
Applications-Driven Parallel I/O �N. Galbreathy W. Gropp D. LevineMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439-4801AbstractWe investigate the needs of some massively paral-lel applications running on distributed-memory par-allel computers at Argonne National Laboratory andidentify some common parallel I/O operations. Forthese operations, routines were developed that hide thedetails of the actual implementation (such as the num-ber of parallel disks) from the application, while pro-viding good performance. An important feature is theability for the application programmer to specify thata �le be accessed either as a high-performance parallel�le or as a conventional Unix �le, simply by changingthe value of a parameter on the �le open call. Theseroutines are examples of a parallel I/O abstractionthat can enhance development, portability, and per-formance of I/O operations in applications. Some ofthe speci�c issues in their design and implementationin a distributed-memory toolset are discussed.1 IntroductionIn order to run Grand Challenge computationalscience applications on massively parallel processor(MPP) systems in a production mode, both high-performance parallel I/O systems and programmer-friendly software will be required. Unfortunately,I/O systems and software have been largely neglectedby both high-performance computing researchers andvendors. Issues such as I/O as a bottleneck, the scal-ability of I/O architectures, and ease of use of I/Osoftware remain largely unexplored. There has beenlittle experimental study of I/O access patterns andtypes of usage, particularly in the context of scienti�ccomputing. We believe the �rst step in developing�This work was supported by the O�ce of Scienti�c Com-puting, U.S. Department of Energy, under Contract W-31-109-Eng-38.yCurrent address: Boston University.

appropriate parallel I/O (PIO) software is an analy-sis of the I/O requirements of a few key applicationdomains. An equally important second step is theevaluation of di�erent implementation strategies. Inthis paper we report on the results of a study of paral-lel I/O requirements at Argonne National Laboratory(ANL) and a distributed-memory system we have de-veloped to support these requirements. In order tomeet the requirements, this system has been designedto provide high-level I/O operations, such as \writearray to parallel �le," rather than the more elementalI/O operations, such as \write byte stream to parallel�le." This approach has the advantage that, to the ap-plications programmer, parallel I/O does not appearvery di�erent from sequential I/O. This simpli�es theprocess of developing and debugging a program, aswell as investigating various algorithms for implement-ing the high-level parallel I/O operation. Del Rosarioand Choudhary [?] provide a recent overview of manyissues in high-performance parallel I/O.This paper is laid out as follows. In Section 2 wediscuss the types of I/O being done in some compu-tational science applications at ANL and the methodswe use to abstract out the main ideas. In Section 3we describe the PETSc/Chameleon package used in ourimplementation and the parallel I/O routines we havedeveloped. Finally, in Section 4 we make some con-cluding remarks and discuss our future plans.2 I/O Requirements of Computa-tional Science Applications2.1 Types of I/O UsageTo decide what types of parallel I/O functionalitywe wanted in our system, we began by examining theI/O requirements of various Grand Challenge compu-tational science applications at ANL that were run-ning on distributed-memory computers. We chose to



focus on the I/O needs of the applications rather thanthe expression of those needs in current code so as toavoid being biased by code written for existing I/Ointerfaces.Applications perform I/O for various reasons. Themost obvious is to output the results the programcomputes. Some other reasons are to initialize theprogram, to hold in temporary scratch �les data struc-tures that do not otherwise �t in main memory, and tosave the state of a job so that it can be restarted later.While each of these requirements is routinely handledin a sequential program, MPP systems raise a numberof questions. Among these are the following: Whatprogramming model is being used? Should all pro-cessors write to the same �le, or each to its own �le?In what format should the data be stored (e.g., dif-ferent formats may be needed depending on whetherthe program is being debugged or run in productionmode)? Below we provide more detail about the I/Orequirements of computational science applications atANL.2.1.1 InputMost programs need to read some data to initializea computation. The input data varies in size fromsmall �les containing a few important parameters tolarge data �les that initialize key arrays and databases.Also, some applications require periodic input, suchas boundary information or other datasets that occurat some interval for the duration of a run, not justinitially.Key questions include whether a replicated or dis-tributed data structure is being read, and if a dis-tributed data structure is being read, which data tomap to which processors, and whether each processorexecutes the read or whether only one processor ex-ecutes the read (and broadcasts to all others, in thecase of a distributed-memory programming model).One application at Argonne is mesoscale climatemodeling. Future work with this model will investi-gate four-dimensional data assimilation. This involvesinput of data from observations and potentially alsoweather radar. This data may be obtained in realtime or from tape. It is quite likely that the speedand frequency of this data acquisition will become thelimiting step in the calculations unless the I/O capa-bilities of the MPP machines being used can keep pacewith CPU performance.

