
Preprint MCS-P391-1093, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., January 1994.Language Constructs for Modular Parallel ProgramsIan FosterMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439 USAAbstractWe describe programming language constructs that facilitate the application ofmodular design techniques in parallel programming. These constructs allow us to iso-late resource management and processor scheduling decisions from the speci�cationof individual modules, which can themselves encapsulate design decisions concernedwith concurrency, communication, process mapping, and data distribution. This ap-proach permits development of libraries of reusable parallel program components andthe reuse of these components in di�erent contexts. In particular, alternative map-ping strategies can be explored without modifying other aspects of program logic. Wedescribe how these constructs are incorporated in two practical parallel programminglanguages, PCN and Fortran M. Compilers have been developed for both languages,allowing experimentation in substantial applications.Keywords: modularity; parallel programming; programming languages; program com-position; code reuse; virtual computer1 IntroductionIn sequential programming, modular and object-oriented design and programming tech-niques are well understood and widely used to reduce complexity, permit separate devel-opment of components, and encourage reuse [31, 27, 3]. In parallel programming, thesituation is less advanced. Parallel programs are, for the most part, developed in anad-hoc fashion, as monolithic entities that cannot easily be adapted to changing circum-stances. Code reuse is rare, outside the specialized context of single-program multiple-data(SPMD) programming, where the same program is run on every processor and librariescan be called to perform common global operations [13, 25].This paper presents programming language constructs that permit the bene�ts of mod-ularity to be realized in parallel programs. The central ideas are as follows. First, processand data placement decisions within an individual module are speci�ed with respect toa virtual computer; the embedding of this virtual computer within a physical or anothervirtual computer is speci�ed when the module is invoked. This approach permits resourcemanagement and locality decisions to be separated from the speci�cations of individualmodules and developed in a hierarchical fashion by using stepwise re�nement techniques.Second, virtual computer constructs are incorporated into compositional programminglanguages, in which concurrency is speci�ed with explicit parallel constructs and inter-actions between concurrent processes are restricted so that neither physical location nor1

execution schedule a�ects the result of a computation [7]. Languages with this prop-erty include Strand and PCN, in which processes interact by reading and writing sharedsingle-assignment variables, and Fortran M, in which interactions occur via single-reader,single-writer virtual channels. Compositional languages permit design decisions concernedwith mapping, data distribution, communication, and scheduling to be made separatelyand to be modi�ed without changing other aspects of a design [15].In this paper, we show how virtual computer constructs are integrated into two com-positional parallel programming languages: PCN [9, 16] and Fortran M [14]. PCN is aC-like language that integrates ideas from concurrent logic programming and imperativeprogramming; Fortran M is a small set of extensions to Fortran. In each case, virtual com-puters and related constructs have been introduced in a manner that is consistent with thebase language, hence simplifying both comprehension and compilation. Both PCN andFortran M have been used to develop a range of substantial parallel applications; theseprovide an empirical basis for evaluation of the concepts.In summary, the contributions of this paper are as follows:� The de�nition of programming language constructs that facilitate the modular con-struction of parallel programs.� The instantiation of the constructs in practical parallel programming languages.� Empirical evaluation in a range of applications.The next three sections of this paper address each of these issues in turn, after whichwe review related work and present our conclusions.2 Modularity and Parallel ProgramsWe use the term \modularity" to refer to two related program-structuring techniques:1. Stepwise re�nement [31] { the decomposition of a complex problem into simplersubproblems, each solved by a separate module with a well-de�ned interface.2. Modular decomposition [27] { the isolation in separate modules of design decisionsthat are di�cult, likely to change, or common to several program components.The �rst of these techniques is more naturally applied top down in the design processand, if care is taken to ensure generality, produces modules that can be reused in di�erentcontexts. The second is more naturally applied bottom up and can reduce the cost ofprogram modi�cations. Both techniques are central to object-oriented design [3].It is instructive to examine how these techniques can be applied in sequential and paral-lel programming. For illustrative purposes, we consider a simple example: the convolutionoperation used, for example, in motion estimation algorithms in image processing [11].Each pair of images is �rst processed by using a two-dimensional fast Fourier transform(FFT). The resulting matrices are then multiplied, and an inverse FFT is applied to theresult. The various operations, and the dependencies between them, are illustrated inFigure 1. 2

