
Integrated Support for Task and Data Parallelism�Mani ChandyCenter for Research on Parallel ComputationCalifornia Institute of TechnologyPasadena, CA 91125Ian FosterArgonne National LaboratoryArgonne, IL 60439Ken KennedyCharles KoelbelChau-Wen TsengCenter for Research on Parallel ComputationRice UniversityHouston, TX 77251-1892August 27, 1993

To appear in: Intl. J. Supercomputer Applications, Vol. 8.2 (Summer 1994)

AbstractWe present an overview of research at the CRPC designed to provide an e�cient, portableprogrammingmodel for scienti�c applications possessing both task and data parallelism. For-tran M programs exploit task parallelism by providing language extensions for user-de�nedprocess management and typed communication channels. A combination of compiler andrun-time system support ensures modularity, safety, portability, and e�ciency. Fortran Dand High Performance Fortran programs exploit data parallelism by providing language ex-tensions for user-de�ned data decomposition speci�cations, parallel loops, and parallel arrayoperations. Compile-time analysis and optimization yield e�cient, portable programs. Wedesign an interface for using a task-parallel language to coordinate concurrent data-parallelcomputations. The interface permits concurrently executing data-parallel computations tointeract through messages. A key notion underlying the proposed interface is the integrationof Fortran M resource management constructs and Fortran D data decomposition constructs.�This research was supported by the National Science Foundation's Center for Research in Parallel Compu-tation, under Contract CCR-8809615. 1

1 IntroductionThe primary goal of the Center for Research on Parallel Computation is to make parallelcomputers easier to use. We feel that one of the fundamental problems in the use of parallelcomputers today is the di�culty of writing parallel software. Part of this di�culty stemsfrom the fact that no universally acceptable programming paradigm for parallel machineshas been developed. Some programs are most naturally considered as sets of interacting,large-grain tasks; others are naturally thought of as many �ne-grain operations performedon the elements of a large data structure; still other programs may have other naturalexpressions. Moreover, the same paradigm may be easy to implement on one architecture,but very di�cult to implement e�ciently on another. Recent reports have indicated thateven single applications may require several paradigms in their implementation; see, forexample, (Federal HPCC Program, 1993).In this paper we approach this multiple-paradigm situation directly: We describe twostate-of-the-art parallel programming paradigms for supporting task and data parallelism,show how they can be integrated, and provide a preliminary design for the necessary inter-faces. Some of these ideas are being investigated in a compilation system under developmentat Argonne National Laboratory and Syracuse University (Foster et al., 1994). First, how-ever, we de�ne both task parallelism and data parallelism, then motivate their integration.1.1 Task ParallelismIn a task-parallel programming paradigm the program consists of a set of (potentially dissim-ilar) parallel tasks that interact through explicit communication and synchronization. Taskparallelism may be both synchronous and asynchronous. In this paper, we use Fortran M(FM) as an example of a language supporting such a programming paradigm (Foster andChandy, 1992; Chandy and Foster, 1993). Section 2 describes the FM language in moredetail. Here, we focus on the advantages and disadvantages of the task-parallel paradigm.A major advantage of task parallelism is its exibility. Because of its emphasis on explicitcoordination of individual tasks (or processes, as they are often called), task parallelism canbe used to exploit both structured and unstructured forms of parallelism. Many scienti�capplications contain task parallelism. For example, in a climate model application the at-mospheric and ocean circulation may be computed in parallel as two separate tasks. Atask-parallel language can express this relationship easily, even if di�erent methods are usedfor the two circulation models. Another natural application of task-parallel languages isreactive systems in which tasks must produce output in response to changing inputs, ina time-dependent manner. Tasks may also be organized as a pipeline to exploit pipelineparallelism.Since interactions between tasks are explicit, the programmer can write programs thatexploit parallelism not detectable automatically by compiler techniques. The programmermay also carefully tune the application so that it includes only the communication andsynchronization that is actually necessary or e�cient, hence reducing reliance on compileroptimizations. In general, task parallelism is less dependent on advanced compiler technologythan is data parallelism; in many cases, all that is strictly necessary is the translation oftask interactions into appropriate low-level primitives on the target architecture. However,2

compiler technology is still important as a means of guaranteeing correct execution andpermitting representations of communication and synchronization that are convenient forthe programmer.A disadvantage of the task-parallel programming model is that it requires extra e�ortfrom the programmer to create explicit parallel tasks and manage their communication andsynchronization. It is also often convenient to consider data owned by di�erent tasks asbeing part of a single data structure; many task-parallel languages do not support this viewdirectly. Because communication and synchronization are explicit, changing the manner aprogram is parallelized may require extensive modi�cations to the program text.1.2 Data ParallelismIn a data-parallel programming paradigm the program consists of a series of operationsthat are applied identically to all or most elements of a large data structure. Parallelismmay be implicit or explicit, with additional annotations describing how the data structuresare decomposed and distributed among the physical processors. Data parallelism may beboth regular (e.g., dense matrices) or irregular (e.g., sparse matrices). In this paper, weuse Fortran D (Fox et al., 1990) and High Performance Fortran (HPF) (High PerformanceFortran Forum, 1993) as examples of languages that support a data-parallel programmingparadigm. Section 3 describes these languages in more detail.A major advantage of data parallelism derives from its scalability. Because operationsmay be applied identically to many data items in parallel, the amount of parallelism is dic-tated by the problem size. Higher amounts of parallelism may be exploited by simply solvinglarger problems with greater amounts of computation. Data parallelism is also simple andeasy to exploit. Because data parallelism is highly uniform, it can usually be automaticallydetected by an advanced compiler, without forcing the user to manage explicitly processes,communication, or synchronization.Many scienti�c applications may be naturally speci�ed in a data-parallel manner. Op-erations on whole data structures, such as adding two arrays or taking the inner productof two vectors, are common, as are grid-based methods for solving partial di�erential equa-tions (PDEs). Since data-parallel programs are relatively close to sequential programs, manycompiler analysis and optimization techniques can be adapted to produce parallel programsautomatically. The mapping of data and computation can a�ect performance signi�cantly(Knobe, Lukas, and Steele, 1990). With data-parallel programs, relatively simple data de-composition annotations are su�cient to achieve high performance on advanced parallelarchitectures. If communication and parallelism are implicit (as in HPF), the user can easilytune the program by small modi�cations to its data decomposition annotations.A disadvantage of the data-parallel programming paradigm is that it is less general thantask parallelism. Data-parallel programs may be converted into task-parallel programs byinvesting programmer e�ort, but the reverse is di�cult to achieve with reasonable e�ciency.Applications that require heterogeneous processing are at best di�cult to express in data-parallel languages. Also, despite promising early tests it is not known how well compilerscan optimize data-parallel programs. 3

