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11. Introduction.Consider the convex programming problem(P) minimize f(x) over all x 2 lRn;where f : lRn ! lR [ f+1g is a closed proper convex function [12]. As a blanketassumption, we assume that the solution set of (P); denoted by �X; is nonempty. Leth�; �iM be the inner product associated with a symmetric positive de�nite matrixM 2 lRn�n hx; yiM = xTMy; (1:1)where \T" indicates the transpose, and let j � jM be the norm induced by this innerproduct. A general iteration scheme for solving (P) is the proximal point algorithm(PPA) [6].Proximal Point Algorithm (Exact PPA). Specify starting points x0: For k =0; 1; 2; : : : ; generate the sequence fxkg asxk+1 := argminx2lRn ff(x) + 12 jx � xkj2Mg: (1:2)The PPA is especially useful as a \regularization" procedure for the problemwhere the objective function is not strongly convex. Some commonly used mini-mization algorithmsmay lose their convergence properties or even become unde�nedwhen f is not strongly convex. With the PPA as an \outer loop" of the iteration,however, these algorithms can still be used in solving the \inner loop" subproblemsof calculating the argmin on the right-hand side of (1.2). The objective functions inthese subproblems are strongly convex because of the augmented term 12c jx�xk j2M :In a more general sense, the PPA can be formulated as a procedure for solv-ing the multivalue equation 0 2 TM (x) related to a maximal monotone operator(associated with the M-inner product) TM : lRn !! lRn [13]. The operatorJM = (I + TM )�1 (1:3)is single valued from all of lRn into lRn [8]. Hence the iterationxk+1 := JM (xk) (1:4)



2is well de�ned. Moreover, JM (x) = x if and only if 0 2 TM (x): The iteration (1.4)converges to a solution of 0 2 TM [6, 7]. Let TM be the subdi�erential mapping@Mf related to f in the M-inner product. Then problem (P) is equivalent to themultivalue equation 0 2 TM (x); and iteration (1.4) reduces precisely to (1.2). See[13] for detailed discussions.In notation, we shall always use subscript \M" to indicate any concept associ-ated with the inner product h�; �iM ; such as j � jM ; @Mf , lBM (z; �) (the closed ballcentered at z with radius �) and distM (�; �) (the distance function) etc. When M isthe identity matrix I, thisM-inner product reduces to the ordinary Euclidean innerproduct, and the subscript will be dropped. To simplify the notations, the ordi-nary Euclidean inner product will underlie most parts of the paper unless otherwisespeci�ed.One problem in the implementation of PPA is the calculation of argmin onthe right-hand side of (1.2). Usually, it is also an iterative process. Since thissubproblem has to be solved for each outer-loop iteration, it is computationallyexpensive to take xk+1 as the exact argmin in (1.2). In [13], Rockafellar proposeda more realistic version of the PPA, where an approximation, instead of the exactargmin in (1.2), is taken as the next iterate xk+1:Asymptotically Accurate Proximal Point Algorithm [13]. Choose a positivesequence f�kg such that P �k < +1: Specify starting points x0 2 X: For k =0; 1; 2; : : : ; generate the sequence fxkg in such a way thatjxk+1 � �xk+1j � �k; (1:5)where �xk+1 := argminx2lRn ff(x) + 12 jx � xkj2g: (1:6)This iteration scheme converges to an optimal solution of (P) [13]. If in addi-tion, xk+1 satis�es jxk+1 � �xk+1j � �kjxk+1 � xkj; (1:7)then the convergence will be linear under the assumptions that the optimal solutionset of (P) is a singleton and that the inverse of the mapping T = @f̂ is Lipschitzcontinuous in some neighborhood of 0: Other convergence results regarding the



3asymptotically accurate PPA may be found in Luque [5], where conditions similarto (1.7) are also imposed.Unfortunately, the criterion (1.7) with P �k < +1 will eventually drivejxk+1 � �xk+1jjxk+1 � xkj ! 0; as k!1:Hence, the subproblem of �nding the argmin in (1.6) will still have to be solved tohigh accuracy, thus posing potential di�culty for the inner loop. Intuitively it mightnot be wise to spend much computational e�ort in solving a single subproblem tovery high accuracy while leaving the \base point" xk of the inner-loop iterationunchanged.For any �xed z 2 lRn; let ~fM ( � ; z) : lRn ! lR be the function de�ned as~fM (x; z) = f(x) + 12 jx� zj2M : (1:8)Denote ~f�M;z = minx2lRn ~fM (x; z): (1:9)In [1], Bonnans{Gilbert{Lemar�echal{Sagastiz�abal proposed a \general algorithmicpattern" (GAP{1) for inexact PPA, where f is simply required to decrease by a�xed fraction of f(z) � ~f�M;z in the inner iteration based at z: With the simpli�ednotations ~fk(x) = ~fMk(x;xk) and ~f�k = minx2lRn ~fk(x) (1:10)for any given Mk and xk; GAP{1 can be written in the following form.General Algorithmic Pattern { 1 (GAP{1) [1]. Choose some descent param-eter � 2 (0; 1): Specify a starting point x0 and a symmetric positive de�nite matrixM0: For k = 0; 1; 2; : : : ; generate the sequence fxkg as follows: if xk 2 �X; thenstop; otherwiseStep 1. compute xk+1 satisfyingf(xk+1) � ~f�kf(xk) � ~f�k � �; (1:11)Step 2. choose a symmetric positive de�nite matrix Mk+1:The convergence of GAP{1 was established in [1, Theorem 2.3]. Let �max(Mk)be the largest eigenvalue of Mk:



