
A Study of the Invariant Subspace DecompositionAlgorithm for Banded Symmetric MatricesChristian Bischofy Xiaobai Suny Anna Tsaoz Thomas TurnbullzAbstractIn this paper, we give an overview of the Invariant Subspace Decomposition Algorithm for bandedsymmetric matrices and describe a sequential implementation of this algorithm. Our implementationuses a specialized routine for performing banded matrix multiplication together with successive bandreduction, yielding a sequential algorithm that is competitive for large problems with the LAPACK QRcode in computing all of the eigenvalues and eigenvectors of a dense symmetric matrix. Performanceresults are given on a variety of machines.1 IntroductionComputation of eigenvalues and eigenvectors is an essential kernel in many applications, and severalpromising parallel algorithms have been investigated [8, 11, 7]. The work presented in this paperis part of the PRISM (Parallel Research on Invariant Subspace Methods) Project, which involvesresearchers fromArgonne National Laboratory, the Supercomputing Research Center, the Universityof California at Berkeley, and the University of Kentucky. The goal of the PRISM project is thedevelopment of algorithms and software for solving large-scale eigenvalue problems based on theinvariant subspace decomposition approach originally suggested by Auslander and Tsao [1].The algorithm described here is a promising variant of the Symmetric Invariant Subspace De-composition Algorithm (SYISDA) [2] that requires signi�cantly less overall work than SYISDA. LetA be a symmetric matrix. Recall that the SYISDA proceeds as follows:Scaling: Compute bounds on the spectrum �(A) of A and use these bounds to compute � and �such that for B = �A+ �I, �(B) � [0; 1], with the mean eigenvalue of A being mapped to 12 .Eigenvalue Smoothing: Let pi(x), i = 1; 2; : : : be polynomials such that in the limit all values aremapped to either 0 or 1. IterateC0 = B;Ci+1 = pi(Ci); i = 0; 1; : : : ;until jjCi+1�Cijj is numerically negligible, at which point all the eigenvalues of the iterated matrixare near either 0 or 1. We denote the converged matrix by C1.Invariant Subspace Computation: Find an orthogonal matrix [U; V ] such that the columns ofU and V form orthonormal bases for the range space of C1 and its complementary orthogonalsubspace, respectively. That is, UTU = I, V TV = I; UTV = 0, and the range of C1U is U .Decoupling: Update the original A with [U; V ], i.e., form[U; V ]T A [U; V ] = �A1 A2� :yMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.zSupercomputing Research Center, Bowie, MD 20715-4300.�This paper is PRISM Working Note #16, available via anonymous ftp to ftp.super.org in pub/prism.This work was partially supported by the Applied and Computational Mathematics Program, Advanced ResearchProjects Agency, under Contract DM28E04120, and by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38. Typeset by AMS-TEX1



2 BISCHOF ET AL.To compute the eigenvectors, the orthogonal matrices in the Invariant Subspace Computationstep are used to update the eigenvector matrix. We can then apply the same approach in parallelto A1 and A2 until all subproblems have been solved.In the next section, we describe a sequential implementation of a variant of SYISDA that is ap-plicable to both dense and banded matrices. Throughout the remainder of this paper, we refer tothis new algorithm as banded SYISDA. In the original SYISDA algorithm, dense matrix multipli-cations are performed in the Eigenvalue Smoothing step. Since a substantial number of thesemultiplications are required for each divide, we were interested in reducing the cost of this step.Reduction of the original matrix to narrow band would allow multiplication of banded rather thandense matrices. As seen in [12], banded matrix multiplication can be performed quite e�cientlythrough the use of specialized routines. Rapid band growth normally occurs when multiplying ran-dom matrices together. However, as we shall see, the special properties of the polynomials in theEigenvalue Smoothing step result in surprisingly slow band growth for the iterated matrices. Inbanded SYISDA, we have modi�ed the Eigenvalue Smoothing step to perform periodic band re-ductions to allow the polynomial iteration to be performed with narrow banded matrices. The bandreductions are performed using the successive band reduction (SBR) algorithm of Bischof and Sun[5]. In Section 3, we demonstrate that the run times for our implementation of banded SYISDA,when applied to dense matrices, are competitive with the symmetric QR algorithm. We presentconclusions in Section 4.2 Description of Sequential AlgorithmBanded SYISDA �rst reduces the original matrix to narrow band and then periodically reducesmatrices in the