2.1.2 DebuggingA common need for performing I/O arises when de-bugging a parallel program. We note in particular thesomewhat complicated case where the parallel calcula-tion of a distributed data structure is being comparedwith the same calculation done by the original sequen-tial program. Questions arise as to how to write theparallel data structure so that it may \easily" be com-pared with the sequential calculations and so that thedi�erences may be \easily" isolated.As one example, an electromagnetics code in use atANL solves a nonlinear problem by repeatedly solvinga system of linear equations. In the parallel programthe matrix is distributed by rows. At each nonlineariteration, an iterative parallel linear solver is calledto solve the current system of equations. From thesolution a new matrix is generated and solved, andthis process continues until convergence. Debuggingthe parallel code required comparing of the sequentialand parallel versions of the matrix to see whether theywere the same. In a second example, subtle boundarycondition errors were occurring on the faces of a cubein a three-dimensional superconductivity code. Again,to isolate the parallel bug required comparisons of thesequential and parallel values of those faces, whichchanged each time step.It is typical in debugging a sequential program tocompare results before and after a \�x". On Unixsystems a common way to do this is using the diffcommand to test for di�erences. An aim of our systemis to provide the user the capability when debuggingto have a parallel �le written in a conventional Unixformat so that traditional debugging methods may beused.2.1.3 Scratch FilesScratch �les are often used to hold data structurescontaining intermediate calculations that do not �tinto main memory or that a user does not wish torecompute. Speed of access and �le size are usuallythe important considerations for these �les.For example, at the heart of a computational chem-istry program is an iterative algorithm to compute thelowest eigenvector and eigenvalue of a large, sparsesymmetric matrix. The algorithm requires the com-putation of matrix-vector products of the matrix withvarious trial vectors. The matrix is not stored, butrather the matrix-vector products are computed usingknowledge of the underlying structure of the matrix.However, the trial vectors and corresponding matrix-vector products must be stored during the iterative



procedure. These vectors are stored by distributingthem across the memories of the processors. In orderto study larger molecular systems, an e�cient meansto handle larger vectors must be developed. This willrequire paging of the distributed vectors to secondarystorage, and caching in main memory only a smallfraction of these vectors at each node. For such ascheme to work, the algorithms, software, and hard-ware involved must be e�cient and robust so that theI/O activity involved at each iteration does not be-come an overwhelming bottleneck.A similar storage requirement arises in the n-bodyportion of a computational biology application. Aportion of the calculation requires the determinationof forces on the atoms resulting from quantum me-chanical e�ects. The calculation of the quantum me-chanical e�ects can require the evaluation of tens ofmillions of integrals. Since the value of these inte-grals remains constant for a particular con�gurationof atoms, a tradeo� is to either store the integrals todisk or recalculate them in order to avoid expensiveI/O accesses. The number of integrals required in-creases as the cube of the number of electrons. Theability to access these integrals frommainmemory canmake a di�erence in calculation speed by at least oneto two orders of magnitude. Hence, the type of calcu-lations that are feasible is partly limited by the I/Oaccess speed.2.1.4 Checkpoint/RestartFor long-running production codes, it is desirable tohave the ability to save the state of the computationin order to continue computing from that point at alater date. Most operating systems on traditional, se-quential high-performance computers provide such acapability at the operating system level. Sometimesan application may have such a facility built into thelogic of the program.In a distributed-memory context, a checkpoint re-quires saving one or more distributed arrays as well as(usually replicated) scalars. A key question is whetherto save to one �le or many and, if so, in what order.Another consideration is, whether the restart can bedone independently of the number of processors thecheckpoint was taken on. This is the most generalcase. However, it requires that only one checkpoint �lebe written. This in turn requires that the distributeddata structures be written to a single �le in their nat-ural sequential format. Most users implementing theirown parallel checkpoint/restart capabilities have triedto avoid this single �le approach because of the codecomplexity involved in having each processor calcu-

