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1. Introduction.

Consider the convex programming problem
(P) minimize f(x) over all € R",

where f : R" — R U {+o0} is a closed proper convex function [12]. As a blanket
assumption, we assume that the solution set of (P), denoted by X, is nonempty. Let

WM (] € 11ner product assocClated Wi a SyIminetric positive deinite matrix
,-)ar be the inner product iated with a symmetric positive definite matri
M e R™"
T
(r,y)m = 2" My, (1.1)

where “T” indicates the transpose, and let |- |3 be the norm induced by this inner

product. A general iteration scheme for solving (P) is the proximal point algorithm

(PPA) [6].

Proximal Point Algorithm (Exact PPA). Specify starting points 2°. For k =

0,1,2,..., generate the sequence {z*} as
k+1 - 1 k|2
" = argmin{ f(x) + =|r — 2" |3, }- (1.2)
rER™ 2

The PPA is especially useful as a “regularization” procedure for the problem
where the objective function is not strongly convex. Some commonly used mini-
mization algorithms may lose their convergence properties or even become undefined
when f is not strongly convex. With the PPA as an “outer loop” of the iteration,
however, these algorithms can still be used in solving the “inner loop” subproblems
of calculating the argmin on the right-hand side of (1.2). The objective functions in

1

these subproblems are strongly convex because of the augmented term 5|z — zk)3,.

In a more general sense, the PPA can be formulated as a procedure for solv-
ing the multivalue equation 0 € Ty (x) related to a mazimal monotone operator
(associated with the M-inner product) Ty : R" = IR" [13]. The operator

Jyu = (I + T]w)_1 (13)
is single valued from all of R" into IR" [8]. Hence the iteration

M= JM(:L'k) (1.4)



is well defined. Moreover, Jys(x) =  if and only if 0 € Ths(x). The iteration (1.4)
converges to a solution of 0 € Ty [6, 7]. Let Tys be the subdifferential mapping
Om [ related to f in the M-inner product. Then problem (P) is equivalent to the
multivalue equation 0 € Ths(x), and iteration (1.4) reduces precisely to (1.2). See

[13] for detailed discussions.

In notation, we shall always use subscript “M” to indicate any concept associ-
ated with the inner product (-,-)ar, such as | - |ar, O f, Bas(z,6) (the closed ball
centered at z with radius ¢) and distps(-,-) (the distance function) etc. When M is
the identity matrix I, this M-inner product reduces to the ordinary Euclidean inner
product, and the subscript will be dropped. To simplify the notations, the ordi-
nary Euclidean inner product will underlie most parts of the paper unless otherwise

specified.

One problem in the implementation of PPA is the calculation of argmin on
the right-hand side of (1.2). Usually, it is also an iterative process. Since this
subproblem has to be solved for each outer-loop iteration, it is computationally

_|_

expensive to take ¥t as the exact argmin in (1.2). In [13], Rockafellar proposed

a more realistic version of the PPA, where an approximation, instead of the exact

argmin in (1.2), is taken as the next iterate x**!.

Asymptotically Accurate Proximal Point Algorithm [13]. Choose a positive
sequence {8} such that Y & < +4o00. Specify starting points 2 € X. For k =

0,1,2,..., generate the sequence {x*} in such a way that
| — FF < gy, (1.5)
where )
ZF = argmin{ f(z) + |z — 2?1 (1.6)
rER™ 2

This iteration scheme converges to an optimal solution of (P) [13]. If in addi-
tion, 1 satisfies

|z — ZF T < S|t — 2k, (1.7)

then the convergence will be linear under the assumptions that the optimal solution
set of (P) is a singleton and that the inverse of the mapping T = 8f is Lipschitz

continuous in some neighborhood of 0. Other convergence results regarding the
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asymptotically accurate PPA may be found in Luque [5], where conditions similar

to (1.7) are also imposed.

Unfortunately, the criterion (1.7) with > é6x < +oo will eventually drive
|xk+1 _ £k+1|

W—)O, as k — oo.

Hence, the subproblem of finding the argmin in (1.6) will still have to be solved to
high accuracy, thus posing potential difficulty for the inner loop. Intuitively it might
not be wise to spend much computational effort in solving a single subproblem to
very high accuracy while leaving the “base point” z* of the inner-loop iteration

unchanged.

For any fixed z € IR", let fM( ;z) : IR" — IR be the function defined as

~ 1
Fur(as2) = fla) + 5l — <Py (18)
Denote
Fir = min Fue:2). (19)

In [1], Bonnans—Gilbert-Lemaréchal-Sagastizdbal proposed a “general algorithmic
pattern” (GAP-1) for inexact PPA, where f is simply required to decrease by a
fixed fraction of f(z) — f]TLz in the inner iteration based at z. With the simplified

notations

fiw) = Fa(eset)  and ff = min fule) (1.10)

for any given M}, and 2%, GAP-1 can be written in the following form.