4Theorem 1 (Convergence of GAP{1) [1, Theorem 2.3]. Assume the solution set�X of (P) is nonempty and bounded. Then the sequence fxkg generated by GAP{1is bounded. Moreover, if 1Xk=1��max(Mk)��1 =1; (1:12)then any accumulation point of fxkg belongs to �X: The same properties hold alsofor the sequence f�xkg of the minimizer in (1.12).However, there are two important question remain unanswered:(i) How fast would the inexact PPA in the pattern of GAP{1 converge?(ii) How much computational e�ort does it cost numerically to meet the inner-loop stopping criterion (1.11) of GAP{1?In this paper, we are going to analyze the asymptotic rate of convergence forseveral inexact PPAs, where our results on GAP{1 will play a central role. Beforeproceeding further, we �rst propose another variant of inexact PPA, from which theanswer to the second question will become clearer.General Algorithmic Pattern { 2 (GAP{2). Choose an inner-loop algorithmfor minimizing the regularized objective function ~f( � ; z) for �xed z; as well as adescent parameter � 2 (0; 1): Specify a starting point x0 and a symmetric positivede�nite matrix M0: For k = 0; 1; 2; : : : ; generate the sequence fxkg as follows: ifxk 2 �X; then stop; otherwiseStep 1. minimize ~f (y;xk) starting from yk;0 = xk to generate yk;1; yk;2; : : : ; untila point yk;mk satisfying ~fk(yk;mk )� ~f�k~fk(yk;0) � ~f�k � � (1:13)is obtained; take xk+1 = yk;mk ; (1:14)Step 2. choose a symmetric positive de�nite matrix Mk+1:Now the stopping criterion (1.13) in GAP{2 is related to the values of theregularized functions ~fk only. Obviously, this criterion can be satis�ed in a �nitenumber of iterations if the inner-loop algorithm itself has at least a linear rate on~fk: Therefore people can make the decision as whether to terminate the inner-loop



5iteration by simply counting the number of iterations. On the other hand, by noting~fk(yk;0) = f(xk) and ~fk(yk;mk ) = ~fk(xk+1) � f(xk+1); it is easy to see that theinner-loop stopping criterion of GAP{2 implies (1.11) in GAP{1. Hence GAP{2shares the same convergence property of GAP{1, as stated in Theorem 1.A prominent feature of GAP{1 and GAP{2 is that no asymptotically stringentstopping criteria were imposed on the inner-loop iteration. It is clear from thestopping criterion (1.13) that the regularized subproblems need only to be solvedto �nite precision constantly. An even more surprising fact is that both GAP{1and GAP{2 will converge linearly under mild local growth conditions on the inverseof the subgradient mapping @f: We will prove this result in Section 2 withoutany di�erentiability assumption or strong convexity assumption on the objectivefunction f:The rest of the paper is arranged as follows. As applications of the essentialresult in Section 2, we prove the linear convergence for the proximal form of bundlemethod in Section 3 and for Correa{Lemar�echal's \implementable form" of PPAin Section 4. In Section 5, we apply GAP{2 to solve the hemiquadratic extendedlinear-quadratic programming problems. In Section 6, we derive linearly convergentiteration schemes in the framework of GAP{2 for minimizing convex C1 functionswithout requiring strong convexity. We also derive certain \suboptimal" choices forthe proximal parameter c in these applications when the matricesMk takes the formMk = 1c I: For more sophisticated updating schemes of Mk; the reader is referredto [1], which contains a complete bibliography in this regard. The applications ofthe new results in this paper on those more sophisticated schemes will be discussedelsewhere.2. Rate of Convergence for GAP{1 and GAP{2.In this section, we investigate the rate of convergence for the sequence ff(xk)ggenerated by either GAP{1 or GAP{2. We show that they converge at least linearlywith a rate related to the descent parameter �; as well as certain growth conditionon the inverse of the subdi�erential mapping @f near 0:Keep the notations developed in Section 1. Let f� be the optimal value of (P)f� = f( �X): (2:1)