1.3 Integrating Parallel ParadigmsAs the discussions above make clear, task parallelism and data parallelism have complemen-tary strengths that are appropriate for di�erent problems. Perhaps less obvious is the factthat both paradigms may be needed in the same application. An excellent example of thisis a multidisciplinary simulation. Simulating high-performance aircraft may involve manymodels, including uid dynamics, structural mechanics, surface heating, and controls. Someformulations of such applications allow several disciplines to be solved simultaneously viatask parallelism. Within each discipline the computations often have substantial data par-allelism; this is certainly the case for the uid dynamics, structural mechanics and surfaceheating models in our example. Other examples of mixed task and data parallelism include(Federal HPCC Program, 1993)� environmental models: atmospheric dynamics, surface water, and ground water mod-els;� predictive cellular organelle models: uid dynamics, rigid body mechanics, moleculardynamics, and other models; and� multilevel models in a single discipline: linear, Euler, and Navier-Stokes models inaerodynamics.Many Grand Challenge computations depend on such multidisciplinary approaches.Applying only one parallel paradigm to the applications listed above may result in lowerperformance than an integrated approach might achieve. If only the task-parallel level isused, then only a limited amount of parallelism may be available. In our multidisciplinaryaircraft simulation example, there are only four tasks at this level; running such a programon a 128-processor hypercube would waste most of the available capacity.Attacking only the data-parallel level may cause other ine�ciencies. Di�erent disciplinesmay have di�erent levels of parallelism, making it di�cult to map them all to the samemachine. Moreover, communication and synchronization overheads grow with machine size;at some point, it is not pro�table to apply more processors to a single data-parallel compu-tation.Experience suggests that the best performance can often be obtained by combining ap-proaches. Each high-level task can be a data-parallel computation. The task-parallel lan-guage can be used to allocate machine resources to balance the computational load andcoordinate between these tasks. Within individual tasks, a data-parallel language can beused to take advantage of the parallelism within the discipline. Proper balancing of thehigh-level tasks and e�cient computation within each data-parallel task can then ensurethat the machine is e�ciently used.The situation above, although common, is not the only possibility for combining thetwo paradigms. It may also be desirable for a data-parallel program to call a task-parallellanguage. For example, all but one phase of an application may be naturally data parallel.Using task parallelism on the remaining phase (assuming it is appropriate) then removes asequential bottleneck from the overall program.The remainder of this paper describes programming languages and techniques for sup-porting the task-parallel and data-parallel programming models and technical requirements4

for their integration. Sections 2 and 3 describe the relevant features of the FM and For-tran D/HPF languages. Section 4 describes the design of the interface and some implemen-tation issues. Section 5 describes related work, and Section 6 gives our conclusions and plansfor future work.2 Fortran MFortran M (FM) is a language designed by researchers at Argonne and Caltech for expressingtask-parallel computation (Foster and Chandy, 1992). It comprises a small set of extensionsto Fortran and provides a message-passing parallel programming model, in which programscreate processes that interact by sending and receiving messages on typed channels. Twokey features of the extensions are their support for determinism and modularity.A prototype FM compiler has been developed and used to build libraries of parallel pro-grams in linear algebra, spectral methods, mesh computations, computational chemistry, andcomputational biology. The compiler is available by anonymous ftp from info.mcs.anl.gov,in directory pub/pcn.FM is currently de�ned as extensions to Fortran 77. However, equivalent extensions caneasily be de�ned for Fortran 90 (American National Standards Institute, 1990), and we planto extend the FM compiler to accept Fortran 90 syntax. For clarity, we use some Fortran 90syntax in subsequent sections when discussing integration of FM and HPF.2.1 Concurrency and CommunicationFM provides constructs for de�ning program modules called processes; for specifying thatprocesses are to execute concurrently; for establishing typed, one-to-one communicationchannels between processes; and for sending and receiving messages on channels. Send andreceive operations are modeled on Fortran �le I/O statements, but operate on port variablesrather than unit numbers.The FM programming model is dynamic: processes and channels can be created anddeleted dynamically, and references to channels can be included in messages. Nevertheless,computation can be guaranteed to be deterministic; this feature avoids the race conditionsthat plague many parallel programming systems (Pancake and Bergmark, 1990). Determin-ism is guaranteed by de�ning operations on port variables to prevent multiple processes fromsending concurrently, by requiring receivers to block until data is available, and by enforcing acopy-in/copy-out semantics on variables passed as arguments to processes. Nondeterministicconstructs are also provided for programs that operate in nondeterministic environments.Figure 1 illustrates the use of several FM constructs. The �rst code fragment uses theCHANNEL statement to create two channels and a process block (delineated by PROCESSESand ENDPROCESSES statements) to create two processes called CONTROLS and DYNAMICS. Thesecond code fragment implements the CONTROLS process; it uses the SEND and RECEIVEstatements to send and receive data on the ports passed as arguments. Message formats arede�ned by the port declarations, allowing a FM compiler to generate e�cient communicationcode and to convert to a machine-independent format in a heterogeneous environment.5

PROGRAM AERODYNAMICSINPORT (INTEGER, REAL X(10,20), REAL Y(10,20)) PIOUTPORT (INTEGER, REAL X(10,20), REAL Y(10,20)) PO...CHANNEL(IN=PI,OUT=PO)CHANNEL(IN=QI,OUT=QO)...PROCESSESPROCESSCALL CONTROLS(PI,QO)PROCESSCALL DYNAMICS(QI,PO)ENDPROCESSESENDPROCESS CONTROLS(IN,OUT)INPORT (INTEGER, REAL X(10,20), REAL Y(10,20)) INOUTPORT (INTEGER, INTEGER, REAL X(10,10,3)) OUT...SEND(OUT) I, J, ARECEIVE(IN) NSTEP, U, V...END Figure 1 Example FM Program2.2 Resource ManagementFM resource management constructs allow the programmer to specify how processes anddata are to be mapped to processors and hence how computational resources are to beallocated to di�erent parts of a program. These constructs inuence performance but notcorrectness. Hence, we can develop a program on a uniprocessor and then tune performanceon a parallel computer by changing mapping constructs.FM process placement constructs are based on the concept of a virtual computer: acollection of virtual processors, which may or may not have the same shape as the physicalcomputer on which a program executes. A virtual computer is an N -dimensional array,and mapping constructs are modeled on array manipulation constructs. The PROCESSORSdeclaration speci�es the shape and dimension of a processor array, the LOCATION annotationmaps processes to speci�ed elements of this array and, as in PCN, the SUBMACHINE annotationspeci�es that a process should execute in a subset of the array (Foster, Olson, and Tuecke,1992). For example, the following code places the CONTROLS and DYNAMICS processes ondi�erent virtual processors.PROCESSORS(2)... 6