General Algorithmic Pattern — 1 (GAP-1) [1]. Choose some descent param-
eter n € (0,1). Specify a starting point 2° and a symmetric positive definite matrix
M°. For k = 0,1,2,..., generate the sequence {z*} as follows: if ¥ € X, then

stop; otherwise

Step 1. compute x*T1 satisfying

w<- 1.11
g S (1.11)

Step 2. choose a symmetric positive definite matrix My41.

The convergence of GAP—1 was established in [1, Theorem 2.3]. Let Apax (M5 )
be the largest eigenvalue of Mj,.
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Theorem 1 (Convergence of GAP-1) [1, Theorem 2.3|. Assume the solution set
X of (P) is nonempty and bounded. Then the sequence {z*} generated by GAP-1
is bounded. Moreover, if
3 max (M) ™ = oo, (1.12)
k=1
then any accumulation point of {x*} belongs to X. The same properties hold also

for the sequence {z*} of the minimizer in (1.12).

However, there are two important question remain unanswered:
(i) How fast would the inexact PPA in the pattern of GAP-1 converge?

(ii) How much computational effort does it cost numerically to meet the inner-
loop stopping criterion (1.11) of GAP-17
In this paper, we are going to analyze the asymptotic rate of convergence for
several inexact PPAs, where our results on GAP-1 will play a central role. Before
proceeding further, we first propose another variant of inexact PPA, from which the

answer to the second question will become clearer.

General Algorithmic Pattern — 2 (GAP-2). Choose an inner-loop algorithm
for minimizing the regularized objective function f(,z) for fixed z, as well as a
descent parameter n € (0,1). Specify a starting point 2° and a symmetric positive
definite matrix M°. For k = 0,1,2,..., generate the sequence {z*} as follows: if
x% € X, then stop; otherwise
Step 1. minimize f(y; z*) starting from y*° = 2* to generate y*! y*? ... until
a point y*™* satisfying ) )
felyt ™) = fi 0 (1.13)
fu(y®0) — ff

is obtained; take
ghtt = ykme. (1.14)

Step 2. choose a symmetric positive definite matrix My41.

Now the stopping criterion (1.13) in GAP-2 is related to the values of the
regularized functions fk only. Obviously, this criterion can be satisfied in a finite
number of iterations if the inner-loop algorithm itself has at least a linear rate on

fx. Therefore people can make the decision as whether to terminate the inner-loop



iteration by simply counting the number of iterations. On the other hand, by noting
fk(yk’o) = f(2*) and fk(yk’mk) = fk(:zjk+1) > f(x**1), it is easy to see that the
inner-loop stopping criterion of GAP-2 implies (1.11) in GAP-1. Hence GAP-2

shares the same convergence property of GAP-1, as stated in Theorem 1.

A prominent feature of GAP-1 and GAP-2 is that no asymptotically stringent
stopping criteria were imposed on the inner-loop iteration. It is clear from the
stopping criterion (1.13) that the regularized subproblems need only to be solved
to finite precision constantly. An even more surprising fact is that both GAP-1
and GAP-2 will converge linearly under mild local growth conditions on the inverse
of the subgradient mapping df. We will prove this result in Section 2 without
any differentiability assumption or strong convexity assumption on the objective

function f.

The rest of the paper is arranged as follows. As applications of the essential
result in Section 2, we prove the linear convergence for the proximal form of bundle
method in Section 3 and for Correa—Lemaréchal’s “implementable form” of PPA
in Section 4. In Section 5, we apply GAP-2 to solve the hemiquadratic extended
linear-quadratic programming problems. In Section 6, we derive linearly convergent
iteration schemes in the framework of GAP-2 for minimizing convex C'! functions
without requiring strong convexity. We also derive certain “suboptimal” choices for
the proximal parameter ¢ in these applications when the matrices M}, takes the form
My = %I. For more sophisticated updating schemes of My, the reader is referred
to [1], which contains a complete bibliography in this regard. The applications of
the new results in this paper on those more sophisticated schemes will be discussed

elsewhere.

2. Rate of Convergence for GAP-1 and GAP-2.

In this section, we investigate the rate of convergence for the sequence {f(z*)}
generated by either GAP-1 or GAP—-2. We show that they converge at least linearly
with a rate related to the descent parameter n, as well as certain growth condition

on the inverse of the subdifferential mapping df near 0.

