
The PRISM Project: Infrastructure andAlgorithms for Parallel Eigensolvers*Christian Bischofy Steven Huss-Ledermanz Xiaobai Suny Anna TsaozyArgonne National Laboratory, Argonne, IL 60439.zSupercomputing Research Center, Bowie, MD 20715.AbstractThe goal of the PRISM project is the developmentof infrastructure and algorithms for the parallel so-lution of eigenvalue problems. We are currently in-vestigating a complete eigensolver based on the In-variant Subspace Decomposition Algorithm for densesymmetric matrices (SYISDA). After briey review-ing SYISDA, we discuss the algorithmic highlights ofa distributed-memory implementation of this approach.These include a fast matrix-matrix multiplication al-gorithm, a new approach to parallel band reductionand tridiagonalization, and a harness for coordinat-ing the divide-and-conquer parallelism in the problem.We also present performance results of these kernelsas well as the overall SYISDA implementation on theIntel Touchstone Delta prototype.1. IntroductionComputation of eigenvalues and eigenvectors is anessential kernel in many applications, and severalpromising parallel algorithms have been investigated[29, 24, 3, 27, 21]. The work presented in this pa-per is part of the PRISM (Parallel Research on In-variant Subspace Methods) Project, which involves re-searchers from Argonne National Laboratory, the Su-percomputing Research Center, the University of Cal-ifornia at Berkeley, and the University of Kentucky.The goal of the PRISM project is the development ofalgorithms and software for solving large-scale eigen-�This paper is PRISM Working Note #12, available viaanonymous ftp to ftp.super.org in the directory pub/prism.This work was partially supported by the Applied and Com-putational Mathematics Program, Advanced Research ProjectsAgency, under Contract DM28E04120, and by the O�ce of Sci-enti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38. Access to the Intel Touchstone Delta Systemoperated by Caltech on behalf of the Concurrent Supercomput-ing Consortium was provided by NSF.This paper will appear in the Proceedings of the ScalableParallel Libraries Conference, 6{8 October, 1993.Typeset by AMS-TEX

value problems based on the invariant subspace de-composition approach originally suggested by Auslan-der and Tsao [1].The algorithm described here is the Symmetric In-variant Subspace Decomposition Algorithm (SYISDA)for an n � n symmetric matrix A, which proceeds asfollows.Scaling: Compute upper and lower bounds on thespectrum �(A) of A, and compute � and � suchthat for B = �A + �I we have �(B) � [0; 1], withthe mean eigenvalue of A being mapped to 12 .Eigenvalue Smoothing: Let pi(x), i = 1; 2; : : :, bepolynomials such that limi!1 pi([0; 1]) = f0; 1g;that is, in the limit all values are mapped to either0 or 1. IterateC0 = B;Ci+1 = pi(Ci); i = 0; 1; : : : ;until jjCi+1 � Cijj is numerically negligible (in iter-ation k, say).Invariant Subspace Computation: Find an or-thogonal matrix [U; V ] such that the columns of Uand V form orthonormal bases for the range space ofCk and its complementary orthogonal subspace, re-spectively. That is, UTU = I, V TV = I; UTV = 0,and the range of CkU is U .Decoupling: Update the original A with [U; V ]; thatis, form [U; V ]T A [U; V ] = �A1 A2� :Since the invariant subspaces of any matrix poly-nomial of a symmetric matrix A are also invariantsubspaces of A, the columns of U and V span com-plementary invariant subspaces of A, and hence theirapplication to A decouples the spectrum of A. Thesubproblems A1 and A2 can now be solved indepen-dently and the algorithm applied further recursively,