FFT

FFT

MUL FFT -1Figure 1: Convolution Algorithm StructureIn a sequential implementation, stepwise re�nement may identify FFT, matrix multi-plication, input, and output modules. The data structures to be input to and output fromeach module are speci�ed in its interface; internal data structures and algorithmic detailsare encapsulated and not visible to other components. The interface speci�es the size andperhaps the type of the data structures to be operated on, hence allowing the module tobe used in di�erent contexts. For example, the same FFT module can be called threetimes in the convolution example. The interface design may also address e�ciency issues,for example by specifying that data is to be passed by reference rather than by value.The same decomposition can be used in a parallel implementation. Now, however, weneed to encapsulate not only data and computation but also concurrency, communication,process mapping, and data distribution. If we do not encapsulate this information, twomodules mapped to the same processor might interfere, for example if one received mes-sages intended for the other. When composing two modules, we prefer not to be awareof how each maps computation and data. (The mappings used in di�erent modules canbe made conformant to improve performance, but should not a�ect correctness.) Again,e�ciency issues need to be addressed in the interface design; for example, by allowing forthe exchange of distributed data structures between parallel modules.In a sequential implementation, modular decomposition may identify the representa-tion of matrices as common to several program components. Hence, we de�ne a modulethat provides the required matrix operations: read an element, write an element, etc.The rest of the program uses these functions to access matrices; alternative matrix rep-resentations (e.g., linear storage or a linked-list representation of sparse matrices) can besubstituted without changes to other components.A design decision of equal signi�cance in a parallel implementation is how computationand data are mapped to processors. For example, the various phases of the convolutionproblem illustrated in Figure 1 can be organized so as to execute (a) on disjoint sets ofprocessors as a pipeline, (b) in sequence for each input data set, or (c) as some hybridof these two approaches (Figure 2). We wish to localize the changes required to explorethese alternatives, which do not a�ect the basic structure of the algorithm but may havedi�erent performance characteristics. These changes concern the allocation of computa-tional resources (processors) to modules and the scheduling of components mapped to thesame processor. 3

(a) (b) (c)Figure 2: Alternative Mappings for the Parallel Convolution AlgorithmWe have found that the design issues encountered in the convolution example arecommon to many parallel programming problems. In summary, the most important issuesare as follows.1. Parallel modules need to encapsulate not only computation and data, as in sequentialprogramming, but also communication, concurrency, process mapping, and datadistribution.2. Resource allocation and scheduling decisions need to be isolated from module spec-i�cations.3. Interfaces between parallel modules need to allow for the sharing of distributed datastructures.We now present the programming language concepts that we use to address theseissues.Virtual Computers. We remove resource allocation decisions from individual modulesby specifying process and data mapping within a module relative to a virtual computer.The shape, size, and mapping of this virtual computer to physical processors are speci�edexternally to the module. This mapping need not be one to one: several virtual computernodes can be located on a single physical processor, or a virtual computer can correspondto a subset of a physical computer. For example, a parallel FFT module might be speci�edwith respect to a one-dimensional array of processors with size speci�ed in its interface.Only the virtual computer speci�cation in the calling program need be changed to explorethe di�erent mappings illustrated in Figure 2.Virtual computers control both resource allocation and locality. The size of a programcomponent's virtual computer determines in part the computational resources availableto that component. (The number of other components mapped to the same processorsis also a factor.) The location of the virtual computer determines whether interactionswith other components require inexpensive intraprocessor or expensive interprocessor com-munication. For example, compared with strategy (a), strategy (b) in Figure 2 permitsdi�erent phases of the convolution operation to communicate inexpensively, because alloperate on the same processors rather than on disjoint sets of processors. On the other4

