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1 IntroductionTernary Boolean algebras (TBA) are algebras of type h3; 1i with one ternary operation fand one unary operation g de�ned by f(x; y; z) = xy + yz + zx and g(x) = x0, where \+",\:", and \0" are the Boolean join, meet and complementation operations. These operationswere originally studied by A. A. Grau [2]. By the equational theory of TBAs we mean thestudy of the set of all equational identities satis�ed by f and g in all Boolean algebras. Inthis paper, we show that the equational theory of TBAs is one-based.Our methods for �nding a single identity for the theory of TBAs are interesting fromtwo distinct points of view. First, from the algebraic, since TBAs enjoy both permutableand distributive congruences, they admit a single ternary polynomial p(x; y; z), the so-called Pixley polynomial [1, p. 405]. We �rst �nd such a polynomial p(x; y; z) and use atechnique of R. Padmanabhan and R. W. Quackenbush [7] to construct a single identity forthe equational theory in question. This is done in Section 2. Second, from the viewpointof automated reasoning, we use the program Otter to discover new single identities basedupon the results of the algebraic view. Actually we obtain here three new identities|shorter in length than those obtained by the formal algebraic process of Section 2|eachcharacterizing the equational theory of TBAs. The relevant Otter proofs are also included.2 The Algebraic ViewLemma 1. The following three identities characterize TBAs:f(f(a; b; c); d; f(a; b; e)) = f(b; f(e; d; c); a);(1) f(x; g(y); x) = x;(2) f(x; g(x); y) = y:(3)�Supported by an operating grant from NSERC of Canada (#A8215).ySupported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38. 1



Proof. Substitute e = c in (1) and say, d = g(u), and use (2) to getf(a; b; c) = f(b; c; a) = f(c; a; b):(4)Substitute b = g(a) in (1), and use (3) and (4) to get f(c; d; e) = f(e; d; c). Thus the ternaryf has now all six symmetries. Finally, we show that g(g(y)) = y. Let x = g(y) in (3). Wehave y = f(g(y); g(g(y)); y) = f(y; g(y); g(g(y))) = g(g(y)). Thus, by A. A. Grau [2], wehave obtained all the necessary identities for TBAs.Let (5) be the dual of (3), namely,f(x; g(y); y) = x;(5)which, of course, is a consequence of f(1), (2), (3)g. The identities (2), (3) and (5) give thetwo-thirds minority and one-third majority property for the composite ternary polynomialp(x; y; z) := f(x; g(y); z), that is,p(x; x; z) = p(z; y; y) = p(z; y; z) = z:Thus, TBAs form a �nitely based equational class of algebras of type h3; 1i|with oneternary and one unary|de�ned by (i) s(a; b; c; d; e) = t(a; b; c; d; e), written in the languageof f and g (actually only f), and (ii) the composite ternary being a two-thirds minority andone-third majority polynomial, again in the language of type h3; 1i using f and g. Hence,by Padmanabhan and Quackenbush [7], there exists a single identity of the same type (i.e.,in the language of f and g) equivalent to the four identities that characterize the TBAs.To write such an identity, we simply follow the technique given in [7, p. 376]; the identity(8) of Theorem 2 of that paper is the desired one:p(p(u; u; x); p(w; y; z); z) = x;(6)where the word w(z; a; b; c; d; e) = p(z; s(a; b; c; d; e); t(a; b; c; d; e)). Let us now write theidentity in full:f(f(x; g(x); y); g(f(f(z; g(f(f (u; v; w); v6; f(u; v; v7))); f(v; f(v7; v6; w); u)); g(v8); z)); z) = y:(7) This completes the proof of the following theorem.Theorem 1. The equational theory of TBAs is one-based.3 Searching for a Simpler Single Axiom for TBAsOtter [4, 5] is a computer program that can be used to search for proofs of statementsin �rst-order