with the number of subproblems doubling at everystep. If eigenvectors are desired as well, we also up-date the current eigenvector matrix. Orthogonality ofthe eigenvectors is guaranteed because of the exclusiveuse of orthogonal transformations.For ease of reference, we henceforth call the matricesproduced in the Eigenvalue Smoothing step, hav-ing only the two distinct eigenvalues 0 and 1, PRISMmatrices. Note that we have considerable freedom inimplementing SYISDA, in particular with respect tochoosing the polynomials pi as well as the method forcomputing the invariant subspaces. We also mentionthat any other method that produces invariant sub-spaces, such as approximation methods for the ma-trix sign function [12, 13, 20, 2], could be used in theEigenvalue Smoothing step as well. As in [26], weuse predominantly the �rst incomplete beta function3x2 � 2x3 in our implementation. The experiments in[26] also con�rm the numerical robustness of SYISDA.While the SYISDA algorithm can be used to com-pute a full eigendecomposition, it is worthwhile topoint out certain mathematical features that distin-guish it from other approaches:Ordering of Eigenvalues: Assuming that pmaps alleigenvalues in [0; a) to 0 and all eigenvalues in [a; 1]to 1, �(A1) contains all the eigenvalues of A thatare smaller than a��� , and �(A2) contains the rest.Hence, if one is interested only in eigenvalues in acertain part of the spectrum, one need not furtherresolve diagonal blocks corresponding to uninterest-ing parts of the spectrum.Subspaces before Eigenvalues: SYISDA is pri-marily an algorithm that computes and re�nes in-variant subspaces. If such a subspace has becomeone-dimensional, an eigenvalue/eigenvector pair hasbeen found. However, if one is only interested in�nding an orthogonal basis for the subspace spannedby a certain set of eigenvectors, there is no need toexpend the e�ort to compute all eigenvalues, andone can terminate the divide-and-conquer proce-dure when the subspace corresponding to the desiredeigenvalue range has been identi�ed.No Problems with Repeated Eigenvalues: Clus-ters of eigenvalues are quickly gathered in the samesubproblem and are, in fact, likely to increase thespeed of convergence of the Eigenvalue Smooth-ing step. The orthogonality of eigenvectors is nota�ected at all by repeated eigenvalues.The two key primitives of the algorithm are matrix-matrix multiplication, which accounts for the major-ity of the computation, and computation of the range

and null space of a matrix having eigenvalues clus-tered around zero and one. The sequential complexityof SYISDA, when applied to dense matrices, is consid-erably greater than that of other algorithms. Nonethe-less, the algorithm is promising from both a scalabilityand a numerical point of view. First, since most of thecomputation is in matrix multiplication, high e�cien-cies and near-optimal speedups can be expected onlarge problems. Second, since the algorithm performsonly orthogonal transformations, orthogonality in thecomputed eigenvectors is guaranteed.The paper is organized as follows. The next sectionbriey discusses the implementation of matrix-matrixmultiplication. Section 3 discusses the rank-revealingtridiagonalization algorithm employed for the Invari-ant Subspace Computation step. It is based onthe successive band reduction (SBR) framework de-veloped by Bischof and Sun [9] and, while completelygeneral, derives signi�cant bene�t from the specialeigenvalue structure of the matrices at hand [8]. Sec-tion 4 discusses the overall divide-and-conquer strat-egy employed to orchestrate the various subproblemsand presents preliminary performance results of the�rst SYISDA implementation on the Intel TouchstoneDelta. We conclude with our �ndings, in particularwith respect to the e�ect of data layout on the designof scalable libraries for the support of matrix compu-tations, and describe how the kernels we have devel-oped form the infrastructure for a \library" of paralleleigensolvers.2. Matrix MultiplicationAs noted previously, the computational cost forSYISDA is dominated by dense matrix multiplication.Hence, its performance depends heavily on having ascalable matrix multiplication code for our initial tar-get machine, the Intel Touchstone Delta. We havedeveloped a distributed matrix multiplication codethat calculates the products C = �AB + �C andC = �AtB + �C in double precision. Our objectiveswere to(1) provide a highly e�cient algorithm suitable foruse by SYISDA,(2) strive for high performance on large square ma-trices,(3) provide robust performance for mesh con�gu-rations with poor aspect ratios, and(4) use an algorithm whose kernels match wellwith the expected capabilities of future ma-chines.As usual, a critical issue in achieving high e�ciencyis data locality, that is, maximumreuse of data in oat-