PROCESSESPROCESSCALL CONTROLS(...) LOCATION(1)PROCESSCALL DYNAMICS(...) LOCATION(2)ENDPROCESSESIn contrast, the following code places each process in a submachine comprising 10 virtualprocessors. This would be useful, for example, if the processes were themselves parallelprograms, written in FM or HPF.PROCESSORS(20)...PROCESSESPROCESSCALL CONTROLS(...) SUBMACHINE(1:10)PROCESSCALL DYNAMICS(...) SUBMACHINE(11:20)ENDPROCESSES2.3 Data DistributionAlthough the basic paradigm underlying FM is task parallelism, the language also providessome support for data-parallel computation. Inspired by Fortran D and HPF, it permitsprograms to use data distribution statements (as discussed in the next section) to createdistributed arrays (Chandy and Foster, 1993). (However, this capability is not supported inthe prototype compiler.) Semantically, distributed arrays are indistinguishable from nondis-tributed arrays. That is, they are accessible only to the process in which they are declaredand are copied when passed as arguments to subprocesses. Operationally, elements of adistributed array are distributed over the nodes of the virtual computer in which the processis executing. Hence, operations on a distributed array may require communication.Data-distribution statements allow FM programs to declare arrays that are larger thancan �t in a single processor's memory, and to specify certain limited classes of data-parallelcomputations on these arrays. However, their principal utility is as a mechanism for inte-grating task- and data-parallel computations. This application is discussed in detail below.2.4 Implementation IssuesThe Fortran subset of FM can be compiled with conventional compilers. Hence, the primarydi�culty that arises in compiling FM is achieving e�cient implementations of communica-tion, synchronization, and process-management mechanisms. A prototype FM compiler hasbeen developed at Argonne to facilitate both exploration of these issues and experimentationwith task-parallel programming.The prototype compiler is a preprocessor that translates FM programs into Fortran 77plus calls to a runtime library called Nexus. Nexus provides basic services required to im-plement FM on parallel computers, such as multiple threads of control, global pointers, andremote procedure calls. Nexus services may be implemented using di�erent technologies ondi�erent parallel computers: for example, portable message-passing libraries on heteroge-neous networks, low-level message-passing or active messages on multicomputers, shared-memory operations on multiprocessors, or Windows NT services on networks of PCs.7

The prototype compiler is currently operational on networks of workstations, the IBMSP-1 multicomputer, and the CRAY C90 (Foster, Olson, and Tuecke, 1993). It supportsall language constructs except those concerned with data distribution. Preliminary experi-ments suggest that the performance of basic communication and synchronization operationsis competitive with, and in some cases superior to, conventional message-passing libraries(Foster and Chandy, 1992).3 Fortran D and High Performance FortranFortran D was an early language designed by researchers at Rice and Syracuse for expressingdata-parallel computation (Fox et al., 1990). It provided data decomposition speci�cations,parallel loops, and methods for specifying reductions. Fortran D was designed to supportmachine-independent parallel programming and was motivated by the observation that fewlanguages support e�cient data placement (Pancake and Bergmark, 1990). It brought to-gether ideas found in earlier parallel languages such as CM Fortran (Thinking MachinesCorporation 1991) and Kali (Koebel and Mehrotra, 1991), but in a uni�ed framework de-signed to permit advanced compiler analysis and optimization.Fortran D sparked widespread interest and strongly inuenced the development of HighPerformance Fortran (HPF) (High Performance Fortran Forum, 1993), a set of extensionsand modi�cations to Fortran 90 de�ned by a coalition of industry, government, and academicresearchers with a broadly similar philosophy. The goals of HPF are to support data-parallelprogramming and high performance on a variety of advanced parallel architectures whileminimizing deviation from the Fortran standard. HPF possesses data decomposition speci�-cations similar to those in Fortran D, as well as additional extensions for parallel statements,intrinsic functions, extrinsic procedures, etc. We will use HPF syntax throughout this pa-per; however, our remarks regarding implementation are derived from our experience on theFortran D compiler.Generally speaking, HPF supports data-parallel programs in two ways:� De�ning operations on the elements of large data structures, such as array expressions.� Partitioning the large data structures among the processors of a parallel machine.The compiler is then responsible for using the data partitioning information to assign thecomputations to the processors.We present only an overview of the HPF language; see (American National StandardsInstitute, 1990) for the full language.3.1 Parallel OperationsHPF incorporates all of Fortran 90, including data-parallel operations such as array ex-pressions and assignment, array intrinsics, and where statements. HPF adds a number ofadditional data-parallel features, including new functions for reductions, combining scatters,and pre�x operations. It generalizes array assignment using the FORALL construct and pro-vides an INDEPENDENT assertion that loops may be executed in parallel. In addition to these8

