A REMARK ON A WEIGHTED LANDAU INEQUALITY OF **KWONG AND ZETTL**

R. C. BROWN D. B. HINTON

M. K. Kwong

ABSTRACT. In this note we extend a Theorem of Kwong and Zettl concerning the inequality

$$\int_0^\infty t^\beta |u'|^p \le K \left(\int_0^\infty t^\gamma |u|^p\right)^{1/2} \left(\int_0^\infty t^\alpha |u''|^p\right)^{1/2}$$

to all α, β, γ such that $\beta = (\alpha + \gamma)/2$ except for the triple: $\alpha = p - 1, \beta = -1, \gamma = -1 - p$. In this case the inequality is false; however u satisfies the inequality

$$\int_0^\infty t^\beta |u'|^p \le K_1 \left\{ \left(\int_0^\infty t^\gamma |u|^p \right)^{1/2} \left(\int_0^\infty t^\alpha |u''|^p \right)^{1/2} + \int_0^\infty t^\gamma |u|^p \right\}$$

1. Notation. Let $I = (a, b), -\infty \le a < b \le \infty$, and " $AC_{loc}(I)$ " denote the class of locally absolutely continuous functions on I. If α , γ are real numbers define

,

$$\mathcal{D}_{\alpha\gamma}(I) =: \left\{ u : u' \in AC_{loc}(I) : \int_{I} t^{\gamma} |u|^{p}, \int_{I} t^{\alpha} |u''|^{p} < \infty \right\}$$
$$\mathcal{D}_{L}(I) =: \left\{ u \in \mathcal{D}_{\alpha\gamma}(I) \right\} : \lim_{t \to a^{+}} u^{(i)} = 0, \ i = 0, 1 \right\},$$
$$\mathcal{D}_{R}(I) =: \left\{ u \in \mathcal{D}_{\alpha\gamma}(I) : \lim_{t \to b^{-}} u^{(i)} = 0, \ i = 0, 1 \right\}.$$

Additionally let K denote a constant of interest whose value may change from line to line; if required different constants will be denoted by K_1 , K_2 , etc.

2. A weighted multiplicative inequality. In [4, Theorem 9] Kwong and Zettl proved the following result:

1 10

Theorem 1. Suppose $1 \le p < \infty$, β , γ and α are real numbers such that

(1)
$$\beta = \frac{\alpha + \gamma}{2}$$

Then there is a constant K independent of u such that the inequality

(2)
$$\int_0^\infty t^\beta |u'|^p \le K \left(\int_0^\infty t^\gamma |u|^p\right)^{1/2} \left(\int_0^\infty t^\alpha |u''|^p\right)^{1/2}$$

holds for $u \in \mathcal{D}_{\alpha\gamma}((0,\infty))$ if $\beta > -1$ and $\gamma > -1 - p$.

We are going to extend this Theorem by proving:

Theorem 2. Let $u \in \mathcal{D}_{\alpha\gamma}((0,\infty))$, $1 \leq p < \infty$, then the inequality (2) holds if and only if the pair $\{\alpha, \gamma\} \neq \{p-1, -1-p\}$ and β satisfies (1). Also in the exceptional case $\{\alpha, \gamma\} = \{p-1, -1-p\}$ the inequality

(3)
$$\int_0^\infty t^{-1} |u'|^p \le K_1 \left\{ \left(\int_0^\infty t^{-1-p} |u|^p \right)^{1/2} \left(\int_0^\infty t^{p-1} |u''| \right)^{1/2} + \int_0^\infty t^{-1-p} |u|^p \right\}$$

is valid.