logic with equality. Some of the Otter methods presented in [6] were usedto search for new single identities simpler than (7). First, we used Otter to generateapproximately one thousand TBA identities, using (7) as the initial identity. We constrainedeach identity to have fewer than 41 symbols. (Symbol count includes f , g, =, and variables;e.g., (2) has symbol count 7). Demodulation (simpli�cation) was not used while generatingthe identities.Then, with each of the candidate identities, we ran a separate Otter search, trying toprove it to be a single identity. The strategy for these Otter searches was the following:2



use a search based on the Knuth-Bendix completion procedure [3]; discard equalities withmore than 40 symbols; use (1), (2), and (3) as goals; and search for 60 seconds.Two of the candidates, one with 26 symbols and the other with 38 symbols, derived allthree goals. (7) has 34 symbols.We now present a proof that the 26-symbol equation is a single identity. The machine-generated derivation below is not the exact proof found by Otter. It is the result of somespecial techniques to coerce the program into �nding shorter, more presentable proofs. Itwas, however, generated by computer, and only minor editing has been applied. All ofthe variables are universally quanti�ed. The justi�cation \m ! n" indicates paramodula-tion from line m into line n, and \: m;n; : : :" indicates demodulation (simpli�cation) withm;n; : : : .Theorem 2. The following equality is a single identity for TBA.f(f(x; g(x); y); g(f(f(z; u; v); w; f(z; u; v6))); f(u; f(v6; w; v); z)) = y:(8)Proof. To see that (8) holds in TBA, simplify it to y = y by applying (3), (1), and thenf(x; g(y); y) = x. To see that f(1),(2),(3)g can be derived from (8), consider the followingderivation (which was constructed by Otter).4 f(f(x; g(x); y); g(f(f(z; u; v); w; f(z; u; v6))); f(u; f(v6; w; v); z)) = y [(8)]5 f(f(x; y; z); g(f(f(u; v; w); v6; f(u; v; v7))); f(v; f(v7; v6; w); u)) =f(y; f(z; g(f(x; y; v8)); v8); x) [4!4]7 f(f(x; f(f(y; z; u); g(f(f(y; z; v); x; w)); w); f(y; z; v)); g(f(f (v6; v7; v8); v9;f(v6; v7; v10))); f(v7; f(v10; v9; v8); v6)) = f(z; f(u; x; v); y) [5!4]9 f(g(x); f(y; g(f(x; g(x); z)); z); x) = y [5!4]10 f(f(x; g(x); y); g(f(z; u; f(g(v); f(z; g(f (v; g(v); w)); w); v6))); f(f (z;g(f(v; g(v); w)); w); f(v6; u; v); g(v))) = y [9!4]12 f(f(x; g(x); y); g(f(f(z; u; v); f(w; g(f(v; g(v); v6)); v6); f(z; u; g(v)))); f(u;w; z)) = y [9!4]18 f(f(x; y; z); g(f(f(u; g(u); v); g(f (u; g(u); v)); f(u; g(u); w))); w) =f(y; f(z; g(f(x; y; v6)); v6); x) [9!5]25 f(f(x; g(x); y); g(f(z; u; z)); f(f(z; g(f (v; g(v); w)); w); f(v; u; v); g(v))) = y [9!10]29 f(f(x; y; z); g(f(u; v; u)); f(f(u; g(f (w; g(w); v6)); v6); f(w; v; w); g(w))) =f(y; f(z; g(f(x; y; v7)); v7); x) [4!25]34 f(f(x; g(x); y); g(z); f(g(u); f(v; g(f(f (v; u; w); f(g(u); g(f(w; g(w); v6)); v6);f(v; u; g(w)))); z); u)) = y [12!4]49 f(f(x; f(y; g(f (y; x; z)); z); y); g(f(f(u; v; w); v6; f(u; v; v7))); f(v; f(v7; v6; w); u)) =f(f(y; g(f (v8; g(v8); v9)); v9); f(v8; x; v8); g(v8)) [29!4]51 f(f(x; g(x); y); g(f(z; g(z); f(u; g(u); v))); f (g(z); v; z)) = y [4!34:9]54 f(g(x); y; x) = y [51!51:51]55 f(x; g(f(y; g(y); z)); z) = x [9:54]63 f(f(x; g(x); y); g(f(z; g(z); f(u; g(u); v))); v) = y [51:54]86 f(f(x; f(y; g(f (y; x; z)); z); y); g(f(f(u; v; w); v6; f(u; v; v7))); f(v; f(v7; v6; w); u)) =f(y; f(v8; x; v8); g(v8)) [49:55]88 g(f(x; g(x); y)) = g(y) [55!54]89 f(f(x; y; z); g(f(f(u; g(u); v); g(v); f(u; g(u); w))); w) = f(y; f(z; g(f(x; y; v6)); v6); x) [18:88]97 f(x; g(y); y) = x [55:88]100 f(x; g(x); y) = y [63:88,88,97]105 f(x; g(f(f(y; z; u); v; f(y; z; w))); f(z; f (w; v; u); y)) = x [4:100]117 f(x; f(y; g(f(z; x; u)); u); z) = f(z; x; y) [89:100,100,100,97]120 f(f(x; y; z); u; f(x; y; v)) = f(y; f(v; u; z); x) [7:117,105]121 f(x; f(y; z; y); g(y)) = f(x; z; x) [86:117,120,97]3