explicit parallel features, some HPF systems automatically extract implicit parallelism fromsequential constructs such as DO loops (Applied Parallel Research, 1992). The implementa-tion described in Section 3.4 applies to either explicit or implicit parallelism.HPF also supports an interface to other programming paradigms through the declarationof EXTRINSIC procedures. When invoked, an extrinsic procedure is executed on all proces-sors assigned to the HPF program. Local sections of distributed arrays may be passed asparameters to the extrinsic procedure; it can perform local computations and communicatewith other processors. Control returns to the HPF program when all processors exit fromtheir extrinsic procedure.3.2 Data DecompositionThe placement of data and computation signi�cantly impacts performance on modern com-puter architectures. Therefore, to enhance e�ciency, HPF augments Fortran programs witha set of data decomposition speci�cations. These speci�cations are simply hints to the com-piler; if they are ignored, the program can be run without change on a sequential machine.Compilers for parallel machines can use the speci�cations not only to decompose data struc-tures but also to control parallelism, based on the principle that only the owner of a datumcomputes its value. In other words, the data decomposition also speci�es the distribution ofthe work in the Fortran program.HPF approaches the data decomposition problem by noting that there are two levels ofparallelism in data-parallel applications. First, there is the question of how arrays should bealigned with respect to one another, both within and across array dimensions. We call this theproblem mapping induced by the structure of the underlying computation. It represents theminimal requirements for reducing data movement for the program and is largely independentof any machine considerations. The alignment of arrays in the program depends on thenatural �ne-grain parallelism de�ned by individual members of data arrays. HPF speci�esthis level with the ALIGN directive, which creates a correspondence between the elements oftwo arrays.Second, there is the question of how arrays should be distributed onto the actual parallelmachine. We call this the machine mapping caused by translating the problem onto the �niteresources of the machine. It is dependent on the topology, communication mechanisms, sizeof local memory, and number of processors in the underlying machine. Data distributionprovides opportunities to reduce data movement, but must also maintain load balance. Thedistribution of arrays in the program depends on the coarse-grain parallelism de�ned by thephysical parallel machine.HPF speci�es this machine mapping with the DISTRIBUTE directive, which divides eachdimension according to a prede�ned pattern. The patterns available in HPF are BLOCK (con-tiguous, equal-sized ranges of elements), CYCLIC (every P th element on the same processor,where P is the number of processors), and * (a dimension that is not distributed). In ad-dition, BLOCK and CYCLIC can take a parameter giving the number of elements in a block.Figure 2 shows several possible data decompositions in HPF. We believe that this two-phasestrategy for specifying data decomposition is natural for the computational scientist and isalso conducive to modular, portable code. 9

DISTRIBUTE
DISTRIBUTE

JI ALIGN Y(I,J)with B(I-2,J+2)
B(CYCLIC,*)
B(BLOCK,*)

B(CYCLIC,CYCLIC)
B(*,BLOCK)

with B(J+2,I-2)ALIGN Y(I,J)
DISTRIBUTE
DISTRIBUTE DISTRIBUTE

DISTRIBUTE
ALIGN Y(I,J)with A(I)
B(BLOCK,BLOCK)
B(BLOCK,CYCLIC)Figure 2 HPF Data Decomposition Speci�cations3.3 Di�erences between Fortran D and HPFThough there are many syntactic di�erences between Fortran D and HPF, their basic ap-proach is quite similar. We plan to resolve these di�erences in the future by adapting theFortran D compiler to accept HPF syntax. The two languages have di�erent semantics forthe FORALL construct, but this does not a�ect this paper.Two areas explored by the Fortran D compiler are interprocedural compilation and irreg-ular computations. To permit separate compilation, HPF provides language features thatde�ne the e�ect of data decomposition speci�cations at subprogram boundaries. In compar-ison, the Fortran D compiler relies on interprocedural analysis to determine data mappingsacross procedure boundaries. The goal is to evaluate the feasibility and usefulness of em-ploying compiler analysis, reducing the burden on the programmer. Since Fortran D permits10

irregular data distributions, it also serves as a basis for investigating compiler and run-timesupport for irregular computations.In summary, HPF is more carefully de�ned and contains features needed for supportingproduction-level scienti�c applications, while Fortran D provides a set of features designed tosupport interesting compiler research. We plan to continue Fortran D as a separate projectto explore methods of replacing language features with advanced compiler analysis.3.4 Implementation IssuesIn order for HPF to be successful, HPF programs must be able to achieve reasonably e�cientperformance on a wide variety of parallel architectures. Key to meeting this requirement isthe development and implementation of advanced compiler analysis and optimization. Inthis section we provide a brief description of HPF compilation strategy, based on experienceswith the prototype Fortran D compiler at Rice University. Our philosophy is to exploit large-scale data parallelism using the owner computes rule, where every processor only performscomputation for data it owns (Callahan and Kennedy, 1989; Rogers and Pingali, 1989; Zima,Bast, andGerndt, 1988). We also identify cases where the owner computes rule is relaxed toimprove performance.The basic approach taken by the prototype Fortran D compiler is to convert input For-tran D programs into single-program, multiple-data (SPMD) node programs with explicitmessage-passing. The two main concerns for the prototype compiler are to ensure that (i)data and computations are partitioned across processors and (ii) communication is generatedwhere needed to access nonlocal data. The compiler applies an optimization strategy basedon data dependence that incorporates and extends previous techniques. We briey describemajor steps of the compilation process below; details are presented elsewhere (Hiranandani,Kennedy, and Tseng, 1992; Hall et al., 1992; Tseng, 1993):1. Analyze program. The Fortran D compiler performs scalar dataow analysis, sym-bolic analysis, and dependence testing to determine the type and level of all datadependences.2. Partition data. The compiler analyzes Fortran D data decomposition speci�cationsto determine the decomposition of each array in a program. Alignment and distribu-tion statements are used to calculate the array section owned by each processor.3. Partition computation. The compiler partitions computation across processors us-ing the \owner computes" rule|where each processor only computes values of data itowns (Callahan and Kennedy, 1988; Rogers and Pingali, 1989; Zima, Bast, and Gerndt,1988). The left-hand side of each assignment statement is used to calculate its localiteration set, the set of loop iterations that cause a processor to assign to local data.4. Analyze communication. Based on the computation partition, references that re-sult in nonlocal accesses are marked.5. Optimize computation and communication. Nonlocal references are examinedto determine optimization opportunities. The key optimization, message vectoriza-tion, uses the level of loop-carried true dependences to extract element messages out of11

