?] classifies a number of parallel file organizations.

Our aim is to analyze many computational science
applications at ANL and abstract out of them com-
mon hardware and software requirements. In the case
of hardware, our approach is to give the user a com-
mon set of calls that will work across all or most com-
mercial MPP machines and workstation clusters. The
user need not be concerned whether the underlying
implementation stripes a file across parallel disks or
uses high-speed tape. Also, since the calls are portable
across systems, a particular vendor’s hardware is hid-
den from the user.

In the case of software, analysis of the types of /O
usage in computational science applications identified
several common themes, including reading and writing
a replicated value (scalar or array), and reading and
writing a partitioned and distributed array. Accord-
ingly, it is this functionality that we seek in our system
by providing subroutine calls that allow the user not
to have to be concerned with issues such as deciding
which processor will write a replicated value, calcu-
lating the location in a file for each distributed array
element, and handling processor synchronization. We
also wish to provide the user the ability to open a par-
allel file as if it were a regular sequential file. Finally,
by providing a portable set of calls, we free the user
from having to learn each parallel computer vendor’s

parallel T/O interface.

3 Parallel I/O Programming Interface

3.1 Distributed Data Structures

Our initial implementation of this work has been
done in the context of the distributed-memory pro-
gramming model. In this model a global data struc-
ture is decomposed among the memories of the indi-
vidual processors. The individual parts of this dis-
tributed data structure are then operated on in paral-
lel. A common instance of this in many scientific and
engineering applications is the single program, multi-
ple data (SPMD) model. In the SPMD model each
processor executes a copy of the same program on the
data in its memory.

We assume there are several kinds of data of in-
terest. For example, there is replicated data, such as
scalar values or small arrays that exist in duplicate in
each processor’s memory. Also, there are arrays that
have been partitioned and distributed across the pro-
cessor memories. Another type of data is where each
processor has a large block of contiguous data. Addi-
tional kinds of data include arrays on a subset of the
processors, more general data layouts (such as data
from an irregular mesh), and more complicated data
elements (such as structures rather than individual re-
als or integers). Rather than try to predict all possible
data arrangements, we have chosen to support, at a
high level, those operations needed in our applications.
Our implementations of the low-level /O operations
are intended to be more general, but as a result are
significantly more difficult to use.

3.2 The PETSc/Chameleon Package

Our parallel /O system has been implemented in
the context of the PETSc/Chameleon package. The
PETSc/Chameleon [?] package is a collection of rou-
tines that provide a hierarchy of models for paral-
lel programming on distributed-memory parallel com-
puters. These routines are intended to provide a
consistent, easy-to-use model of message-passing that
enables access to all of the power of a distributed-
memory computer. This package supports both native
(vendor) communications libraries and several popular
“portable” communications packages. The “portable”
packages supported include p4, PICL, and PVM; The
PETSc/Chameleon package runs on any system that
these packages support. Of these, p4 [?] supports the

widest variety of systems, including workstations and
massively parallel computers.

The PETSc/Chameleon package currently comprises
hundreds of routines, mostly in C. It provides support
for a variety of common message-passing primitives
and provides routines that support collective opera-
tions that involve a collection of processors including
all processors and subsets of all processors.

3.3 Overview of Parallel I/O Routines

All of the parallel I/O routines are organized as
follows. First, a parallel file is opened with PIFopen;
this specifies the kind of parallel file (see below) and
returns a file descriptor (or context) that is used in all
of the other parallel I/O routines. This corresponds
to an fopen in C or, more approximately, an OPEN in
Fortran. At this point, the action of the parallel rou-
tines may be modified in much the same way that C
permits a FILE to be modified with routines such as
setbuf. Next, actual input and output are performed
by using routines for specific operations such as “out-
put a distributed array” or “read in a scalar.” Finally,
the parallel file is closed with PIFclose.

