A REMARK ON A WEIGHTED LANDAU INEQUALITY OF KWONG AND ZETTL

R. C. Brown
D. B. Hinton
M. K. Kwong

Abstract. In this note we extend a Theorem of Kwong and Zettl concerning the inequality

$$
\int_{0}^{\infty} t^{\beta}\left|u^{\prime}\right|^{p} \leq K\left(\int_{0}^{\infty} t^{\gamma}|u|^{p}\right)^{1 / 2}\left(\int_{0}^{\infty} t^{\alpha}\left|u^{\prime \prime}\right|^{p}\right)^{1 / 2}
$$

to all α, β, γ such that $\beta=(\alpha+\gamma) / 2$ except for the triple: $\alpha=p-1, \beta=-1, \gamma=-1-p$. In this case the inequality is false; however u satisfies the inequality

$$
\int_{0}^{\infty} t^{\beta}\left|u^{\prime}\right|^{p} \leq K_{1}\left\{\left(\int_{0}^{\infty} t^{\gamma}|u|^{p}\right)^{1 / 2}\left(\int_{0}^{\infty} t^{\alpha}\left|u^{\prime \prime}\right|^{p}\right)^{1 / 2}+\int_{0}^{\infty} t^{\gamma}|u|^{p}\right\}
$$

1. Notation. Let $I=(a, b),-\infty \leq a<b \leq \infty$, and " $A C_{l o c}(I)$ " denote the class of locally absolutely continuous functions on I. If α, γ are real numbers define

$$
\begin{aligned}
& \mathcal{D}_{\alpha \gamma}(I)=:\left\{u: u^{\prime} \in A C_{l o c}(I): \int_{I} t^{\gamma}|u|^{p}, \int_{I} t^{\alpha}\left|u^{\prime \prime}\right|^{p}<\infty\right\}, \\
& \left.\mathcal{D}_{L}(I)=:\left\{u \in \mathcal{D}_{\alpha \gamma}(I)\right): \lim _{t \rightarrow a^{+}} u^{(i)}=0, i=0,1\right\} \\
& \mathcal{D}_{R}(I)=:\left\{u \in \mathcal{D}_{\alpha \gamma}(I): \lim _{t \rightarrow b^{-}} u^{(i)}=0, i=0,1\right\}
\end{aligned}
$$

Additionally let K denote a constant of interest whose value may change from line to line; if required different constants will be denoted by K_{1}, K_{2}, etc.
2. A weighted multiplicative inequality. In [4, Theorem 9] Kwong and Zettl proved the following result:

Theorem 1. Suppose $1 \leq p<\infty, \beta, \gamma$ and α are real numbers such that

$$
\begin{equation*}
\beta=\frac{\alpha+\gamma}{2} . \tag{1}
\end{equation*}
$$

Then there is a constant K independent of u such that the inequality

$$
\begin{equation*}
\int_{0}^{\infty} t^{\beta}\left|u^{\prime}\right|^{p} \leq K\left(\int_{0}^{\infty} t^{\gamma}|u|^{p}\right)^{1 / 2}\left(\int_{0}^{\infty} t^{\alpha}\left|u^{\prime \prime}\right|^{p}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

holds for $u \in \mathcal{D}_{\alpha \gamma}((0, \infty))$ if $\beta>-1$ and $\gamma>-1-p$.
We are going to extend this Theorem by proving:

Theorem 2. Let $u \in \mathcal{D}_{\alpha \gamma}((0, \infty)), 1 \leq p<\infty$, then the inequality (2) holds if and only if the pair $\{\alpha, \gamma\} \neq\{p-1,-1-p\}$ and β satisfies (1). Also in the exceptional case $\{\alpha, \gamma\}=\{p-1,-1-p\}$ the inequality

$$
\begin{equation*}
\int_{0}^{\infty} t^{-1}\left|u^{\prime}\right|^{p} \leq K_{1}\left\{\left(\int_{0}^{\infty} t^{-1-p}|u|^{p}\right)^{1 / 2}\left(\int_{0}^{\infty} t^{p-1}\left|u^{\prime \prime}\right|\right)^{1 / 2}+\int_{0}^{\infty} t^{-1-p}|u|^{p}\right\} \tag{3}
\end{equation*}
$$