f� HPF Program �gREAL, DIMENSION(100,100) :: A, B!HPF$ PROCESSORS DIMENSION(4) :: PROCS!HPF$ ALIGN A(I,J) WITH B(I,J)!HPF$ DISTRIBUTE A(*,BLOCK) ONTO PROCSA(2:99,2:99) = 0.25*(B(1:98,2:99) + B(3:100,2:99)+ B(2:99,1:98) + B(2:99,3:100))+f� HPF Compiler Output �gREAL A(100,25), B(100,0:26)my$p = mynode() f� 0: : :3 �glb$1 = max((my$p*25)+1,2)-(my$p*25)ub$1 = min((my$p+1)*25,99)-(my$p*25)if (my$p .GT. 0) send B(2:99,1) to my$p-1if (my$p .LT. 3) send B(2:99,25) to my$p+1if (my$p .GT. 0) recv B(2:99,26) from my$p+1if (my$p .LT. 3) recv B(2:99,0) from my$p-1do j = lb$1, ub$1do i = 2,99A(i,j) = 0.25*(B(i-1,j) + B(i+1,j) +B(i,j-1) + B(i,j+1))enddoenddo Figure 3 HPF Compilation Processloops, combining them into less expensive vectors (Balasundaram et al., 1990; Zima,Bast, and Gerndt, 1988).6. Manage storage. Bu�ers or \overlaps" (Zima, Bast, and Gerndt, 1988) created byextending the local array bounds are allocated to store nonlocal data.7. Generate code. The compiler instantiates the communication, data, and compu-tation partition determined previously, generating the SPMD program with explicitmessage-passing that executes directly on the nodes of the distributed-memory ma-chine.Figure 3 displays how a simple Jacobi solver is written as a HPF program and compiledinto SPMD message-passing code for a four-processor machine. Computation is parallelizedby partitioning iterations of the i loop across processors. Communication is extracted andcombined into vector messages outside both the i and j loops. Preliminary experimentalresults show that the prototype Fortran D compiler can closely approach the performanceof hand-optimized code for stencil computations, but requires additional improvements forlinear algebra and pipelined codes (Hiranandani, Kennedy, and Tseng, 1993).12

4 Integrating FM and HPFIn this section, we describe techniques that can be used to interface a task-parallel lan-guage (Fortran M) and a data-parallel language (High Performance Fortran). The interfaceenables the use of the task-parallel language to coordinate concurrent data-parallel compu-tations, allows data-parallel computations to invoke task-parallel computations, and permitsconcurrently-executing data-parallel computations to interact by exchanging messages. Theinterface is conceptually simple and is expected to be useful in a wide range of scienti�c andengineering applications, particularly in the area of multidisciplinary design and optimiza-tion.A key notion underlying the proposed interface is the integration of FM resource man-agement constructs and HPF data distribution constructs. This allows a coordinating task-parallel computation to control the initial location of both distributed data and the data-parallel computations that operate on this data. For example, a coordinating task-parallelprogram can partition a parallel computer into several submachines and invoke a di�erentdata-parallel computation in each.4.1 Calling HPF from FMThe ability to call HPF from FM allows FM programs to be used to coordinate concurrentexecution of di�erent data-parallel programs. Two main issues must be addressed in anFM/HPF interface: resource management and data sharing. In addition, some method ofidentifying data-parallel procedures to the task-parallel language compiler is needed, sincedi�erent linkage conventions are needed for the di�erent programming models. In the fol-lowing, we use the statement HPFCALL for this purpose.We �rst consider resource management. The virtual computer in which a HPF procedureis to execute may be speci�ed via a SUBMACHINE annotation on the call; if none is provided,the HPF procedure executes in the same virtual computer as the calling process. Data andcomputation for a HPF procedure called from FM are distributed only over this virtual com-puter, rather than over all processors, as would be case in a pure data-parallel programmingsystem. For example, the following code calls the HPF routines CONTROLS and DYNAMICS,invoking each in a virtual computer of size 10. Arrays X and Y are passed as arguments. (Inpractice, we also need to provide a mechanism by which these processes can communicate.This issue is discussed below.)PROGRAM PROG1PROCESSORS(20)REAL X(1000,1000), Y(1000,1000)PROCESSESHPFCALL CONTROLS(X) SUBMACHINE(1:10)HPFCALL DYNAMICS(Y) SUBMACHINE(11:20)ENDPROCESSESIn contrast, the following code locates the two HPF computations on the same 10 pro-cessors: 13

PROGRAM PROG2PROCESSORS(10)REAL X(1000,1000), Y(1000,1000)PROCESSESHPFCALL CONTROLS(X)HPFCALL DYNAMICS(Y)ENDPROCESSESIt may happen that FM arrays passed as arguments to a HPF program are not distributedin the manner expected by the HPF program. (Indeed, they may not be distributed at all!)Hence, redistribution operations may be required to convert FM data distributions into thoserequired for the HPF computation. Similar redistribution operations may be required upontermination of the HPF computation, prior to passing data back to the calling FM program.In the example above, arrays X and Y are not distributed. Hence, redistribution is requiredto convert X and Y to whatever distribution is required in CONTROLS and DYNAMICS. This mayinvolve considerable communication. FM programs can also de�ne distributed arrays usingHPF-style data-distribution statements (Chandy and Foster, 1993). This is illustrated inthe following code. Arrays X and Y are distributed over the 10 nodes of the virtual computerin which program PROG3 is executing. In this case, redistribution is required only if theCONTROLS and DYNAMICS computations use a di�erent distribution.PROGRAM PROG3PROCESSORS(10)REAL, DIMENSION(1000,1000) :: X, YALIGN X(I,J) WITH Y(I,J)DISTRIBUTE X(*,BLOCK)PROCESSESHPFCALL CONTROLS(X)HPFCALL DYNAMICS(Y)ENDPROCESSES4.2 Calling FM from HPFAs noted previously, a data-parallel computation may include a phase that is not naturallydata parallel. In a purely data-parallel programming system, this phase would executesequentially, introducing a sequential bottleneck. Hence, we allow HPF programs to call FMroutines; this permits a programmer to avoid such bottlenecks by calling FM routines thatimplement appropriate task-parallel algorithms.The issues involved in the HPF/FM interface are essentially the same as those involvedin the FM/HPF interface. A special notation (e.g., FMCALL) is required to distinguish a callto a FM procedure. The FM procedure executes on the same (virtual) processors as thecalling HPF program, and redistribution operations may be required for arrays passed asarguments. 14