hand, it increases intramodule communication costs, because each module is distributedover many processors.We de�ne three operations on virtual computers: process mapping, data distribution,and embedding.Process mapping is the mechanism by which a process is created on (or migrated to)a particular processor. Language constructs are provided to specify that a particularprocess is to initiate or continue execution on a particular node of a virtual computer. Forexample, an FFT module might create one process on each node of the virtual computerin which it executes.Data distribution is the mechanism by which data structures are distributed over pro-cessors. Language constructs are provided to de�ne the type and size of a distributeddata structure and the mapping of its elements to the nodes of a virtual computer. Forexample, an FFT module might specify a blocked distribution of its input, output, andwork arrays.Embedding is the mechanism by which virtual computers are de�ned. An embeddingfunction speci�es the size and type of a computer and how its nodes are mapped to thenodes of an existing physical or virtual computer. Language constructs are provided forspecifying embedding functions. In the convolution example, an embedding function wouldbe used to de�ne the subcomputers in which the various modules (FFT, etc.) execute.Embedding functions allow the programmer to develop resource management and lo-cality speci�cations in a hierarchical fashion. For example, assume that our convolutionprogram is de�ned to execute in a two-dimensional virtual computer. This convolutioncode may itself be embedded in a larger program. When calling the convolution code, itsu�ces to create a two-dimensional virtual computer in order to specify how the convolu-tion code (and hence its constituent modules) is mapped to physical processors.Scheduling. It is often necessary (for correctness) or useful (for e�ciency) for compo-nents mapped to the same processor to execute in an interleaved fashion. For example,in Figure 2, concurrent execution of di�erent pipeline stages can improve e�ciency byallowing overlapping of computation and communication: one can execute while otherswait for data.A programmer can control scheduling explicitly by merging code for di�erent compo-nents into a single thread of control for each processor. However, this approach typicallyrequires an intimate and complex intermingling of the di�erent components, which not onlycompromises modularity but also hinders exploration of alternative scheduling strategies.Unfortunately, scheduling is an aspect of a parallel algorithm that is frequently changed.Execution on a di�erent machine, minor changes to other components of an algorithm, ora new compiler can all change the temporal relationships between components and hencechange the optimal schedule.We address this problem by permitting the programmer to specify components asseparate processes that execute in a data-driven manner. The execution schedule is thendetermined by the availability of data and by the scheduling algorithm used to selectexecutable processes. This approach is, of course, well known in actors, data
ow, parallelfunctional programming, and concurrent logic programming [1, 6, 21, 15].5

Interfaces. Concurrently-executing program components must be able to share data.As noted above, a mechanism is required that supports encapsulation, that is independentof resource allocation and scheduling decisions, and that is e�cient on parallel computers.We achieve this as follows.Logical Resources. In order that modules do not interfere in unexpected ways, interac-tions between program components are restricted to language objects passed via interfaces.Hence, concurrently-executing processes cannot operate on shared \global" variables orinteract via physical resources such as processor or memory addresses.Schedule Independence. In order that scheduling decisions can be changed withoutmodifying other program components, we restrict operations on shared data to those forwhich execution order does not a�ect the result of a computation [7]. For example, twoprocesses may share a channel on which one performs nonblocking sends while the otherperforms blocking receives. Or, several processes may share a single-assignment variablethat one writes and several read. In both cases, the reader(s) block(s) until data is providedby the writer; hence, the schedule does not a�ect the result of a computation.Global Address Space. In order that mapping decisions can be changed without mod-ifying other program components, we make no distinction at the language level betweenlocal and remote references to objects. Hence, a process can operate on a resource regard-less of its location [15]. This requires some form of global address space, as provided, forexample, by virtual channel and single-assignment variables.Concurrency. Concurrent module interfaces are achieved by permitting shared data(for example, arrays of virtual channels or single-assignment variables) to be distributedover processors and accessed concurrently by program components.The �rst three of these requirements are satis�ed by compositional languages such asPCN and Fortran M. The integration of data distribution constructs satis�es the fourthrequirement.3 Language Constructs for ModularityThe programming language concepts introduced in the preceding section have been incor-porated in the PCN and Fortran M programming languages. In each case, it has provedpossible to introduce the concepts in a manner that is consistent with other languageconcepts.3.1 Program Composition NotationProgram Composition Notation (PCN) [9, 16] is a high-level concurrent programminglanguage with a C-like syntax that combines features of concurrent logic languages andimperative languages. Programs are constructed by using three composition operators| parallel, sequential, and choice | to compose procedure calls, other compositions, orprimitive operations. Concurrently executing processes interact by reading and writingsingle-assignment variables. Such variables are initially unde�ned and can be written atmost once; an attempt to read an unde�ned variable suspends until the variable is written.In both PCN and Fortran M, we specify that the virtual computer in which a processexecutes is by default the same as that process's parent, unless speci�ed otherwise whenthe process is created. Information about this virtual computer can be obtained by inquiry6