ing point computations. To this end, we utilize thehighly optimized assembly-coded double precision gen-eral matrix multiplication, DGEMM, on single nodes.It is capable of sustaining 36:5 Mops (empirically de-termined using Release 1.4 of Intel NX/M OS andrelated software) of the 40 Mops possible. On theDelta, optimal single-node performance for DGEMMoften decreases signi�cantly as the matrix shapes be-come less square or when matrix granularities become�ner. Thus, our �rst general rule is to strive for ma-trices having all their dimensions as large as possiblein local computations.Let us �rst consider the case of square meshes. Inthe parallel SBR strategy, it is extremely desirablefrom both a performance and ease of programmingpoint of view to have row and column blocks physi-cally spread across processor columns in a torus wrapfashion (see [6], for example). Furthermore, the divide-and-conquer strategy we use assumes that the blocksof the matrix are spread out fairly evenly across themesh in such a way that the generated subproblemsremain spread out all over the mesh. Therefore, two-dimensional torus wrap is ideal. For the purposes ofmatrix multiplication alone, optimal performance oc-curs when each node has the same amount of data foreach matrix; the use of torus wrapping is neither anadvantage nor a disadvantage. The situation changes,however, when we try to generalize two-dimensionaltorus wrap to nonsquare meshes. We found that thechoice of data layout has a signi�cant e�ect on boththe ease of programming and granularity of local com-putations. We chose to use a generalization of two-dimensional torus wrap on nonsquare meshes, knownas virtual two-dimensional torus wrap, that resultedin simpler, more easily tuned algorithms. Some of ourpreliminary �ndings are discussed in [6] and [22].The Broadcast-Multiply-Roll (BMR) algorithm [16,11, 28] has been demonstrated to scale extremelywell on loosely coupled square processor meshes anduses two readily portable communication kernels: one-dimensional broadcast and roll. We have implementeda variant of BMR in C using communication primitiveshighly suited to the Delta [22]. In particular, since theDelta does not e�ectively overlap communication andcomputation, the algorithm we chose is highly syn-chronous.Our BMR variant is able to deal with arbitrary rect-angular meshes and matrix dimensions. Our code candeal with a variety of di�erent virtual two-dimensionaltorus blocking schemes by means of a user-passed func-tion providing block size information. The implemen-tation guarantees that all matrix operands end up inplace. Details of our implementation are discussed in

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

matrix dimension

G
flo

ps

local dim=100

local dim=400

local dim=550

Figure 1. Total performance of matrix mul-tiplication on the Delta[22].In Figure 1, we give the total performance for ourdistributed matrix multiplication on square submeshesof the Delta for matrices having matrix size 100�100,400�400, and 550�550 on each processor. In particu-lar, our code has achieved a parallel e�ciency of 86%,with overall peak performance in excess of 8 Gopson 256 nodes for an 8800� 8800 double-precision ma-trix and has demonstrated robust performance for non-optimal mesh aspect ratios.While our orientation was machine-speci�c andaimed at optimization rather than portability, ourBMR variant will port well to other distributed ar-chitectures such as the IBM SP1.3. Successive Band ReductionTo �nd the orthogonal transformation that decouplesA, we have to �nd the range and null space of a PRISMmatrix. As it turns out, the Invariant SubspaceComputation step can be achieved essentially by atridiagonalization of Ck. The key observation is that,under some very general conditions, a band matrixhaving only two distinct eigenvalues and bandwidthn=2j must be block diagonal, with each block being ofsize at most n=2j�1. In particular, a tridiagonal ma-trix with such a spectrum is block diagonal with blocksof size at most 2�2. Hence, after the matrix has beenreduced to tridiagonal form, one only needs to solvesome (completely independent) 2� 2 eigenvalue prob-lems to obtain the desired invariant subspaces. Theseissues, as well as some of the subtle numerical issues



arising in this context, are discussed in [8].It is important to realize that, unlike other ap-proaches for computing so-called rank-revealing fac-torizations [4, 5, 10, 30], tridiagonalization does notinvolve any data-dependent pivoting strategies. Inparticular, in the parallel setting, the predictabilityof data ow greatly contributes to simplicity of imple-mentation as well as to the ability to overlap commu-nication and computation.Figure 2. Reduction to tridiagonal form bya sequence of band reductions.To reduce the given matrix to tridiagonal form,we employ a variant of the successive band reductionframework suggested by Bischof and Sun [9], whicheliminates subdiagonals of Ck in a piecemeal fashionas illustrated in Figure 2. In comparison, conven-tional Householder tridiagonalization approaches [17]or block variants thereof [14] eliminate all subdiago-nals at one time. This traditional approach also un-derlies the parallel implementations described in [19]and [15]. The SBR variant used in our implementationis discussed in detail in [7].In our particular version of SBR, we �rst reduce Ckto a banded matrix of bandwidth nb, using block or-thogonal transformations with blocksize nb and then,in a second step, reduce the band matrix of bandwidthnb to tridiagonal form. The �rst step maximally ex-ploits block transformations, and the hope is that thelittle work that is left to be done in the second step(from a op count point of view) does not add much tothe overall complexity. In the context of SYISDA, wealso expect to be able to skip large numbers of the or-thogonal transformations, since the block diagonalityof the matrices we will generate should result in manytransformations that would act on columns that arealready negligible and hence need not be performed.One issue that is critical is the need to repackagethe banded matrix remaining after the �rst initial re-duction step into a more compact form that allows usto access adjacent entries of the band e�ciently. Forexample, in a serial implementation, entries (i+ nb; i)and (i + 1 + nb; i+ 1) are at least n� 1 storage loca-tions apart if an n � n matrix has been stored as theusual two-dimensional array. Hence, the �nal bandreduction scheme would exhibit no data locality and