late the global location(s) for its data values. As aresult, most current checkpoint/restart e�orts are de-pendent upon the number of processors used. Finally,an additional complication arises if checkpoint/restartcapabilities are already designed and deeply incorpo-rated within an existing sequential code. Here, theparallel programmer is faced with the prospect of rip-ping out all the old sequential code and designing anew parallel version.2.1.5 OutputOutput from a program takes many forms; it can be asmall �le with a few results or a large �le containing allthe values from several arrays. Sometimes the outputis postprocessed and only a small subset of the dataactually used. Often time-dependent data is involved,and large �les are generated periodically.As examples, two codes used to model high-temperature superconductivity and global climatechange, respectively, at ANL are time-dependent andthree-dimensional. In both codes, the algorithmic ker-nel is the numerical solution of a time-dependent par-tial di�erential equation. The main computationaldata structure is a grid, and users are interested inthe value of one or more parameters de�ned at eachgrid point.These codes produce several types of output: (1)\small" result �les containing the values of a few \in-teresting" parameters every k time steps; (2) �les con-taining those \interesting" parameters sampled morefrequently and output in a form for use in a post-processing tool that plots the value of the parameteras a function of the time step; and (3) �les that holdresults for each grid point for several di�erent param-eters of interest. An individual �le is created for eachdiscrete time step, and the results are analyzed withthe aid of a postprocessing graphics package.2.2 I/O AbstractionsAbstraction is a key idea in contemporary computerscience. The idea is to use a series of layers so thatthe higher layers mask the inconvenience of workingdirectly with the lower layers. A common exampleis the translation of high-level languages to assemblylanguage and then to machine code. Abstractions arealso commonly used in I/O where, for the high-levellanguage programmer, they can hide details such asbu�ering, actual layout of a �le on a device, or eventhe type of storage media being used.We believe abstractions to be even more importantfor parallel I/O because of the additional complica-



tions. First, there are hardware considerations. Mod-ern parallel systems have a wide variety of storagedevices intended to provide both high-performanceand large capacity. Currently, there are as many ap-proaches to parallel I/O on MPP systems as there areMPP vendors. Second are the software considerations.Parallel computing introduces a number of new con-cepts such as distributed and replicated data struc-tures. This situation is further complicated by thewide variety of parallel programming models in cur-rent use.One decision that must be made early in the designof a parallel �le system is how the bytes are mappedfrom the application to the �le. For example, a simplestriping system to eight disks may say that the jth byteof the �le is placed on disk (j=blocksize) mod 8. Thismapping is determined at the time a �le is opened;some proposals for parallel �le systems provide waysfor the user to control the mapping on a �le basis. Wehave observed that often it is more convenient if themapping is based on the object rather than a �le. Forexample, two arrays written to the same �le may havedi�erent \natural" mappings. An example of such acase includes adaptive computations where the size ofthe data may vary during the computation. Crockett[?] classi�es a number of parallel �le organizations.Our aim is to analyze many computational scienceapplications at ANL and abstract out of them com-mon hardware and software requirements. In the caseof hardware, our approach is to give the user a com-mon set of calls that will work across all or most com-mercial MPP machines and workstation clusters. Theuser need not be concerned whether the underlyingimplementation stripes a �le across parallel disks oruses high-speed tape. Also, since the calls are portableacross systems, a particular vendor's hardware is hid-den from the user.In the case of software, analysis of the types of I/Ousage in computational science applications identi�edseveral common themes, including reading and writinga replicated value (scalar or array), and reading andwriting a partitioned and distributed array. Accord-ingly, it is this functionality that we seek in our systemby providing subroutine calls that allow the user notto have to be concerned with issues such as decidingwhich processor will write a replicated value, calcu-lating the location in a �le for each distributed arrayelement, and handling processor synchronization. Wealso wish to provide the user the ability to open a par-allel �le as if it were a regular sequential �le. Finally,by providing a portable set of calls, we free the userfrom having to learn each parallel computer vendor's