functions; in PCN, these are topology() and nodes(), which return a representation of itstype (e.g., a term f"mesh",16,32g), and its size, respectively. Mapping, data distribution,and embedding operations within the process are performed relative to this implicit virtualcomputer. An alternative approach, which also has its merits, is to represent the virtualcomputer as a data structure that can be manipulated in the language. This approach isadopted in CC++ [8].Mapping in PCN is speci�ed by using the in�x operator @ to apply a mapping functionto a process or block. A mapping function returns a node number within the current virtualcomputer. For example, in the following the @ operator is used to locate a call to processmyproc() on node (i,j) of a M�N mesh. The �rst code fragment is a parallel block thatinvokes procedure myproc on node meshnode(i,j) of the current virtual computer. Thesecond code fragment is a de�nition for the meshnode function. This uses a PCN choicecomposition operator (a form of guarded command) to specify actions to be performedif the current topology is a mesh and the mesh location is valid (action: return theappropriate index within the mesh) or otherwise (action: return an error value). The in�xoperator ?= is a term-matching primitive that tests and decomposes the term returnedby topology(). All variables in PCN are local to the procedure in which they occur;single-assignment variables are not explicitly declared.{|| ...myproc(...) @ meshnode(i,j)...}function meshnode(i,j){ ? topology() ?= {"mesh",M,N}, i < M, j < N ->return(M*i+j),default -> return(-1)}Data distribution is supported in the form of blocked distributions of arrays of single-assignment variables. (In a blocked distribution, each processor is allocated a contiguousblock of array elements [18].) Elements of a distributed array are accessed in the samemanner as ordinary array elements. More complex distributions and data structures, suchas those supported in data-parallel programming languages [30, 18], can be integrated inthe same manner, but are not supported in the current PCN compiler.A keyword port is used to declare these distributed arrays. For example, the followingprocedure declares a distributed array P of single-assignment variables with one elementon each node of the current virtual computer. The syntax \{|| i over 0..n ::" is aparallel enumerator, used here to create nodes() instances of the ringnode process. Thelocation function node(i) is assumed to return its argument; it is used to place eachprocess on a separate node in the current virtual computer. Elements of P are used toconnect these processes in a unidirectional ring; as P is distributed, the newly createdprocesses can access elements e�ciently, without the need to communicate with a centrallocation.ring() 7

port P[nodes()];{|| i over 0..nodes()-1 ::ringnode(P[i],P[(i+1)%nodes()]) @ node(i)}Embedding is supported by the in�x operator in, used to annotate a process callor block with an embedding function that returns a representation of the new virtualcomputer. For example, assume an embedding function subarray(start,size) whichembeds a 1-D computer of speci�ed size at location start in a parent computer of thesame type but larger size. The following code fragment uses this function to invoke twoof the FFT processes required for the convolution problem, each on a separate set of nprocessors.{|| ...call fft(...) in subarray(0,n),call fft(...) in subarray(n,n),...}The PCN extensions that support virtual computers, data distribution, and embed-ding have been incorporated into a PCN compiler [17]. A programmable source-to-sourcetransformation system is used to translate the extended language into PCN as well as callsto a runtime library that manages virtual computers and handles requests for distributeddata. This compiler has supported extensive experimentation with the language exten-sions, as described in Section 4. The compiler is designed to optimize process mapping andaccess to distributed data, both of which take constant time irrespective of computer size.Execution of an embedding function takes time proportional to the square of the size ofthe new virtual computer; however, this cost is distributed over the physical processors onwhich the virtual computer is to be created and has not proved excessive on 500-processorcomputers.3.2 Fortran MFortran M is a small set of extensions to Fortran designed to support the modular construc-tion of scienti�c and engineering applications [14]. A primary goal in designing Fortran Mwas to provide a minimal set of extensions that were consistent with Fortran concepts.The temptation to \�x" Fortran was avoided. We describe Fortran M for two reasons.First, it shows how our concepts can be incorporated into a programming language withcharacteristics very di�erent from those of PCN. Second, it allows us to provide a morecomprehensive illustration of how distributed arrays are integrated with virtual computers.Fortran M programs use parbegin/parend constructs to create processes that interactby sending and receiving messages on typed ports that reference single-writer, single-reader channels. Channel operations are modeled on Fortran �le I/O constructs. Map-ping is speci�ed with respect to virtual computers. In keeping with Fortran concepts,virtual computers are N -dimensional arrays of virtual processors. As in High Perfor-mance Fortran (HPF) [20], a PROCESSORS declaration is used to de�ne the size and shape8