3.3.1 Function Calls

The PIFopen call opens a parallel file for future use.
It must be called before any parallel I/O commands
are issued. It returns a file pointer to be used in all
subsequent PIO calls. Two important parameters are
processors, which allows the specification of which
set of processors will be involved in any subsequent
PIO calls (typically, but not always, this will be all
processors), and ftype, which (like low-level C open
commands) allows specification of what mode the file
should be open in. Our goal with the ftype parame-
ter is to provide a “paralle]” mode where the parallel
file will be opened for access in whatever way provides
the highest possible I/O performance. The actual im-
plementation will be highly vendor-specific. In the
“as-sequential” mode the parallel file will be a con-
ventional Unix file. The PIFclose call closes a file
and frees any buffers allocated to it.

The PIFWriteCommon call writes a nondistributed
(i.e., a global or single) variable once to a file. The
implementation is responsible for deciding which pro-
cessor will actually write the variable to the file. The
PIFReadCommon call reads a data value and scatters
that value to all of the processors. The implementa-
tion is responsible for deciding which processor will
read the value. The parameter fmat is a string that
specifies the format the data will be read or written in.

(Tt is similar to the C printf command specifiers with
some restrictions.) The data is written unformatted if
fmat is not specified. Other parameters describe the
data itself (location, data type, and size).

The two functions PIFWriteDistributedArray
and PIFReadDistributedArray are used for read-
ing and writing a partitioned and distributed array.
PIFWriteDistributedArray writes a distributed ar-
ray to a single file. PIFReadDistributedArray reads
an array from a single file into a distributed-memory
environment and partitions the data among the pro-
cessors according to the descriptor array sz of type
PIFArrayPart. Array sz contains the total number
of elements in the entire array, the starting indices
in each dimension for the process, the ending indices
in each dimension for the process, and the index of
the first global array element. The " dimension of a
distributed array is defined by the i*! element sz [i]
of sz. Besides sz, the other unique parameter is nd,
which specifies the number of dimensions in the array.
The other parameters are the same as those used in
PIFWriteCommon and PIFReadCommon.

The two functions PIFread and PIFurite are used
by each processor to read/write a block of data to
a file. Important parameters are the length of the
block of data and the data type. In the “as-sequential”
mode, the blocks are read/written in processor rank
order. In the “paralle]” mode, many tasks may write
simultaneously. PIFurite and PIFread are optimized
for the case where each processor may have a sin-
gle large contiguous block of data that it wishes to
read/write.

3.3.2 Implementation Details

The implementation is very important for perfor-
mance. In this section we briefly describe some of
the 1ssues and two different implementations. Our
abstraction-oriented approach has allowed us to ex-
periment with a number of ideas without changing the
source code of the applications, with the result that
we have been able to speed up some applications by
simply relinking them.

Some issues. Any parallel I/O system provides one
or more disk systems attached in some way to one
or more parallel nodes. For example, a disk may be
placed at every parallel node. In another case, all the
parallel nodes may be connected to a set of “service”
nodes that manage the actual 1/0 traffic between the
parallel nodes and the disk(s). Still others may con-
nect the disk system to an external network. This wide
range of options makes 1t nearly impossible to specify

a single low-level approach that is both portable and
efficient.

Figure 1 is a diagram of how the PIO system is im-
plemented on a “generic” parallel I/O system. Above
the dotted line are the parts visible to the user: the
parallel nodes and their memories. The darkened ar-
eas in the memories represent blocks of data that are
to be written by each processor.

Beneath the dotted line are the parts managed by
the PIO system or provided by the underlying hard-
ware. The “aggregated data” is managed by the PIO
routines. The PIO routines receive the data from the
user and may pack or shuffle it before passing it on
to the exchange network. The exchange network is an
abstraction which may have a direct hardware real-
ization. It is used to pass the aggregated data to the
nodes that interface directly with the I/O system. For
example, in the Intel DELTA the exchange network is
the mesh that connects the parallel compute nodes
to the I/O service nodes. In the IBM SP-1, where
each compute node is directly attached to its own lo-
cal disk, the exchange network is a no-op, since the
“aggregated data” 1s written directly to the proces-
sor’s local disk. The output of the exchange network
is passed to the nodes that interface directly to the
physical I/O network. For example, in a Sun work-
station network these “nodes” might be a single work-
station (in the “as-sequential” case). The IBM SP-1
at ANL 1s unique in that there exists a second tier in
the 1/O system. Here, the I/O nodes are every fourth
parallel node in the system which has a fiber channel
connection to a RAID disk.