Eigenvalue Smoothing step back to narrow band. Dense matrix multiplicationsare replaced by banded matrix multiplications plus a small number of band reductions during thepolynomial iteration process. Multiplication of two n�nmatrices of bandwidths b1 and b2 results in amatrix of bandwidth b1+b2, requiring onlyO(b1b2n) work versus O(n3) for two dense matrices. Basedon our studies of banded matrix multiplication [12], we decided to use the Madsen-Rodrigue-Karush(MRK) algorithm to perform the required matrix multiplications. Although blocked algorithms forbanded matrix multiplication are about twice as fast as the MRK algorithm [12], we found thatit is di�cult to realize an actual time savings through the use of these algorithms in the overallcontext of banded SYISDA. First, the optimal block size varies with problem size. Second, if theblocksize used does not divide the order of the problem, then the packing and re-packing code is verycomplicated and time-consuming. In fact, we discovered that the use of blocked code did not resultin an overall time savings for the banded SYISDA algorithm and could in fact yield worse runningtimes. Additionally, depending on the blocksize, the packing scheme used for such algorithms couldrequire signi�cantly more memory than unblocked code. In general, for the complete eigenproblem,less than 10% of the total time is spent in our current implementation performing banded matrixmultiplication. As a result, including the dense matrix multiplications required in the Decouplingstep and the eigenvector updates, the total time spent in banded SYISDA doingmatrixmultiplicationis usually less than half the total time.In the dense SYISDA, there is no reason to expect that the use of higher order polynomials wouldlead to improved performance. But the slower than expected growth in \e�ective" bandwidth forbanded SYISDA leads to improved performance if higher order polynomials are used initially. Atsome point, however, one must trade o� memory for performance. In our implementation, the fpigbegin as the third incomplete Beta function, B3(x) = �20x7+70x6� 84x5+35x4, and then switchto the �rst incomplete Beta function, B1(x) = 3x2 � 2x3.The band growth properties of banded SYISDA are indeed its most surprising feature. Since B1and B3 have degrees 3 and 7, respectively, one might expect that the bandwidth would increase byfactors of 3 and 7, respectively, with each application. We show in Figure 1 that this is not thecase. We show the actual band growth (solid line) compared to the band growth if the bandwidthactually increased by a factor of 3 or 7 (dashed line) for a 1000� 1000 matrix where reductions totridiagonal form are done whenever the bandwidth reaches 50. Let k�k denote the 2-norm. We have



A STUDY OF THE INVARIANT SUBSPACE DECOMPOSITION ALGORITHM 30 5 10 15 20 25 30iteration #02505007501000bandwidthigure 1. Band Growth for a 1000� 1000 MatrixTheorem. Assume that X is a symmetric matrix of band b with all of its eigenvalues in [0; 1]. LetX1 = limi!1B1(X) and E = X �X1. ThenB(k)1 (X) �B(k�1)1 (X) = O(kEk2(k�1) ); k = 1; 2; 3; : : ::Proof. X1 only has eigenvalues 0, 1, and 1=2. Notice that kEk � 1=2. Suppose that X1 haseigenvalues 0, 1, and 1=2 of multiplicities m0, m1, and m2, respectively. ThenX = X1 +E = Q0@ I0 +E0 12I2 E11AQt;where Q is an orthogonal matrix and for j = 1; 2; 3, Ij denotes the identity matrix of dimension mjand Ej a matrix of dimension mj . A straightforward calculation yields that B1(X) = X1+O(E2).Hence B1(X) = X � E +O(E2) and the result follows by induction. �This theorem basically says that subsequent bands generated by the application of B1 die o�exponentially, so that the outer bands quickly become negligible. Therefore, after a few applicationsof B1, kEk becomes small enough so that the growth in the e�ective bandwidth slows signi�cantly.An analogous result holds for B3.The band reductions are performed using successive band reduction [5, 3, 6]. Instead of reducinga matrix from banded form directly to narrow band, SBR reduces a banded matrix to some inter-mediate band using a blocked algorithm and then reduces this intermediate matrix to the requiredband. The motivation for SBR is two-fold. First, we wanted to take advantage of the fact thatthe reduction of a narrow banded matrix requires signi�cantly less work than reduction of a densematrix. Second, SBR allows for e�ective blocking in both stages [5, 6], unlike previous algorithmsthat allow only limited blocking. In our current implementation, the �rst stage is blocked, but thesecond stage utilizes an improved, but as yet unblocked, version of Lang's algorithm [9, 6]. We hopeto incorporate the block Householder approach of Bischof and Sun [6] soon. In order to minimizethe time