
The Numerics Annex and Related MaterialK. W. Dritz�Argonne National LaboratoryArgonne, IL 60439The features of Ada 9X that support numerically oriented applications aredistributed over several parts of the (draft) Ada 9X reference manual [7]. Someof them are collected in the Numerics Annex, which, like the other special-needsannexes, is entirely optional; some appear in the core or in other mandatoryannexes.The basic concepts underlying the real (i.e.,
oating-point and �xed-point)types are covered in Chapters 3 and 4 of the core and will not be discussedhere. These chapters no longer include the details of a model of real arithmeticor the accuracy requirements for prede�ned arithmetic operations based on themodel. Indeed, there are no accuracy requirements, unless the Numerics Annexis supported. The model and the accuracy requirements are discussed there.Included in Annex A (Core Language-De�ned Attributes) are the de�nitionsof the attributes of real types. Those that relate intimately to the accuracy ofthe prede�ned arithmetic operations are left implementation de�ned in AnnexA and are revisited in the Numerics Annex.Annex C (Prede�ned Language Environment) includes the speci�cations ofa generic package of elementary functions and a package that de�nes types andoperations related to random number generation. By virtue of their placementin Annex C, these packages must be provided by all implementations. Thisrequirement is appropriate because of their utility in a wide variety of appli-cations, including some that may not be numerically intensive. For example,square roots and logarithms are useful in encoding and decoding, and randomnumbers are indispensable to simulations.A package de�ning Fortran-compatible types is included in Annex M (Inter-face to Other Languages), along with a discussion of the uses of the interfacingpragmas in a Fortran context. C and COBOL are also covered in this annex.Interface support for these languages is, of course, optional; if provided, it mustconform with the speci�cations of this annex.Annex K is the Numerics Annex. It introduces a pair of user-selectablemodes, strict and relaxed, pertaining to the required accuracy of the prede�ned�This chapter was written with �nancial support from Intermetrics, Inc., to Argonne Na-tional Laboratory under proposal No. P-91122.1

arithmetic operations. The model of real arithmetic and the accuracy require-ments based on it apply only in the strict mode; no accuracy requirements applyin the relaxed mode, or if the Numerics Annex is not implemented. The Nu-merics Annex also speci�es generic packages that de�ne a complex type andarithmetic operations, complex elementary functions, and complex I/O oper-ations, and it recommends that the Fortran and C interfaces be provided ifthose languages are widely supported in the target environment. Finally, it in-cludes strict-mode requirements for the accuracy or performance of appropriateoperations provided in the prede�ned numerical packages.In the remainder of this chapter, we present an overview of the numericalfeatures of Ada 9X. With one exception, we merely discuss the features, ratherthan displaying package speci�cations, etc. Readers needing further detail areurged to consult the draft reference manual and the rationale [8].1 Numerical Packages in the Prede�ned Lan-guage EnvironmentAll the prede�ned numerical packages|the mandatory ones of Annex C as wellas the optional ones of Annex K|are children of a package called Numerics,which is itself a child of the package Ada. Ada.Numerics exists primarily tode�ne an exception, Argument_Error, that can be raised by operations in severaldi�erent numerical packages to signal that a parameter or operand is outside thedomain of the corresponding mathematical function. In addition, Ada.Numericsde�nes as named numbers the two most common mathematical constants, Piand e.1.1 Elementary FunctionsThe generic package Ada.Numerics.Generic_Elementary_Functions providesthe most common elementary functions (Sqrt, Log, and Exp; the forward trigo-nometric functions Sin, Cos, Tan, and Cot; the inverse trigonometric functionsArcsin, Arccos, Arctan, and Arccot; the forward hyperbolic functions Sinh,Cosh, Tanh, and Coth; and the inverse hyperbolic functions Arcsinh, Arccosh,Arctanh, and Arccoth). In addition, the exponentiation operator ("**") isprovided for
oating-point exponents.Some of the functions are overloaded. Thus, natural logarithms and log-arithms to an aribtrary base are both provided; likewise, the trigonometricfunctions are provided both for the natural cycle of 2� and for user-speci�edcycles.The Ada 9X version of these functions is based on ISO/IEC DIS 11430 (forAda 83), di�ering from it in two minor ways: the use of child packages for betterhierarchical structuring, and the use of the unconstrained subtype of the genericformal parameter as the parameter and result types of all the functions. The2