Two issues that need to be considered in writing a
parallel file are how many processors request the op-
erating system to write to the disks and what buffer
sizes are used. The first of these issues is fairly obvi-
ous; we would like to use exactly as many processors
as are directly connected to the disks so that the oper-
ating system does not try to rearrange the data that
we wish to write, generating a communications bot-
tleneck in moving the data between processors. The
second 1s more subtle. If the library or application
chooses buffer sizes that do not match those of the
disks, the impact on performance can be much greater
than a simple factor of two or three (caused by a read-
modify-write cycle where a single write would have
sufficed). Depending on how the operating system is
managing the parallel file system, a write of data that
spans two disk buffers may actually span two disks,
causing additional communication traffic and loss of
performance.

Two implementations. For writing a file in the
“as-sequential” mode, we experimented with two dif-
ferent implementations. Both of these use a single
process to write to the file; this simplifies the interface
with the operating system at some cost in performance
(though on workstations the cost is slight since, even-
tually, a single process is writing the file). The first im-
plementation is unbuffered: each processor generates
the data that it wants written and sends it to the mas-
ter process, along with information on where to write
it. The second implementation divides the output into
buffers; each processor contributes to the buffer, and
then the buffers are gathered up and written out by
the master processor. The first approach minimizes
the amount of data that is sent between processors;
the second uses fewer communications and disk op-
erations. In our experiments, the second approach
was significantly faster. Note that both approaches
were used with the same application program without
changing the application code.

For the parallel implementation for systems with a
disk per node, each processor opens a file on the lo-
cal node (the name of this file system is provided by
the implementation, allowing the user to use the same
relative file name independent of the system). On sys-
tems with vendor-supplied parallel file systems, a par-
allel file is opened. In this case, the implementation
can use the local network to move data around so that
reads/writes from the parallel file system are as fast
as possible (by mapping bytes from the application’s
natural format to the file system’s natural format).

We plan to try additional implementations. For
example, we can relax the requirement that the “as-
sequential” file be written in that form until the
PIFclose is called. This will allow us to write the
file in a parallel format, taking advantage of the paral-
lelism in the disk system, followed by a single merge of
that parallel file into a single file. Other implementa-
tions could exercise more care in matching the buffers
used by the PIF routines to the operating system.

3.4 Programming Examples

The program fragment in Figure 2 is taken from
a superconductivity code. It writes the distributed,
three-dimensional array ps and the scalars nx, ny,
nz (number of grid points) and hlx, hly, hlz (grid
spacing) to a file for postprocessing graphics. The
sz descriptor array defines the six fields mdim, ndim,
start, end, gstart, and gend for each dimension of
ps. For each dimension these fields contain the global
array size, the local array size, the starting and ending
indices for the local part of the array, and the global

!

]
Aggregated
Data

Exchange Network

Aggregated by
10 node

1/0 Network

-

Figure 1: A generic parallel I/O system

indices for the local part of the array.

First, the sz descriptor is defined. Second, the par-
allel file “outfile” is opened. Third, all processors make
the PIFWriteCommon call to write the scalars nx, ny,
nz, hlx, hly, and hlz. Fourth, all processors call
PIFWriteDistributedArray to write their piece of
the ps array. Finally, all processors flush and close
the parallel file. An important point 1s that the “ghost
points” (the extra memory allocated by each proces-
sor to hold neighboring values of its distributed array)
are not written to the parallel file.

3.5 Performance

Our primary intent in this section is to show that
improved performance may be achieved using the
“parallel” file format when compared to the “as se-
quential” file format. We caution that the results pre-
sented here were not run on a standalone system and
the read and write speeds can reflect disk cache ac-
cess time, and so should not be considered benchmark
data. They are presented strictly to demonstrate the
flexibility of the PIO system and the different levels of
performance that may be achieved.