4.3 Communicating between HPF ComputationsTwo concurrent data-parallel computations initiated by a coordinating task-parallel compu-tation may need to exchange data. This is possible in principle if the coordinating task-parallel computation establishes channels and passes the appropriate ports to the data-parallel program. However, it is necessary to de�ne the mechanism by which data-parallelprograms operate on these ports.In a truly integrated task-parallel/data-parallel programming language, SEND and RECEIVEoperations would be incorporated into HPF. This would require some care to avoid creatingmultiple writers or readers. One approach would be to designate one processor to perform allSEND and RECEIVE operations in an HPF program. While conceptually simple, this would se-rialize the communication to and from that process. Another possibility would be to provideparallel INPORT and OUTPORT data types and data-parallel SEND and RECEIVE statements.This would allow many processes to cooperate in sending data to other process groups,and would be particularly appropriate for communicating distributed arrays or other datastructures. This approach is being explored in a compilation system under development atArgonne National Laboratory and Syracuse University (Foster et al., 1994). A disadvantageis that HPF does not currently provide such operations.An alternative approach is to use an existing mechanism, namely, HPF's extrinsic pro-cedure facility (High Performance Fortran Forum, 1993). In the HPF code, an extrinsicprocedure call is made to a FM subroutine. This has the e�ect of calling the FM routine onevery processor that is executing the HPF routine, passing the local section of the distributedarray arguments on each processor, as well as copies of all scalar variables. For example,the following code calls the FM procedure FM_PROC. The EXTRINSIC declaration is needed toindicate to the compiler that FM_PROC is an extrinsic procedure, and thus may use a di�erentlinkage convention from that used by HPF subroutines.INTERFACEEXTRINSIC SUBROUTINE FM_PROC(PI, Y, Z)INTEGER PI(10)REAL Y(1000)REAL Z!HPF$ DISTRIBUTE PI(BLOCK), Y(CYCLIC)END SUBROUTINEEND INTERFACE...CALL FM_PROC(A, B, C)FM code called in this way can perform SEND and RECEIVE statements on ports passedas distributed array arguments. (Single ports cannot be passed as scalar arguments to HPFprocedures, since these will be duplicated at every processor, defeating determinism.)A di�culty encountered when de�ning this interface is that HPF does not have a portdata type. In a full HPF implementation, this could be solved by de�ning INPORT andOUTPORT as Fortran 90 abstract data types. However, no full HPF implementation existsyet, least of all in our prototype implementations. A less satisfactory solution to this problemis to use some conventional representation of port arrays inside HPF computations, such as15

arrays of integers. Use of these port arrays as ordinary integers would, of course, have to berestricted by programming convention. For example, multiplying two ports together wouldnot be meaningful.4.4 Implementation IssuesWe discuss briey some practical issues that must be addressed when interfacing FM andHPF.We �rst consider structural issues that arise when attempting to integrate existing FMand HPF compilers. FM is designed to support dynamic task-parallel computations in whichthe number and identify of the processors allocated to a computation may be determined onlyat runtime, and several computations may be mapped to the same processor. Hence, the FMruntime is multithreaded, and mapping decisions typically depend on runtime parameters.In contrast, Fortran D and HPF compilers normally assume that they are generating code fora dedicated machine of known size. The runtime code assumes a single thread per processor,and mapping decisions are made at compile time whenever possible.These di�erences complicate the development of an integrated FM/HPF system based onexisting compilers. A full FM/HPF programming system must allow multiple HPF and/orFM computations to execute on each physical processor as independent threads. However,existing Fortran D and HPF compilers do not support this level of generality. In a FM/HPFprototype, it may be desirable to make the restriction that only one HPF or FM node canbe located on each physical processor, so as to simplify implementation.In a full FM/HPF programming system, the size and physical location of the virtualcomputer within which a FM process executes are not necessarily known at compile time.Hence, a FM process must pass a representation of this virtual computer to any HPF routinethat it calls, and the HPF compiler must be able to generate code that uses the processorsspeci�ed by this representation. This requirement can be handled in several ways:� Part of the linkage convention can incorporate a processor count and a vector of pro-cessor identi�ers. This approach has the advantage of conceptual simplicity. However,many prototype HPF compilers (including the Rice Fortran 77D compiler) require thenumber of processors to be known at compile time. Such systems would require con-siderable rewriting to interface with task-parallel languages. Other systems, such asthe Fortran 90D compiler designed at Syracuse University, rely on �nely tuned libraryroutines for e�ciency. It is unclear how dynamically chosen processor sets would a�ecttheir performance.� The FM processes calling HPF routines can be restricted in some way. For example,routines compiled for exactly 10 processors might be called unchanged from FM if thecalling process were guaranteed to use 10 processors. (Some additional work might beneeded to deal with the identities of the processors.) This approach has the advantagethat it could be implemented quickly, but is not a viable alternative in the long run.Similar issues arise when HPF calls FM.A second set of issues relates to the representation of data passed between task- anddata-parallel computations as arguments or in common blocks. FM and HPF compilers16

and runtime systems must either use common data representations or provide facilities forcoverting between di�erent representations. In addition, as discussed above, redistributionoperations may be required. Interface speci�cations will probably be required so as to enableFM and HPF compilers to generate correct code at language boundaries without the needfor interprocedural analysis.Conventions for passing procedure arguments are also vital when HPF calls FM viathe extrinsic procedure facility. In particular, every process in FM has a private memoryspace; in HPF, all memory is conceptually shared. This dichotomy can be addressed byproviding a translation mechanism between the two paradigms. In essence, what is neededis a way to translate a FM local address (process identi�er plus position in a local array)into an HPF global address (position in the global array, given the array distribution). TheHPF language speci�cation describes one possible translation mechanism (High PerformanceFortran Forum, 1993), and several of the data-parallel languages in Section 5 give similarde�nitions.In an aggressive optimizing compiler, however, the local to global translation may becomequite complex. In particular, such compilers often de�ne overlap areas at the edges ofthe array section owned by a node. Adding these to the translation (and to the memoryallocation) is tedious, but necessary for correctness. Moreover, the sizes of the overlap areasmay depend on the HPF code being compiled and on the compiler in use. This situationsuggests that the HPF compiler must produce query routines for memory allocation in theFM calling routines. Such interactions must be built into the system from the beginningrather than as an afterthought.A third set of issues relates to compiler analysis and optimization. HPF and HPF-likecompilers rely heavily on program analysis. For example, the Rice Fortran 77D compilerperforms both intra- and inter-procedural analysis to allocate memory, parallelize computa-tion, and manage communication. This implies that the compiler needs information aboutall parts of the program, such as which procedure starts execution, what procedures can becalled, and what data can be accessed by the called procedures. In a combined HPF/FMsystem, the compiler must generate this information either by analyzing both Fortran di-alects directly or by relying on summary data for routines that it cannot analyze. As a�rst step, we propose to provide summary information regarding FM routines to the HPFcompiler using auxiliary �les.Once the analysis is completed, optimization by the data-parallel compiler may alsointroduce complexity. We have already mentioned overlap areas as a possible interaction.Another example is interprocedural optimization of communication. Some research hasshown that moving communication across procedure boundaries can have great bene�ts(Hall et al., 1992). However, if the compiler assumes that such optimizations are performed,the FM programmer who wants to call an HPF routine may face serious di�culties. In e�ect,the task-parallel programmer would have to replicate the data-parallel compiler's analysis.One approach to this problem would be to make worst-case assumptions at all FM/HPFinterfaces. While limiting the compiler optimizations, this would minimize the programmer'swork. Another approach would be to provide an interface explaining the HPF compiler'simportant assumptions and optimizations; this would at least tell the FM programmer thepreconditions needed to call the HPF routine.Another class of interactions relates to the e�ectiveness of the data-parallel compilers17