Keep the notations developed in Section 1. Let f* be the optimal value of (P)

fr=fX). (2.1)



Denote

1 = argmin fi.(2). (2.2)
rER™

The following lemma gives a general result on the relationship between the outer-

loop residue f(x*) — f* and the inner-loop residue fk(xk) — f,j

Lemma 2 (Relation between inner- and outer-loop residues). Let {x*} be a se-
quence in IR™ \ X such that dist(X,z%) — 0 as k — co. Let {M}.} be a sequence of

symmetric positive definite matrices in IR"*" with
/\maX(Mk) S Amax (23)

for some Ay ,x > 0 and sufficiently large k. Suppose there exist constants a > 0,
6 > 0 andr > 1 such that the inverse of the subdifferential mapping T = Of satisfies

the growth condition
Vw € B(0,6), VaeT Yw),  dist(X,z) < alwl. (2.4)

If the sequence {Amin(Mj)} has a lower bound Api, > 0, then
Fela®) = fi < f(a®) = 1 <201 4 @] dist™™ (X, 2M) (f(=®) = f7) - (25)
for sufficiently large k. Hence for any ¢ > 0, there exists k' such that for all k > k',

(14—aAmmJ§f( 3 ) ifr=1, (2.6)

f@ﬂ_f*g{(1+@(( ) ifr> 1.

Proof. The first half of (2.5) follows directly from fk(:zjk) = f(«*) and f,j > f*.
Now we prove the second half of (2.5). Recall that z**! = Jy, (%) and #*+! £ ok
unless x* € X, where Jy;, = (I + Ty, )7t is the proximal mapping related to the
operator Ty, = Opr, f. According to Giiler [3, Lemma 2.2]

_ 1 1 1 -
FH) = £ € Bz = oMy, = 2l = P, - BF -, Ve (2)
For any # € X, z = 7 in (2.7) yields

fk(fk—i—l) _ f(f) S k=2 l —=k+1 —12 ) (28)



On the other hand, z = 2* in (2.7) yields

~ 1
ul@®) = fu@) = St =2y, (2.9)
Combining (2.8) and (2.9), we get

Folat ) — f@) et — 2l — | - 2l

- < _ 0 (2.10)
fr(ak) — fe(zk+1) ok —Zk L5,
But
o — 2l -kt — e}, et @R, 20t et et )

ok —Zk+L3 - [k —ZF 12,
|xk - £k+1|?\4k + 2|xk - fk—i_lhwkﬁk—i_1 - j|]\4k
: R

. |xk — £k+1|Mk + 2|jk+1 — j|]\4k

- i . (2.11)
ok — k[,
Substituting (2.11) in (2.10), we get
B — f(5) _ Ja* = g, + 20 — g,
Felah) — fe(@h+1) — |2k — 2F Ty,
for any # € X. Hence
[ (=k+1N _ = : v k+1
) fe(z®Th) — f - 2distpy, (X, 25T (2.12)

e — e = T
Now, according to [13, Proposition 1],

[T (2) = Tar ()30, I = T )(2) = (T = Jan (23, < |2 = 2w, (2.13)
(I = Tm)(2) € Tar, (T (2)), (2.14)

for all z and 2'. Let z = 2% and 2/ = z in (2.13) and (2.14). By (2.13),
ZFt — 2|3, +|2F =2, < J2f - z2lf, VreX.

Hence
2k — fk+1|Mk < distyy, (X,:L'k) < A%axdist()z,xk). (2.15)



Therefore
|k — kT < Aiin|xk — z* 1y, — 0 as dist(X,2F) — 0.
But =% — #**t1 € Ty, (2*T1) by (2.14). Then
flz) 2 f@ ) 4 (@M =2 e =My, v,
or equivalently,
f(z) 2 F@F) 4 (MO =25 2 — 25 v,
which yields M*(x* — z%+1) ¢ T(z*1), or in other words,
e T (MF (2F — 2F).
Hence it follows from (2.4) that

1 _ _ .
Amaxdistay, (X,fk"i'l) < dist(X,fk"i'l) < oz|Mk(:1;k—fk+1)|r < aAéaX|(xk—£k+1)|R4k

(2.16)
for sufficiently large k. Combining (2.16) and (2.12), we obtain
£kl ok 41
~fk(l' 2 7f S 1‘|‘205Am2ax|$k_£k+1|rM_k17
fu(@®) = fr(xhtt)
from which the second half of (2.5) follows by (2.15). O

Lemma 2 may be viewed as a quantization of the relationship
J(z)=2 < 0e€T(z).