6Denote �xk+1 = argminx2lRn ~fk(x): (2:2)The following lemma gives a general result on the relationship between the outer-loop residue f(xk)� f� and the inner-loop residue ~fk(xk)� ~f�k :Lemma 2 (Relation between inner- and outer-loop residues). Let fxkg be a se-quence in lRn n �X such that dist( �X;xk)! 0 as k !1: Let fMkg be a sequence ofsymmetric positive de�nite matrices in lRn�n with�max(Mk) � �max (2:3)for some �max > 0 and su�ciently large k: Suppose there exist constants � � 0;� > 0 and r � 1 such that the inverse of the subdi�erential mapping T = @f satis�esthe growth condition8w 2 lB(0; �); 8x 2 T�1(w); dist( �X;x) � �jwjr: (2:4)If the sequence f�min(Mk)g has a lower bound �min > 0; then~fk(xk) � ~f�k � f(xk)� f� � 2�1 + ��rmaxdistr�1( �X;xk)�� ~fk(xk)� ~f�k � (2:5)for su�ciently large k: Hence for any " > 0; there exists k0 such that for all k � k0;f(xk) � f� � � 2(1 + ��max)� ~fk(xk) � ~f�k � if r = 1,2(1 + ")� ~fk(xk)� ~f�k � if r > 1: (2:6)Proof. The �rst half of (2.5) follows directly from ~fk(xk) = f(xk) and ~f�k � f�:Now we prove the second half of (2.5). Recall that �xk+1 = JMk(xk) and �xk+1 6= xkunless xk 2 �X; where JMk = (I + TMk )�1 is the proximal mapping related to theoperator TMk = @Mkf: According to G�uler [3, Lemma 2.2]f(�xk+1) � f(z) � 12 jz � xkj2Mk � 12 jz � �xk+1j2Mk � 12 jxk � �xk+1j2Mk 8z: (2:7)For any �x 2 �X; z = �x in (2.7) yields~fk(�xk+1) � f(�x) � 12 jxk � �xj2Mk � 12 j�xk+1 � �xj2Mk : (2:8)



7On the other hand, z = xk in (2.7) yields~fk(xk)� ~fk(�xk+1) � 12 jxk � �xk+1j2Mk : (2:9)Combining (2.8) and (2.9), we get~fk(�xk+1) � f(�x)~fk(xk)� ~fk(�xk+1) � jxk � �xj2Mk � j�xk+1 � �xj2Mkjxk � �xk+1j2Mk : (2:10)Butjxk � �xj2Mk � j�xk+1 � �xj2Mkjxk � �xk+1j2Mk = jxk � �xk+1j2Mk + 2hxk � �xk+1; �xk+1 � �xiMkjxk � �xk+1j2Mk� jxk � �xk+1j2Mk + 2jxk � �xk+1jMk j�xk+1 � �xjMkjxk � �xk+1j2Mk= jxk � �xk+1jMk + 2j�xk+1 � �xjMkjxk � �xk+1jMk : (2:11)Substituting (2.11) in (2.10), we get~fk(�xk+1) � f(�x)~fk(xk)� ~fk(�xk+1) � jxk � �xk+1jMk + 2j�xk+1 � �xjMkjxk � �xk+1jMkfor any �x 2 �X: Hence ~fk(�xk+1)� f�~fk(xk) � ~fk(�xk+1) � 1 + 2distMk ( �X; �xk+1)jxk � �xk+1jMk : (2:12)Now, according to [13, Proposition 1],jJMk(z) � JMk(z0)j2Mk+j(I � JMk)(z) � (I � JMk)(z0)j2Mk � jz � z0jMk ; (2:13)(I � JMk)(z) 2 TMk�JMk(z)�; (2:14)for all z and z0: Let z = xk and z0 = �x in (2.13) and (2.14). By (2.13),j�xk+1 � �xj2Mk + jxk � �xk+1j2Mk � jxk � �xj2Mk 8�x 2 �X:Hence jxk � �xk+1jMk � distMk( �X;xk) � � 12maxdist( �X;xk): (2:15)



8Therefore jxk � �xk+1j � � 12minjxk � �xk+1jMk ! 0 as dist( �X;xk)! 0:But xk � �xk+1 2 TMk(�xk+1) by (2.14). Thenf(z) � f(�xk+1) + hxk+1 � �xk+1; z � �xk+1iMk 8z;or equivalently,f(z) � f(�xk+1) + hMk(xk+1 � �xk+1); z � �xk+1i 8z;which yields Mk(xk � �xk+1) 2 T (�xk+1); or in other words,�xk+1 2 T�1�Mk(xk � �xk+1)�:Hence it follows from (2.4) that�� 12maxdistMk( �X; �xk+1) � dist( �X; �xk+1) � �jMk(xk��xk+1)jr � �� r2maxj(xk��xk+1)jrMk(2:16)for su�ciently large k: Combining (2.16) and (2.12), we obtain~fk(�xk+1)� f�~fk(xk) � ~fk(�xk+1) � 1 + 2�� r+12maxjxk � �xk+1jr�1Mk ;from which the second half of (2.5) follows by (2.15).Lemma 2 may be viewed as a quantization of the relationshipJ(x) = x () 0 2 T (x):The result can also be used in the optimality test of the algorithm. If an estimationon ~fk(xk) � ~f�k for the subproblem is available, then an estimation on f(xk) � f�for the original problem can be obtained via (2.6).The growth condition (2.4) is in fact a local upper Lipschitz condition withmodulus � and order r on T�1: It is a common requirement when convergencerates are under considerations. Both Rockafellar [13] and Luque [5] used similarconditions in their analysis of PPAs. Actually, the condition in [13] on the conver-gence of the asymptotically accurate PPA implies the growth condition with r = 1:See Zhu [19] for more discussion on the growth conditions.