latter improvement is intended to increase the chances of receiving a meaningfulresult from the evaluation of an elementary function reference when the genericformal parameter happens to be a subtype with range constraints. The Ada 9Xfeature underlying this improvement|use of the Base attribute other than ina pre�x for another attribute|also bene�ts implementations of the elementaryfunctions by allowing for the declaration of working variables with the precision,but not the range, of the generic formal parameter. In fact, implementations areno longer allowed to restrict the generic actual parameter to be an unconstrainedsubtype, as they are in the aforementioned draft international standard.With the appropriate changes implied by the above discussion, the accountof the proposed secondary standard [2] in the Ada Yearbook 1991 is relevant alsoto the version contained in Ada 9X.11.2 Random NumbersA basic capability for generating random numbers is provided by the packageAda.Numerics.Random_Numbers, whose speci�cation is shown in Figure 1.Objects of type Generator represent generators of random numbers rep-resented in
oating point and uniformly distributed on the semi-open interval[0:0; 1:0). One obtains the \next" random number from the sequence producedby a given generator by invoking the Random function with that generator asthe actual parameter. In the simplest applications, nothing more is required;the rest of the package provides a variety of services that may be needed byadvanced applications.The repeatable behavior expected during program development is obtainedby default. Once a program becomes operational, unique sequences of randomnumbers can be obtained in each run by invoking the Reset operation on agenerator before using it to generate any random numbers. When invokedwithout an Initiator parameter, this operation resets the state of a generatorto one that depends in an implementation-dependent way on the current dateand time.Tasking applications that require separate sequences of random numbers ineach of several tasks can declare generator objects in the relevant tasks. In thiscase, separate sequences are obtained by performing the Reset operation (with aunique integer-valued Initiator parameter) on the generator in each task. Byusing the same set of initiator values on subsequent runs, the same set of separatesequences will be repeated. Resetting with an initiator is de�ned to change thestate of the generator to one that depends in an implementation-dependent wayon the value of the initiator. The speci�cations provide that, if the generatorperiod is long enough, each initiator value shall initiate a distinct subsequence1Subsequent to the publication of the 1991 yearbook, the names of the formal parametersof the exponentiation operator were changed from X and Y to Left and Right so as to agreewith the Ada 9X version, where the latter names are absolutely necessary. Also added wasthe explicit permission for implementations to restrict the generic actual parameter.3

package Ada.Numerics.Random_Numbers istype Generator is limited private;Number_Of_Seed_Components : constant := implementation-de�ned;type Seed is array (1 .. Number_Of_Seed_Components) of Integer;Seed_Error : exception;subtype Uniformlly_Distributed is Float range 0.0 .. 1.0;function Random (Gen : Generator) return Uniformly_Distributed;procedure Get_Seed (Gen : in Generator;Value : out Seed);procedure Set_Seed (Gen : in Generator;Value : in Seed);procedure Reset (Gen : in Generator;Initiator : in Integer);procedure Reset (Gen : in Generator);private-- not speci�edend Ada.Numerics.Random_Numbers;Figure 1: Speci�cation of the Ada 9X random numbers packageof the full period that does not overlap with any other such subsequence in apractical sense; if that is not possible, then the resulting state is, at least, arapidly varying function of the initiator value.It is customary, when multiple generators are provided, to equate a generatorwith its \seed"|that is, its changeable state. A di�erent approach has beenchosen for Ada 9X, however, so as to allow the Random operation to be realized asa function and to make it impossible to corrupt the state between calls to Random(or, alternatively, to make it unnecessary to validate the state at each such call,in case it has been corrupted). These bene�ts are achieved partly by makingthe Generator type private. Since the mode of the generator parameter in allthe operations on generators is in, a level of indirection is required to accessthe actual state information; consequently, the Generator type is limited inaddition to private.Nevertheless, there is a need in some applications to obtain and maybe evenset the state of a generator. For example, a long run may be checkpointed andrestarted later. Or, it might be desirable to know the actual state of a generator4