is valid.
Proof. That (2) implies (1) is a statement of "dimensional balance" and follows if we introduce the change of variables $t=\lambda s$ in (2). Next suppose that $\beta \neq \alpha-p$. If $\beta>\alpha-p$, we get that $(\alpha-\gamma) / 2 p<1$, and if $\beta<\alpha-p$ then $(\alpha-\gamma) / 2 p>1$; thus in either case $(\alpha-\gamma) / 2 p \neq 1$. Case (i): Let $\beta \leq-1$ and $\beta>\alpha-p$. Now

$$
u^{\prime}(t)=u^{\prime}(s)-\int_{t}^{s} u^{\prime \prime}
$$

Since $\alpha<p-1, \alpha p^{\prime} / p<1$, so that $t^{-\alpha p^{\prime} / p}$ is integrable if $p>1\left(t^{|\alpha|}\right.$ is bounded if $p=1$) on right neighborhoods of 0 . This fact and Hölder's inequality implies that $\lim _{t \rightarrow 0^{+}} \int_{t}^{s} u^{\prime \prime}$ is finite; consequently $\lim _{t \rightarrow 0^{+}} u^{\prime}$ exists. Since t^{β} fails to be integrable on right neighborhoods of 0 , the limit must be 0 . Because $\beta>\alpha-p$ a form of Hardy's inequality for $\mathcal{D}_{L}((0,1])$ (see [5, Example 6.8(i)) gives

$$
\int_{0}^{1} t^{\beta}\left|u^{\prime}\right|^{p} \leq K \int_{0}^{1} t^{\beta+p}\left|u^{\prime \prime}\right|^{p}<K \int_{0}^{1} t^{\alpha}\left|u^{\prime \prime}\right|^{p}
$$

when $\beta<-1$, and

$$
\int_{0}^{1} t^{\beta}\left|u^{\prime}\right|^{p}<K \int_{0}^{1} t^{\alpha-p}\left|u^{\prime \prime}\right|^{p} \leq K \int_{0}^{1} t^{\alpha}\left|u^{\prime \prime}\right|^{p}
$$

when $\beta=-1$. The sum inequality on $\mathcal{D}_{\alpha \gamma}((0,1))$

$$
\begin{equation*}
\int_{0}^{1} t^{\beta}\left|u^{\prime}\right|^{p}<K\left\{\int_{0}^{1} t^{\gamma}|u|^{p}+\int_{0}^{1} t^{\alpha}\left|u^{\prime \prime}\right|^{p}\right\} \tag{4}
\end{equation*}
$$

follows trivially. By existing theory (take $I=[1, \infty), \delta:=(\alpha-\gamma) / 2 p<1$, and $\epsilon=1$ in [1, Example 1]) we obtain the sum inequality

$$
\begin{equation*}
\int_{1}^{\infty} t^{\beta}\left|u^{\prime}\right|^{p} \leq K\left\{\int_{1}^{\infty} t^{\gamma}|u|^{p}+\int_{1}^{\infty} t^{\alpha}\left|u^{\prime \prime}\right|^{p}\right\} \tag{5}
\end{equation*}
$$

on $\mathcal{D}_{\gamma \alpha}([1, \infty))$. Addition of (4) and (5) gives the sum inequality on the entire interval. Set $t=\lambda s$. Then $u_{\lambda}:=u(\lambda s)$ is in $\mathcal{D}_{\alpha \gamma}((0, \infty))$ so that

$$
\int_{0}^{\infty} s^{\beta}\left|u_{\lambda}^{\prime}(s)\right|^{p} d s<K\left\{\int_{0}^{\infty} s^{\gamma}\left|u_{\lambda}(s)\right|^{p} d s+\int_{0}^{\infty} s^{\alpha}\left|u_{\lambda}^{\prime \prime}(s)\right|^{p} d s\right\}
$$