9Theorem 3 (Rate of convergence for GAP{1 and GAP{2). Assume that the solu-tion set of (P) is nonempty and bounded, and there exist constants � � 0; � > 0;and r � 1 such that the inverse of the subdi�erential mapping T = @f satis�es thegrowth condition8w 2 lB(0; �); 8x 2 T�1(w); dist( �X;x) � �jwjr: (2:17)Let fxkg � lRn n �X be a sequence generated by GAP{1 (or GAP{2). If the eigen-values of the symmetric positive de�nite matrices fMkg in the algorithm satis�es�max � �max(Mk) � �min(Mk) � �min > 0 (2:18)with some �max > �min > 0 for su�ciently large k; then the sequence fxkg satis�esf(xk+1)� f�f(xk)� f� � 1� 1� �2�1 + ��rmaxdistr�1( �X;xk)� (2:19)for su�ciently large k; where � 2 (0; 1) is the descent parameter in the stopping cri-terion of the algorithm. Hence the sequence ff(xk)g of the objective value convergesto the optimal value of (P) linearly in the sense thatf(xk+1)� f�f(xk )� f� � 1� 1� �2(1 + �=cr) (2:20)for all su�ciently large k; andlim supk!1 f(xk+1)� f�f(xk) � f� � 1 + �2 if r > 1: (2:21)Proof. We need only to prove the theorem for GAP{1, since the stopping criterion(1.13) in GAP{2 implies the stopping criterion (1.11) in GAP{1. Observe thatdist( �X;xk) ! 0 as k ! 1 by Theorem 1. Now we prove the conclusions on therate of convergence by using Lemma 2.It follows from (1.11) thatf(xk) � f(xk+1) � (1� �)� ~fk(xk)� ~f�k � (2:22)for su�ciently large k: However, by the second half of (2.5),f(xk) � f� � �2 + (2��rmax)distr�1( �X;xk)�� ~fk(xk) � ~f�k � (2:23)



10for su�ciently large k: Observe that f(xk) � f� > 0 for xk 62 �X: Hence dividing(2.22) by (2.23), we havef(xk)� f(xk+1)f(xk )� f� � 1� �2�1 + ��rmaxdistr�1( �X;xk)�for su�ciently large k; which yields (2.19). The inequalities (2.20) and (2.21) followfrom (2.19) immediately.According to Theorem 3, a linear rate of the inner-loop iteration on the \regu-larized" subproblem will induce a linear rate on the outer-loop iteration, providedthe growth condition (2.17) is satis�ed. Hence, algorithms possessing linear or su-perlinear rate of convergence on \regular" problems can be extended to solve the\singular" problems via the inexact PPA.Theorem 3 also throws a light on the choice of the proximal parameter c whenMk in the algorithm takes the form Mk = 1c I: For r = 1; which is the commoncase corresponding to an upper Lipschitz continuous inverse of the subdi�erentialmapping @f in some neighborhood of 0; the rate given by (2.20) depends on theproximal parameter c; as well as on the inner-loop rate represented by �: Once theinner-loop algorithm is chosen, the relationship between � and c can be determined.Then the selection of c can be optimized by minimizing the right-hand side of (2.20).Two typical examples will be given in Sections 5 and 6.3. Linear Convergence on the Proximal Form of Bundle Methods.In this section, we assume the objective function f is �nite valued. Correa{Lemar�echal'sproximal form of bundle methods [2] for �nding the minimum of f may be writtenas follows.Proximal Form of Bundle Methods [2]. Choose some tolerance � 2 (0; 1) anda positive sequence fckg: Specify a starting point x0 and a convex function '0 � f:Set k = j = 0:Step 1. Solve for y min�'j(y) + 12ck jy � xkj2	 (3:1)to obtain the unique optimal solution yj ; as well as j := (xk � yj)=ck 2 @'j(yj):