Proof. That (2) implies (1) is a statement of "dimensional balance" and follows if we introduce the change of variables $t = \lambda s$ in (2). Next suppose that $\beta \neq \alpha - p$. If $\beta > \alpha - p$, we get that $(\alpha - \gamma)/2p < 1$, and if $\beta < \alpha - p$ then $(\alpha - \gamma)/2p > 1$; thus in either case $(\alpha - \gamma)/2p \neq 1$. Case (i): Let $\beta \leq -1$ and $\beta > \alpha - p$. Now

$$u'(t) = u'(s) - \int_t^s u'' \,.$$

Since $\alpha , <math>\alpha p'/p < 1$, so that $t^{-\alpha p'/p}$ is integrable if p > 1 $(t^{|\alpha|}$ is bounded if p = 1) on right neighborhoods of 0. This fact and Hölder's inequality implies that $\lim_{t\to 0^+} \int_t^s u''$ is finite; consequently $\lim_{t\to 0^+} u'$ exists. Since t^{β} fails to be integrable on right neighborhoods of 0, the limit must be 0. Because $\beta > \alpha - p$ a form of Hardy's inequality for $\mathcal{D}_L((0,1])$ (see [5, Example 6.8(i)) gives

$$\int_0^1 t^{\beta} |u'|^p \le K \int_0^1 t^{\beta+p} |u''|^p < K \int_0^1 t^{\alpha} |u''|^p$$

when $\beta < -1$, and

$$\int_0^1 t^{\beta} |u'|^p < K \int_0^1 t^{\alpha-p} |u''|^p \le K \int_0^1 t^{\alpha} |u''|^p$$

when $\beta = -1$. The sum inequality on $\mathcal{D}_{\alpha\gamma}((0,1))$

(4)
$$\int_0^1 t^\beta |u'|^p < K \left\{ \int_0^1 t^\gamma |u|^p + \int_0^1 t^\alpha |u''|^p \right\}$$

follows trivially. By existing theory (take $I = [1, \infty)$, $\delta := (\alpha - \gamma)/2p < 1$, and $\epsilon = 1$ in [1, Example 1]) we obtain the sum inequality

(5)
$$\int_{1}^{\infty} t^{\beta} |u'|^{p} \leq K \left\{ \int_{1}^{\infty} t^{\gamma} |u|^{p} + \int_{1}^{\infty} t^{\alpha} |u''|^{p} \right\}$$

on $\mathcal{D}_{\gamma\alpha}([1,\infty))$. Addition of (4) and (5) gives the sum inequality on the entire interval. Set $t = \lambda s$. Then $u_{\lambda} := u(\lambda s)$ is in $\mathcal{D}_{\alpha\gamma}((0,\infty))$ so that

$$\int_0^\infty s^\beta |u'_\lambda(s)|^p \, ds < K \left\{ \int_0^\infty s^\gamma |u_\lambda(s)|^p \, ds + \int_0^\infty s^\alpha |u''_\lambda(s)|^p \, ds \right\} \,,$$

which is equivalent to the inequality

(6)
$$\int_0^\infty t^\beta |u'(t)|^p \, dt < K \left\{ \lambda^\phi \int_0^\infty t^\gamma |u(t)|^p \, dt + \lambda^{-\phi} \int_0^\infty t^\alpha |u''(t)|^p \right\} \, dt$$

where $\phi = (\alpha - \gamma)/2 - p$. (2) follows by minimizing the right side of (6) with respect to λ (the minimization is possible since $(\alpha - \gamma)/2p \neq -1$).

The other possibilities concerning β follow a similar logic. Case (ii): Assume $\beta > \{-1, \alpha - p\}$. Then Hardy's inequality for $\mathcal{D}_R((0, 1] \text{ (see } [5, \text{ Example } 6.8(ii)]))$, Minkowski's inequality, and the integrability of t^β on (0, 1] gives

(7)
$$\int_0^1 t^\beta |u'|^p \le K \left\{ \int_0^1 t^\alpha |u''|^p + |u'(1)|^p \right\}$$

Since [1, Lemma 2.1]

(8)
$$|u'(1)| \le K \left\{ \int_{1}^{2} |u| + \int_{1}^{2} |u''| \right\},$$

a standard Hölder's inequality argument applied to (8) in conjunction with (7) yields that

(9)
$$\int_0^1 t^\beta |u'|^p < K \left\{ \int_0^\infty t^\gamma |u|^p + \int_0^\infty t^\alpha |u''|^p \right\}$$

