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Abstract

The goal of the PRISM project is the development
of infrastructure and algorithms for the parallel so-
We are currently in-
vestigating a complete etgensolver based on the In-
variant Subspace Decomposition Algorithm for dense
symmetric matrices (SYISDA). After briefly review-
g SYISDA, we discuss the algorithmic highlights of
a distributed-memory implementation of this approach.
These include a fast matriz-matriz multiplication al-
gorithm, a new approach to parallel band reduction
and tridiagonalization, and a harness for coordinat-
g the divide-and-conquer parallelism in the problem.
We also present performance results of these kernels
as well as the overall SYISDA implementation on the
Intel Touchstone Delta prototype.

lution of eigenvalue problems.

1. Introduction

Computation of eigenvalues and eigenvectors is an
essential kernel in many applications, and several
promising parallel algorithms have been investigated
[29, 24, 3, 27, 21]. The work presented in this pa-
per is part of the PRISM (Parallel Research on In-
variant Subspace Methods) Project, which involves re-
searchers from Argonne National Laboratory, the Su-
percomputing Research Center, the University of Cal-
ifornia at Berkeley, and the University of Kentucky.
The goal of the PRISM project is the development of
algorithms and software for solving large-scale eigen-
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value problems based on the invariant subspace de-
composition approach originally suggested by Auslan-
der and Tsao [1].

The algorithm described here is the Symmetric In-
variant Subspace Decomposition Algorithm (SYISDA)
for an n x n symmetric matrix A, which proceeds as
follows.

Scaling: Compute upper and lower bounds on the
spectrum A(A) of A, and compute & and § such
that for B = a4 + 81 we have A(B) C [0, 1], with
the mean eigenvalue of A being mapped to %

Eigenvalue Smoothing: Let p;(2), ¢ = 1,2,.. . be
polynomials such that lim;_.. p;([0,1]) = {0, 1},
that is, in the limit all values are mapped to either
0 or 1. Iterate
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until ||Ciy1 — Ci]| is numerically negligible (in iter-
ation k, say).

Invariant Subspace Computation: Find an or-
thogonal matrix [U, V] such that the columns of U
and V form orthonormal bases for the range space of
Cy and 1ts complementary orthogonal subspace, re-
spectively. That is, UTU = I, VIV = I,LUTV =0,
and the range of C,U is U.

Decoupling: Update the original A with [U, V]; that
1s, form

(U, VIT AU, V] = (Al Az) :

Since the invariant subspaces of any matrix poly-
nomial of a symmetric matrix A are also invariant
subspaces of A, the columns of U and V span com-
plementary invariant subspaces of A, and hence their
application to A decouples the spectrum of A. The
subproblems A; and As can now be solved indepen-
dently and the algorithm applied further recursively,



with the number of subproblems doubling at every
step. If eigenvectors are desired as well, we also up-
date the current eigenvector matrix. Orthogonality of
the eigenvectors is guaranteed because of the exclusive
use of orthogonal transformations.

For ease of reference, we henceforth call the matrices
produced in the Eigenvalue Smoothing step, hav-
ing only the two distinct eigenvalues 0 and 1, PRISM
matrices. Note that we have considerable freedom in
implementing SYISDA, in particular with respect to
choosing the polynomials p; as well as the method for
computing the invariant subspaces. We also mention
that any other method that produces invariant sub-
spaces, such as approximation methods for the ma-
trix sign function [12; 13, 20, 2], could be used in the
Eigenvalue Smoothing step as well. As in [26], we
use predominantly the first incomplete beta function
322 — 223 in our implementation. The experiments in
[26] also confirm the numerical robustness of SYISDA.