parallel I/O interface.3 Parallel I/O Programming Interface3.1 Distributed Data StructuresOur initial implementation of this work has beendone in the context of the distributed-memory pro-gramming model. In this model a global data struc-ture is decomposed among the memories of the indi-vidual processors. The individual parts of this dis-tributed data structure are then operated on in paral-lel. A common instance of this in many scienti�c andengineering applications is the single program, multi-ple data (SPMD) model. In the SPMD model eachprocessor executes a copy of the same program on thedata in its memory.We assume there are several kinds of data of in-terest. For example, there is replicated data, such asscalar values or small arrays that exist in duplicate ineach processor's memory. Also, there are arrays thathave been partitioned and distributed across the pro-cessor memories. Another type of data is where eachprocessor has a large block of contiguous data. Addi-tional kinds of data include arrays on a subset of theprocessors, more general data layouts (such as datafrom an irregular mesh), and more complicated dataelements (such as structures rather than individual re-als or integers). Rather than try to predict all possibledata arrangements, we have chosen to support, at ahigh level, those operations needed in our applications.Our implementations of the low-level I/O operationsare intended to be more general, but as a result aresigni�cantly more di�cult to use.3.2 The PETSc/Chameleon PackageOur parallel I/O system has been implemented inthe context of the PETSc/Chameleon package. ThePETSc/Chameleon [?] package is a collection of rou-tines that provide a hierarchy of models for paral-lel programming on distributed-memory parallel com-puters. These routines are intended to provide aconsistent, easy-to-use model of message-passing thatenables access to all of the power of a distributed-memory computer. This package supports both native(vendor) communications libraries and several popular\portable" communications packages. The \portable"packages supported include p4, PICL, and PVM; ThePETSc/Chameleon package runs on any system thatthese packages support. Of these, p4 [?] supports the



widest variety of systems, including workstations andmassively parallel computers.The PETSc/Chameleon package currently compriseshundreds of routines, mostly in C. It provides supportfor a variety of common message-passing primitivesand provides routines that support collective opera-tions that involve a collection of processors includingall processors and subsets of all processors.3.3 Overview of Parallel I/O RoutinesAll of the parallel I/O routines are organized asfollows. First, a parallel �le is opened with PIFopen;this speci�es the kind of parallel �le (see below) andreturns a �le descriptor (or context) that is used in allof the other parallel I/O routines. This correspondsto an fopen in C or, more approximately, an OPEN inFortran. At this point, the action of the parallel rou-tines may be modi�ed in much the same way that Cpermits a FILE to be modi�ed with routines such assetbuf. Next, actual input and output are performedby using routines for speci�c operations such as \out-put a distributed array" or \read in a scalar." Finally,the parallel �le is closed with PIFclose.3.3.1 Function CallsThe PIFopen call opens a parallel �le for future use.It must be called before any parallel I/O commandsare issued. It returns a �le pointer to be used in allsubsequent PIO calls. Two important parameters areprocessors, which allows the speci�cation of whichset of processors will be involved in any subsequentPIO calls (typically, but not always, this will be allprocessors), and ftype, which (like low-level C opencommands) allows speci�cation of what mode the �leshould be open in. Our goal with the ftype parame-ter is to provide a \parallel" mode where the parallel�le will be opened for access in whatever way providesthe highest possible I/O performance. The actual im-plementation will be highly vendor-speci�c. In the\as-sequential" mode the parallel �le will be a con-ventional Unix �le. The PIFclose call closes a �leand frees any bu�ers allocated to it.The PIFWriteCommon call writes a nondistributed(i.e., a global or single) variable once to a �le. Theimplementation is responsible for deciding which pro-cessor will actually write the variable to the �le. ThePIFReadCommon call reads a data value and scattersthat value to all of the processors. The implementa-tion is responsible for deciding which processor willread the value. The parameter fmat is a string thatspeci�es the format the data will be read or written in.