The result can also be used in the optimality test of the algorithm. If an estimation
on fk(:zjk) — f,j for the subproblem is available, then an estimation on f(z%) — f*

for the original problem can be obtained via (2.6).

The growth condition (2.4) is in fact a local upper Lipschitz condition with
modulus o and order » on T™!. It is a common requirement when convergence
rates are under considerations. Both Rockafellar [13] and Luque [5] used similar
conditions in their analysis of PPAs. Actually, the condition in [13] on the conver-
gence of the asymptotically accurate PPA implies the growth condition with r = 1.

See Zhu [19] for more discussion on the growth conditions.
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Theorem 3 (Rate of convergence for GAP-1 and GAP-2). Assume that the solu-
tion set of (P) is nonempty and bounded, and there exist constants a > 0, 6 > 0,
and r > 1 such that the inverse of the subdifferential mapping T = O0f satisfies the

growth condition
Yw € B(0,6), Ve T Hw), dist(X, z) < a|w|". (2.17)

Let {z*} C R" \ X be a sequence generated by GAP-1 (or GAP-2). If the eigen-

values of the symmetric positive definite matrices { My} in the algorithm satisfies
Amax Z /\maX(Mk) Z /\min(Mk) Z Amin >0 (218)

with some Apax > Apin > 0 for sufficiently large k, then the sequence {:L'k} satisfies

fEh—f 11
flaky—f* — 2(1 + aAglaXdistr_l(X,ka

(2.19)

for sufficiently large k, where n € (0,1) is the descent parameter in the stopping cri-
terion of the algorithm. Hence the sequence { f(x*)} of the objective value converges

to the optimal value of (P) linearly in the sense that

fE - 1

- - 2.20
fla®)y—f* — 2(14+a/em) ( )
for all sufficiently large k, and
k+1N _ px
lim sup fe) - f < L+n if > 1. (2.21)

Proof. We need only to prove the theorem for GAP-1, since the stopping criterion
(1.13) in GAP-2 implies the stopping criterion (1.11) in GAP-1. Observe that
dist(X,z%) — 0 as k — oo by Theorem 1. Now we prove the conclusions on the

rate of convergence by using Lemma 2.

It follows from (1.11) that

Flah) = f@* ) 2 (1= n)(fla®) = fi) (2.22)

for sufficiently large k. However, by the second half of (2.5),

Fla®) = < (24 (20,0 dist™™ (X, 2%) (fu(e®) = f) (2.23)
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for sufficiently large k. Observe that f(z*) — f* > 0 for ¥ ¢ X. Hence dividing
(2.22) by (2.23), we have

flat) = fa*+) 1—1
flaky— f* - 2(1 + aAglaXdistr_l(X, :L'k)>

for sufficiently large k, which yields (2.19). The inequalities (2.20) and (2.21) follow
from (2.19) immediately. O

According to Theorem 3, a linear rate of the inner-loop iteration on the “regu-
larized” subproblem will induce a linear rate on the outer-loop iteration, provided
the growth condition (2.17) is satisfied. Hence, algorithms possessing linear or su-
perlinear rate of convergence on “regular” problems can be extended to solve the

“singular” problems via the inexact PPA.

Theorem 3 also throws a light on the choice of the prozimal parameter ¢ when
My, in the algorithm takes the form My = %I. For r = 1, which is the common
case corresponding to an upper Lipschitz continuous inverse of the subdifferential
mapping df in some neighborhood of 0, the rate given by (2.20) depends on the
proximal parameter ¢, as well as on the inner-loop rate represented by 7. Once the
inner-loop algorithm is chosen, the relationship between n and ¢ can be determined.
Then the selection of ¢ can be optimized by minimizing the right-hand side of (2.20).

Two typical examples will be given in Sections 5 and 6.

3. Linear Convergence on the Proximal Form of Bundle Methods.

In this section, we assume the objective function f is finite valued. Correa—Lemaréchal’s
proximal form of bundle methods [2] for finding the minimum of f may be written

as follows.

Proximal Form of Bundle Methods [2]. Choose some tolerance p € (0,1) and

a positive sequence {cg}. Specify a starting point z° and a convex function ¢° < f.

Set k=7 =0.