just prior to the appearance of unexplained behavior. Finally, for experimen-tation it might be desirable to force the generator into a given state. For allthese purposes, we provide also a type called Seed whose values represent actualgenerator states. The Get_Seed operation obtains the current state of a givengenerator and delivers it as a value of type Seed; Set_Seed changes the stateof a given generator to that corresponding to the seed value supplied. The typeSeed is de�ned as an array of integers for portability, the number of them be-ing given by the named number Number_Of_Seed_Components. This does notrestrict the implementation of generators to use the same representation inter-nally; the only requirement is that each distinct internal state must be capable ofbeing represented as a unique vector of integers, the mapping being completelyimplementation de�ned. (It is possible that some values of the type Seed willnot correspond to generator states. If such a value is passed to Set_Seed, thatoperation will raise the Seed_Error exception. Note that calls to Set_Seed arethe only places where validation of the generator state is required. Such callswill be infrequent or absent.)We do not prescribe a particular random number generation algorithm, theintent being to allow any respectable algorithm to be used. The Numerics Annexdoes specify some fairly stringent performance requirements for the strict mode,but these will be satis�ed by good examples of congruential generators [10] (forwhich the internal state is usually a single integer or
oating-point number),the phenomenally long period Fibonacci generators [9] (for which the internalstate is usually a modest array of integer or
oating-point components, plus acarry or borrow bit), or combination generators [4, 11] (for which the internalstate is usually a small array of integers). Since no one algorithm is best for allapplications, implementations are required to document the algorithm used, sothat the user can judge its suitability for the application at hand.1.3 Complex ArithmeticThree library units having to do with complex arithmetic are de�ned in theNumerics Annex.1.3.1 Complex Types and Arithmetic OperationsThe prede�ned generic child package Ada.Numerics.Generic_Complex_Typesde�nes a complex type and all the expected arithmetic operations on the type. Ithas one generic formal parameter, Real, which is a
oating-point subtype. Thetype Complex that it de�nes is a record type re
ecting a Cartesian representationof complex values; its components, Re and Im, have the precision of Real.Several features of the complex types package in Ada 9X are somewhatunconventional:� We have chosen to make Complex a visible type, rather than enforcing an5

abstraction, so that \complex literals" can be composed using aggregates,as in (3.0, 5.0).� The components of Complex are of the unconstrained subtype of Real,Real
Base, rather than of the subtype Real itself. Thus, a range con-straint inherited from the generic actual parameter is e�ectively ignored.The motivation for this design is the observation that there is no guaran-tee that the components of the result of an arbitrary complex arithmeticoperation belong to the same range as those of its operands. This pro-vision thus increases the likelihood of being able to deliver the result ofa complex arithmetic operation. For the same reason, real-valued opera-tions on complex values, like Modulus, are de�ned to return results of theunconstrained subtype of Real.� A pure-imaginary type, Imaginary, is also de�ned, along with constantsi and j of that type and all the expected operations on the type. UnlikeComplex, Imaginary is a private type; its full type declaration shows it tobe derived from the unconstrained subtype of Real. We have chosen tomake it private primarily to suppress implicit conversions of real literals tothe type as well as to suppress implicit arithmetic operations on the type,some of which would be incorrect (for example, an implicitly declaredmultiplication operation would yield an imaginary, rather than a real,result). Arithmetic operations on appropriate combinations of Real
Base,Imaginary, and Complex are provided, one reason being to allow \complexliterals" to be expressed in an alternative form|e.g., 3.0 + 5.0*i.In addition to the usual arithmetic operators, the provided operations in-clude common functions such as complex conjugation, component selectors,Cartesian composition functions, polar metric functions (Modulus and Argu-ment), and polar composition functions.Ada.Numerics.Generic_Complex_Types is based on the generic packageof complex types and arithmetic operations proposed for standardization (forAda 83) by the WG9 Numerics Rapporteur Group.21.3.2 Complex Elementary FunctionsThe prede�ned generic child package Ada.Numerics.Generic_Complex_Ele-mentary_Functions, similarly based on a proposed secondary standard (forAda 83), provides complex analogs of the real elementary functions. In addi-tion, an overloading of Exp for the pure-imaginary type is provided, which allowscomplex values to be composed from polar components in the alternative formof Rho * Exp(i * Theta).2The proposed secondary standards for complex arithmetic were changed in 1993 to main-tain compatibility with the versions included in Ada 9X. Thus, the rationale [6] published inthe Ada Yearbook 1993 is now somewhat out of date.6