when they are combined with task-parallel languages. HPF compilers usually assume thatthey are generating code for a dedicated machine, or at least a dedicated partition of a sharedmachine. The choices of computation and communication granularity are made based onestimates of performance in the dedicated environment. Such assumptions are clearly notvalid in FM's threaded environment, where multiple FM and HPF threads may execute on asingle processor. No research has been done to date on the e�ect of such multiprogrammingon code optimized by data-parallel compilers.5 Related WorkThere has been a large amount of research in the area of providing language and compilersupport for either task or data parallelism. Relatively few researchers, however, have focusedon the issue of integrating support for both types of parallelism. Languages for supportingor coordinating task-level parallelism include PCN (Chandy and Taylor, 1991; Foster, Olson,and Tuecke, 1992), Strand (Foster and Taylor, 1990), Linda (Carriero and Gelernter, 1989),and Delirium (Graham, Lucco, and Sharp, 1993). Tools for exploiting task-level parallelisminclude Schedule (Dongarra and Sorensen, 1987), Hence (Beguelin et al., 1991), and CODE(Newton and Browne, 1992). PCF Fortran exempli�es a parallel language for exploitingfork-join and loop-level parallelism (Parallel Computing Forum, 1991). In comparison withthese systems, Fortran M is designed to provide greater support for modularity and safety.Languages for expressing data-parallelism include Fortran 90 (American National Stan-dards Institute, 1990; CMF (Thinking Machines Corporation, 1991); Vienna Fortran (Chap-man, Mehrotra, and Zima, 1992), C* (Rose and Steele, 1987), Dataparallel C (Hatcherand Quinn, 1991), Dino (Rosing, Schnabel, and Weaver, 1991), Kali (Koelbel and Mehro-tra, 1991), and Paragon (Chase et al., 1991). Compilers for data-parallel programs includeAdapt (Merlin, 1991), Adaptor (Brandes, 1993) Aspar (Ikudome et al., 1990), Callahanand Kennedy (Callahan and Kennedy, 1988), Forge90 (Applied Parallel Research, 1992),Id Nouveau (Rogers and Pingali, 1989), and Superb (Zima, Bast, and Gerndt, 1988). TheFortran D compiler adapts techniques from several of these systems, but performs greatercompile-time analysis and optimization and relies less on language extensions and run-timesupport.Massingill describes mechanisms that allow the use of PCN to coordinate SPMD programswritten in message-passing C (Massingill, 1993). However, this framework is more restrictivethan that considered here, in that SPMD computations must execute on disjoint sets ofprocessors and cannot communicate. Delves et al. describe an extended Fortran 90 compilerwhich includes both message passing along channels (as extensions to �le I/O operations)and remote procedure calls (Delves et al., 1992). However, data distribution issues are notaddressed in their prototype implementation.One of the few systems to examine both types of parallelism, the iWarp compiler pursuesa sophisticated compile-time approach for exploiting both task and data parallelism on amesh-connected distributed-memory machine (Subhlok et al., 1993). The input Fortranprogram contains Fortran 90 array constructs, Fortran D data decomposition speci�cations,and parallel sections. The iWarp compiler analyzes statements and directives to produce auniform task graph labeled with communication edges, maps each task to a processor, and18

inserts communications. Depending on the problem size, the best performance is obtainedwhen exploiting task parallelism, data parallelism, or a combination of both. In comparisonwith the iWarp compiler, FM supports more general and dynamic forms of task parallelism,but requires the user to explicitly manage tasks and communication. The interface betweenFM and HPF reects the need to support arbitrary user-speci�ed tasks and communication.6 ConclusionsBoth task and data parallelism are important for many large scienti�c applications. Inthis paper, we have demonstrated language and compiler support for both task and dataparallelism. Fortran M programs exploit task parallelism by providing language extensionsfor user-de�ned process management and typed communication channels. Fortran D andHigh Performance Fortran (HPF) programs exploit data parallelism by providing languageextensions for user-de�ned data decomposition speci�cations, parallel loops, and parallelarray operations. Preliminary experiences show that both programming models are portableyet e�cient. We have also presented the design of an interface for integrating support forboth task and data parallelism. We believe future experiences will demonstrate its usefulness.ReferencesAmerican National Standards Institutte 1990. ANSI X3J3/S8.115. Fortran 90.Applied Parallel Research 1992. Forge 90 distributed memory parallelizer: User's guide,version 8.0 edition, Placerville, California: Applied Parallel Research.Balasundaram, V., Fox, J., Kennedy, K., and Kremer, U. 1990. An interactive environ-ment for data partitioning and distribution. In Proceedings of the 5th distributed memorycomputing conference, Charleston, S.C.Beguelin, A., Dongarra, J., Geist, G., Manchek, R., and Sunderam, V. 1991. Graphicaldevelopment tools for network-based concurrent supercomputing. In Proceedings of Super-computing '91, Albuquerque, N.M.Brandes, T. 1993. Automatic translation of data parallel programs to message passingprograms. In Proceedings of AP'93 international workshop on automatic distributed memoryparallelization, automatic data distribution and automatic parallel performance prediction,Saarbr�ucken, Germany.Callahan, D., and Kennedy, K. 1988. Compiling programs for distributed-memory multipro-cessors. J. Supercomputing 2:151{169.Carriero, N., and Gelernter, D. 1989. Linda in context. Comm. ACM 32(4):444{458.Chandy, K. M., and Foster, I. 1993. Deterministic parallel Fortran. In Proceedings of thesixth SIAM conference on parallel processing for scienti�c computing, Norfolk, Virginia.19