The experiments were performed as follows. To
measure the input (read) rate of a parallel file access, a
parallel file was opened, read from using PIFread, and
closed. Only the latter two steps were timed. To mea-
sure the output (write) rate of a parallel file access, a
parallel file was opened, written to using PIFwrite,

and closed. Again, only the latter two steps were
timed. Since the timing includes closing the file(s),
the writes are flushed out of the application (though
not necessarily out of the OS onto the disks). Our
experiments were performed on two Sun Sparc work-
stations connected over an Ethernet network, and on
a 32-node IBM SP-1. All reads and writes were done
using PIFread and PIFwrite in an unformatted mode.
p4 was used for the underlying message-passing sys-
tem.

Table 1 contains results from the Sun Sparc work-
station experiments. In the “parallel” implementation
each workstation writes to a local disk. In the “as-
sequential” implementation one processor manages all
the /O, with the other processor sending or receiving
data to and from the managing processor via mes-
sages. Here, the file resides on a single disk that is
accessed over an Ethernet network. In all examples
the file size used was 64k.

The main point we wish to make in Table 1 is the
performance difference achieved using the “parallel”
file format as opposed to the “as sequential” case. For
the application programmer this performance differ-
ence is achieved simply by switching the choice of file
format in the PIFopen call.

Table 2 contains results from the IBM SP-1 ex-
periments. In all cases the “parallel” implementation
was used and the file size was fixed at 16 MB. In the
IBM SP-1 “parallel” implementation, each processor

void write_graphics (ps, nx, ny, nz, hlx, hly, hlz,
SX,ex,sxgp,exgp,sy,ey,sygp,eygp,sz, ez, szgp, ezgp)

{
int *¥nx, *ny, *nz;
int *sx, *sy, *sz, *ex, *ey, *ez;
int *sxgp, *sygp, *szgp, *exgp, *eygp, *ezgp;
double *hlx, *hly, *hlz, *ps;
PIFILE *fp;
PIFArrayPart sz[3];
sz[0] .mdim = nx;
sz[0] .ndim = ex + exgp - sx + sxgp + 1;
sz[0] .start = sxgp;
sz[0] .end = sxgp + ex - sx ;
sz[0] .gstart = sx - sxgp;
sz[0].gend = ex + exgp;
sz[1] .mdim = ny;
sz[1].ndim = ey + eygp - sy + sygp + 1;
sz[1].start = sygp;
sz[1] .end = sygp + ey - sy;
sz[1].gstart = sy - sygp;
sz[1].gend = ey + eygp;
sz[2] .mdim = nz;
sz[2] .ndim = ez + ezgp - sz + szgp + 1;
sz[2] .start = szgp;
sz[2] .end = szgp + ez - sZ;
sz[2] .gstart = sz - szgp;
sz[2].gend = ez + ezgp;
fp = PIFopen("outfile'", ALLPROCS, O_WRONLY | O_CREAT, 0);
PIFWriteCommon(fp, NULL, sizeof(int), nx, 1, MSG_INT);
PIFWriteCommon(fp, NULL, sizeof(int), ny, 1, MSG_INT);
PIFWriteCommon(fp, NULL, sizeof(int), nz, 1, MSG_INT);
PIFWriteCommon(fp, NULL, sizeof(double), hlx, 1, MSG_DBL);
PIFWriteCommon(fp, NULL, sizeof(double), hlz, 1, MSG_DBL);
PIFWriteCommon(fp, NULL, sizeof(double), hlz, 1, MSG_DBL);
PIFWriteDistributedArray(fp, NULL, sizeof(double), sz, 4, ps, MSG_DBL);
PIFflush(fp);
PIFclose(fp);
}

Figure 2: Example program fragment

Table 1: Sun Sparc Workstation Results

No. Read | Write
File Format Proc. | MB/s | MB/s
“parallel” 2 6.8 3.7
“as-sequential” 2 .8 A

Table 2: IBM SP-1 Results for a 16 MB File

No. Read | Write
Proc. | Blocksize | MB/s | MB/s
1| 4MB/Sk 6 26

8 | 2MB/64k 12 40

16 | IMB/16k 26 30

wrote directly to its own local disk. The parameters
that were varied were the number of processors used
and the “blocksize” —the amount of data read /written
with a single call to PIFread/PIFwrite. The first col-
umn is the number of processors used; the second col-
umn is the blocksize at which the read or write rate
was a minimum. The third and fourth columns con-
tain the menimum read or write rates achieved over all
blocksizes tested.