which is equivalent to the inequality

$$
\begin{equation*}
\int_{0}^{\infty} t^{\beta}\left|u^{\prime}(t)\right|^{p} d t<K\left\{\lambda^{\phi} \int_{0}^{\infty} t^{\gamma}|u(t)|^{p} d t+\lambda^{-\phi} \int_{0}^{\infty} t^{\alpha}\left|u^{\prime \prime}(t)\right|^{p}\right\} d t \tag{6}
\end{equation*}
$$

where $\phi=(\alpha-\gamma) / 2-p$. (2) follows by minimizing the right side of (6) with respect to λ (the minimization is possible since $(\alpha-\gamma) / 2 p \neq-1)$.

The other possibilities concerning β follow a similar logic. Case (ii): Assume $\beta>\{-1, \alpha-p\}$. Then Hardy's inequality for $\mathcal{D}_{R}((0,1]$ (see [5, Example 6.8(ii)]), Minkowski's inequality, and the integrability of t^{β} on $(0,1]$ gives

$$
\begin{equation*}
\int_{0}^{1} t^{\beta}\left|u^{\prime}\right|^{p} \leq K\left\{\int_{0}^{1} t^{\alpha}\left|u^{\prime \prime}\right|^{p}+\left|u^{\prime}(1)\right|^{p}\right\} \tag{7}
\end{equation*}
$$

Since [1, Lemma 2.1]

$$
\begin{equation*}
\left|u^{\prime}(1)\right| \leq K\left\{\int_{1}^{2}|u|+\int_{1}^{2}\left|u^{\prime \prime}\right|\right\} \tag{8}
\end{equation*}
$$

a standard Hölder's inequality argument applied to (8) in conjunction with (7) yields that

$$
\begin{equation*}
\int_{0}^{1} t^{\beta}\left|u^{\prime}\right|^{p}<K\left\{\int_{0}^{\infty} t^{\gamma}|u|^{p}+\int_{0}^{\infty} t^{\alpha}\left|u^{\prime \prime}\right|^{p}\right\} \tag{9}
\end{equation*}
$$

Since (5) remains valid, addition of (5) and (9) gives the sum inequality on $(0, \infty)$ and the the same scaling argument as in the previous case may be applied. Case (iii): If $\beta<\alpha-p$ and $\beta<-1$, Hardy's inequality for $\mathcal{D}_{L}([1, \infty)$) (see [5, Example 6.9(i)]), Minkowski's inequality, Lemma 2.1 of [1], etc., give as in Case (ii) the sum inequality (5). On the other hand since $(\alpha-\gamma) / 2 p \geq 1$, existing theory (see [1, Example 2]) gives

$$
\begin{equation*}
\int_{0}^{1} t^{\beta}\left|u^{\prime}\right|^{p} \leq K\left\{\int_{0}^{1} t^{\gamma}|u|^{p}+\int_{0}^{1} t^{\alpha}\left|u^{\prime \prime}\right|^{p}\right\} \tag{10}
\end{equation*}
$$

we then add and scale as before. Case (iv): If $\beta<\alpha-p$ and $\beta \geq-1$, we can show that $\lim _{t \rightarrow \infty} u^{\prime}(t)=0$ by an argument similar to Case (i). Hardy's inequality for $\mathcal{D}_{R}([1, \infty))$ (see [5, Example 6.9(ii)]) then leads trivially to (5). Adding this to (10) (the argument of Case (iii) continues to apply) and finishing the argument as before completes the proof.