Since (5) remains valid, addition of (5) and (9) gives the sum inequality on $(0, \infty)$ and the the same scaling argument as in the previous case may be applied. Case (iii): If $\beta < \alpha - p$ and $\beta < -1$, Hardy's inequality for $\mathcal{D}_L([1,\infty))$ (see [5, Example 6.9(i)]), Minkowski's inequality, Lemma 2.1 of [1], etc., give as in Case (ii) the sum inequality (5). On the other hand since $(\alpha - \gamma)/2p \geq 1$, existing theory (see [1, Example 2]) gives

(10)
$$\int_0^1 t^\beta |u'|^p \le K \left\{ \int_0^1 t^\gamma |u|^p + \int_0^1 t^\alpha |u''|^p \right\} ;$$

we then add and scale as before. Case (iv): If $\beta < \alpha - p$ and $\beta \ge -1$, we can show that $\lim_{t\to\infty} u'(t) = 0$ by an argument similar to Case (i). Hardy's inequality for $\mathcal{D}_R([1,\infty))$ (see [5, Example 6.9(ii)]) then leads trivially to (5). Adding this to (10) (the argument of Case (iii) continues to apply) and finishing the argument as before completes the proof.

Now suppose that $\beta = \alpha - p$. To handle this situation we modify an argument previously given in the proof of [2, Theorem 2.1]: Let ϕ be a C_0^{∞} function with support on [-3/4, 1] such that $0 \leq \phi \leq 1$ and $\phi = 1$ on [1/2, 1]. Define a bi-infinite partition $\{t_i\}_{-\infty}^{\infty}$ of $(0, \infty)$ by letting $t_0 = 1$ and $t_i = 2^i$. For $m \in \mathbb{Z}$ and $u \in \mathcal{D}_{\alpha\gamma}((0, \infty))$ set

(11)
$$y_m(t) = u(t)\phi((t-t_m)/t_m);$$

thus y_m has support on $[t_{m-2}, t_{m+1}]$ and $y_m = u$ on $[t_{m-1}, t_m]$. It is not difficult to show applying Leibniz's rule of differentiation that there is a constant C independent of u and m such that

(12)
$$|y_m''(t)| \le C \sum_{i=0}^2 |u^{(i)}| / t_m^{2-i},$$

a.e. Next we recall that if $\alpha = \beta = \gamma = 0$ (2) is a special case of a far more general and well known Gabushin) inequality (cf. [3]). (Also note that if p > 1 the unweighted inequality follows from *Case (ii)* above.) Substituting (11) into this inequality and using (12) gives

(13)
$$\left(\int_{t_{m-1}}^{t_m} |u'|^p\right) \leq \left(\int_{t_{m-2}}^{t_{m+1}} |y'_m|^p\right) \leq K \left(\int_{t_{m-2}}^{t_{m+1}} |y_m|^p\right)^{1/2} \left(\int_{t_{m-2}}^{t_{m+1}} |y''_m|^p\right)^{1/2} \leq K C^{1/2} \left(\int_{t_{m-2}}^{t_{m+1}} |u|^p\right)^{1/2} \left(\sum_{i=0}^2 |u^{(i)}|^p / (t_m^{2-i})^p\right)^{1/2}$$

We multiply the last line of (13) by t^{β} , noting both that β satisfies (1) and that if $t \in [t_{m-2}, t_m]$, then $1/4 \leq t/t_m \leq 2$ because of the nature of the partition. This gives

(14)
$$\int_{t_{m-1}}^{t_m} t^{\beta} |u'|^p \le K_1 \left(\int_{t_{m-2}}^{t_{m+1}} t^{\gamma} |u|^p \right)^{1/2} \left(\sum_{i=0}^2 t_m^{\alpha-(2-i)p} |u^{(i)}|^p \right)^{1/2}$$

for a constant K_1 independent of u. Summing (14) over m and using the discrete sum form of the Cauchy-Schwartz inequality yields that

$$\int_{0}^{\infty} t^{\beta} |u'|^{p} \leq K_{1} \left(\sum_{m=1}^{\infty} \int_{t_{m-2}}^{t_{m+1}} t^{\gamma} |u|^{p} \right)^{1/2} \left(\sum_{m=0}^{\infty} \int_{t_{m-2}}^{t_{m+1}} \left(\sum_{i=0}^{2} t_{m}^{\alpha-(2-i)p} |u^{(i)}|^{p} \right) \right)^{1/2}$$