11Step 2. Compute f(yj ): Iff(xk) � f(yj ) � �[f(xk) � 'j(yj )]; (3:2)then take a descent-step by letting xk+1 := yj and k := k + 1; otherwise take anull-step by doing nothing here.Step 3. If a descent-step was made in Step 2, then choose a convex function'j+1 : lRn ! lR satisfying 'j+1 � f ; otherwise choose 'j+1 satisfying'j+1 � f; (3:3)'j(yj ) + hj ; � � yji � 'j+1; (3:4)f(yj ) + hgj ; � � yji � 'j+1; (3:5)where gj 2 @f(yj ): Go to Step 1 with j := j + 1:Correa and Lemar�echal proved in [2, Theorem 4.4] that if ck is bounded andP ck = +1; then this iteration scheme(i) either reaches some xk 2 �X in �nite iterations;(ii) or generates fxkg converging to some �x 2 �X:Now we prove further that, if the proximal parameters ck are bounded awayfrom zero, then the algorithm converges at least linearly for the problems satisfyingthe growth conditions (2.17) with a nonempty and bounded solution set.Proposition 4 (Rate of convergence on Correa{Lemar�echal's bundle methods).Suppose the optimal solution set �X is nonempty and bounded, and xk 62 �X inCorrea{Lemar�echal's proximal form of bundle methods for all k: Assume that thereexist constants � � 0; � > 0; and r � 1 such that the inverse of the subdi�erentialmapping T = @f satis�es the growth condition (2.17) in Theorem 3. If there existpositive constants cmax and cmin such thatcmax � ck � cmin > 0 (3:6)for su�ciently large k; then the sequence fxkg generated by Correa{Lemar�echal'sproximal form of bundle method satis�esf(xk+1) � f�f(xk) � f� � 1� �2�1 + (�=crmin)distr�1( �X;xk)� (3:7)



12for all su�ciently large k: Hence the sequence ff(xk)g of the objective value con-verges to the optimal value f� linearlyf(xk+1)� f�f(xk) � f� � 1� �2(1 + �=crmin) (3:8)for all su�ciently large k; andlim supk!1 f(xk+1) � f�f(xk) � f� � 1� �2 if r > 1: (3:9)Proof. According to [1, Proposition 2.2] condition (3.2) implies (1.11). Hencethe iteration falls in the category of GAP{1 with Mk = I=ck; and the conclusionfollows immediately from Theorem 3.4. Linear Convergence on Correa{Lemar�echal's Implementable PPA.In this section, We prove the linear convergence of Correa{Lemar�echal's \imple-mentable form" of PPA [2, Algorithm 3.3]. Let @"f denote the "-subdi�erential off: Recall that g 2 @"f(x) () f(z) � f(x) + hz � x; gi � " 8 z:With the notations in this paper, Correa{Lemar�echal's implementable form of PPAfor minimizing f(x) goes as follows.Correa{Lemar�echal's implementable form of PPA [2]. Choose a positivesequence fckg and an algorithm to generate a minimizing sequence fwjg of ~f ( � ; z)for �xed z. Choose � > 1 and � 2 (0; 1): Start from x0; set k = 0:Step 1. Set j = 0; start from some wk;j = wk;0:Step 2. Set "(xk; wk;j) = ��f(xk )� f(wk;j )� �ck jwk;j � xkj2�: (4:1)If xk � wk;jck 2 @"(xk;wk;j)f(xk); (4:2)



13then go to Step 3; otherwise compute wk;j+1; increase j by 1; and execute Step 2again.Step 3. Set xk+1 = wk;j; increase k by 1; and loop to Step 1.Correa and Lemar�echal pointed out in [2] that (4.1) and (4.2) together imply"(xk ; wk;j) = ��f(xk)� f(wk;j ) � �ck jwk;j � xkj2� � 0: (4:3)They also proved that if f is strongly coercive, that is,f(z)=jzj ! +1 when jzj ! 1; (4:4)then(i) for each k; Step 2 eventually exit to Step 3, unless xk is already optimal [2,Theorem 3.2];(ii) lim infk!1 f(xk) = f� [2, Proposition 3.2].Here we prove further that, if the proximal parameters ck are bounded aboveand bounded away from zero, then the algorithm converges at least linearly for theproblems satisfying the growth conditions (2.17) with a nonempty and boundedsolution set.Proposition 5 (Rate of convergence on Correa{Lemar�echal's form of PPA).Suppose the optimal solution set �X is nonempty and bounded, and xk 62 �X inCorrea{Lemar�echal's implementable PPA for all k: Assume that f is strongly co-ercive in the sense of (4.4), and there exist constants � � 0; � > 0; and r � 1such that the inverse of the subdi�erential mapping T = @f satis�es the growthcondition (2.17) in Theorem 3. If there exist positive constants cmax and cmin suchthat cmax � ck � cmin > 0 (4:5)for su�ciently large k; then the sequence fxkg generated by Correa{Lemar�echal'simplementable PPA satis�esf(xk+1) � f�f(xk) � f� � 1� 1(2�+ 1=�)�1 + (�=crmin)distr�1( �X;xk)� (4:6)