(It is similar to the C printf command speci�ers withsome restrictions.) The data is written unformatted iffmat is not speci�ed. Other parameters describe thedata itself (location, data type, and size).The two functions PIFWriteDistributedArrayand PIFReadDistributedArray are used for read-ing and writing a partitioned and distributed array.PIFWriteDistributedArray writes a distributed ar-ray to a single �le. PIFReadDistributedArray readsan array from a single �le into a distributed-memoryenvironment and partitions the data among the pro-cessors according to the descriptor array sz of typePIFArrayPart. Array sz contains the total numberof elements in the entire array, the starting indicesin each dimension for the process, the ending indicesin each dimension for the process, and the index ofthe �rst global array element. The th dimension of adistributed array is de�ned by the ith element sz[i]of sz. Besides sz, the other unique parameter is nd,which speci�es the number of dimensions in the array.The other parameters are the same as those used inPIFWriteCommon and PIFReadCommon.The two functions PIFread and PIFwrite are usedby each processor to read/write a block of data toa �le. Important parameters are the length of theblock of data and the data type. In the \as-sequential"mode, the blocks are read/written in processor rankorder. In the \parallel" mode, many tasks may writesimultaneously. PIFwrite and PIFread are optimizedfor the case where each processor may have a sin-gle large contiguous block of data that it wishes toread/write.3.3.2 Implementation DetailsThe implementation is very important for perfor-mance. In this section we brie
y describe some ofthe issues and two di�erent implementations. Ourabstraction-oriented approach has allowed us to ex-periment with a number of ideas without changing thesource code of the applications, with the result thatwe have been able to speed up some applications bysimply relinking them.Some issues. Any parallel I/O system provides oneor more disk systems attached in some way to oneor more parallel nodes. For example, a disk may beplaced at every parallel node. In another case, all theparallel nodes may be connected to a set of \service"nodes that manage the actual I/O tra�c between theparallel nodes and the disk(s). Still others may con-nect the disk system to an external network. This widerange of options makes it nearly impossible to specify



a single low-level approach that is both portable ande�cient.Figure 1 is a diagram of how the PIO system is im-plemented on a \generic" parallel I/O system. Abovethe dotted line are the parts visible to the user: theparallel nodes and their memories. The darkened ar-eas in the memories represent blocks of data that areto be written by each processor.Beneath the dotted line are the parts managed bythe PIO system or provided by the underlying hard-ware. The \aggregated data" is managed by the PIOroutines. The PIO routines receive the data from theuser and may pack or shu�e it before passing it onto the exchange network. The exchange network is anabstraction which may have a direct hardware real-ization. It is used to pass the aggregated data to thenodes that interface directly with the I/O system. Forexample, in the Intel DELTA the exchange network isthe mesh that connects the parallel compute nodesto the I/O service nodes. In the IBM SP-1, whereeach compute node is directly attached to its own lo-cal disk, the exchange network is a no-op, since the\aggregated data" is written directly to the proces-sor's local disk. The output of the exchange networkis passed to the nodes that interface directly to thephysical I/O network. For example, in a Sun work-station network these \nodes" might be a single work-station (in the \as-sequential" case). The IBM SP-1at ANL is unique in that there exists a second tier inthe I/O system. Here, the I/O nodes are every fourthparallel node in the system which has a �ber channelconnection to a RAID disk.Two issues that need to be considered in writing aparallel �le are how many processors request the op-erating system to write to the disks and what bu�ersizes are used. The �rst of these issues is fairly obvi-ous; we would like to use exactly as many processorsas are directly connected to the disks so that the oper-ating system does not try to rearrange the data thatwe wish to write, generating a communications bot-tleneck in moving the data between processors. Thesecond is more subtle. If the library or applicationchooses bu�er sizes that do not match those of thedisks, the impact on performance can be much greaterthan a simple factor of two or three (caused by a read-modify-write cycle where a single write would havesu�ced). Depending on how the operating system ismanaging the parallel �le system, a write of data thatspans two disk bu�ers may actually span two disks,causing additional communication tra�c and loss ofperformance.