Step 1. Solve for y
. ; 1
min {¢/(y) + 5y — =*[*} (3.1)
Ck

to obtain the unique optimal solution y?, as well as v/ := (2 — y/)/ex € I (y7).
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Step 2. Compute f(y’). If
F@h) = fly?) = ulf(*) = 7 (v7)], (32)

then take a descent-step by letting %! := ¢/ and k := k + 1; otherwise take a
null-step by doing nothing here.
Step 3. If a descent-step was made in Step 2, then choose a convex function

@/t IR™ — IR satisfying ¢/T! < f: otherwise choose /T satisfying

S‘Qj—i—l S f7 (33)
Py )+ (7, — ) < T (3.4)
Fy )+ (g7, —y7) < It (3.5)

where ¢/ € 0f(y’). Go to Step 1 with j :=j + 1.
Correa and Lemaréchal proved in [2, Theorem 4.4] that if ¢ is bounded and

> ¢x = 400, then this iteration scheme
(i) either reaches some x* € X in finite iterations;
(ii) or generates {z*} converging to some 7 € X.
Now we prove further that, if the proximal parameters ¢; are bounded away

from zero, then the algorithm converges at least linearly for the problems satisfying

the growth conditions (2.17) with a nonempty and bounded solution set.

Proposition 4 (Rate of convergence on Correa—Lemaréchal’s bundle methods).

Suppose the optimal solution set X is nonempty and bounded, and z* ¢ X in
Correa—Lemaréchal’s proximal form of bundle methods for all k. Assume that there
exist constants o« > 0, 6 > 0, and r > 1 such that the inverse of the subdifferential
mapping T = Of satisfies the growth condition (2.17) in Theorem 3. If there exist

positive constants ¢ymax and cyin such that
Cmax Z Ck Z Cmin > 0 (36)

for sufficiently large k, then the sequence {x*} generated by Correa—Lemaréchal’s

proximal form of bundle method satisfies

M _ I
f(xk) _ f* <1 2<1 T (a/cr )distr_l(X,ka (37)

min
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for all sufficiently large k. Hence the sequence {f(z*)} of the objective value con-

verges to the optimal value f* linearly

k+1N _ px
f(xk# <1 (3.8)
F@k) = f* 2(1 4 o/ chin)
for all sufficiently large k, and
. flaf ) — f* g
lmsup —7—<1—= if r>1. 3.9
k—>oop f(xk)_f* - 2 ( )

Proof. According to [1, Proposition 2.2] condition (3.2) implies (1.11). Hence
the iteration falls in the category of GAP-1 with My = I/c¢i, and the conclusion

follows immediately from Theorem 3. O

4. Linear Convergence on Correa—Lemaréchal’s Implementable PPA.

In this section, We prove the linear convergence of Correa—Lemaréchal’s “imple-
mentable form” of PPA [2, Algorithm 3.3]. Let 0. f denote the e-subdifferential of
f- Recall that

g€0:f(x) <= f(z) 2 fa) +{z —w,9) —¢ V=

With the notations in this paper, Correa—Lemaréchal’s implementable form of PPA

for minimizing f(x) goes as follows.

Correa—Lemaréchal’s implementable form of PPA [2]. Choose a positive
sequence {c¢;} and an algorithm to generate a minimizing sequence {w’} of f(-;z)

for fixed z. Choose k > 1 and u € (0,1). Start from 2°, set k = 0.

Step 1. Set j = 0; start from some wJ = w*?,
Step 2. Set
ek, wh ) = w[f(a*) = flwhd) = ol — 2P, (41)
If . .
"t —wd
S a&(wk wk J)f(x )7 (4 2)
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then go to Step 3; otherwise compute w*J11 increase j by 1, and execute Step 2
again.

Step 3. Set 21 = wkJ increase k by 1, and loop to Step 1.

Correa and Lemaréchal pointed out in [2] that (4.1) and (4.2) together imply

c(ab ) = nfeh) = b)) = Lotd =P z0. (4

They also proved that if f is strongly coercive, that is,
f(2)/|z| = 4o when |z| — oo, (4.4)

then

(i) for each k, Step 2 eventually exit to Step 3, unless ¥ is already optimal [2,
Theorem 3.2];
(i) liminfj_ .o f(z¥) = f* [2, Proposition 3.2].
Here we prove further that, if the proximal parameters ¢; are bounded above
and bounded away from zero, then the algorithm converges at least linearly for the
problems satisfying the growth conditions (2.17) with a nonempty and bounded

solution set.

Proposition 5 (Rate of convergence on Correa—Lemaréchal’s form of PPA).