While the SYISDA algorithm can be used to com-
pute a full eigendecomposition, it is worthwhile to
point out certain mathematical features that distin-
guish it from other approaches:

Ordering of Eigenvalues: Assuming that p maps all
eigenvalues in [0, a) to 0 and all eigenvalues in [a, 1]
to 1, A(A1) contains all the eigenvalues of A that
are smaller than %, and A(Az) contains the rest.
Hence, if one 1s interested only in eigenvalues in a
certain part of the spectrum, one need not further
resolve diagonal blocks corresponding to uninterest-

ing parts of the spectrum.

Subspaces before Eigenvalues: SYISDA is pri-
marily an algorithm that computes and refines in-
variant subspaces. If such a subspace has become
one-dimensional, an eigenvalue/eigenvector pair has
been found. However, if one 1s only interested in
finding an orthogonal basis for the subspace spanned
by a certain set of eigenvectors, there is no need to
expend the effort to compute all eigenvalues, and
one can terminate the divide-and-conquer proce-
dure when the subspace corresponding to the desired
eigenvalue range has been identified.

No Problems with Repeated Eigenvalues: Clus-
ters of eigenvalues are quickly gathered in the same
subproblem and are, in fact, likely to increase the
speed of convergence of the Eigenvalue Smooth-
ing step. The orthogonality of eigenvectors is not
affected at all by repeated eigenvalues.

The two key primitives of the algorithm are matrix-
matrix multiplication, which accounts for the major-
ity of the computation, and computation of the range

and null space of a matrix having eigenvalues clus-
tered around zero and one. The sequential complexity
of SYISDA, when applied to dense matrices, is consid-
erably greater than that of other algorithms. Nonethe-
less, the algorithm is promising from both a scalability
and a numerical point of view. First, since most of the
computation is in matrix multiplication, high efficien-
cies and near-optimal speedups can be expected on
large problems. Second, since the algorithm performs
only orthogonal transformations, orthogonality in the
computed eigenvectors is guaranteed.

The paper 1s organized as follows. The next section
briefly discusses the implementation of matrix-matrix
multiplication. Section 3 discusses the rank-revealing
tridiagonalization algorithm employed for the Invari-
ant Subspace Computation step. It is based on
the successive band reduction (SBR) framework de-
veloped by Bischof and Sun [9] and, while completely
general, derives significant benefit from the special
eigenvalue structure of the matrices at hand [8]. Sec-
tion 4 discusses the overall divide-and-conquer strat-
egy employed to orchestrate the various subproblems
and presents preliminary performance results of the
first SYISDA implementation on the Intel Touchstone
Delta. We conclude with our findings, in particular
with respect to the effect of data layout on the design
of scalable libraries for the support of matrix compu-
tations, and describe how the kernels we have devel-
oped form the infrastructure for a “library” of parallel
eigensolvers.

2. Matrix Multiplication

As noted previously, the computational cost for
SYISDA is dominated by dense matrix multiplication.
Hence, its performance depends heavily on having a
scalable matrix multiplication code for our initial tar-
get machine, the Intel Touchstone Delta. We have
developed a distributed matrix multiplication code
that calculates the products ' = aAB + 3C' and
C = aA'B + BC in double precision. Our objectives
were to

(1) provide a highly efficient algorithm suitable for
use by SYISDA,

(2) strive for high performance on large square ma-
trices,

(3) provide robust performance for mesh configu-
rations with poor aspect ratios, and

(4) use an algorithm whose kernels match well
with the expected capabilities of future ma-
chines.

As usual, a critical issue in achieving high efficiency
is data locality, that is, maximum reuse of data in float-



ing point computations. To this end, we utilize the
highly optimized assembly-coded double precision gen-
eral matrix multiplication, DGEMM, on single nodes.
Tt is capable of sustaining 36.5 Mflops (empirically de-
termined using Release 1.4 of Intel NX/M OS and
related software) of the 40 Mflops possible. On the
Delta, optimal single-node performance for DGEMM
often decreases significantly as the matrix shapes be-
come less square or when matrix granularities become
finer. Thus, our first general rule is to strive for ma-
trices having all their dimensions as large as possible
in local computations.