Because each t belongs in at most three intervals $[t_{m-2}, t_{m+1}]$ and by Minkowski's inequality applied to the last integral in (15), it follows that

(16)
$$\int_0^\infty t^\beta |u'|^p \le K_2 \left(\int_0^\infty t^\gamma |u|^p \right)^{1/2} \left[\sum_{i=0}^2 \left(\int_0^\infty t_m^{\alpha-(2-i)p} |u^{(i)}|^p \right) \right]^{1/2}$$

Assume now that $\beta < -1$ so that $\gamma < -1$. Because $\alpha and <math>\beta < -1$ an argument given in Case (i) shows that $\lim_{t\to 0^+} u'(t) = 0$. Similarly the fact that

$$\frac{-\beta p'}{p} > \frac{1}{p-1} > 0$$

together with Hölder's inequality applied to the integral in the identity

$$u(t) = u(s) - \int_t^s u'$$

demonstrates that $\lim_{t\to 0^+} u(t)$ exists. Since $\gamma < -1$ the limit is 0. This shows that $\mathcal{D}_{\alpha\gamma}((0,\infty)) = \mathcal{D}_L((0,\infty))$. Since $\alpha - p < -1$, iteration of Hardy's inequality for $\mathcal{D}_L((0,\infty))$ (cf. [5, Example 6.7]) gives

(17)
$$\int_0^\infty t^{\alpha-(2-i)p} |u^{(i)}|^p \le K_3 \int_0^\infty t^\alpha |u''|^p.$$

Substitution of (17) into (16) yields (2). The case $\beta > -1$, $\gamma > -1$ is covered by Theorem 1. However an argument similar to the previous case shows that this alternative implies that $\lim_{t\to\infty} u^{(i)}(t) = 0$ for i = 0, 1; so that $\mathcal{D}_{\alpha\gamma}((0,\infty)) = \mathcal{D}_R((0,\infty))$. Since (17) holds on $\mathcal{D}_R((0,\infty))$ if $\alpha - p > -1$ we can substitute it into (16) as before to complete the proof. Summarizing, (2) holds for all choices of α , β , and γ satisfying (1) except possibly for

(18)
$$\begin{aligned} \alpha &= p - 1, \\ \beta &= -1, \\ \gamma &= -1 - p, \end{aligned}$$

which was to be proved.

We next show by a counterexample that (2) cannot hold in the exceptional case (18), Let

$$u_{\delta}(t) := \begin{cases} u_{1,\delta}(t) \equiv t^{1+\delta} & \text{for } t \in [0,1] \\ u_{2,\delta} \equiv ((1+\delta)t^{1-\delta} - 2\delta)/(1-\delta) & \text{for } t \in (1,\infty) \end{cases}$$

where $\delta > 0$ is a parameter. Since u_{δ} and u'_{δ} are continuous at 1, $u_{\delta} \in \mathcal{D}_{\alpha\gamma}((0,\infty))$. To prove that (2) cannot hold for this family of functions it is sufficient to show that if

$$Q(u_{\delta}) := \frac{\left(\int_{0}^{\infty} t^{-1} |u_{\delta}'|^{p}\right)^{2}}{\left(\int_{0}^{\infty} t^{-1-p} |u_{\delta}|^{p}\right) \left(\int_{0}^{\infty} t^{p-1} |u_{\delta}''|\right)}$$

then

(19)
$$\lim_{\delta \to 0} Q(u_{\delta}) = \infty \,.$$

A calculation yields that

(20)
$$\int_0^\infty t^{-1} |u_{\delta}'|^p = \frac{2(1+\delta)^p}{p\delta}$$

(21)
$$\int_0^\infty t^{p-1} |u_{\delta}''|^p = \frac{2\delta^p (\delta+1)^p}{p\delta} \,.$$