This generic package has a generic formal package parameter. It is intendedto be instantiated with an instance of Ada.Numerics.Generic_Complex_Types.1.3.3 Complex I/OThe prede�ned generic child package Ada.Text_IO.Complex_IO, which has nocounterpart in the proposed secondary Ada 83 standards for complex arithmetic,provides complex analogs of the procedures in Ada.Text_IO.Float_IO. It, too,is intended to be instantiated with an instance of Ada.Numerics.Generic_Com-plex_Types.The form of output to a �le is that of parenthesized aggregate notation,with the real and imaginary parts both formatted according to the speci�ed ordefaulted values of Fore, Aft, and Exp. Output to a string is similar, but ituses a value of zero for the Fore of the real part and a value for the Fore ofthe imaginary part that completely �lls the string. The e�ect is that the leftparenthesis, real part, and comma are left justi�ed in the given string, while theimaginary part and right parenthesis are right justi�ed. This behavior resultsin optimal use of the available space when the real and imaginary parts of thevalue to be transmitted have widely disparate magnitudes.When reading from a �le speci�es a Width of zero, the expected form of theinput is parenthesized aggregate notation, with blanks, line terminators, andpage terminators freely allowed before each of its components. When the Widthis nonzero, exactly Width characters, or the characters up to the end of thecurrent line, whichever comes �rst, are consumed; the complex value may bepunctuated in parenthesized aggregate notation, or the parentheses and commamay be omitted, provided that the real and imaginary parts are separated byat least one blank. The latter form is allowed (with a nonzero Width) forcompatibility with existing data �les produced by Fortran programs.1.4 Fortran InterfaceBecause much mathematical software has been (and continues to be) written inFortran, particularly libraries of various classes of functions, the combination ofpieces of Fortran and Ada programs into a complete numeric application canease the burden of the programmer who chooses to use Ada as the primarydevelopment medium for a numeric application.The combination of program pieces written in diverse languages has beendi�cult in the past because each language (and sometimes each language pro-cessor) has its own conventions regarding the mapping of data, the address-ing of parameters, etc. The purpose of the Fortran interface is to facilitatethe creation of such combinations. To this end, the prede�ned child packageAda.Interfaces.Fortran de�nes a set of types, analogous to the Fortran in-trinsic types, that are intended to have the same representation they have in7

Fortran. Objects of these types can therefore be passed directly to, or receivedfrom, Fortran subprograms seamlessly.Along with the interface package, Fortran interface support includes im-plementation of a convention identi�er of Fortran in the Import and Exportpragmas and, for the speci�ed kinds of types, in the Convention pragma. TheImport and Export pragmas arrange for the appropriate link name to be usedfor an external reference, and they cause the parameter addressing conventionsof the foreign language to be observed. They can also be used to equate a For-tran named common block with an object of an appropriate Ada record typedeclared in a library package. The Convention pragma would need to be spec-i�ed for the type of such a record object, to guarantee that it is mapped thesame as in Fortran. The latter pragma can also be used to indicate that objectsof a record type passed to, or received from, a Fortran 90 routine should bemapped as in Fortran 90 and that an access type should be represented as thecorresponding pointer type in Fortran 90.If several implementations of Fortran are provided in the target environ-ment, there can be a uniquely named child package of Ada.Interfaces cor-responding to each, along with a corresponding convention identi�er for usein the interfacing pragmas. A Fortran interface package can declare types inaddition to those required by the language de�nition. For example, an in-terface package for an implementation of Fortran 77 might declare additionaltypes named Integer_Star_2, Integer_Star_4, Logical_Star_1, etc., whileone for an implementation of Fortran 90 might declare types like Real_Kind_0,Real_Kind_1, Character_Kind_1, etc., to match the Fortran types Integer*2,Character (Kind=1), and so forth.2 Performance RequirementsOne of the roles of the special-needs annexes is to impose performance require-ments on features described elsewhere in the language but pertinent to thespecial need covered by an annex. In this spirit, the Numerics Annex includesaccuracy requirements for the prede�ned arithmetic operations of real types de-�ned in the core and for the elementary functions de�ned in Annex C, and itincludes statistical and other performance requirements relevant to the randomnumber generator de�ned in Annex C. It also speci�es accuracy requirementsfor the complex arithmetic operations and complex elementary functions de�nedelsewhere in the Numerics Annex.2.1 Accuracy ModesThe Numerics Annex de�nes a pair of user-selectable modes, strict and relaxed,that govern the accuracy or other performance characteristics exhibited by theoperations subject to such requirements. The requirements apply only in the8