Two implementations. For writing a �le in the\as-sequential" mode, we experimented with two dif-ferent implementations. Both of these use a singleprocess to write to the �le; this simpli�es the interfacewith the operating system at some cost in performance(though on workstations the cost is slight since, even-tually, a single process is writing the �le). The �rst im-plementation is unbu�ered: each processor generatesthe data that it wants written and sends it to the mas-ter process, along with information on where to writeit. The second implementation divides the output intobu�ers; each processor contributes to the bu�er, andthen the bu�ers are gathered up and written out bythe master processor. The �rst approach minimizesthe amount of data that is sent between processors;the second uses fewer communications and disk op-erations. In our experiments, the second approachwas signi�cantly faster. Note that both approacheswere used with the same application program withoutchanging the application code.For the parallel implementation for systems with adisk per node, each processor opens a �le on the lo-cal node (the name of this �le system is provided bythe implementation, allowing the user to use the samerelative �le name independent of the system). On sys-tems with vendor-supplied parallel �le systems, a par-allel �le is opened. In this case, the implementationcan use the local network to move data around so thatreads/writes from the parallel �le system are as fastas possible (by mapping bytes from the application'snatural format to the �le system's natural format).We plan to try additional implementations. Forexample, we can relax the requirement that the \as-sequential" �le be written in that form until thePIFclose is called. This will allow us to write the�le in a parallel format, taking advantage of the paral-lelism in the disk system, followed by a single merge ofthat parallel �le into a single �le. Other implementa-tions could exercise more care in matching the bu�ersused by the PIF routines to the operating system.3.4 Programming ExamplesThe program fragment in Figure 2 is taken froma superconductivity code. It writes the distributed,three-dimensional array ps and the scalars nx, ny,nz (number of grid points) and hlx, hly, hlz (gridspacing) to a �le for postprocessing graphics. Thesz descriptor array de�nes the six �elds mdim, ndim,start, end, gstart, and gend for each dimension ofps. For each dimension these �elds contain the globalarray size, the local array size, the starting and endingindices for the local part of the array, and the global



CPU CPU CPU CPU CPU

Exchange Network

I/O Network

User
Data

Aggregated
Data

Aggregated by
IO node

DisksFigure 1: A generic parallel I/O systemindices for the local part of the array.First, the sz descriptor is de�ned. Second, the par-allel �le \out�le" is opened. Third, all processors makethe PIFWriteCommon call to write the scalars nx, ny,nz, hlx, hly, and hlz. Fourth, all processors callPIFWriteDistributedArray to write their piece ofthe ps array. Finally, all processors 
ush and closethe parallel �le. An important point is that the \ghostpoints" (the extra memory allocated by each proces-sor to hold neighboring values of its distributed array)are not written to the parallel �le.3.5 PerformanceOur primary intent in this section is to show thatimproved performance may be achieved using the\parallel" �le format when compared to the \as se-quential" �le format. We caution that the results pre-sented here were not run on a standalone system andthe read and write speeds can re
ect disk cache ac-cess time, and so should not be considered benchmarkdata. They are presented strictly to demonstrate the
exibility of the PIO system and the di�erent levels ofperformance that may be achieved.The experiments were performed as follows. Tomeasure the input (read) rate of a parallel �le access, aparallel �le was opened, read from using PIFread, andclosed. Only the latter two steps were timed. To mea-sure the output (write) rate of a parallel �le access, aparallel �le was opened, written to using PIFwrite,