would, as a result, su�er severe performance penaltieson cache-based architectures. Even worse performancepenalties would result in the parallel setting, as verylittle data are left for every process to work on, buta lot of communication is needed to access successivematrix elements and perform bulge chasing. To imple-ment the second band reduction step, we redistributethe remaining band into packed storage and then em-ploy a variant of an algorithm suggested by Lang [25]to reduce the band matrix to tridiagonal form. Wemade several modi�cations to Lang's algorithm to im-prove the memory locality of the algorithm, and detailswill be reported in a forthcoming paper.
200 400 600 800 1000 1200 1400 1600 1800

-10

0

10

20

30

40

50

matrix size

SBR Tridiagonalization of full PRISM Matrix on 66 MHz IBM RS/6000

Im
pr

ov
em

en
t o

ve
r 

un
bl

oc
ke

d 
tr

id
ia

go
na

liz
at

io
n

nb = 8

nb = 16

nb = 24Figure 3. Improvement over standardtridiagonalization approach through SBR forPRISM matrices on IBM RS/6000.Our SBR approach signi�cantly outperforms theusual tridiagonalization approach on SYISDA matri-ces. For example, as is shown in Figure 3, running ona 66-MHz IBM RS/6000 with 128 MBytes of memoryand using assembler-coded BLAS, our SBR approachruns a good 30% faster than the standard tridiago-nalization procedure. Note that these times reectboth the time for the reduction from full to tridiagonalform and the accumulation of the orthgonal transfor-mation matrices. If we ignore the usual timing varia-tions one is bound to expect on a nondedicated system,the blocksize chosen does not seem to have a signi�-cant e�ect on the overall performance. The anamolousbehavior exhibited for matrices of size 800 is currentlyunder investigation.As hinted earlier, we pro�t from the underlyingstructure of the matrices arising in SYISDA. Figure



top: 2nd band reduction bottom: 1st band reductionFigure 4. Work savings as a result of ex-ploitation of eigenvalue structure via SBR4 shows how many reductions we can skip in the �rstand second band reduction steps, where we �rst elimi-nate d subdiagonals (d � nb = 16) of a 400�400 densePRISM matrix and then reduce the resulting matrixto tridiagonal form. While a standard tridiagonaliza-tion approach, which eliminates all subdiagonal entriesin one shot, would never incur any numerically zerocolumns and hence never skip a transformation, SBRcan take advantage of the special block structure ex-hibited by banded matrices with only two eigenvalues.The left plot shows the percentage of transformationswe could skip for a particular value of d; the right plotshows the total number of transformations skipped.We see that it is bene�cial to reduce the matrix to arelatively narrow band in the �rst step. One bene�tis that we get closer to the desired tridiagonal form,and another is that we skip just about half the trans-formations in the �rst band reduction step, and over90% in the second band reduction step. On the otherhand, reducing a matrix to too narrow a band is coun-terproductive, as the blocksize becomes too small andthe number of transformations needed for bulge chas-ing grows considerably. Based on these experiments,we consider an initial reduction to between 8 and 24bands a reasonable choice.The parallel implementation of this SBR scheme isin progress, with the �rst step having been completed.In fact, we implemented a general band reduction toolthat allows us to reduce a matrix of bandwidth nb�k toa matrix of size nb�l, with 1 � l � k�1. Furthermore,nb is the block size used for the blocked torus wrapmapping and also the block size used for orthogonal

transformations. Blocked reductions of full matricesto narrow bands and the unblocked tridiagonalizationof a full matrix are special instances of this code. Todevelop a portable code and to allow a maintainableimplementation, we chose to base our implementationon the Chameleon parallel programming tools [18].
4 6 8 10 12 14 16