strict mode. The idea for the modes originated as a way of giving the usera choice between fast but not fully accurate elementary functions implementedpartially in hardware and somewhat slower, but fully accurate, elementary func-tions implemented in software; it was subsequently extended to cover the prede-�ned arithmetic operations as well, so that when conformance to the arithmeticmodel carries a price, the user can choose between speed and portable accuracy.The language does not say how the user shall select a mode, or which modeshall be the default, but it is clear that the mode must govern both code gener-ation and library searches. The modes need not actually be distinct, however;an implementation that meets the requirements of the strict mode at little orno cost to the user has no real incentive to o�er the user another choice, andthe two modes might be identical.2.2 Accuracy Requirements for Prede�ned Floating-PointOperationsAda 83 had a model of
oating-point arithmetic based on the Brown model[1], which served as the basis for the accuracy requirements for the prede�ned
oating-point arithmetic operations. Experience has shown that only certainaspects of the model have been used to any great extent, other than by im-plementors; that the model fostered confusion as often as insight; and thatcompromises built into the model weakened its role as an analytical tool. Thesame model has been retained in Ada 9X as the basis for the strict-mode accu-racy requirements for the prede�ned
oating-point arithmetic operations, butit has been somewhat simpli�ed by the omission of seldom used features andat the same time strengthened by undoing the compromises. We expect therevised model to be more useful and more understandable.The most signi�cant changes in the model are as follows:� Ada 83 had both model numbers and safe numbers, whereas Ada 9X hasonly model numbers. For a user-declared
oating-point type, the Ada 83model numbers were completely determined by the
oating accuracy speci-�cation (the declared decimal precision), while the safe numbers re
ected,with some compromises, the accuracy of the underlying representation(and were therefore partially implementation de�ned). In essence, themodel numbers of a type represented the worst case of the safe numbersover all conceivable conforming implementations of the type. The Ada 9Xmodel numbers play the same role as the Ada 83 safe numbers in re
ectingthe actual performance of the arithmetic, but without the compromises.� The Ada 83 model and safe numbers had a binary radix, independentof the hardware, whereas the Ada 9X model numbers have the hardwareradix. 9

� The Ada 83 model and safe numbers had quantized mantissa lengths,whereas the Ada 9X model numbers have the maximum mantissa lengthfor which the accuracy requirements (expressed in terms of those modelnumbers) are satis�ed. This change, together with the preceding one, goesa long way toward eliminating certain compromises and toward allowingthe model numbers, and the attributes related to them, to exhibit a kind of\truth in labeling" with respect to the implementation's actual arithmeticperformance.� The Ada 83 model and safe numbers formed a �nite set, whereas theAda 9X model numbers form an in�nite set. A �nite subset, the modelnumbers belonging to the safe range of the type, plays a role in the rulesgoverning the signaling of over
ow by the raising of the Constraint_Errorexception. This change �lls a gap in the Ada 83 rules by specifying theaccuracy of operations that are allowed to over
ow but do not, or thatsuccessfully use as an operand a value beyond the over
ow threshold.� The Ada 83 model and safe numbers tied range and precision considera-tions together intimately by the \4*B Rule," whereas Ada 9X separatesthem better. As a consequence, all hardware
oating-point types can besupported without penalizing their purported properties. Potential com-patibility problems resulting from this change are largely avoided by theinstitution of a much weaker \4*DRule," which provides a minimumrangerelated to the declared decimal precision when a user-declared
oating-point type lacks a range speci�cation; when a range is explicitly speci�ed,and when the speci�ed range is su�ciently narrow in relation to the de-clared precision, a hardware type not eligible for selection in Ada 83 canbe selected in Ada 9X, but it will satisfy both the requested precision andthe requested range.� The Ada 83 model and safe numbers had symmetric exponent ranges,whereas the minimum exponent of the Ada 9X model numbers is freedfrom a connection to the over
ow threshold, allowing it to re
ect under
owconsiderations alone.These changes are expected to bene�t mostly those applications that are de-signed to exploit the model explicitly. The vast majority of applications will beuna�ected, except that a few rare anomalies will vanish.2.3 Accuracy Requirements for Prede�ned Fixed-PointOperationsIn Ada 83, the model we have been discussing above was actually a modelof real arithmetic, not just
oating-point arithmetic; hence it was used as thesemantic basis for the accuracy of �xed-point arithmetic operations as well.10