and closed. Again, only the latter two steps weretimed. Since the timing includes closing the �le(s),the writes are 
ushed out of the application (thoughnot necessarily out of the OS onto the disks). Ourexperiments were performed on two Sun Sparc work-stations connected over an Ethernet network, and ona 32-node IBM SP-1. All reads and writes were doneusing PIFread and PIFwrite in an unformattedmode.p4 was used for the underlying message-passing sys-tem.Table 1 contains results from the Sun Sparc work-station experiments. In the \parallel" implementationeach workstation writes to a local disk. In the \as-sequential" implementation one processor manages allthe I/O, with the other processor sending or receivingdata to and from the managing processor via mes-sages. Here, the �le resides on a single disk that isaccessed over an Ethernet network. In all examplesthe �le size used was 64k.The main point we wish to make in Table 1 is theperformance di�erence achieved using the \parallel"�le format as opposed to the \as sequential" case. Forthe application programmer this performance di�er-ence is achieved simply by switching the choice of �leformat in the PIFopen call.Table 2 contains results from the IBM SP-1 ex-periments. In all cases the \parallel" implementationwas used and the �le size was �xed at 16 MB. In theIBM SP-1 \parallel" implementation, each processor



void write_graphics (ps, nx, ny, nz, hlx, hly, hlz,sx,ex,sxgp,exgp,sy,ey,sygp,eygp,sz,ez,szgp,ezgp){ int *nx, *ny, *nz;int *sx, *sy, *sz, *ex, *ey, *ez;int *sxgp, *sygp, *szgp, *exgp, *eygp, *ezgp;double *hlx, *hly, *hlz, *ps;PIFILE *fp;PIFArrayPart sz[3];sz[0].mdim = nx;sz[0].ndim = ex + exgp - sx + sxgp + 1;sz[0].start = sxgp;sz[0].end = sxgp + ex - sx ;sz[0].gstart = sx - sxgp;sz[0].gend = ex + exgp;sz[1].mdim = ny;sz[1].ndim = ey + eygp - sy + sygp + 1;sz[1].start = sygp;sz[1].end = sygp + ey - sy;sz[1].gstart = sy - sygp;sz[1].gend = ey + eygp;sz[2].mdim = nz;sz[2].ndim = ez + ezgp - sz + szgp + 1;sz[2].start = szgp;sz[2].end = szgp + ez - sz;sz[2].gstart = sz - szgp;sz[2].gend = ez + ezgp;fp = PIFopen("outfile", ALLPROCS, O_WRONLY | O_CREAT, 0);PIFWriteCommon(fp, NULL, sizeof(int), nx, 1, MSG_INT);PIFWriteCommon(fp, NULL, sizeof(int), ny, 1, MSG_INT);PIFWriteCommon(fp, NULL, sizeof(int), nz, 1, MSG_INT);PIFWriteCommon(fp, NULL, sizeof(double), hlx, 1, MSG_DBL);PIFWriteCommon(fp, NULL, sizeof(double), hlz, 1, MSG_DBL);PIFWriteCommon(fp, NULL, sizeof(double), hlz, 1, MSG_DBL);PIFWriteDistributedArray(fp, NULL, sizeof(double), sz, 4, ps, MSG_DBL);PIFflush(fp);PIFclose(fp);} Figure 2: Example program fragment



