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ABSTRACT. In this note we extend a Theorem of Kwong and Zettl concerning the in-
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to all a, 3, v such that 3 = (w4 ~)/2 except for the triple: a =p—1,8=-1,vy= —-1—p.
In this case the inequality is false; however u satisfies the inequality
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equality

1. Notation. Let I = (a,b), —o0 < a < b < o0, and “AC,(I)” denote the class of
locally absolutely continuous functions on I. If «, v are real numbers define

Da~(I) =: {u cu' € AC, (D) : /t7|u|p, /ta|u”|p < oo} ,
I I
Dp(I) =: {u € Day(I)) : lim u'Y =0, i=0,1},
t—a
Dr(I) =: {u € Do~ (I): lim vV =0, i =0,1}.
t—b—

Additionally let K denote a constant of interest whose value may change from line to
line; if required different constants will be denoted by K, K, etc.

2. A weighted multiplicative inequality. In [4, Theorem 9] Kwong and Zettl
proved the following result:

Theorem 1. Suppose 1 < p < oo, #, v and « are real numbers such that
o+ Y

(1) f=——

Then there is a constant K independent of u such that the inequality
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holds for v € Do~((0,00)) if f > —1 and v > —1 — p.

We are going to extend this Theorem by proving:
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Theorem 2. Let u € Dy~((0,00)), 1 < p < oo, then the inequality (2) holds if and
only if the pair {a, v} # {p — 1, —1 — p} and [ satisfies (1). Also in the exceptional
case {a, v} = {p—1, =1 — p} the inequality

oo oo 1/2 oo 1/2 oo
(3) / TP < K,y (/ t_l_p|u|p> (/ tp_1|u”|> —I—/ 1P|y P
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is valid.

Proof. That (2) implies (1) is a statement of “dimensional balance” and follows if we
introduce the change of variables ¢ = As in (2). Next suppose that § # a — p. If
B> o —p, we get that (o« —v)/2p < 1, and if § < o — p then (o —7)/2p > 1; thus in
either case (v —v)/2p # 1. Case (i): Let § < —1 and > o — p. Now

Since a < p—1, ap'/p < 1, so that t=P'/? ig integrable if p > 1 (tl*l is bounded
if p = 1) on right neighborhoods of 0. This fact and Hélder’s inequality implies that

Ll

lim u" is finite; consequently lim u' exists. Since t? fails to be integrable on right

t—0t ¢ t—0t
neighborhoods of 0, the limit must be 0. Because § > o —p a form of Hardy’s inequality
for Dr((0,1]) (see [5, Example 6.8(i)) gives

1 1 1
/ t0|u'|P §K/ PP < K/ o [P
0 0 0
1 1 1
/ PP < K/ tY PP < K/ 4 u"|P
0 0 0

when # = —1. The sum inequality on Dq~((0,1))

1 1 1
(4) / tﬂ|u’|P<K{/ t7|u|p—|—/ ta|u”|p}
0 0 0

follows trivially. By existing theory (take [ =[1,00), ¢ :=(a—~)/2p < 1,and e = 1 in
[1, Example 1]) we obtain the sum inequality

(5) / PP < K{/ t7|u|p—|—/ ta|u”|p}
1 1 1

on Do ([1,00)). Addition of (4) and (5) gives the sum inequality on the entire interval.
Set t = As. Then uy := u(As) is in Dy~ ((0,00)) so that

/0 sPlul\(s)[P ds < K {/0 sTux(s)|P ds —I—/O s uly ()P ds} )

when # < —1, and
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which is equivalent to the inequality

(6) / tﬂ|u'(t)|Pdt<K{A¢/ ﬂ|u(t)|Pdt+A‘¢/ t“lu”(t)lp} dt
0 0 0

where ¢ = (o — v)/2 — p. (2) follows by minimizing the right side of (6) with respect
to A (the minimization is possible since (o —~)/2p # —1).

The other possibilities concerning /3 follow a similar logic. Case (ii): Assume
B > {-=1, a« — p}. Then Hardy’s inequality for Dgr((0,1] (see [5, Example 6.8(ii)]),
Minkowski’s inequality, and the integrability of % on (0, 1] gives

1 1
(7) [ e <x{ [Cewrwapy .
0 0

Since [1, Lemma 2.1]

®) wrs s { [ [

a standard Holder’s inequality argument applied to (8) in conjunction with (7) yields
that

1 o0 o0
(9) / Pl P < K {/ 7 |u|? —I—/ ta|u”|p} :
0 0 0

Since (5) remains valid, addition of (5) and (9) gives the sum inequality on (0, 00) and
the the same scaling argument as in the previous case may be applied. Case (iii): If
f < a—pand f < —1, Hardy’s inequality for Dr([1,00)) (see [5, Example 6.9(i)]),
Minkowski’s inequality, Lemma 2.1 of [1], etc., give as in Case (ii) the sum inequality
(5). On the other hand since (o —~v)/2p > 1, existing theory (see [1, Example 2]) gives

1 1 1
(10) / PP < K{/ t7|u|p—|—/ ta|u”|p} ;
0 0 0

we then add and scale as before. Case (iv): If § < a—p and > —1, we can show that
lim w'(¢) = 0 by an argument similar to Case (i). Hardy’s inequality for Dg([1,00))

t—o00

(see [5, Example 6.9(ii)]) then leads trivially to (5). Adding this to (10) (the argument
of Case (iii) continues to apply) and finishing the argument as before completes the
proof.