Suppose the optimal solution set X is nonempty and bounded, and z* ¢ X in
Correa—Lemaréchal’s implementable PPA for all k. Assume that f is strongly co-
ercive in the sense of (4.4), and there exist constants « > 0, 6 > 0, and r > 1
such that the inverse of the subdifferential mapping 7 = Of satisfies the growth
condition (2.17) in Theorem 3. If there exist positive constants ¢max and ¢pin such

that
Cmax Z Ck Z Cmin > 0 (45)

for sufficiently large k, then the sequence {x*} generated by Correa—Lemaréchal’s
implementable PPA satisfies
k+1N _ rx
Ft )~ f 1

Fah - o (26 + 1/ p) (1 + (o/ ey, )dist™™ (X, 2K)) 0
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for sufficiently large k. Hence the sequence { f(z*)} of the objective value converges

to the optimal value f* linearly

k+1N _ px
f(xk# <1- 1 _ (4.7)
F(xk) = f* (26 +1/p)(1 + o/ cqsy)
for all sufficiently large k, and
: flatth) — f 1 .
limsup——"——-<1—- —— if r>1. 4.8
PP S 9

Proof. We prove the proposition by showing that the iteration scheme falls in the
category of GAP-1 with

1 1
=1-— d M= —I. 4.9
=l e M Mg (49)

Then the conclusions follow directly from Theorem 3.

Observe that (4.2) in the algorithm with e(x*,w’) given by (4.1) yields
1

f(2) Zf(wk)‘|’a@'k—$k+1,2—xk>—5(:1;k,xk+1) v -
:f(xk) + i<xk — xk+17z — xk> _ /i[f(xk) . f($k+1) . ﬂ|xk+1 _ xk|2] \v’z7
Ck r

or equivalently,

Ful2) 2 b 4 gl — el (b =t s b,
— R[ft) = ) =l -t v,

where My = I /¢, and fk(z) = ka (z;2%). Let z = a*+! = argminfk(x). We have
z€R™

=)
el
+
—

. $k|Mk T <$k . xk—l—l jk—l—l . $k>Mk

Y

[f(@®) = F@*0) — o™ — %[5, ]

Fa®) = fi < w[f(@") = fa"F) = pla"*t =23, ]

1
— §|£k+1 — ¥y, — (b — 2P R Ry (4.10)
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However
|£k—|—1 _xkﬁw]c —|—2<$k . xk—|—17£k—|—1 _xk>Mk — _ l‘k . xk—l—lﬁwk T |£k—|—1 _xk—l—lﬁwk‘
(4.11)
Substituting (4.11) in (4.10), we obtain
Fb) = i < w[f(a®) = fula®™*) = pla Tt —a* R, ]
1 1_
n §|xk—|—1 L - §|$k+1 — 2RI,
Hence, for € (0,1), there holds
~* 1
PRy = fi < [ f") = FED] 4 St =2ty (4.12)
On the other hand,
Ft) = F ) = et = by, 20
by (4.3). Hence
1
LS = @) 2 2 =2y, (4.13)

Substituting (4.13) in (4.12), we obtain

k £k 1 k k+1
f®) = fi < (v + ﬂ)[f(l‘ ) = fla*Th].
Then B
(R P
fla®) — fl@*+h) = 2p

or equivalently,

fat—fr o1

fleby=fr = m+1/2u)
Therefore condition (1.11) in GAP-1 holds with 5 given by (4.9). O
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5. Application in Hemiquadratic Extended Linear-Quadratic Problems.

Let
L(u,v) = pu+ tu-Pu+ ¢gv — Lv-Qv — v-Ru, (5.1)

where p € R", ¢ € IR™, and R € R™*". The matrices P € IR"*" and Q €
IR™*™ are symmetric and positive semidefinite. (In this section, the Euclidean
inner product is indicated simply by “-” for convenience.) The associated primal

and dual extended linear-quadratic problems (ELQPs) are

(P;) minimize f(u) over all u € U, where f(u) := sup L(u,v),
veEV
(Qr) maximize g(v) over all v € V, where ¢(v) := ilgf[']L(u,v),

where U and V' are nonempty polyhedral (convex) sets in IR" and IR™, respectively.
Problems (P ) and (©Q; ) have a common optimal value if either has a finite optimal
value; in this case, the problems are equivalent to the saddle point problem of the
Lagrangian L on U x V [16, Theorem 1]. The objective functions f and ¢ in these
problems are piecewise linear-quadratic and may have discontinuities in the first-

or second-order derivatives in general.

The primal-dual steepest descent algorithm is a newly developed method for
large-scale ELQPs with special structure [20, 17]. It has a linear rate on fully
quadratic problems, that is, problems with positive definite P and ) matrices [17].
Now with the aid of the inexact PPA, we can extend this algorithm to solve problems
where one of P and @ is singular (hemiquadratic case). The resulting iteration

scheme will retain a linear rate of convergence.