Let us first consider the case of square meshes. In
the parallel SBR strategy, it is extremely desirable
from both a performance and ease of programming
point of view to have row and column blocks physi-
cally spread across processor columns in a torus wrap
fashion (see [6], for example). Furthermore, the divide-
and-conquer strategy we use assumes that the blocks
of the matrix are spread out fairly evenly across the
mesh in such a way that the generated subproblems
remain spread out all over the mesh. Therefore, two-
dimensional torus wrap is ideal. For the purposes of
matrix multiplication alone, optimal performance oc-
curs when each node has the same amount of data for
each matrix; the use of torus wrapping is neither an
advantage nor a disadvantage. The situation changes,
however, when we try to generalize two-dimensional
torus wrap to nonsquare meshes. We found that the
choice of data layout has a significant effect on both
the ease of programming and granularity of local com-
putations. We chose to use a generalization of two-
dimensional torus wrap on nonsquare meshes, known
as virtual two-dimensional torus wrap, that resulted
in simpler, more easily tuned algorithms. Some of our
preliminary findings are discussed in [6] and [22].

The Broadcast-Multiply-Roll (BMR) algorithm [16,
11, 28] has been demonstrated to scale extremely
well on loosely coupled square processor meshes and
uses two readily portable communication kernels: one-
dimensional broadcast and roll. We have implemented
a variant of BMR in C using communication primitives
highly suited to the Delta [22]. In particular, since the
Delta does not effectively overlap communication and
computation, the algorithm we chose is highly syn-
chronous.

Our BMR variant is able to deal with arbitrary rect-
angular meshes and matrix dimensions. Our code can
deal with a variety of different virtual two-dimensional
torus blocking schemes by means of a user-passed func-
tion providing block size information. The implemen-
tation guarantees that all matrix operands end up in
place. Details of our implementation are discussed in

local dim=550

local dim=400
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Ficure 1. Total performance of matrix mul-
tiplication on the Delta

[22].

In Figure 1, we give the total performance for our
distributed matrix multiplication on square submeshes
of the Delta for matrices having matrix size 100 x 100,
400 x 400, and 550 x 550 on each processor. In particu-
lar, our code has achieved a parallel efficiency of 86%,
with overall peak performance in excess of 8 Gflops
on 256 nodes for an 8800 x 8800 double-precision ma-
trix and has demonstrated robust performance for non-
optimal mesh aspect ratios.

While our orientation was machine-specific and
aimed at optimization rather than portability, our
BMR variant will port well to other distributed ar-
chitectures such as the IBM SP1.

3. Successive Band Reduction

To find the orthogonal transformation that decouples
A, we have to find the range and null space of a PRISM
matrix. As it turns out, the Invariant Subspace
Computation step can be achieved essentially by a
tridiagonalization of . The key observation is that,
under some very general conditions, a band matrix
having only two distinct eigenvalues and bandwidth
n/2/ must be block diagonal, with each block being of
size at most n/2/~!. In particular, a tridiagonal ma-
trix with such a spectrum is block diagonal with blocks
of size at most 2 x 2. Hence, after the matrix has been
reduced to tridiagonal form, one only needs to solve
some (completely independent) 2 x 2 eigenvalue prob-
lems to obtain the desired invariant subspaces. These
issues, as well as some of the subtle numerical issues



arising in this context, are discussed in [8].

It is important to realize that, unlike other ap-
proaches for computing so-called rank-revealing fac-
torizations [4, 5, 10, 30], tridiagonalization does not
involve any data-dependent pivoting strategies. In
particular, in the parallel setting, the predictability
of data flow greatly contributes to simplicity of imple-
mentation as well as to the ability to overlap commu-
nication and computation.

FIGURE 2. Reduction to tridiagonal form by
a sequence of band reductions.