Chandy, K. M., and Taylor, S. 1991. An introduction to parallel programming. Jones andBartlett.Chapman, B., Mehrotra, P., and Zima, H. 1992. Programming in Vienna Fortran. Scienti�cProgramming 1(1):31{50.Chase, C., Cheung, A., Reeves, A., and Smith, M. 1991. Paragon: A parallel programmingenvironment for scienti�c applications using communication structures. In Proceedings ofthe 1991 international conference on parallel processing, St. Charles, Illinois.Delves, L., Craven, P., and Lloyd, D. 1992. A Fortran 90 compilation system for distributedmemory architectures. In Proceedings PACA92 conference, IOP.Dongarra, J., and Sorensen, D. 1987. SCHEDULE: Tools for developing and analyzingparallel Fortran programs. In The characteristics of parallel algorithms, edited by D. Gannon,L. Jamieson, and R. Douglass. Cambridge, Massachusetts: The MIT Press.Foster, I., Avalani, B., Choudhary, A., and Xu., M. A compilation system that integratesHigh Performance Fortran and Fortran M. In Proc. 1994 Scalable High Performance Com-puting Conf., Knoxville, Tenn., 1994.Foster, I., and Chandy, K. M. 1992. Fortran M: A language for modular parallel program-ming. Technical Report MCS-P327-0992, Argonne National Laboratory.Foster, I., Olson, R., and Tuecke, S. 1992. Productive parallel programming: The PCNapproach. Scienti�c Programming 1(1):51{66.Foster, I., Olson, R., and Tuecke, S. 1993. Programming in Fortran M. Technical ReportANL-93/26, Argonne National Laboratory.Foster, I., and Taylor, S. 1990. Strand: New concepts in parallel programming. EnglewoodCli�s, N.J.: Prentice-Hall.Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U., Tseng, C., and Wu, M.1990. Fortran D language speci�cation. Technical Report TR90-141, Dept. of ComputerScience, Rice University.Graham, S., Lucco, S., and Sharp, O. 1993. Orchestrating interactions among parallelcomputations. In Proceedings of the SIGPLAN '93 conference on program language designand implementation, Albuquerque, N.M.Federal HPCC Program 1993. Workshop and Conference on Grand Challenges Applicationsand Software Technology. GCW-0593. Pittsburgh, Pa.Hall, M. W., Hiranandani, S., Kennedy, K., and Tseng, C. 1992. Interprocedural compilationof Fortran D for MIMD distributed-memorymachines. In Proceedings of Supercomputing '92,Minneapolis, Minn. 20

Hatcher, P., and Quinn, M. 1991. Data-parallel programming on MIMD computers. Cam-bridge, Mass.: The MIT Press.High Performance Fortran Forum 1993. High Performance Fortran language speci�cation,version 1.0. Technical Report CRPC-TR92225. Center for Research on Parallel Computa-tion, Rice University, Houston, Texas.Hiranandani, S., Kennedy, K., and Tseng, C. 1992. Compiling Fortran D for MIMDdistributed-memory machines. Comm. ACM 35(8):66{80.Hiranandani, S., Kennedy, K., and Tseng, C. 1992. Evaluation of compiler optimizationsfor Fortran D on MIMD distributed-memory machines. In Proceedings of the 1992 ACMinternational conference on supercomputing, Washington, D.C.Hiranandani, S., Kennedy, K., and Tseng, C. 1993. Preliminary experiences with the FortranD compiler. In Proceedings of Supercomputing '93, Portland, Oregon.Ikudome, K., Fox, G., Kolawa, A., and Flower, J. 1990. An automatic and symbolic par-allelization system for distributed memory parallel computers. In Proceedings of the 5thdistributed memory computing conference, Charleston, S.C.Knobe, K., Lukas, J., and Steele, Jr., G. 1990. Data optimization: Allocation of arrays toreduce communication on SIMD machines. J. Parallel and Distributed Computing 8(2):102{118.Koelbel, C., and Mehrotra, P. 1991. Compiling global name-space parallel loops for dis-tributed execution. IEEE Trans. Parallel and Distributed Systems 2(4):440{451.Massingill, B. 1993. Integrating task and data parallelism. TR CS-TR-93-01. Pasadena:California Institute of Technology.Merlin, J. 1991. ADAPTing Fortran-90 array programs for distributed memory architectures.In First international conference of the Austrian Center for Parallel Computation, Salzburg,Austria.Newton, P., and Browne, J. C. 1992. The CODE 2.0 graphical parallel programming lan-guage. In Proceedings of the 1992 ACM international conference on supercomputing, Wash-ington, D.C.Pancake, C., and Bergmark, D. 1990. Do parallel languages respond to the needs of scienti�cprogrammers? IEEE Computer 23(12):13{23.Parallel Computing Forum 1991. PCF: Parallel Fortran extensions. Fortran Forum 10(3).Rogers, A., and Pingali, K. 1989. Process decomposition through locality of reference. InProceedings of the SIGPLAN '89 conference on program language design and implementation,Portland, Oregon. 21

Rose, J., and Steele, Jr., G. 1987. C�: An extended C language for data parallel program-ming. In Proceedings of the second international conference on supercomputing, edited byL. Kartashev and S. Kartashev. Santa Clara.Rosing, M., Schnabel, R., and Weaver, R. 1991. The DINO parallel programming language.J. Parallel and Distributed Computing 13(1):30{42.Subhlok, J., Stichnoth, J., O'Hallaron, D., and Gross, T. 1993. Exploiting task and dataparallelism on a multicomputer. In Proceedings of the fourth ACM SIGPLAN symposiumon principles and practice of parallel programming, San Diego.Thinking Machines Corporation 1991. CM Fortran reference manual, version 1.0 edition.Cambridge, Mass.: Thinking Machines Corp.Tseng, C. 1993. An optimizing Fortran D compiler for MIMD distributed-memory machines.Ph.D. thesis. Dept. of Computer Science, Rice University.Zima, H., Bast, H.-J., and Gerndt, M. 1988. SUPERB:A tool for semi-automaticMIMD/SIMDparallelization. Parallel Computing 6:1{18.

22