14for su�ciently large k: Hence the sequence ff(xk)g of the objective value convergesto the optimal value f� linearlyf(xk+1) � f�f(xk) � f� � 1� 1(2� + 1=�)(1 + �=crmin) (4:7)for all su�ciently large k; andlim supk!1 f(xk+1) � f�f(xk)� f� � 1� 12�+ 1=� if r > 1: (4:8)Proof. We prove the proposition by showing that the iteration scheme falls in thecategory of GAP{1 with� = 1� 1�+ 1=(2�) and Mk = 1ck I: (4:9)Then the conclusions follow directly from Theorem 3.Observe that (4.2) in the algorithm with "(xk ; wj) given by (4.1) yieldsf(z) �f(xk) + 1ck hxk � xk+1; z � xki � "(xk ; xk+1) 8 z=f(xk) + 1ck hxk � xk+1; z � xki � ��f(xk) � f(xk+1) � �ck jxk+1 � xkj2� 8 z;or equivalently,~fk(z) � f(xk) + 12 jz � xkjMk + hxk � xk+1; z � xkiMk� ��f(xk)� f(xk+1)� �jxk+1 � xkj2Mk� 8 z;where Mk = I=ck and ~fk(z) = ~fMk (z;xk): Let z = �xk+1 = argminx2lRn ~fk(x): We have~fk(�xk+1) � f(xk) + 12 j�xk+1 � xkjMk + hxk � xk+1; �xk+1 � xkiMk� ��f(xk) � f(xk+1)� �jxk+1 � xkj2Mk�:Therefore, with the notation ~f�k = minx2lRn ~fk(x);f(xk)� ~f�k � ��f(xk)� f(xk+1)� �jxk+1 � xkj2Mk�� 12 j�xk+1 � xkjMk � hxk � xk+1; �xk+1 � xkiMk : (4:10)



15Howeverj�xk+1 � xkj2Mk + 2hxk � xk+1; �xk+1 � xkiMk = �jxk � xk+1j2Mk + j�xk+1 � xk+1j2Mk :(4:11)Substituting (4.11) in (4.10), we obtainf(xk)� ~f�k � ��f(xk)� fk(xk+1)� �jxk+1 � xkj2Mk�+ 12 jxk+1 � xkj2Mk � 12 j�xk+1 � xk+1j2Mk :Hence, for � 2 (0; 1); there holdsf(xk)� ~f�k � ��f(xk)� f(xk+1)� + 12 jxk+1 � xkj2Mk : (4:12)On the other hand, f(xk) � f(xk+1)� �jxk+1 � xkj2Mk � 0by (4.3). Hence 1��f(xk)� fk(xk+1)� � jxk+1 � xkj2Mk : (4:13)Substituting (4.13) in (4.12), we obtainf(xk )� ~f�k � ��+ 12���f(xk)� f(xk+1)�:Then f(xk) � ~f�kf(xk)� f(xk+1) � �+ 12�;or equivalently, f(xk+1) � ~f�kf(xk) � ~f�k � 1� 1�+ 1=(2�) :Therefore condition (1.11) in GAP{1 holds with � given by (4.9).



165. Application in Hemiquadratic Extended Linear-Quadratic Problems.Let L(u; v) = p�u+ 12u�Pu+ q�v � 12v�Qv � v�Ru; (5:1)where p 2 lRn; q 2 lRm; and R 2 lRm�n: The matrices P 2 lRn�n and Q 2lRm�m are symmetric and positive semide�nite. (In this section, the Euclideaninner product is indicated simply by \ �" for convenience.) The associated primaland dual extended linear-quadratic problems (ELQPs) areminimize f(u) over all u 2 U; where f(u) := supv2V L(u; v);(PL) maximize g(v) over all v 2 V; where g(v) := infu2U L(u; v);(QL)where U and V are nonempty polyhedral (convex) sets in lRn and lRm; respectively.Problems (PL) and (QL) have a common optimal value if either has a �nite optimalvalue; in this case, the problems are equivalent to the saddle point problem of theLagrangian L on U � V [16, Theorem 1]. The objective functions f and g in theseproblems are piecewise linear-quadratic and may have discontinuities in the �rst-or second-order derivatives in general.The primal-dual steepest descent algorithm is a newly developed method forlarge-scale ELQPs with special structure [20, 17]. It has a linear rate on fullyquadratic problems, that is, problems with positive de�nite P and Q matrices [17].Now with the aid of the inexact PPA, we can extend this algorithm to solve problemswhere one of P and Q is singular (hemiquadratic case). The resulting iterationscheme will retain a linear rate of convergence.Suppose that in (5.1) the matrix P is singular, while the matrix Q is positivede�nite. Then f is not necessarily strongly convex, and may even have discontinu-ities in its second-order derivatives. However, we can apply GAP{2 on the primalproblem (PL): (The variable u corresponds to the variable x in Sections 1 and 2,and the set �U correspond to the set �X; respectively.) The objective function of theinner-loop subproblem is~f (u; z) = f(u) + 12c ju� zj2 = supv2V ~L(u; v; z);