123 g(g(x)) = x [100!54]125 f(x; y; g(y)) = x [123!97]131 f(x; g(y); x) = x [97!121:125]Line 100 is (3), line 120 is (1), and line 131 is (2).We then made a second attempt to �nd short single identities by simply considering4642 additional candidates. Forty of the candidates were shown to be single identities; noneof those is shorter than (8), and the following two are the same length as (8).f(f(x; g(x); y); g(f(z; f(u; v;w); v6)); f(f(v6; z;w); v; f(v6; z; u))) = yf(f(x; g(x); y); g(f(z; f(u; v;w); v6)); f(f(v6; z; u); v; f(v6; z;w))) = yNote. Recall that all of the candidates were derived from (7). Without knowledge of (7),it would have been much more di�cult to �nd short single identities. We made a thirdattempt to �nd single identities, this time generating a set of candidates from f(1),(2),(3)g.A set of 555 candidates, all with lengths 20{30, was considered, but none of them was shownto be a single identity.4 Concluding RemarksThe single identity (8) discovered by Otter with 26 symbols and 7 variables (along with itsequivalent cousins) is the shortest identity we know for de�ning Boolean algebras under anytreatment. We leave open the question of whether there exist single identities with fewersymbols or variables. The only other known treatment of Boolean algebras for which a singleidentity is known to exist is the famous She�er's stroke operation of binary rejection (i.e.,nor), xjy = x0 ^ y0. Here, we have g(y) = yjy, x ^ y = (xjx)j(yjy), and x _ y = (xjy)j(xjy).Thus, one can once again build the Pixley polynomial p(x; y; z) and hence, by Theorem1, the equational theory of these algebras will be one-based. In fact, any �nitely basedequational theory of algebras, which contains a reduct of algebras de�nitionally equivalentto the theory of all TBAs (or to the usual theory of all Boolean algebras) will always be one-based. Contrast this with the theory of Boolean groups (i.e., groups of exponent 2) withadditional operators: given a natural number n, there exists an equational theory B(n)containing a reduct of Boolean groups which is n based but not n � 1 based (see Theorem2 of [8] for an actual construction of such equational theories). The same situation is truefor the theory of all groups as well; this was announced without proof in [9].References[1] G. Gratzer. Universal Algebra. Springer Verlag, 2nd edition, 1979.[2] A. A. Grau. Ternary boolean algebra. Bull Amer. Math. Soc, 53:567{572, 1947.[3] D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,editor, Computational Problems in Abstract Algebras, pages 263{297. Pergamon Press,Oxford, U.K., 1970.[4] W. McCune. Otter 2.0 Users Guide. Tech. Report ANL-90/9, Argonne NationalLaboratory, Argonne, IL, March 1990. 4



[5] W. McCune. What's New in Otter 2.2. Tech. Memo ANL/MCS-TM-153, Mathematicsand Computer Science Division, Argonne National Laboratory, Argonne, IL, July 1991.[6] W. McCune. Single axioms for groups and Abelian groups with various operations.Journal of Automated Reasoning, 10(1):1{13, 1993.[7] R. Padmanabhan and R.W. Quackenbush. Equational theories of algebras with withdistributive congruences. Proc. Amer. Math. Soc., 41:373{377, 1973.[8] R. Padmanabhan and B. Wolk. Equational theories with a minority polynomial. Proc.Amer. Math. Soc., 83:238{242, 1981.[9] A. Tarski. Equational logic and equational theories of algebras. In K. Sch�utte, editor,Contributions to Mathematical Logic, pages 275{288. North-Holland, Amsterdam, 1968.
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