of the processor array that is to apply in a particular process, and the inquiry functionsNumber Of Processors and Processor Shape permit a process to determine the size andshape of the computer in which it executes.Mapping is speci�ed by using the LOCATION annotation. An annotation of the formLOCATION(I1,...,In) appended to a process call indicates that the call is to execute onnode (I1,...,In) of the current virtual computer. An executable RELOCATE statementcan also be de�ned to request process migration; however, this is not currently supported inthe Fortran M compiler due to the portability problems associated with process migration.The following code fragment implements the ring structure for which PCN code waspresented in the preceding section. The code declares arrays of inports and outports,creates channels, and then invokes the ringnode processes, passing the ports as arguments.Notice the PROCESSORS declaration and LOCATION annotation.process ringPROCESSORS(p)inport (integer) pi(p)outport (integer) po(p)do i = 1,pchannel(in=pi(i), out=po(mod(i)+1))enddoprocessdo i = 1,pprocesscall ringnode(pi(i), po(i)) LOCATION(i)endprocessdoendData distribution is speci�ed by using data distribution statements based on those inHPF, with the di�erence that these statements are interpreted with respect to the currentvirtual computer rather than an entire machine. For example, the following statements canbe added to the previous program to specify that arrays pi and po are to be distributed.DISTRIBUTE pi(BLOCK)ALIGN po WITH piEmbedding is speci�ed with the SUBMACHINE annotation. When appended to a processcall, this indicates that the call is to execute in a submachine of speci�ed size and shape.Fortran 90 array constructors can be used to de�ne the new virtual machine. For example,the following code fragment invokes a parallel FFT process in the ith row and column ofan N � N processor array, respectively. Processes and distributed arrays created withineach FFT process are distributed only over the processors on which that process executes.processesprocesscall fft(...) SUBMACHINE(i, 1:N)processcall fft(...) SUBMACHINE(1:N, i)endprocessesA Fortran M compiler has been constructed that translates Fortran M programs intoFortran plus calls to a communication and process management library. This compiler isoperational on both networks of workstations and parallel computers, and has been usedin a variety of programming experiments, as described in Section 4.9

4 ExperiencesThe language constructs described in this paper have been applied to a wide range ofscienti�c and engineering problems, in areas as diverse as atmospheric modeling, com-putational biology, computational chemistry, and image processing. Here, we summarizesome of these investigations, which provide insights into the strengths and weaknesses ofthe approach.4.1 Parallel SolversWe �rst describe a study of parallel algorithms for numerical methods used to solve partialdi�erential equations in spherical geometry, in which PCN was used to prototype algorithmvariants [10]. Three di�erent numerical methods were considered: a spectral transformmethod on a regular latitude/longitude grid, a �nite di�erence method on overlappingstereoscopic grids, and a control volume on an icosahedral-hexagonal grid. In each case,the resulting parallel algorithms are complex, and there was a need to explore algorithmicvariants. We use the simplest of the three examples to illustrate the approach. The spec-tral transform algorithm comprises three components. It operates on a latitude-longitudegrid, with the bulk of the computation being performed independently at each grid point;communication is encapsulated in an FFT performed in each latitude and a summationperformed in each longitude. The PCN implementation is structured as follows. The rou-tine spectral is executed in a two-dimensional mesh virtual computer created by a call tospectral mesh. An FFT module is invoked in each row of this computer and a summationmodule in each column, by using embedding functions row and col, respectively. A mod-i�ed version of the sequential code is executed on each processor. The missing argumentsrepresent the port variables used for communication between the di�erent modules.main(lat,lon){|| spectral(lat,lon) in spectral_mesh(lat,lon) }spectral(lat,lon)...{|| {|| i over 0..lat-1 :: fft(...) in row(i) },{|| i over 0..lon-1 :: sum(...) in col(i) },{|| i over 0..lat*lon-1 :: compute(...) @ node(i) }}Our approach proved to have two major bene�ts in this case. First, it proved possibleto reuse FFT and summation modules. Both were available as PCN programs and couldbe called directly, without reengineering to execute in di�erent contexts. In e�ect, no newparallel code had to be written beyond that shown above: only the sequential Fortrancode required modi�cation, to execute in the parallel harness. Second, experimentationwith alternative mapping strategies was facilitated. For example, on a two-dimensionalmesh computer such as the Intel Delta, it is possible to map each \row" of the spectralmesh to either a row or a submesh of the computer. Both have potential performanceadvantages: the former results in simpler communication patterns, while the latter makesmore e�cient use of available wires. We were able to experiment with both approaches.10