spent performing updates with the orthogonal matrices resulting from the band reductionsperformed, we accumulate these matrices and apply the resulting matrix where needed.Instead of using QR factorization with column pivoting as in [10], we use the rank-revealingtridiagonalization strategy of Bischof and Sun [4] to compute the invariant subspaces of C1. Therank-revealing tridiagonalization technique exploits both symmetry and the special structure of ma-trices having only two eigenvalues. This special structure allows for a signi�cant computationalsavings when performing tridiagonalization [4]. Since the converged matrix resulting from the poly-nomial iteration can have eigenvalues at 0, 1=2, and 1, we needed to modify our algorithm to ensurethat only 0 and 1 eigenvalues are produced. Fortunately, we have discovered an inexpensive meansof detecting this situation. Suppose the converged matrix, C1, has eigenvalues 0, 1=2, and 1 ofmultiplicitiesm1, m2, and m3, respectively. It is easily shown that m2 = 4(trace(C1)� trace(C21)).Both trace(C1) and trace(C21) = kC1k2F are inexpensive computations. Here, k�kF denotes theFroebenius norm. If m2 > 0, we then apply either 3x� 2x2 or 2x2�x to C1. Both these quadraticfunctions map 0 and 1 to themselves; the pertinent di�erence between them is that one maps 1=2 to



4 BISCHOF ET AL.1 and the other maps 1=2 to 0. The quadratic used is chosen to make the problem divide as evenlyas possible. In practice, after the application of this quadratic, the clusters of eigenvalues at 0 and1 require \tightening up." We accomplish this by a few further applications of the fpig.In our current code, reducing matrices to tridiagonal form results in the fastest algorithm. Sincethe SBR strategy reduces a dense matrix to narrow band very quickly [2], one might expect thatonly reducing to narrow band might be superior. Unfortunately, when the band starts out larger,matrices of greater bandwidth must be multiplied, resulting in a signi�cant increase in the matrixmultiplication time, since the MRK algorithm is more e�cient for smaller bandwidths. At themoment, the time savings from not reducing all the way to tridiagonal is lost in the multiplicationtime. We are therefore investigating methods of improving the e�ciency of the banded matrixmultiplication. If this primitive could be speeded up, the number of band reductions required couldalso potentially be reduced. In our current implementation, we typically perform as many as �veband reductions for each divide. In the early band reductions, when the matrix has nonstructuredeigenvalues, we use unblocked tridiagonalization. This is currently faster than SBR. We believe thatthe lack of blocking in our current implementation of the reduction from narrow band to tridiagonalis limiting our performance and that if we can perform this reduction step all in blocked code, theperformance of SBR should be superior to the unblocked code. In the later band reductions, we useSBR because, even though the second stage is as yet unblocked, the skipping that results from evenpartial convergence of the eigenvalues still yields signi�cant performance improvements.3 Sequential Performance ResultsIn this section, we present some performance results in double precision on the IBM RS/6000 Model580 and in single precision on the Cray-2 and C90. Test cases were generated using the test gener-ation routine xLATMS from LAPACK. In the tables below, we omit the �rst letter indicating theprecision of the computations. First, in Table 1, we compare the time required by our algorithm(xBSYISDA) to xSYEV (QR algorithm) and xSTEBZ (bisection) in �nding all of the eigenvaluesand eigenvectors of dense symmetric matrices with uniformly distributed eigenvalues (MODE = 6in xLATMS). Accuracy in the residuals and eigenvector orthogonality was comparable in all casestested. In the cases shown, xBSYISDA is at most 2:3 times slower than xSYEV. On the RS/6000(not shown) and Cray-2, relative performance of xBSYISDA to xYSEV improves with problem size;on the Cray-2, the di�erence is less than 10% by problem size 4000. Compared to xSTEBZ, xBSY-ISDA is less than a factor of 3 slower. We plan to study the relative asymptotic behavior of thesealgorithms in more detail. In these cases, roughly 1=2 to 2=3 of the time is spent in performing bandreductions and the Invariant Subspace Computation step.Table 1. Cray Timings for Complete Eigenproblem (single precision, MODE = 6)n Cray-2 time (seconds) C90 time (seconds)SYEV STEBZ BSYISDA SYEV STEBZ BSYISDA1000 101.3 79.2 134.9 14.6 23.8 30.32000 645.6 381.9 725 101.5 111.4 191.03000 2006.5 991.2 2294.5 330.9 282.1 589.44000 4645.8 2104.7 5065.6 578.9 767.8 1335.9Tables 2 & 3. Timing Results for Partial Eigenproblem (MODE = 6)n RS/6000 time (seconds)STEBZ BSYISDA250 1.8 3.7500 11.3 27.0750 33.3 81.3 n Cray-2 time (seconds) C90 time (seconds)STEBZ BSYISDA STEBZ BSYISDA1000 40.5 71.9 9.2 13.72000 212.6 419.2 51.7 120.63000 661.8 1340.7 153.7 3744000 1468.1 3021.4 336.4 844.6