Now suppose that § = o — p. To handle this situation we modify an argument
previously given in the proof of [2, Theorem 2.1]: Let ¢ be a Cg° function with support
on [—3/4,1] such that 0 < ¢ <1 and ¢ =1 on [1/2,1]. Define a bi-infinite partition
{t:}>° of (0,00) by letting to = 1 and #; = 2. For m € Z and u € Dy((0,0)) set

(11) ym (1) = w()o((t —tm)/tm);

thus y,, has support on [t,—2,tmy1] and Y, = v on [ty—1,tm]. It is not difficult to
show applying Leibniz’s rule of differentiation that there is a constant C' independent
of u and m such that

2
(12) Y < CY )/
i=0
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a.e. Next we recall that if &« = =~ = 0 (2) is a special case of a far more general
and well known Gabushin) inequality (cf. [3]). (Also note that if p > 1 the unweighted

inequality follows from Case (ii) above.) Substituting (11) into this inequality and using
(12) gives

T tm-|—1
/ W) < / WAL
Tm—1 tn—2
- 1/2 - 1/2
gfc/ P / W
tm—2 tn—2

/2, 5
bt 4 4
(13) < KC'? ( / |u|P) (§ :|u<l>|P/<t,%:’>P)
tm—2 =0

We multiply the last line of (13) by #°, noting both that 3 satisfies (1) and that if
t € [tm—2,tm], then 1/4 < t/t,, < 2 because of the nature of the partition. This gives

tm 41 2 s o9 1/2
(14) / PP < K, (/ t7|u|P> (Z t%—(2—i)P|u(i)|p>
! ! i=0

1/2

m—1 m—2

for a constant K; independent of u. Summing (14) over m and using the discrete sum
form of the Cauchy-Schwartz inequality yields that

oo Ot Y2 /oo gin [ 2 1/2
tﬁ|u'|p < K, / 7 ulf? / t%—(2—i)P|u(i)|p

=0

Because each t belongs in at most three intervals [t;,—2,tm+1] and by Minkowski’s
inequality applied to the last integral in (15), it follows that

1/2

2

o0 oo 1/2 0o ‘ ‘
(16) / Pl P < Ky (/ t7|u|p> [Z (/ t%—(2—l)P|u(l)|p>]
0 0 0

=0

Assume now that 3 < —1 so that v < —1. Because &« < p—1 and § < —1 an
argument given in Case (i) shows that 1im+ u'(t) = 0. Similarly the fact that
t—0

demonstrates that 1im+ u(t) exists. Since v < —1 the limit is 0. This shows that
t—0

Da~((0,00)) = Dr((0,00)). Since o —p < —1, iteration of Hardy’s inequality for
Dr((0,00)) (cf. [5, Example 6.7]) gives

(17) / t“_(z_i)p|u(i)|p§1&’3/ P
0 0
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Substitution of (17) into (16) yields (2). The case § > —1, v > —1 is covered by The-
orem 1. However an argument similar to the previous case shows that this alternative

implies that lim «(V(¢) = 0 for i = 0,1; so that Du((0,00)) = Dr((0,0)). Since (17)

t—o00

holds on Dr((0,0)) if @« — p > —1 we can substitute it into (16) as before to complete
the proof. Summarizing, (2) holds for all choices of «, [, and ~ satisfying (1) except
possibly for

a=p—1,
=1,

which was to be proved.
We next show by a counterexample that (2) cannot hold in the exceptional case (18),

Let
() = { up 5(t) = e for t € [0,1]
T g = (146170 —26)/(1—6) for t € (1,00)

where ¢ > 0 is a parameter. Since us and ujs are continuous at 1, us € Dq~((0,00)). To
prove that (2) cannot hold for this family of functions it is sufficient to show that if

) (/Ooot‘lluﬁs|p>2
Q(us) = (/Ooot_l_p|ué|p> (/Oootp_1|ug|> |

then
(19) %irr(l) Qus) = oo.
A calculation yields that
* o 2(1 4 6)P
2 t P = —>t
(20) |y ==
1) |ty = 2O
0 ’ po '
Moreover
- / (14 6)t~°
t—l—p P 1
/1 Juzl” < 1-6
1+6)P

S el =)
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so that
>0 i 1 >0 i
|l = [l
0 po 1
1 (14
> I S )
(23) 25 T pe(1 =gy

Combining (22) and (23) and substituting them together with the estimates (20) and
(21) into (19) gives

: : 2(146)P
jim Qus) = lim : <1+)a>p
o (1+ G5297)

= Q.

It remains to prove (3) in the exceptional case: Let f(t) =¢, N = ¢! W =¢"17P,
and P = t"~1 in condition (C3) of [1]. Then a calculation shows that

t(1+e) t(14¢) / p—1
Sy = (et)? (et)_1 / s 1ds (et)—l / s—(=Dp'/p g
t t

< e

t(1+e) t(14¢) / p—1
Sy = (et)”" ((Gt)_l / 51 ds) ((et)_l / st /p ds)
t t
<eP(1+ e)p+1 )

This yields by [1, Theorem 2.1 (iv)] the sum inequality

(24) / t_1|u|p < K{e_p(l —|—€)p+1/ t_l_p|u|p—|—6p/ tp_1|u”|p} )
0 0 0

We substitute the elementary inequality
(1 + €)P+1 < 2P <1 + 6P+1>

into (24) and then minimize

[e.9] [e.9]
2196—19/ t—l—p|u|p + ep/ tp—1|u//|p
0 0

on the right-hand side. The result is (3) with K; = max{2K, €} } where ¢y is minimizing
value of € . The proof is complete.
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