17where ~L is the fully quadratic augmented Lagrangian~L(u; v; z) = L(u; v) + 12c ju� zj2= (p � 1c z)�u+ 12u�(P + 1c I)u+ q�v � 12v�Qv � v�Ru+ 12c jzj2: (5:2)Let F ( �) : U ! V and G( � ; �) : V � U ! U be the mappingsF (u) = argmaxv2V ~L(u; v; z) = argmaxv2V f(q �Ru)�v � 12v�Qvg; (5:3)G(v; z) = argminu2U ~L(u; v; z) = argminu2U f(p � 1cz �RTv)�u+ 12u�(P + 1c I)ug;(5:4)respectively. For �xed z; de�ne the mapping ~D( � ; z) : U ! U as~D(u; z) = G�F (u); z�: (5:5)The primal part of the algorithm [17], applied to the subproblem of minimizing~f (u; z) on U; goes as follows. Specify some starting point u0 2 U: At uk; generateuk+1 by uk+1 := (1 � �k)uk + �k ~D(uk; z); (5:6)where there are three possible rules to determine the step length �k [17]:(i) Perfect line search�k := argmin�2[0;1] ~f�(1 � �)uk + � ~D(uk; z); z�;(ii) Fixed step lengths�k := minf1; 122 g; where  = jQ� 12R(P + 1cI)� 12 j; (5:7)(iii) Adaptive step lengths�k := max� �j �� ~f�(1 � �j)uk + �j ~D(uk; z)� � ~f (uk; z)� � ~f (uk; z) � ~g(F (uk); z)�(� 12�j ); j 2 f0; 1; 2; : : :g	;with � 2 (0; 1) and ~g(v; z) = minu2U ~L(u; v; z): The corresponding single step ratesare [17, Theorems 3.1 and 3.2]~f (uk+1; z) � ~f�z~f (uk; z) � ~f�z = ~�(i);(ii) := � 2 if 0 � 2 < 12 ;1� 142 if 2 � 12 ; (5:8)



18for rules (i) and (ii) and~f (uk+1; z) � ~f�z~f (uk; z) � ~f�z = ~�(iii) := ( �2 if 0 � 2 < 12 ;1� �42 if 2 � 12 ; (5:9)for rule (iii), respectively. An iteration scheme based on GAP{2 with Mk = I=cgoes as follows.Linearly Convergent Inexact PPA for Hemiquadratic ELQP. Choose aninteger m � 1: Specify the starting point u0 2 U: For k = 0; 1; 2; : : : ; generate thesequence fukg as follows: if uk 2 �U; then stop; otherwise(i) minimize ~f (w;uk) overU starting fromwk;0 = uk to generate wk;1; wk;2; : : : ; wk;mby using the iteration (5.6);(ii) take uk+1 = wk;m:To verify that the growth condition in Theorem 3 is satis�ed, observe thatthe subdi�erentials @f is a polyhedral multifunction in the sense of Robinson [10](cf. [14, p. 787]). Hence, the subdi�erential @f̂ = @f + @NU is also a polyhedralmultifunction, where NU (u) is the normal cone of U at u: (The equality followsfrom [12, Theorem 23.8].) Then, by [10, Corollary], there exist � � 0 and � > 0such that the growth condition (2.17) is satis�ed with r = 1:The rate of the outer loop can be obtained by �rst raising the single-step ratioin (5.8) or (5.9) to the m-th power to get the descent parameter � in the inner-loopstopping criterion (1.13), and then substituting this � in Theorem 3. For instance,if step rule (i) or (ii) is used in the inner loop, we have~fk(wk;t+1) � ~f�k~fk(wk;t)� ~f�k � ~�(i);(ii) for t = 0; 1; : : : ;m� 1; (5:10)where ~�(i);(ii) is given by (5.8). Note that uk+1 = wk;mand uk = wk;0 in thealgorithm. Hence, multiplying (5.10) for t = 0; 1; : : : ;m� 1; we obtain~f (uk+1)� ~f�k~fk(uk)� ~f� � (~�(i);(ii))m:According to Theorem 3, the outer iteration converges with a linear ratef(uk+1)� f�f(uk)� f� � 1� 1� (~�(i);(ii))m2(1 + �=c) ; (5:11)