These bene�ts were also observed when implementing the �nite di�erence and controlvolume algorithms [10].The study also revealed de�ciencies in the PCN approach and tools. The use of twolanguages (PCN for the parallel harness, and Fortran for sequential computation) provedo�putting to the applied mathematicians who assisted in the project. Also, although thePCN scheduler schedules computational tasks and remote reads correctly, a lack of pre-emption meant that remote read operations were sometimes delayed for extended periodsawaiting completion of computationally intensive operations. As a short-term solution,we decomposed the compute process into many lightweight processes. This is not as ex-pensive as it might sound, because of the low cost of switching between the lightweightthreads used in PCN: less than 50 �sec on a Sun 4. (For example, the control volume codeachieves 75%{90% parallel e�ciency relative to a sequential Fortran code on 512 IntelDelta processors, depending on problem size, even when decomposed in this way.) In thelong term, some form of preemption is required.4.2 Earth System ModelsIn the second application that we consider, our constructs are applied in a multidisciplinaryframework. An earth system model integrates models of the atmosphere, ocean, biosphere,etc. The developer of a parallel earth system model encounters challenging encapsulationissues, as component models may themselves be parallel programs. The ability to explorealternative mapping strategies is also important, since it can sometimes be desirable toexecute the component models on di�erent processors or even on di�erent computers; inother situations, it may be preferable to multiprocess models on the same processors.In order to explore the application of our approach to this class of problems, we havedeveloped a Fortran M framework code that couples simple atmosphere and ocean mod-els. Arrays of channels are used to transfer data between two parallel models and virtualcomputers are used to control process placement. This framework code has been used toexplore performance issues. For example, the simple form of compositional data structureused in Fortran M | the channel | requires that data be copied when it is transferredfrom one module to another, even if these two modules execute on the same processor.An early concern was that high copying costs would necessitate that the portability ob-tained by a Fortran M implementation be sacri�ced, in order to permit direct sharingof data. However, experiments showed that the cost of a modular decomposition basedon Fortran M concepts was small: about 2.8% of total execution time on a Sun-4 work-station. Much of this overhead was due to the relatively high cost of switching betweenFortran M processes, currently implemented as Unix processes, and the use of TCP/IPsockets for interprocess communication. Experiments with a prototype Fortran M com-piler that uses Sun lightweight processes (threads) and shared-memory operations showthat channel overhead can be reduced signi�cantly. For example, Unix process switch cost(de�ned here as the time required to send a null message between two processes on thesame processor) is around 1.8 msec; with threads, this is reduced to 0.37 msec, and greaterreductions appear possible if specialized thread packages are used.11