Suppose that in (5.1) the matrix P is singular, while the matrix @ is positive
definite. Then f is not necessarily strongly convex, and may even have discontinu-
ities in its second-order derivatives. However, we can apply GAP-2 on the primal
problem (P; ). (The variable u corresponds to the variable x in Sections 1 and 2,
and the set U correspond to the set X, respectively.) The objective function of the

inner-loop subproblem is

1 -
Flusz) = Fu) + -l — = = sup L(u, v 2),
2c veEV
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where L is the fully quadratic augmented Lagrangian

1
L(u,v;2) = L(u,v) + =—|u — z|?
2¢
1 1 1 1 1 (5'2)
— _ . —_— . —_— . _ — . J— . —_— 2
=(p cz)u—|—2u(P+cI)u+qv 2va vRu—|—20|2|.
Let F(-):U =V and G(-;-): V xU — U be the mappings
F(u) = argmax z}(u, v; z) = argmax{(¢ — Ru)v — Jv-Qu}, (5.3)

veEV veV

- 1 1
G(v; z) = argmin L(u, v; z) = argmin{(p — =2z — R v)u + tu-(P 4+ ~I)u},(5.4)
uel wel c c

respectively. For fixed z, define the mapping 15(,2) U — U as

D(u;z) = G(F(u); Z) (5.5)

The primal part of the algorithm [17], applied to the subproblem of minimizing
f(u; z) on U, goes as follows. Specify some starting point v’ € U. At u*, generate
uF 1 by
wFt = (1= A + /\k[)(uk; z), (5.6)
where there are three possible rules to determine the step length Ag [17]:
(i) Perfect line search

Aj 1= argminf((l — Mu* + /\l~)(uk; z); Z);
A€[0,1]

(ii) Fixed step lengths
1 1 1 1
Ag = min{1, W}, where v = [Q72R(P + ZI)_5|; (5.7)

(iii) Adaptive step lengths

Ak := max { 6’ ‘f((l — 0t + Gjﬁ(uk;z)> — flu®;2)
< (fufs2) = GF(ub); 2))(—467), j € {0,1,2,...} |,
with 6 € (0,1) and §(v; z) = mingev z(u, v; z). The corresponding single step rates
are [17, Theorems 3.1 and 3.2]

f( k—|—1 )_~* ) 72 if0§72<§,
Flabio) — o MO T 1y i g2 >, (5:8)
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for rules (i) and (ii) and

ftth —fr 3§ if0 <% <y,
Flubsz) — fr T - iy 2

4y
for rule (iii), respectively. An iteration scheme based on GAP-2 with My = I/c

(5.9)

goes as follows.

Linearly Convergent Inexact PPA for Hemiquadratic ELQP. Choose an
integer m > 1. Specify the starting point u® € U. For k = 0,1,2, ..., generate the
sequence {u*} as follows: if u¥ € U, then stop; otherwise

k,0 k1o, k2 k,m

(i) minimize f(w; u®) over U starting from w*° = u* to generate w** w*? ... wh
by using the iteration (5.6);

(ii) take uktl = pkm,

To verify that the growth condition in Theorem 3 is satisfied, observe that
the subdifferentials Jf is a polyhedral multifunction in the sense of Robinson [10]
(cf. [14, p. 787]). Hence, the subdifferential of = 0f + ONy; is also a polyhedral
multifunction, where Ny (u) is the normal cone of U at u. (The equality follows
from [12, Theorem 23.8].) Then, by [10, Corollary], there exist & > 0 and 6 > 0
such that the growth condition (2.17) is satisfied with r = 1.

The rate of the outer loop can be obtained by first raising the single-step ratio
in (5.8) or (5.9) to the m-th power to get the descent parameter 7 in the inner-loop
stopping criterion (1.13), and then substituting this # in Theorem 3. For instance,

if step rule (i) or (ii) is used in the inner loop, we have

fk~(wk’t+1) —fif
Fe(wht) — fr
k k

where 7)(;) (i;) is given by (5.8). Note that ub Tl = whmand w* = wh° in the

<,y for =0,1,...,m—1, (5.10)

algorithm. Hence, multiplying (5.10) for t = 0,1, ..
fluft) — fi
fr(u®) — f*

According to Theorem 3, the outer iteration converges with a linear rate

flutth) — ey (o), i)™
fluk)y—f* — 201+ ajc)

.,m — 1, we obtain

< (o), )™

(5.11)
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where
ey i) = T iy (7))
depends on ¢ by (5.8) and (5.7). A “suboptimal” choice of ¢ could be obtained by
minimizing the right-hand side of (5.11) in e.
The inner-loop algorithm used above has been extended, in [18], to solve the
minimax problems represented by a more general Lagrangian than (5.1). It is not

difficult to derive a linearly convergent inexact PPA for those minimax problems by

following the patterns in this section.