Now suppose that $\beta=\alpha-p$. To handle this situation we modify an argument previously given in the proof of [2, Theorem 2.1]: Let ϕ be a C_{0}^{∞} function with support on $[-3 / 4,1]$ such that $0 \leq \phi \leq 1$ and $\phi=1$ on $[1 / 2,1]$. Define a bi-infinite partition $\left\{t_{i}\right\}_{-\infty}^{\infty}$ of $(0, \infty)$ by letting $t_{0}=1$ and $t_{i}=2^{i}$. For $m \in \mathbb{Z}$ and $u \in \mathcal{D}_{\alpha \gamma}((0, \infty))$ set

$$
\begin{equation*}
y_{m}(t)=u(t) \phi\left(\left(t-t_{m}\right) / t_{m}\right) \tag{11}
\end{equation*}
$$

thus y_{m} has support on $\left[t_{m-2}, t_{m+1}\right]$ and $y_{m}=u$ on $\left[t_{m-1}, t_{m}\right]$. It is not difficult to show applying Leibniz's rule of differentiation that there is a constant C independent of u and m such that

$$
\begin{equation*}
\left|y_{m}^{\prime \prime}(t)\right| \leq C \sum_{i=0}^{2}\left|u^{(i)}\right| / t_{m}^{2-i} \tag{12}
\end{equation*}
$$

a.e. Next we recall that if $\alpha=\beta=\gamma=0$ (2) is a special case of a far more general and well known Gabushin) inequality (cf. [3]). (Also note that if $p>1$ the unweighted inequality follows from Case (ii) above.) Substituting (11) into this inequality and using (12) gives

$$
\begin{aligned}
\left(\int_{t_{m-1}}^{t_{m}}\left|u^{\prime}\right|^{p}\right) & \leq\left(\int_{t_{m-2}}^{t_{m+1}}\left|y_{m}^{\prime}\right|^{p}\right) \\
& \leq K\left(\int_{t_{m-2}}^{t_{m+1}}\left|y_{m}\right|^{p}\right)^{1 / 2}\left(\int_{t_{m-2}}^{t_{m+1}}\left|y_{m}^{\prime \prime}\right|^{p}\right)^{1 / 2} \\
& \leq K C^{1 / 2}\left(\int_{t_{m-2}}^{t_{m+1}}|u|^{p}\right)^{1 / 2}\left(\sum_{i=0}^{2}\left|u^{(i)}\right|^{p} /\left(t_{m}^{2-i}\right)^{p}\right)^{1 / 2} .
\end{aligned}
$$

We multiply the last line of (13) by t^{β}, noting both that β satisfies (1) and that if $t \in\left[t_{m-2}, t_{m}\right]$, then $1 / 4 \leq t / t_{m} \leq 2$ because of the nature of the partition. This gives

$$
\begin{equation*}
\int_{t_{m-1}}^{t_{m}} t^{\beta}\left|u^{\prime}\right|^{p} \leq K_{1}\left(\int_{t_{m-2}}^{t_{m+1}} t^{\gamma}|u|^{p}\right)^{1 / 2}\left(\sum_{i=0}^{2} t_{m}^{\alpha-(2-i) p}\left|u^{(i)}\right|^{p}\right)^{1 / 2} \tag{14}
\end{equation*}
$$

for a constant K_{1} independent of u. Summing (14) over m and using the discrete sum form of the Cauchy-Schwartz inequality yields that

$$
\int_{0}^{\infty} t^{\beta}\left|u^{\prime}\right|^{p} \leq K_{1}\left(\sum_{m=1}^{\infty} \int_{t_{m-2}}^{t_{m+1}} t^{\gamma}|u|^{p}\right)^{1 / 2}\left(\sum_{m=0}^{\infty} \int_{t_{m-2}}^{t_{m+1}}\left(\sum_{i=0}^{2} t_{m}^{\alpha-(2-i) p}\left|u^{(i)}\right|^{p}\right)\right)^{1 / 2}
$$

Because each t belongs in at most three intervals $\left[t_{m-2}, t_{m+1}\right]$ and by Minkowski's inequality applied to the last integral in (15), it follows that

$$
\begin{equation*}
\int_{0}^{\infty} t^{\beta}\left|u^{\prime}\right|^{p} \leq K_{2}\left(\int_{0}^{\infty} t^{\gamma}|u|^{p}\right)^{1 / 2}\left[\sum_{i=0}^{2}\left(\int_{0}^{\infty} t_{m}^{\alpha-(2-i) p}\left|u^{(i)}\right|^{p}\right)\right]^{1 / 2} \tag{16}
\end{equation*}
$$