4.3 EducationPCN and Fortran M have been used to teach parallel programming to graduates andundergraduates in both computing and the sciences. Students were provided with librariesof modules | implementing global operations, mesh structures, load balancing libraries,and the like | which they then used in programming projects. This approach provede�ective at two levels. Students were able to use some modules unchanged, without adeep understanding of their implementation. Other modules served as frameworks thatthey modi�ed to suit a particular purpose. The sophistication of the programs developedby students was considerably higher when module libraries were used. Not surprisingly,the computing students showed a strong preference for PCN, while the science studentspreferred Fortran M.5 Related WorkSeveral parallel languages and programming environments have been developed to supportthe modular construction of parallel programs. Borkhar et al. [4] propose that parallelprograms be constructed by plugging together \cells," in a manner analogous to VLSI.They use this technique to generate e�cient programs for the iWarp systolic processor.occam [24] has been used for similar purposes. The target hardware limits the programsthat can be speci�ed in these systems: in the iWARP work the contiguous submesh isthe only virtual computer supported and the number of channels is limited. Griswold etal. propose process ensembles as a means of organizing data, computation, and commu-nication [19]. However, they do not consider hierarchies of virtual computers. Browneet al. propose a compositional calculus for specifying interconnections between softwarechips [5]. The integration of this calculus into a programming notation is not discussed,and the notion of virtual computer is absent.Some recent work on parallel message-passing libraries has explored the use of \processgroups" and \communication contexts" to support the encapsulation of communicationoperations in parallel libraries [28, 2]. Chien and Dally's Concurrent Aggregates (CA)language allows the de�nition of homogeneous collections of objects called aggregates;messages addressed to an aggregate are routed to one of its members [12]. As in thispaper, concurrent structures can be de�ned and composed with other structures to buildconcurrent programs. However, resource allocation and locality are not addressed.Virtual computers have been used to achieve portability by hiding information concern-ing the size and topology of a physical computer. Martin [26], Hudak [23], and Taylor [29]have investigated notations for specifying process mapping on a (potentially in�nite) pro-cessing surface. In data-parallel languages [30, 18], data distribution is speci�ed withrespect to a virtual computer, as proposed here; however, hierarchies cannot be de�ned.While these systems succeed in decoupling mapping or data distribution from other as-pects of a parallel algorithm, they do not permit resource allocation decisions to be isolatedfrom module de�nitions. For example, it is not straightforward to invoke the same moduleon processor subsets that may be overlapping or of di�erent sizes.Some of the ideas developed in this paper have also been applied to CC++, extensionsto C++ designed to support compositional parallel programming [8]. In CC++, virtualcomputers are represented explicitly, as arrays of pointers to processor objects. Mapping12

is achieved by invoking a function in a processor object. Data distribution and embeddingare not supported directly but can be speci�ed as CC++ functions. CC++ mappingstatements have semantic content (as functions can access data contained in a processorobject); hence, mapping is not independent of other aspects of a design.6 ConclusionsResearch in sequential programming has demonstrated the value of modular design. Inthis paper, we have described programming language concepts that facilitate the appli-cation of modular design principles in parallel programming. We have also show howthese concepts can be realized in practical parallel programming languages and reportedexperiences using these languages to solve large-scale programming problems. These ex-periences show that the familiar bene�ts of modular programming can be achieved in aparallel context. Modules implementing useful parallel algorithms can be reused. Existingapplications can be integrated into larger systems without changes to their internal struc-ture or implementation. Major structural changes concerning the mapping of computationand data to processors do not require changes to component modules.A signi�cant aspect of this work is that it is now possible to build truly modularand hence reusable parallel libraries. In a manner analogous to (but more
exible than)VLSI cell libraries, we can de�ne libraries of parallel program components with speci�edinternal logic and external interface but encapsulating no resource allocation or schedulingdecisions. These components can be used unchanged in a wide variety of contexts ormodi�ed by the user to solve related problems. We are currently constructing libraries ofthis sort in several areas.We have assumed in this paper that modules are implemented with the same technol-ogy: for example, PCN or Fortran M. However, modules can also be be constructed usingdi�erent techniques (e.g., message-passing libraries or data-parallel languages) as long asimplementations do not encapsulate mapping or scheduling decisions.AcknowledgmentsThis work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energyunder Contract W-31-109-Eng-38. I am grateful to Robert Olson and Steven Tuecke fortheir work on the PCN and Fortran M compilers, and to Mani Chandy and Carl Kesselmanfor numerous discussions.References[1] G. Agha, Actors. MIT Press, 1986.[2] V. Bala and S. Kipnis, \Process Groups: A mechanism for the coordination ofand communication among processes in the Venus collective communication library,"Preprint, IBM T. J. Watson Research Center, 1992.[3] G. Booch, Object-oriented Design. Benjamin/Cummings, 1991.13