To reduce the given matrix to tridiagonal form,
we employ a variant of the successive band reduction
framework suggested by Bischof and Sun [9], which
eliminates subdiagonals of C in a piecemeal fashion
as illustrated in Figure 2. In comparison, conven-
tional Householder tridiagonalization approaches [17]
or block variants thereof [14] eliminate all subdiago-
nals at one time. This traditional approach also un-
derlies the parallel implementations described in [19]
and [15]. The SBR variant used in our implementation
is discussed in detail in [7].

In our particular version of SBR, we first reduce Cj
to a banded matrix of bandwidth nb, using block or-
thogonal transformations with blocksize nb and then,
in a second step, reduce the band matrix of bandwidth
nb to tridiagonal form. The first step maximally ex-
ploits block transformations, and the hope 1s that the
little work that is left to be done in the second step
(from a flop count point of view) does not add much to
the overall complexity. In the context of SYISDA, we
also expect to be able to skip large numbers of the or-
thogonal transformations, since the block diagonality
of the matrices we will generate should result in many
transformations that would act on columns that are
already negligible and hence need not be performed.

One issue that is critical is the need to repackage
the banded matrix remaining after the first initial re-
duction step into a more compact form that allows us
to access adjacent entries of the band efficiently. For
example, in a serial implementation, entries (i + nb, i)
and (¢ + 14 nb,i+ 1) are at least n — 1 storage loca-
tions apart if an n x n matrix has been stored as the
usual two-dimensional array. Hence, the final band
reduction scheme would exhibit no data locality and

would, as a result, suffer severe performance penalties
on cache-based architectures. Even worse performance
penalties would result in the parallel setting, as very
little data are left for every process to work on, but
a lot of communication is needed to access successive
matrix elements and perform bulge chasing. To imple-
ment the second band reduction step, we redistribute
the remaining band into packed storage and then em-
ploy a variant of an algorithm suggested by Lang [25]
to reduce the band matrix to tridiagonal form. We
made several modifications to Lang’s algorithm to im-
prove the memory locality of the algorithm, and details
will be reported in a forthcoming paper.

SBR Tridiagonalization of full PRISM Matrix on 66 MHz IBM RS/6000
50 T T T T T T T

nb=16

Improvement over unblocked tridiagonalization

10 i I I I I I
200 400 600 800 1000 1200 1400 1600 1800

matrix size
Ficure 3. Improvement over standard

tridiagonalization approach through SBR for
PRISM matrices on IBM RS/6000.

Our SBR approach significantly outperforms the
usual tridiagonalization approach on SYISDA matri-
ces. For example, as 1s shown in Figure 3, running on
a 66-MHz IBM RS/6000 with 128 MBytes of memory
and using assembler-coded BLAS, our SBR, approach
runs a good 30% faster than the standard tridiago-
nalization procedure. Note that these times reflect
both the time for the reduction from full to tridiagonal
form and the accumulation of the orthgonal transfor-
mation matrices. If we ignore the usual timing varia-
tions one is bound to expect on a nondedicated system,
the blocksize chosen does not seem to have a signifi-
cant effect on the overall performance. The anamolous
behavior exhibited for matrices of size 800 is currently
under investigation.

As hinted earlier, we profit from the underlying
structure of the matrices arising in SYISDA. Figure
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FIGURE 4. Work savings as a result of ex-
ploitation of eigenvalue structure via SBR