Assume now that $\beta<-1$ so that $\gamma<-1$. Because $\alpha<p-1$ and $\beta<-1$ an argument given in Case (i) shows that $\lim _{t \rightarrow 0^{+}} u^{\prime}(t)=0$. Similarly the fact that

$$
\frac{-\beta p^{\prime}}{p}>\frac{1}{p-1}>0
$$

together with Hölder's inequality applied to the integral in the identity

$$
u(t)=u(s)-\int_{t}^{s} u^{\prime}
$$

demonstrates that $\lim _{t \rightarrow 0^{+}} u(t)$ exists. Since $\gamma<-1$ the limit is 0 . This shows that $\mathcal{D}_{\alpha \gamma}((0, \infty))=\mathcal{D}_{L}((0, \infty))$. Since $\alpha-p<-1$, iteration of Hardy's inequality for $\mathcal{D}_{L}((0, \infty))$ (cf. [5, Example 6.7]) gives

$$
\begin{equation*}
\int_{0}^{\infty} t^{\alpha-(2-i) p}\left|u^{(i)}\right|^{p} \leq K_{3} \int_{0}^{\infty} t^{\alpha}\left|u^{\prime \prime}\right|^{p} \tag{17}
\end{equation*}
$$

Substitution of (17) into (16) yields (2). The case $\beta>-1, \gamma>-1$ is covered by Theorem 1. However an argument similar to the previous case shows that this alternative implies that $\lim _{t \rightarrow \infty} u^{(i)}(t)=0$ for $i=0,1$; so that $\mathcal{D}_{\alpha \gamma}((0, \infty))=\mathcal{D}_{R}((0, \infty))$. Since (17) holds on $\mathcal{D}_{R}((0, \infty))$ if $\alpha-p>-1$ we can substitute it into (16) as before to complete the proof. Summarizing, (2) holds for all choices of α, β, and γ satisfying (1) except possibly for

$$
\begin{align*}
\alpha & =p-1 \\
\beta & =-1 \\
\gamma & =-1-p \tag{18}
\end{align*}
$$

which was to be proved.
We next show by a counterexample that (2) cannot hold in the exceptional case (18), Let

$$
u_{\delta}(t):= \begin{cases}u_{1, \delta}(t) \equiv t^{1+\delta} & \text { for } t \in[0,1] \\ u_{2, \delta} \equiv\left((1+\delta) t^{1-\delta}-2 \delta\right) /(1-\delta) & \text { for } t \in(1, \infty)\end{cases}
$$

where $\delta>0$ is a parameter. Since u_{δ} and u_{δ}^{\prime} are continuous at $1, u_{\delta} \in \mathcal{D}_{\alpha \gamma}((0, \infty))$. To prove that (2) cannot hold for this family of functions it is sufficient to show that if

$$
Q\left(u_{\delta}\right):=\frac{\left(\int_{0}^{\infty} t^{-1}\left|u_{\delta}^{\prime}\right|^{p}\right)^{2}}{\left(\int_{0}^{\infty} t^{-1-p}\left|u_{\delta}\right|^{p}\right)\left(\int_{0}^{\infty} t^{p-1}\left|u_{\delta}^{\prime \prime}\right|\right)}
$$

then

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} Q\left(u_{\delta}\right)=\infty \tag{19}
\end{equation*}
$$

A calculation yields that

$$
\begin{align*}
\int_{0}^{\infty} t^{-1}\left|u_{\delta}^{\prime}\right|^{p} & =\frac{2(1+\delta)^{p}}{p \delta} \tag{20}\\
\int_{0}^{\infty} t^{p-1}\left|u_{\delta}^{\prime \prime}\right|^{p} & =\frac{2 \delta^{p}(\delta+1)^{p}}{p \delta} \tag{21}
\end{align*}
$$