We emphasize that disk cache effects should not be
discounted. Increasing numbers of processors lead to
smaller subdivisions of the parallel file and possibly
better chances of disk cache hits. The drop in write
rate for sixteen processors is anomalous and may sim-
ply reflect a load imbalance caused by other tasks.

Again, the real point we wish to stress in this
section is that our system provides an interface de-
sign that hides the underlying implementation from
the user. It permits both high-performance, non-
synchronous parallel 1/O using the “parallel” file for-
mat and the ability to write a parallel file in a sequen-
tial format for debugging—with only a single change
by the user: a different value for the file format pa-
rameter on the PIFopen call.

4 Conclusions and Future Work

In this paper we have described the I/O require-
ments of some computational science applications
at Argonne National Laboratory and discussed a
distributed-memory system we have developed to sup-
port these requirements on MPP systems. Two key
points in our work are the use of high-level abstrac-
tions and portability among MPP systems.

We believe the ability to use abstractions is very
important. An applications developer goes through a

number of steps such as development, debugging, and
production to get a (parallel) code working. Each of
these phase has certain unique requirements associ-
ated with it. With our approach, the abstraction of
file type allows a parallel programmer to easily switch
between the requirements of different phases. For ex-
ample, in the debugging phases a programmer may de-
sire output in the form of contiguous ASCII files on his
“home” file system, while unformatted and stripped
files may be desirable for production computing. With
the file type option to the PIFOpen, our system sup-
ports all of these without requiring any code changes
by the user.

Portability i1s also a key aspect of our work.
By integrating our system in the context of the
PETSc/Chameleon package we achieve portability
among the large number of systems this package runs
on. Somewhat optimized implementations of our sys-
tem currently exist for the IBM SP-1, Intel MPP sys-
tems, and Sun workstation networks.

We remark in passing that the operations described
here are natural ones to support in languages such
as High Performance Fortran. We fully expect that,
as more real applications are run on parallel comput-
ers, there will be enhanced support for parallel 1/0.
We hope that our work will (a) allow applications to
use parallel T/O in the short term and (b) provide a
testbed for implementations and program annotations
(guides to the runtime system about the parallel I/O).
In addition, we expect to add additional abstractions,
such as those for unstructured data, that are beyond
the scope of current language standards.

Availability and Documentation

The PETSc/Chameleon system is in the public do-
main. The complete distribution can be obtained by
anonymous ftp from info.mecs.anl.gov. Take the file
chameleon.tar.Z from the directory pub/pdetools. If
you wish to use the PETSc/Chameleon with p4, take
the file pub/p4/p4-1.3.tar.Z The PETSc/Chameleon
distribution contains all source code, installation in-
structions, a users guide in both ASCII text and la-
texinfo format, and a collection of examples in both C
and Fortran.

Acknowledgments

We thank Paul Bash, John Michalakes, and Ron
Shepard for helpful discussions about their applica-
tions.

References

(1]

Ralph Butler and Ewing Lusk. Monitors, mes-
sages, and clusters: The p4 parallel programming
system. Journal of Parallel Computing. to ap-
pear (Also Argonne National Laboratory Math-
ematics and Computer Science Division preprint

P362-0493).

T. Crockett. File concepts for parallel I/O. In
Proceedings of Supercomputing’89, pages 574-579,
1989.

J. M. del Rosario and A. Choudhary. High perfor-
mance I/O for parallel computers: Problems and
prospects. Preprint, 1993.

W. Gropp and B. Smith. Users manual for the
Chameleon parallel programming tools. Technical
Report ANL-93/23, Argonne National Laboratory,
1993.