Moreover

(22)
$$\int_{1}^{\infty} t^{-1-p} |u_{2}|^{p} < \frac{\int_{1}^{\infty} (1+\delta)t^{1-\delta}}{1-\delta} < \frac{(1+\delta)^{p}}{p\delta(1-\delta)^{p}},$$

so that

(23)
$$\int_{0}^{\infty} t^{-1-p} |u_{\delta}|^{p} = \frac{1}{p\delta} + \int_{1}^{\infty} t^{-1-p} |u_{2}|^{p} < \frac{1}{p\delta} + \frac{(1+\delta)^{p}}{p\delta(1-\delta)^{p}}.$$

Combining (22) and (23) and substituting them together with the estimates (20) and (21) into (19) gives

$$\lim_{\delta \to 0} Q(u_{\delta}) \ge \lim_{\delta \to 0} \frac{2(1+\delta)^p}{\delta^p \left(1 + \frac{(1+\delta)^p}{(1-\delta)^p}\right)} = \infty.$$

It remains to prove (3) in the exceptional case: Let f(t) = t, $N = t^{-1}$, $W = t^{-1-p}$, and $P = t^{p-1}$ in condition (C₃) of [1]. Then a calculation shows that

$$S_{1} = (\epsilon t)^{p} \left((\epsilon t)^{-1} \int_{t}^{t(1+\epsilon)} s^{-1} ds \right) \left((\epsilon t)^{-1} \int_{t}^{t(1+\epsilon)} s^{-(p-1)p'/p} ds \right)^{p-1}$$

$$\leq \epsilon$$

$$S_{2} = (\epsilon t)^{-p} \left((\epsilon t)^{-1} \int_{t}^{t(1+\epsilon)} s^{-1} ds \right) \left((\epsilon t)^{-1} \int_{t}^{t(1+\epsilon)} s^{(p+1)p'/p} ds \right)^{p-1}$$

$$\leq \epsilon^{-p} (1+\epsilon)^{p+1}.$$

This yields by [1, Theorem 2.1 (iv)] the sum inequality

(24)
$$\int_0^\infty t^{-1} |u|^p \le K \left\{ \epsilon^{-p} (1+\epsilon)^{p+1} \int_0^\infty t^{-1-p} |u|^p + \epsilon^p \int_0^\infty t^{p-1} |u''|^p \right\} .$$

We substitute the elementary inequality

$$(1+\epsilon)^{p+1} \le 2^p (1+\epsilon^{p+1})$$

into (24) and then minimize

$$2^{p} \epsilon^{-p} \int_{0}^{\infty} t^{-1-p} |u|^{p} + \epsilon^{p} \int_{0}^{\infty} t^{p-1} |u''|^{p}$$

on the right-hand side. The result is (3) with $K_1 = \max\{2K, \epsilon_0^p\}$ where ϵ_0 is minimizing value of ϵ . The proof is complete.

References

- 1. R.C. Brown and D. B. Hinton, Sufficient conditions for weighted inequalities of sum form., J. Math. Anal. Appl. 123 (1985), 563-578.
- 2. _____, Interpolation inequalities with power weights for functions of one variable, J. Math. Anal. Appl. **172** (1993), 233-240.
- 3. V.N. Gabushin, Inequalities for norms of a function and its derivatives in L_p metrics, Mat. Zametki 1 (1967), 291-298.
- M. K. Kwong and A. Zettl, Norm inequalities of product form in weighted L^p spaces, Proc. Roy. Soc. Edinburgh 89A (1981), 293-307.
- 5. B. Opic and A. Kufner, *Hardy-type Inequalities*, Longman Scientific & Technical, Harlow, Essex, UK, 1990.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, TUSCALOOSA, AL 35487-0350

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996-1300

MATHEMATICS AND COMPUTER SCIENCE DIVISION, BLDG 221, ARGONNE NATIONAL LABORATORY, 9700 S. CASS AVE., ARGONNE, IL 60439, PREPRINT MCS-P388-1093