0

500

1000

1500

2000

2500

3000

3500

4000
Total Performance for Block Band Reduction on DELTA

sqrt of number of processors
M

fl
op

s/
se

c

Local Matrix size 500x500

nb = 1

nb = 2

nb = 5

nb = 10

Final Bandwidth is 10

Figure 5. Total performance of blockedband reduction code on the DeltaThe performance of this code is promising, and itsperformance on the reduction of a full random ma-trix to bandwidth 10 and the accumulation of orthog-onal transformations on the Intel Touchstone Delta areshown in Figure 5. In these experiments, the matrixsize on each processor was kept constant at 500� 500,and the execution rates are based on the standard sym-metric op count of (8n3)=3. These experiments wereperformed in double precision. We recall that for ran-dom matrices, no transformations can be skipped.Table 1. Preliminary performance resultson 16-node IBM SP1n nb b Mops/proc Total Mops1000 1 20 10.1 1621020 15 15 18.7 2992000 1 20 10.0 1602000 10 10 26.2 4193000 1 10 10.9 1743000 15 15 33.7 5394000 20 20 38.2 611Some preliminary performance results on an IBMSP1, using the EUI-H transport layer, are shown in



Table 1. Here n is the overall matrix size, nb is theblock size used, b is the number of bands the full ma-trix is reduced to, and the last two columns are per-processor performance and overall performance for adouble-precision run, again based on the standard opcount. These results should be taken as a lower boundon the ultimate performance, as the performance of theIBM software and of Chameleon are improving rapidly.We see that, even now, the performance of theblocked code is superior to that of the unblocked codeon both Delta and SP1. In particular, on the SP1the blocked code outperforms the unblocked one by awide margin. For example, in the time that we canreduce a 2000� 2000 matrix to tridiagonal form usingthe unblocked approach, we can reduce a 3000� 3000matrix to bandwidth 10, even though the latter reduc-tion involves roughly 3:5 times as many oating-pointoperations.We are implementing a parallel version of Lang'salgorithm, where the banded matrix (but not the or-thogonal transformation matrix) is replicated in eachrow of the processor mesh. Given the performance gapbetween blocked and unblocked band reduction andthe savings we are likely to incur as a result of orthog-onal transformations being skipped, the �nal parallelSBR code should be even better in comparison withthe unblocked code than the serial one.4. Load Balancing Strategies and Per-formance ResultsThe orchestration of multiple subproblems currentlyconsists of two separate stages. The �rst stage encom-passes the early divides, where large subproblems aresolved sequentially and the scalability of the dense ma-trix multiplication and rank-revealing tridiagonaliza-tion lead to high e�ciencies. As pointed out in Section1, clusters tend to be gathered into the same subprob-lem. Since early cluster detection can greatly reducethe amount of work done, we use a simple heuristicscheme that chooses whichever of A1 or A2 has allof its eigenvalues on the same side of 0 as the meaneigenvalue of A. A running estimate, �, of the largestmean eigenvalue in magnitude from already completeddivides is kept. When the bounds used in the Scal-ing step of SYISDA indicate that all the eigenval-ues of the current subproblem are either O(�M�) orwithin O(�M�) of each other (�M is the machine ep-silon), then the subproblem is declared to have clus-tered eigenvalues and to be \done."Through the use of two-dimensional torus wrap, nodata redistribution is required between divides. Asthe subproblem size decreases, the proportion of the

total time required for communication during individ-ual matrix multiplications increases, and the granular-ity of local computation decreases. However, this ap-proach guarantees near-perfect load balancing in thecostly early stages. A discussion of the rationale usedto arrive at this scheme is presented in [23].
0 1000 2000 3000 4000 5000 6000

10
-15

10
-14

10
-13

matrix dimension
m

ax
 r

es
id

ua
l

(a) Residuals
0 1000 2000 3000 4000 5000 6000

10
-15

10
-14

10
-13

matrix dimension

m
ax

 r
es

id
ua

l

(b) Eigenvector orthogonalityFigure 6. Numerical accuracy of SYISDAAs the subproblem size decreases, there is a point,probably machine-dependent, at which communica-tions overhead makes it impractical to solve that sub-problem over the entire mesh. The amount of workrequired to �nd the eigensolution of the remaining sub-problem is very small, but the cost of the update of theeigenvector matrix Z, whose leading dimension is stillthe size of the original matrix A, is still substantial.