Table 1: Sun Sparc Workstation ResultsNo. Read WriteFile Format Proc. MB/s MB/s\parallel" 2 6.8 3.7\as-sequential" 2 .8 .1Table 2: IBM SP-1 Results for a 16 MB FileNo. Read WriteProc. Blocksize MB/s MB/s4 4MB/8k 6 268 2MB/64k 12 4016 1MB/16k 26 30wrote directly to its own local disk. The parametersthat were varied were the number of processors usedand the \blocksize"|the amount of data read/writtenwith a single call to PIFread/PIFwrite. The �rst col-umn is the number of processors used; the second col-umn is the blocksize at which the read or write ratewas a minimum. The third and fourth columns con-tain the minimum read or write rates achieved over allblocksizes tested.We emphasize that disk cache e�ects should not bediscounted. Increasing numbers of processors lead tosmaller subdivisions of the parallel �le and possiblybetter chances of disk cache hits. The drop in writerate for sixteen processors is anomalous and may sim-ply re
ect a load imbalance caused by other tasks.Again, the real point we wish to stress in thissection is that our system provides an interface de-sign that hides the underlying implementation fromthe user. It permits both high-performance, non-synchronous parallel I/O using the \parallel" �le for-mat and the ability to write a parallel �le in a sequen-tial format for debugging|with only a single changeby the user: a di�erent value for the �le format pa-rameter on the PIFopen call.4 Conclusions and Future WorkIn this paper we have described the I/O require-ments of some computational science applicationsat Argonne National Laboratory and discussed adistributed-memory system we have developed to sup-port these requirements on MPP systems. Two keypoints in our work are the use of high-level abstrac-tions and portability among MPP systems.We believe the ability to use abstractions is veryimportant. An applications developer goes through a

number of steps such as development, debugging, andproduction to get a (parallel) code working. Each ofthese phase has certain unique requirements associ-ated with it. With our approach, the abstraction of�le type allows a parallel programmer to easily switchbetween the requirements of di�erent phases. For ex-ample, in the debugging phases a programmermay de-sire output in the form of contiguous ASCII �les on his\home" �le system, while unformatted and stripped�les may be desirable for production computing. Withthe �le type option to the PIFOpen, our system sup-ports all of these without requiring any code changesby the user.Portability is also a key aspect of our work.By integrating our system in the context of thePETSc/Chameleon package we achieve portabilityamong the large number of systems this package runson. Somewhat optimized implementations of our sys-tem currently exist for the IBM SP-1, Intel MPP sys-tems, and Sun workstation networks.We remark in passing that the operations describedhere are natural ones to support in languages suchas High Performance Fortran. We fully expect that,as more real applications are run on parallel comput-ers, there will be enhanced support for parallel I/O.We hope that our work will (a) allow applications touse parallel I/O in the short term and (b) provide atestbed for implementations and program annotations(guides to the runtime system about the parallel I/O).In addition, we expect to add additional abstractions,such as those for unstructured data, that are beyondthe scope of current language standards.Availability and DocumentationThe PETSc/Chameleon system is in the public do-main. The complete distribution can be obtained byanonymous ftp from info.mcs.anl.gov. Take the �lechameleon.tar.Z from the directory pub/pdetools. Ifyou wish to use the PETSc/Chameleon with p4, takethe �le pub/p4/p4-1.3.tar.Z The PETSc/Chameleondistribution contains all source code, installation in-structions, a users guide in both ASCII text and la-texinfo format, and a collection of examples in both Cand Fortran.AcknowledgmentsWe thank Paul Bash, John Michalakes, and RonShepard for helpful discussions about their applica-tions.



References[1] Ralph Butler and Ewing Lusk. Monitors, mes-sages, and clusters: The p4 parallel programmingsystem. Journal of Parallel Computing. to ap-pear (Also Argonne National Laboratory Math-ematics and Computer Science Division preprintP362-0493).[2] T. Crockett. File concepts for parallel I/O. InProceedings of Supercomputing'89, pages 574{579,1989.[3] J. M. del Rosario and A. Choudhary. High perfor-mance I/O for parallel computers: Problems andprospects. Preprint, 1993.[4] W. Gropp and B. Smith. Users manual for theChameleon parallel programming tools. TechnicalReport ANL-93/23, Argonne National Laboratory,1993.