4 shows how many reductions we can skip in the first
and second band reduction steps, where we first elimi-
nate d subdiagonals (d > nb = 16) of a 400 x 400 dense
PRISM matrix and then reduce the resulting matrix
to tridiagonal form. While a standard tridiagonaliza-
tion approach, which eliminates all subdiagonal entries
in one shot, would never incur any numerically zero
columns and hence never skip a transformation, SBR,
can take advantage of the special block structure ex-
hibited by banded matrices with only two eigenvalues.
The left plot shows the percentage of transformations
we could skip for a particular value of d; the right plot
shows the total number of transformations skipped.
We see that it is beneficial to reduce the matrix to a
relatively narrow band in the first step. One benefit
is that we get closer to the desired tridiagonal form,
and another is that we skip just about half the trans-
formations in the first band reduction step, and over
90% in the second band reduction step. On the other
hand, reducing a matrix to too narrow a band is coun-
terproductive, as the blocksize becomes too small and
the number of transformations needed for bulge chas-
ing grows considerably. Based on these experiments,
we consider an initial reduction to between 8 and 24
bands a reasonable choice.

The parallel implementation of this SBR, scheme is
in progress, with the first step having been completed.
In fact, we implemented a general band reduction tool
that allows us to reduce a matrix of bandwidth nb*k to
a matrix of size nbx{, with 1 <[ < k—1. Furthermore,
nb is the block size used for the blocked torus wrap
mapping and also the block size used for orthogonal

transformations. Blocked reductions of full matrices
to narrow bands and the unblocked tridiagonalization
of a full matrix are special instances of this code. To
develop a portable code and to allow a maintainable
implementation, we chose to base our implementation
on the Chameleon parallel programming tools [18].

Total Performance for Block Band Reduction on DELTA

Local Matrix size 500x500

Final Bandwidth is 10

4 6 8 10 12 14 16
sgrt of number of processors

Ficure 5.  Total performance of blocked
band reduction code on the Delta

The performance of this code is promising, and its
performance on the reduction of a full random ma-
trix to bandwidth 10 and the accumulation of orthog-
onal transformations on the Intel Touchstone Delta are
shown in Figure 5. In these experiments, the matrix
size on each processor was kept constant at 500 x 500,
and the execution rates are based on the standard sym-
metric flop count of (8n3)/3. These experiments were
performed in double precision. We recall that for ran-
dom matrices, no transformations can be skipped.

TABLE 1. Preliminary performance results
on 16-node IBM SP1
n | nb b | Mflops/proc | Total Mflops
1000 1] 20 10.1 162
1020 | 15 | 15 18.7 299
2000 1] 20 10.0 160
2000 | 10 | 10 26.2 419
3000 1] 10 10.9 174
3000 | 15 | 15 33.7 539
4000 | 20 | 20 38.2 611

Some preliminary performance results on an IBM
SP1, using the EUI-H transport layer, are shown in



Table 1. Here n is the overall matrix size, nb is the
block size used, b is the number of bands the full ma-
trix is reduced to, and the last two columns are per-
processor performance and overall performance for a
double-precision run, again based on the standard flop
count. These results should be taken as a lower bound
on the ultimate performance, as the performance of the
IBM software and of Chameleon are improving rapidly.

We see that, even now, the performance of the
blocked code is superior to that of the unblocked code
on both Delta and SP1. In particular, on the SP1
the blocked code outperforms the unblocked one by a
wide margin. For example, in the time that we can
reduce a 2000 x 2000 matrix to tridiagonal form using
the unblocked approach, we can reduce a 3000 x 3000
matrix to bandwidth 10, even though the latter reduc-
tion involves roughly 3.5 times as many floating-point
operations.

We are implementing a parallel version of Lang’s
algorithm, where the banded matrix (but not the or-
thogonal transformation matrix) is replicated in each
row of the processor mesh. Given the performance gap
between blocked and unblocked band reduction and
the savings we are likely to incur as a result of orthog-
onal transformations being skipped, the final parallel
SBR. code should be even better in comparison with
the unblocked code than the serial one.