The second stage, or end game, handles the small sub-problems remaining, exploiting parallelism at two lev-els: �rst, by solving individual subproblems in parallelon single nodes and second, by performing distributedupdates of the accumulated eigenvector matrix. Thestrategy used in the end game is also described in [23].Numerical testing in double precision of our paral-lel algorithm, using the unblocked version of the SBRcode, is in progress. Easily generated symmetric testcases with uniformly distributed eigenvalues of dimen-sions 100{6400 have been tested so far. Accuracy inthe residuals for a given matrix A is measured by com-puting the maximum normalized1-norm residualmaxi kAZi � �iZik1kAk1 ;where Zi is the computed eigenvector correspondingto the eigenvalue �i. We also measured the departurefrom orthogonality residual given bymaxi;j ��[ZtZ � In]ij��to verify that the computed eigenvectors were, in-deed, orthonormal. Here Z is the matrix of eigenvec-tors. Figure 6 shows that in terms of both accuracyin the residuals and orthogonality of the eigenvectors,SYISDA is performing well. We have done some lim-ited testing on Wilkinson matrices and have thus farencountered no problems with accuracy.Table 2. Time for complete eigensolution ofn� n matrix on p� p submesh of the Deltatime (min.)n p = 4 p = 8 p = 12 p = 161600 23.16 7.98 4.97 3.703200 { 50.96 27.97 18.604800 { { 83.11 52.606400 { { { 115.51Table 2 gives the solution time in minutes for testmatrices of sizes 1600; 3200; 4800, and 6400 on p � pmeshes, where p = 4; 8; 12, and 16.Figure 7 shows the total performance of SYISDAfor our test matrices on square submeshes of the Deltafor matrices having matrix dimensions of 100, 200,300, and 400 on each processor. Clearly, SYISDAscales extremely well. We see from Figure 1 that ourdistributed matrix multiplication runs at about 7:4Gops on a 16 � 16 mesh for 6400 � 6400 matrices;SYISDA achieves 6:4 Gops, about 86% of what we

0 50 100 150 200 250
0

1

2

3

4

5

6

7

number of processors

G
flo

ps

local dim=100

local dim=200

local dim=300local dim=400

based on actual ops, excluding end gameFigure 7. Total performance of SYISDA onsquare submeshes of the Deltabelieve to be the maximum possible performance forthis algorithm.Our assembled SYISDA code currently runs onlyon square submeshes of the Delta using the unblockedSBR code. We expect its performance to improvewhen the blocked SBR has been completed. We areporting the code to other architectures and plan togeneralize the code to nonsquare processor meshes inthe future.5. Data Layout and Library Considera-tionsOur work has reinforced the need for systemic supportof basic communication kernels that are inevitably re-quired when data are physically distributed. Becausecommunication is highly machine-dependent, porta-bility and compatibility with other software are oftenobtained at the price of performance or increased soft-ware development e�ort. Support for data redistribu-tion is needed at two levels. The �rst is to supportbasic operations that are needed within the same datalayout. In our case, the use of data layouts with sym-metric placement of rows and columns led to simpleralgorithms than with other layouts, without sacri�c-ing the performance design objectives. However, sincethe data layout we used (as is the case for most datalayouts) is not supported in a systemic manner, many\low-level" communication routines had to be writtento perform what should be compiler-level operations.For instance, routines were needed for the basic oper-ations described below.Scattering: The problem to be solved must be dis-



tributed on the processors in the layout used.Redistribution: In both the SBR and the end game,blocks of data scattered over one submesh had to beredistributed or replicated over a di�erent submesh,sometimes in a di�erent layout.Layout conversion: In both SBR and for the invari-ant subspace update, data redistribution is requiredwhenever the matrix being updated is not alignedwith the update matrix.Specialized routines had to be developed to deal witheach of these situations. The second level of supportshould be in accommodating di�erent layouts. Evenwithin the torus wrap data layout, changing the blocksize requires signi�cant data movement. Without suchsupport, more specialized routines would be required.In fact, all the types of data movement described herepervade numerical computation and should be sup-ported in future parallel languages such as High Per-formance Fortran. Otherwise, every user will be re-quired to write his own specialized embedded routines.Continued lack of compiler support for basic commu-nication kernels associated with data layout and move-ment will not only greatly impede library development,but will also impede the adoption of these libraries byusers because of interface problems.In our work on SYISDA, we have developed threekernels that provide the infrastructure for a \library"for parallel eigensolvers and, to a more limited extent,for numerical linear algebra computations. The �rst ismatrix multiplication, the primitive of choice in cur-rent algorithmic design. The second, SBR, can in factbe used in conjunction with any tridiagonal or bandedeigenvalue solver. Finally, the harness we have devel-oped for managing the multiple subproblems producedby SYISDA readily transfers to any algorithm basedon the invariant subspace decomposition approach. Inparticular, our approach can be readily modi�ed tosolve specialized partial spectrum problems, includingthose where the eigenvalues in a speci�ed interval aredesired and those where only the invariant subspacecorresponding to eigenvalues in a speci�ed interval issought.Our preliminary experiments indicate that our par-allel implementation of SYISDA provides excellentscaling and accuracy. In addition to continuing ourstudies of SYISDA and the data layout issues asso-ciated with the kernels we are interested in, we arealso investigating variants of SYISDA aimed at re-ducing the amount of time spent doing dense matrixmultiplication. A particularly promising algorithm,SYBISDA, uses SBR to reduce A to a narrow bandand then periodically reduces matrices in the Eigen-