A STUDY OF THE INVARIANT SUBSPACE DECOMPOSITION ALGORITHM 5Table 4. RS/6000 Timings for Complete Eigensolution (double precision, MODE = 2)n time (seconds)SYEV STEBZ BSYISDA250 2.5 3.0 2.6500 19.7 20.7 19.8750 69.0 63.6 62.2Tables 2 and 3 give timing comparisons for xSTEBZ and xBSYISDA in �nding all the eigenvaluesin a speci�ed interval and the corresponding eigenvectors. In all cases, roughly 1=4 of the eigenvaluesin the middle of the spectrum were found. xBSYISDA is roughly 1:5 to 2:5 times slower than xSTEBZin these cases. In these cases, the percentage of time spent in the band reductions and InvariantSubspace Computation step is generally 80% or more.Since we expect signi�cant time improvements in SBR when our implementation incorporatesblocking in the reduction from narrow band to tridiagonal, we expect our overall times to improve.Matrices with clustered eigenvalues arise in many important applications, but are problemati-cal for some algorithms. As described in [2], the SYISDA algorithms tend to isolate clusters ofeigenvalues. Subproblems consisting of tightly clustered eigenvalues can often be detected usingthe heuristic described in [2] together with deation-checking. In Table 4, we show relative timingsfor xSYEV, xSTEBZ, and xBSYISDA for test matrices generated by xLATMS having only threerepeated eigenvalues (MODE = 2). These are, of course, very special matrices, and we plan moreextensive testing on matrices with more interesting cluster structures.4 ConclusionsIn this paper, we have described a new eigensolver for banded symmetric matrices based on theInvariant Subspace Decomposition Algorithm that retains the property of using scalable primitiveswhile reducing the computational complexity of previous versions. We have shown that, for largeproblems, this approach is competitive sequentially with the QR algorithm.We plan continued investigations of this algorithm and expect the upcoming blocked version ofSBR to signi�cantly improve performance. Since the proportions of time spent in di�erent primitivesvaries signi�cantly between the dense and banded SYISDA, we plan to compare the behavior ofparallel versions of both algorithms to each other and to other algorithms.References[1] Auslander, L. & A. Tsao, On parallelizable eigensolvers, Adv. Appl. Math. 13 (1992), 253{261.[2] Bischof, C. H., S. Huss-Lederman, X. Sun, & A. Tsao, The PRISM Project: Infrastructure and Algorithmsfor Parallel Eigensolvers, Proceedings, Scalable Parallel Libraries Conference (Starksville, MS, Oct. 6{8, 1993),IEEE, 1993, (also PRISM Working Note #12).[3] Bischof, C., M. Marques, & X. Sun, Parallel bandreduction and tridiagonalization, Proceedings, Sixth SIAMConference on Parallel Processing for Scienti�c Computing (Norfolk, Virginia, March 22-24, 1993) (R. F. Sin-covec, eds.), SIAM, Philadelphia, 1993, (also PRISM Working Note #8).[4] Bischof, C. & X. Sun, A divide-and-conquer method for tridiagonalizing symmetric matrices with repeatedeigenvalues, Preprint MCS-P286-0192, Argonne National Laboratory (1992), (also PRISM Working Note #1).[5] Bischof, C. & X. Sun, A framework for symmetric band reduction and tridiagonalization, Preprint MCS-P298-0392, Argonne National Laboratory (1992), (also PRISM Working Note #3).[6] Bischof, C. H. & X. Sun, Parallel tridiagonalization through two-step band reduction, Proceedings: ScalableHigh Performance Computing Conference '94, Knoxville, Tennessee, May 1994, IEEE Computer Society Press,1994, (also PRISM Working Note #17) (to appear).[7] Huo, Y. & R. Schreiber, E�cient, massively parallel eigenvalue computation, RIACS Technical Report 93.02,Research Institute for Advanced Computer Science (1993).[8] Ipsen, I. & E. Jessup, Solving the symmetric tridiagonal eigenvalue problem on the hypercube, Tech. Rep.RR-548, Yale University (1987).[9] Lang, B., A parallel algorithm for reducing symmetric banded matrices to tridiagonal form, SIAM J. Sci. Stat.Comp. 14 (1993), no. 6.[10] Huss-Lederman, S., A. Tsao, & T. Turnbull, A parallelizable eigensolver for real diagonalizable matrices withreal eigenvalues, Technical Report TR-91-042, Supercomputing Research Center (1991).[11] Li, T.-Y., H. Zhang, & X.-H. Sun, Parallel homotopy algorithm for symmetric tridiagonal eigenvalue problems,SIAM J. Sci. Stat. Comput. 12 (1991), no. 3, 469{87.[12] Tsao, A. & T. Turnbull, A comparison of algorithms for banded matrix multiplication, Technical Report SRC-TR-093-092, Supercomputing Research Center (1993), (also PRISM Working Note #6).