19where ~�(i);(ii) = ~�(i);(ii)�(c)�depends on c by (5.8) and (5.7). A \suboptimal" choice of c could be obtained byminimizing the right-hand side of (5.11) in c:The inner-loop algorithm used above has been extended, in [18], to solve theminimax problems represented by a more general Lagrangian than (5.1). It is notdi�cult to derive a linearly convergent inexact PPA for those minimax problems byfollowing the patterns in this section.6. Applications in Unconstrained Minimization.Consider the unconstrained minimization of a convex C1 function(PS) minimize f(x) over all x 2 lRn;where f is not necessarily strongly convex. Most commonly used minimizationalgorithms with a linear (or better) rate require that there exists a (convex) neigh-borhood N of �X such that�1jy � xj2 � hy � x;rf(y) �rf(x)i � �njy � xj2 8 y 2 N ; 8x 2 N (6:1)for some �n � �1 > 0: Their convergence properties are usually not guaranteed if�1 = 0 in (6.1), a situation that occurs when f is not strongly convex. Now, byputting these algorithms in the inner loop of the inexact PPA, we can make thesealgorithms work in the latter case, while still retaining a linear rate of convergence.Take the steepest descent method as an example. The algorithm searches alongthe direction dk = �rf(xk) to generate the new iteratexk+1 := xk + �kdk; where �k = argmin�2[0;+1)f(xk + �dk):If (6.1) is satis�ed, then it is not di�cult to prove the inequalityf(y) � f(z) + hrf(z); y � zi + �n2 jy � zj2 8 y 2 N ; 8x 2 N : (6:2)



20(Cf. the techneque used in [9, p. 86{87], with minor adaptations.) By takingy = xk + ��1n dk and z = xk; we havef(xk+1) � f(xk + ��1n dk)� f(xk) + ��1n hrf(xk); dki + ��1n2 jdkj2� f(xk)� 12�n jrf(xk)j2: (6:3)On the other hand, by taking y = xk and z = �x in (6.2), we obtainf(xk) � f(�x) + �n2 jxk � �xj2: (6:4)Combining (6.3) and (6.4), we havef(xk)� f(xk+1)f(xk) � f(�x) � 1�2n jrf(xk)j2jxk � �xj2 :But jrf(xk)jjxk � �xj � hrf(xk); xk � �xi � �1jxk � �xj2by (6.1). Hence the sequence of objective values will eventually converge with alinear rate f(xk+1)� f�f(xk)� f� � 1� ��1�n �2: (6:5)Now consider problems with �1 = 0 in (6.1). Suppose the optimal solution set�X of (PS) is nonempty and bounded. Let~f (x; z) = f(x) + 12c jx � zj2:A possible iteration scheme based on GAP{2 with Mk = I=c goes as follows.Linearly Convergent Inexact PPA for Unconstrainted Minimization.Choose an integer m � 1: Specify starting point x0 2 X: For k = 0; 1; 2; : : : ;generate the sequence fxkg as follows: if xk 2 �X; then stop; otherwise(i) minimize ~f(w;xk) starting from wk;0 = xk to generate wk;1; wk;2; : : : ; wk;m byusing the steepest descent algorithm;



21(ii) take xk+1 = wk;m:Similar to (6.1), now the regularized objective function ~f ( � ; z) of the inner-loopsubproblem satis�esc�1jy� xj2 � hy � x;r ~f (y; z)�r ~f(x; z)i � (c�1+ �n)jy � xj2 8 y 2 N ;8 x 2 N :(6:6)Without loss of generality, suppose N is convex. By taking limits on both sides ofthe inequalityf� + 12c jwk;t � xkj � f(wk;t) + 12c jwk;t � xkj = ~fk(wk;t) � ~fk(xk) = f(xk )as k!1; it is easy to see that, for any t 2 f0; 1; : : : ;mg,dist(wk;t; �X)! 0 as k!1:Hence all the points wk;0; wk;2; : : : ; wk;m will be in N for su�ciently large k: There-fore, similar to (6.5) for f; we have~fk(wk;t+1)� ~f�k~fk(wk;t)� ~f�k � 1� 1(1 + c�n)2 (6:7)for ~fk by (6.6), where t = 0; 1; : : : ;m� 1: Note that xk+1 = wk;m and xk = wk;0 inthe algorithm. Multiplying (6.7) for t = 0; 1; : : : ;m� 1; we obtain~f(xk+1)� ~f�k~fk(xk) � ~f� � �1� 1(1 + c�n)2 �m: (6:8)Hence the stopping criterion (1.17) of GAP{2 is satis�ed with an � equals to theright-hand side of (6.8). According to Theorem 3, the outer iteration convergeswith a linear ratef(xk+1)� f�f(xk) � f� � 1� 12(1 + �=cr)�1� �1� 1(1 + c�n)2 �m�; (6:9)provided the growth condition (3.17) is satis�ed. A \suboptimal" selection of ccould be obtained by minimizing the right-hand side of (6.9). In the special caseof m = 1; this iteration scheme reduces to Iusem-Svaiter's method in [4], and (6.9)gives a linear rate for their method when f satis�es the conditions in this paper.
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