value Smoothing step to a narrow band. Multipli-cation of two matrices of bandwidths b only requiresO(b2n) work versus O(n3) for two dense matrices. Fur-thermore, the special properties of the iterates in theEigenvalue Smoothing step result in surprisinglyslow band growth in the iterated matrices. In oursequential implementation, using specialized routinesfor multiplying symmetric band matrices [31], the runtimes for SYBISDA are competitive with the symmet-ric QR algorithm. In fact, the time spent in SBR be-comes the dominant time. SYBISDA uses essentiallythe same harness as SYISDA and the two computa-tional kernels of SBR and banded matrix multiplica-tion. We intend to modify our current code to obtainan implementation of SYBISDA and compare the twoalgorithms.AcknowledgmentsWe thank Bill Gropp and Barry Smith for their helpand support with the Chameleon programming sys-tem. We also thank Bruno Lang for providing uswith his serial code for a packed storage bandreductionand for some stimulating discussions on this subject.Lastly, we thank Thomas Turnbull and Elaine Jacob-son for many helpful discussions during the course ofthis work.References[1] Auslander, L., & A. Tsao, On parallelizable eigen-solvers, Adv. Appl. Math. 13 (1992), 253{261.[2] Bai, Z., & J. Demmel,Design of parallel nonsym-metric eigenroutine toolbox, Part I, Research re-port 92-09, University of Kentucky (Dec. 1992),(also PRISM Working Note #5).[3] Berry, M., & A. Sameh, Parallel algorithms forthe singular value and dense symmetric eigen-value problem, CSRD (1988), no. 761.[4] Bischof, C., A parallel QR factorization with con-trolled local pivoting, SIAM J. Sci. Stat. Comput.12 (1991), 36{57.[5] Bischof, C. H., & P. C. Hansen, A block algo-rithm for computing rank-revealing QR factor-izations, also MCS-P251-0791, Numerical Algo-rithms 2 (1992), no. 3-4, 371{392.[6] Bischof, C. H., S. Huss-Lederman, E. M. Jacob-son, X. Sun, & A. Tsao, On the impact of HPFdata layout on the design of e�cient and main-tainable parallel linear algebra libraries, (availablefrom the archives of the HPF Forum).[7] Bischof, C., M. Marques, & X. Sun, Parallelbandreduction and tridiagonalization, Proceed-ings, Sixth SIAM Conference on Parallel Process-