Moreover

$$
\begin{align*}
\int_{1}^{\infty} t^{-1-p}\left|u_{2}\right|^{p} & <\frac{\int_{1}^{\infty}(1+\delta) t^{1-\delta}}{1-\delta} \\
& <\frac{(1+\delta)^{p}}{p \delta(1-\delta)^{p}} \tag{22}
\end{align*}
$$

so that

$$
\begin{align*}
\int_{0}^{\infty} t^{-1-p}\left|u_{\delta}\right|^{p} & =\frac{1}{p \delta}+\int_{1}^{\infty} t^{-1-p}\left|u_{2}\right|^{p} \\
& <\frac{1}{p \delta}+\frac{(1+\delta)^{p}}{p \delta(1-\delta)^{p}} \tag{23}
\end{align*}
$$

Combining (22) and (23) and substituting them together with the estimates (20) and (21) into (19) gives

$$
\begin{aligned}
\lim _{\delta \rightarrow 0} Q\left(u_{\delta}\right) & \geq \lim _{\delta \rightarrow 0} \frac{2(1+\delta)^{p}}{\delta^{p}\left(1+\frac{(1+\delta)^{p}}{(1-\delta)^{p}}\right)} \\
& =\infty
\end{aligned}
$$

It remains to prove (3) in the exceptional case: Let $f(t)=t, N=t^{-1}, W=t^{-1-p}$, and $P=t^{p-1}$ in condition $\left(\mathrm{C}_{3}\right)$ of [1]. Then a calculation shows that

$$
\begin{aligned}
S_{1} & =(\epsilon t)^{p}\left((\epsilon t)^{-1} \int_{t}^{t(1+\epsilon)} s^{-1} d s\right)\left((\epsilon t)^{-1} \int_{t}^{t(1+\epsilon)} s^{-(p-1) p^{\prime} / p} d s\right)^{p-1} \\
& \leq \epsilon \\
S_{2} & =(\epsilon t)^{-p}\left((\epsilon t)^{-1} \int_{t}^{t(1+\epsilon)} s^{-1} d s\right)\left((\epsilon t)^{-1} \int_{t}^{t(1+\epsilon)} s^{(p+1) p^{\prime} / p} d s\right)^{p-1} \\
& \leq \epsilon^{-p}(1+\epsilon)^{p+1} .
\end{aligned}
$$

This yields by [1, Theorem 2.1 (iv)] the sum inequality

$$
\begin{equation*}
\int_{0}^{\infty} t^{-1}|u|^{p} \leq K\left\{\epsilon^{-p}(1+\epsilon)^{p+1} \int_{0}^{\infty} t^{-1-p}|u|^{p}+\epsilon^{p} \int_{0}^{\infty} t^{p-1}\left|u^{\prime \prime}\right|^{p}\right\} \tag{24}
\end{equation*}
$$

We substitute the elementary inequality

$$
(1+\epsilon)^{p+1} \leq 2^{p}\left(1+\epsilon^{p+1}\right)
$$

into (24) and then minimize

$$
2^{p} \epsilon^{-p} \int_{0}^{\infty} t^{-1-p}|u|^{p}+\epsilon^{p} \int_{0}^{\infty} t^{p-1}\left|u^{\prime \prime}\right|^{p}
$$

on the right-hand side. The result is (3) with $K_{1}=\max \left\{2 K, \epsilon_{0}^{p}\right\}$ where ϵ_{0} is minimizing value of ϵ. The proof is complete.

References

1. R.C. Brown and D. B. Hinton, Sufficient conditions for weighted inequalities of sum form., J. Math. Anal. Appl. 123 (1985), 563-578.
2. \qquad , Interpolation inequalities with power weights for functions of one variable, J. Math. Anal. Appl. 172 (1993), 233-240.
3. V.N. Gabushin, Inequalities for norms of a function and its derivatives in L_{p} metrics, Mat. Zametki 1 (1967), 291-298.
4. M. K. Kwong and A. Zettl, Norm inequalities of product form in weighted L^{p} spaces, Proc. Roy. Soc. Edinburgh 89A (1981), 293-307.
5. B. Opic and A. Kufner, Hardy-type Inequalities, Longman Scientific \& Technical, Harlow, Essex, UK, 1990.

Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350

Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300

Mathematics and Computer Science Division, Bldg 221, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, Preprint MCS-P388-1093