4. Load Balancing Strategies and Per-
formance Results

The orchestration of multiple subproblems currently
consists of two separate stages. The first stage encom-
passes the early divides, where large subproblems are
solved sequentially and the scalability of the dense ma-
trix multiplication and rank-revealing tridiagonaliza-
tion lead to high efficiencies. As pointed out in Section
1, clusters tend to be gathered into the same subprob-
lem. Since early cluster detection can greatly reduce
the amount of work done, we use a simple heuristic
scheme that chooses whichever of A4; or As has all
of its eigenvalues on the same side of 0 as the mean
eigenvalue of A. A running estimate, A, of the largest
mean eigenvalue in magnitude from already completed
divides is kept. When the bounds used in the Scal-
ing step of SYISDA indicate that all the eigenval-
ues of the current subproblem are either O(eyA) or
within O(eprA) of each other (epr is the machine ep-
silon), then the subproblem is declared to have clus-
tered eigenvalues and to be “done.”

Through the use of two-dimensional torus wrap, no
data redistribution is required between divides. As
the subproblem size decreases, the proportion of the

total time required for communication during individ-
ual matrix multiplications increases, and the granular-
ity of local computation decreases. However, this ap-
proach guarantees near-perfect load balancing in the
costly early stages. A discussion of the rationale used
to arrive at this scheme is presented in [23].
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FiGURE 6. Numerical accuracy of SYISDA

As the subproblem size decreases, there is a point,
probably machine-dependent, at which communica-
tions overhead makes it impractical to solve that sub-
problem over the entire mesh. The amount of work
required to find the eigensolution of the remaining sub-
problem is very small, but the cost of the update of the
eigenvector matrix Z, whose leading dimension is still
the size of the original matrix A, is still substantial.



The second stage, or end game, handles the small sub-
problems remaining, exploiting parallelism at two lev-
els: first, by solving individual subproblems in parallel
on single nodes and second, by performing distributed
updates of the accumulated eigenvector matrix. The
strategy used in the end game is also described in [23].
Numerical testing in double precision of our paral-
lel algorithm, using the unblocked version of the SBR
code, is in progress. Easily generated symmetric test
cases with uniformly distributed eigenvalues of dimen-
sions 100-6400 have been tested so far. Accuracy in
the residuals for a given matrix A is measured by com-
puting the maximum normalized co-norm residual

IAZi = XiZil|
max ————
: 1Al o

where Z; is the computed eigenvector corresponding
to the eigenvalue A;. We also measured the departure
from orthogonality residual given by

max|[Z2'Z — L]
2,7

to verify that the computed eigenvectors were, in-
deed, orthonormal. Here Z is the matrix of eigenvec-
tors. Figure 6 shows that in terms of both accuracy
in the residuals and orthogonality of the eigenvectors,
SYISDA is performing well. We have done some lim-
ited testing on Wilkinson matrices and have thus far
encountered no problems with accuracy.

TABLE 2. Time for complete eigensolution of
n X n matrix on p x p submesh of the Delta

time (min.)
n|p=4|p=8 | p=12 | p=16
1600 | 23.16 7.98 4.97 3.70
3200 - | 50.96 27.97 18.60
4800 - - 83.11 52.60
6400 - - - | 115.51

Table 2 gives the solution time in minutes for test
matrices of sizes 1600, 3200,4800, and 6400 on p x p
meshes, where p = 4,8,12, and 16.

Figure 7 shows the total performance of SYISDA
for our test matrices on square submeshes of the Delta
for matrices having matrix dimensions of 100, 200,
300, and 400 on each processor. Clearly, SYISDA
scales extremely well. We see from Figure 1 that our
distributed matrix multiplication runs at about 7.4
Gflops on a 16 x 16 mesh for 6400 x 6400 matrices;
SYISDA achieves 6.4 Gflops, about 86% of what we

Jacal dim=400 local dim=300

local dim=200

Gflops

m=100

‘based on actual ops, excluding end game

0 50 100 150 200 250
number of processors

FicURE 7. Total performance of SYISDA on
square submeshes of the Delta

believe to be the maximum possible performance for
this algorithm.