6. Applications in Unconstrained Minimization.

Consider the unconstrained minimization of a convex C'! function
(Ps) minimize f(x) over all € R",

where f is mot necessarily strongly convex. Most commonly used minimization

algorithms with a linear (or better) rate require that there exists a (convex) neigh-

borhood NV of X such that
olly — 2 <y —2,VFfly) = V) <only—z|* YyeN, Ve eN (6.1)

for some o, > o1 > 0. Their convergence properties are usually not guaranteed if
o1 = 01in (6.1), a situation that occurs when f is not strongly convex. Now, by
putting these algorithms in the inner loop of the inexact PPA, we can make these
algorithms work in the latter case, while still retaining a linear rate of convergence.

Take the steepest descent method as an example. The algorithm searches along

the direction d¥* = —Vf(2*) to generate the new iterate

gl gk /\kdk, where A\ = argmin f(:z;k + /\dk).
AE[0,400)

If (6.1) is satisfied, then it is not difficult to prove the inequality

F) S F) + (VL =) + Sly— = VyeN VeeN.  (62)
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(Cf. the techneque used in [9, p. 86-87], with minor adaptations.) By taking

k

y = 2% + o71d* and z = 2%, we have

f($k+1) < f(l‘k +U;1dk)

-1
< f(ah) 4 oy (VAh), db) + T d
1

20,

< fla®) = 5= IVFE")P. (6.3)

On the other hand, by taking y = 2* and z = z in (6.2), we obtain
Fla*) < @)+ Tt — 2P (6.4)

Combining (6.3) and (6.4), we have

_ 1 IVHGhP
NCAGEE

But
IVF(2")||2% — 2] = (Vf(ah), 2" = 2) = oy 2 — 2]

by (6.1). Hence the sequence of objective values will eventually converge with a

linear rate
fM - oy
T e e

Now consider problems with o4 = 0 in (6.1). Suppose the optimal solution set

X of (Pg) is nonempty and bounded. Let

(6.5)

1
fla2) = flw) + o-le = =P

A possible iteration scheme based on GAP-2 with M} = I/c goes as follows.

Linearly Convergent Inexact PPA for Unconstrainted Minimization.
Choose an integer m > 1. Specify starting point z° ¢ X. For k = 0,1,2,...,
generate the sequence {x*} as follows: if 2¥ € X, then stop; otherwise

k,0

(i) minimize f(w;a*) starting from w*? = 2% to generate w* ! w®? ... wk™ by

using the steepest descent algorithm;
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(ii) take aktl = km,

Similar to (6.1), now the regularized objective function f( -3 z) of the inner-loop

subproblem satisfies

cMy—2” <y—a,Vi(y;2) = Vi) < (¢ Hon)ly—aff YyeNVeel

(6.6)
Without loss of generality, suppose N is convex. By taking limits on both sides of
the inequality

4+ %Wk’t —2F| < flw®h) + %Wk’t — ¥ = fa(wh) < fi(a®) = f(o*)

as k — oo, it is easy to see that, for any ¢t € {0,1,...,m},
dist(w™*, X) = 0 as k — oo.

Hence all the points w®°, w%?2, ... w5™ will be in N for sufficiently large k. There-
fore, similar to (6.5) for f, we have

r kt+1\ _ Fx 1
Fe(wht) — fr (14 con)

for f by (6.6), where t = 0,1,...,m — 1. Note that x**! = w*™ and 2% = w*? in
the algorithm. Multiplying (6.7) for t = 0,1,...,m — 1, we obtain

M< 1 ;)Qm (6.8)

felak)y = f* ~ S,
Hence the stopping criterion (1.17) of GAP-2 is satisfied with an n equals to the
right-hand side of (6.8). According to Theorem 3, the outer iteration converges

with a linear rate

flat ) — f* 1 1 m
k) = F* §1_2(1—|—0z/c’”)<1_<1_(1—|—can)2> ):

provided the growth condition (3.17) is satisfied. A “suboptimal” selection of ¢

(6.9)

could be obtained by minimizing the right-hand side of (6.9). In the special case
of m =1, this iteration scheme reduces to Iusem-Svaiter’s method in [4], and (6.9)

gives a linear rate for their method when f satisfies the conditions in this paper.
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Note that instead of the steepest descent method, one can use the conjugate
gradient method or the BFGS method in the inner-loop iteration as well, to get
the “inexact PPA version of the CG method” or the “inexact PPA version of the
BFGS method,” correspondingly. These iteration schemes can be used on problems
without strong convexity, where the ordinary methods may fail. The rate of conver-
gence will depend on the progress of the inner loop resulting from those individual

algorithms.
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