[4] S. Borkar et al., \iWarp: An integrated solution to high-speed parallel computing,"in Proc. Supercomputing Conf., 1988, pp. 330{339.[5] J. Browne, J. Werth, and T. Lee, \Intersection of parallel structuring and reuse ofsoftware components," in Proc. Intl Conf. on Parallel Processing, Penn. State Press,1989.[6] Cann, D. C., J. T. Feo, and T. M. DeBoni, \Sisal 1,2: High performance applicativecomputing," in Proc. Symp. Parallel and Distributed Processing, IEEE Press, 1990,pp. 612{616.[7] K. M. Chandy and I. Foster, \A deterministic notation for cooperating processes,"Preprint MCS-P346-0193, Mathematics and Computer Science Division, ArgonneNational Laboratory, Argonne, Ill. 60439, 1993.[8] K. M. Chandy and C. Kesselman, Compositional parallel programming in CC++,Technical Report, Caltech, 1992.[9] K. M. Chandy and S. Taylor, An Introduction to Parallel Programming. Jones andBartlett, 1991.[10] I. Chern and I. Foster, \Design and parallel implementation of twomethods for solvingPDEs on the sphere," in Parallel Computational Fluid Dynamics '91, Elsevier SciencePublishers B.V., 1991.[11] A. Choudhary and R. Ponnusamy, \Parallel implementation and evaluation of a mo-tion estimation system algorithm using several data decomposition strategies," J.Parallel and Distributed Computing, no. 14, pp. 50{65, 1992.[12] A. Chien and W. Dally, \Concurrent Aggregates," in Proc. ACM Symp. on Principlesand Practice of Parallel Programming, 1990, pp. 187{196.[13] J. Dongarra, R. van de Geijn, and D. Walker, \A look at scalable dense linear alge-bra libraries," in Proc. Scalable High Performance Computing Conf., Williamsburg,Virginia, 1992.[14] I. Foster and K. M. Chandy, \Fortran M: A language for modular parallel program-ming," Preprint MCS-P237-0992, Argonne National Laboratory, Argonne Ill. 60439,1992.[15] I. Foster, C. Kesselman, and S. Taylor, \Concurrency: Simple concepts and powerfultools," The Computer Journal vol. 33, no. 6, pp. 501{507, 1990.[16] I. Foster, R. Olson, and S. Tuecke, \Productive parallel programming: The PCNapproach," Scienti�c Programming, vol. 1, no. 1, 1992.[17] I. Foster and S. Taylor, A compiler approach to scalable concurrent program design,ACM Trans. Prog. Lang. Syst. (to appear).[18] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu,\Fortran D language speci�cation," Technical Report TR90-141, Computer Science,Rice Univ., Houston, Texas, 1990. 14

[19] W. Griswold, G. Harrison, D. Notkin, and L. Snyder, \Port ensembles: A communi-cation abstraction for nonshared memory parallel programming," in Proc. Intl Conf.on Parallel Processing, Penn. State Press, 1990.[20] High Performance Fortran Forum, High Performance Fortran Language Speci�cationVersion 0.4, Technical Report, CITI/CRPC, Rice University, November 6, 1992.[21] P. Henderson, Functional Programming. Prentice-Hall, Englewood Cli�s, N.J., 1980.[22] C. Hoare, \Communicating sequential processes," Commun. ACM, vol. 21, no. 8, pp.666{677, 1978.[23] P. Hudak, \Para-functional programming," IEEE Computer, pp. 60{70, 1986.[24] Inmos Limited, occam 2 Reference Manual. Prentice Hall, 1988.[25] M. Lemke and D. Quinlan, \A parallel C++ array class library for architecture-independent development of structured grid applications," ACM SIGPLAN Noticesvol. 28, no. 1, pp. 21{23, 1992.[26] A. Martin, \The torus: An exercise in constructing a processing surface," in Proc.Conf. on VLSI, Caltech, 1979, pp. 52{57.[27] D. Parnas, \On the criteria to be used in decomposing systems into modules," Com-mun. ACM vol. 15, no. 2, pp. 1053{1058, 1972.[28] A. Skjellum and A. Leung, \Zipcode: A portable multicomputer communication li-brary atop the Reactive Kernel," in Proc. 5th Distributed Memory Concurrent Com-puting Conf., IEEE Press, 1990, pp. 767{776.[29] S. Taylor, Parallel Logic Programming Techniques. Prentice Hall, 1989.[30] Thinking Machines Corporation, CM Fortran Reference Manual, Thinking Machines,Cambridge, Mass., 1989.[31] N. Wirth, \Program development by stepwise re�nement," Commun. ACM vol. 14,pp. 221{227, 1971.
15