ing for Scienti�c Computing (Norfolk, Virginia,March 22-24, 1993) (R. F. Sincovec, ed.), SIAM,Philadelphia, 1993, (also PRISM Working Note#8).[8] Bischof, C., & X. Sun, A divide-and-conquermethod for tridiagonalizing symmetric matriceswith repeated eigenvalues, Preprint MCS-P286-0192, Argonne National Laboratory (1992), (alsoPRISM Working Note #1).[9] Bischof, C., & X. Sun, A framework for symmet-ric band reduction and tridiagonalization, Pre-print MCS-P298-0392, Argonne National Labo-ratory (1992), (also PRISM Working Note #3).[10] Chandrasekaran, S., & I. Ipsen, On rank-revealingQR factorizations, Technical Report YALEU/DCS/RR880, Yale University, Department ofComputer Science, 1991.[11] Choi, J., J. J. Dongarra, & D. W. Walker, Level3 BLAS for distributed memory concurrent com-puters, CNRS-NSF Workshop on Environmentsand Tools for Parallel Scienti�c Computing (SaintHilaire du Touvet, France, September 7{8, 1992),Elsevier Science Publishers, 1992.[12] Denman, E. D., & A. N. Beavers, Jr., The matrixsign function and computations in systems, Appl.Math. Comp. 2 (1976), 63-94.[13] Denman, E. D., & J. Leyva-Ramos, Spectral de-composition of a matrix using the generalized signmatrix, Appl. Math. Comp. 8 (1981), 237-50.[14] Dongarra, Jack J., Sven J. Hammarling, andDanny C. Sorensen, Block reduction of matri-ces to condensed form for eigenvalue computa-tions, MCS{TM{99, Argonne National Labora-tory (September 1987).[15] Dongarra, J., & R. van de Geijn, Reduction tocondensed form for the eigenvalue problem ondistributed-memory architectures, Technical Re-port ORNL/TM-12006, Oak Ridge National Lab-oratory, Engineering Physics and MathematicsDivision (January 1992).[16] Fox, G., M. Johnson, G. Lyzenga, S. Otto, J.Salmon, & D. Walker, Solving Problems on Con-current Processors, Vol. I, Prentice-Hall, Engle-wood Cli�s, N.J., 1988.[17] Golub, G., & C. F. Van Loan, Matrix Computa-tions, 2nd ed., Johns Hopkins University Press,Baltimore, 1989.[18] Gropp, William D., & Barry Smith, Chameleonparallel programming tools users manual, ANL-93/23, Argonne National Laboratory (March1993).[19] Hendrikson, B., & D. Womble, The torus-wrapmapping for dense matrix calculations on mas-

sively parallel computers, SAND92-0792, SandiaNational Laboratories (1992).[20] Howland, J. L., The sign matrix and the separa-tion of matrix eigenvalues, Lin. Alg. Appl. 49(1983), 221-32.[21] Huo, Y., & R. Schreiber, E�cient, massively par-allel eigenvalue computation, RIACS TechnicalReport 93.02, Research Institute for AdvancedComputer Science (1993).[22] Huss-Lederman, S., E. M. Jacobson, A. Tsao,& G. Zhang, Matrix Multiplication on the In-tel Touchstone Delta, Technical Report SRC-TR-93-101, Supercomputing Research Center (1993),(also PRISM Working Note #11).[23] Huss-Lederman, S., A. Tsao, & G. Zhang, A Par-allel Implementation of the Invariant SubspaceDecomposition Algorithm for Dense SymmetricMatrices, Proceedings, Sixth SIAM Conferenceon Parallel Processing for Scienti�c Computing(Norfolk, Virginia, March 22-24, 1993) (R. F.Sincovec, eds.), SIAM, Philadelphia, 1993, (alsoPRISM Working Note #9).[24] Ipsen, I., & E. Jessup, Solving the symmetrictridiagonal eigenvalue problem on the hypercube,Tech. Rep. RR-548, Yale University (1987).[25] Lang, B., A parallel algorithm for reducingsymmetric banded matrices to tridiagonal form,SIAM J. Sci. Stat. Comp. 14 (1993), no. 6.[26] Huss-Lederman, S., A. Tsao, & T. Turnbull,A parallelizable eigensolver for real diagonaliz-able matrices with real eigenvalues, Technical Re-port TR-91-042, Supercomputing Research Cen-ter (1991).[27] Li, T.-Y., H. Zhang, & X.-H. Sun, Parallel homo-topy algorithm for symmetric tridiagonal eigen-value problems, SIAM J. Sci. Stat. Comput. 12(1991), no. 3, 469{87.[28] Mathur, K. K., & S. L. Johnsson, Multiplicationof matrices of arbitrary shape on a data paral-lel computer (1992), Thinking Machines Corpora-tion, preprint, also released as Technical ReportTR-216.[29] Schreiber, R., Solving eigenvalue and singularvalue problems on an undersized systolic array,SIAM J. Sci. Stat. Comput. 7 (1986), no. 2,441{451.[30] G. W. Stewart, Updating a rank-revealing ULVdecomposition, SIAM J. Matrix Anal. Appl. 14(1993), no. 2.[31] Tsao, A., & T. Turnbull, A comparison of al-gorithms for banded matrix multiplication, Tech-nical Report SRC-TR-093-092, Supercomputing



Research Center (1993), (also PRISM WorkingNote #6).
Preprint MCS-P383-0993, Mathematics and Com-puter Science Division, Argonne National Laboratory,Argonne, Ill., January 1994.