Our assembled SYISDA code currently runs only
on square submeshes of the Delta using the unblocked
SBR code. We expect its performance to improve
when the blocked SBR, has been completed. We are
porting the code to other architectures and plan to
generalize the code to nonsquare processor meshes in
the future.

5. Data Layout and Library Considera-
tions

Our work has reinforced the need for systemic support
of basic communication kernels that are inevitably re-
quired when data are physically distributed. Because
communication is highly machine-dependent, porta-
bility and compatibility with other software are often
obtained at the price of performance or increased soft-
ware development effort. Support for data redistribu-
tion is needed at two levels. The first 1s to support
basic operations that are needed within the same data
layout. In our case, the use of data layouts with sym-
metric placement of rows and columns led to simpler
algorithms than with other layouts, without sacrific-
ing the performance design objectives. However, since
the data layout we used (as is the case for most data
layouts) is not supported in a systemic manner, many
“low-level” communication routines had to be written
to perform what should be compiler-level operations.
For instance, routines were needed for the basic oper-
ations described below.

Scattering: The problem to be solved must be dis-



tributed on the processors in the layout used.

Redistribution: In both the SBR and the end game,
blocks of data scattered over one submesh had to be
redistributed or replicated over a different submesh,
sometimes in a different layout.

Layout conversion: In both SBR and for the invari-
ant subspace update, data redistribution is required
whenever the matrix being updated is not aligned
with the update matrix.

Specialized routines had to be developed to deal with
each of these situations. The second level of support
should be in accommodating different layouts. Even
within the torus wrap data layout, changing the block
size requires significant data movement. Without such
support, more specialized routines would be required.
In fact, all the types of data movement described here
pervade numerical computation and should be sup-
ported in future parallel languages such as High Per-
formance Fortran. Otherwise, every user will be re-
quired to write his own specialized embedded routines.
Continued lack of compiler support for basic commu-
nication kernels associated with data layout and move-
ment will not only greatly impede library development,
but will also impede the adoption of these libraries by
users because of interface problems.

In our work on SYISDA, we have developed three
kernels that provide the infrastructure for a “library”
for parallel eigensolvers and, to a more limited extent,
for numerical linear algebra computations. The first is
matrix multiplication, the primitive of choice in cur-
rent algorithmic design. The second, SBR, can in fact
be used in conjunction with any tridiagonal or banded
eigenvalue solver. Finally, the harness we have devel-
oped for managing the multiple subproblems produced
by SYISDA readily transfers to any algorithm based
on the invariant subspace decomposition approach. In
particular, our approach can be readily modified to
solve specialized partial spectrum problems, including
those where the eigenvalues in a specified interval are
desired and those where only the invariant subspace
corresponding to eigenvalues in a specified interval is
sought.

Our preliminary experiments indicate that our par-
allel implementation of SYISDA provides excellent
scaling and accuracy. In addition to continuing our
studies of SYISDA and the data layout issues asso-
ciated with the kernels we are interested in, we are
also investigating variants of SYISDA aimed at re-
ducing the amount of time spent doing dense matrix
multiplication. A particularly promising algorithm,
SYBISDA | uses SBR to reduce A to a narrow band
and then periodically reduces matrices in the Eigen-

value Smoothing step to a narrow band. Multipli-
cation of two matrices of bandwidths b only requires
O(b*n) work versus O(n?) for two dense matrices. Fur-
thermore, the special properties of the iterates in the
Eigenvalue Smoothing step result in surprisingly
slow band growth in the iterated matrices. In our
sequential implementation, using specialized routines
for multiplying symmetric band matrices [31], the run
times for SYBISDA are competitive with the symmet-
ric QR algorithm. In fact, the time spent in SBR be-
comes the dominant time. SYBISDA uses essentially
the same harness as SYISDA and the two computa-
tional kernels of SBR and banded matrix multiplica-
tion. We intend to modify our current code to obtain
an implementation of SYBISDA and compare the two
algorithms.
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