This proved to be a case of wielding much more machinery than the languagefeatures warranted. Many of the freedoms permitted by the model were neverexploited, because there was no real need to do so. For something that couldbe viewed intuitively as scaled integer arithmetic, �xed-point arithmetic earneda reputation for being far more complicated than was deserved.At the same time, the accuracy requirements were di�cult enough to satisfy,for some combinations of source and target smalls, that many vendors prohibitedrepresentation clauses for nonbinary smalls, or perhaps for smalls not decom-posable as products of powers of two and �ve. Algorithms for arbitrary smallsthat made only modest assumptions about the hardware were published [5] butwere never widely implemented.In Ada 9X, we have abandoned the application of the model of real arithmeticto �xed-point types. There no longer are model numbers, safe numbers, andmachine numbers of �xed-point types. The values of a �xed-point type are,simply, integer multiples of the type's small that lie within a certain range. Anarithmetic operation that yields a result of a �xed-point type delivers one ofthese multiples. The accuracy requirements are expressed in terms of sets ofthese multiples called \perfect result sets" and \close result sets." The formercase applies when the source and target smalls are \compatible" (related ina commensurate way typical of many carefully constructed applications); theperfect result set in many instances contains a single member, and at worstcontains a pair of adjacent values, implying at most one rounding error. Closeresult sets are used when the smalls are incompatible; in this case, the resultsets are small but implementation-de�ned sets of adjacent integer multiples ofthe type's small containing the perfect result set as a subset. It is hoped thatthe broader implementation freedoms permitted in the latter case will fosterwider support for �xed-point types with arbitrary smalls.Other changes involving �xed-point types are as follows:� The default small in Ada 83 is the largest power of two less than or equalto the type's delta, whereas in Ada 9X it is an implementation-de�nedpower of two less than or equal to the type's delta. This change allowsan implementation that uses extra bits for extra precision rather than forextra range to continue to do so.� Explicit conversion of the result of a �xed-point multiplication or divisionis no longer required when context determines a unique target type.� An operand of �xed-point multiplication or division may be a real literal.2.4 Accuracy Requirements for Functions in Prede�nedPackagesAccuracy requirements for the elementary functions, complex arithmetic oper-ations, and complex elementary functions are de�ned in terms of the smallest11

model interval that contains all values of the form f � (1 + d), where f is theexact value of the corresponding mathematical function for the given argumentsand jdj is less than or equal to the maximum relative error or, in some cases, themaximum \box" error, quoted for the function and expressed usually as a con-stant coe�cient times the result type's epsilon. For complex-valued functionsfor which the error bound applies separately to the real and imaginary parts, fis the value of one of these parts. For those in which cancellation is a distinctpossibility, box error, which is derived from vector error, is used; in these cases,f and d are complex, and the bounds on the real and imaginary parts of theresult are given by the smallest model interval that contains all values in thecorresponding part of f � (1 + d).These error bounds are superseded by requirements that certain functionsmust produce exact results for particular arguments, or results within the small-est model interval containing the exact result (when the exact result is not amodel number). Unlike the error bounds, these prescribed results apply even inthe relaxed mode.2.5 Performance Requirements for the Random NumberGeneratorThe analog of required accuracy for the random number generator, in the strictmode, is the passing of prescribed statistical tests. In addition, the minimumpe-riod of the random number generator and the granularity of the time-dependentreset function are speci�ed in the strict mode.2.6 Attributes Related to the Accuracy RequirementsSome of the attributes of the real types relate speci�cally to the accuracy model.They serve as \environmental enquiries" that can be used in various ways eitherto report the numerical performance achieved by a program in a given environ-ment or, with careful planning and design, to allow the program to adapt toand exploit the particular properties of the host environment in a portable way.Numerous changes have taken place in these attributes in Ada 9X. As anexample, note that T
Mantissa gives the number of binary digits in the man-tissa of the model numbers of the type T in Ada 83. Since the model numbersof Ada 9X have the hardware radix, the analogous attribute there no longernecessarily refers to binary digits. On hexadecimal hardware, for instance, thecorresponding attribute in Ada 9X would be expected to yield only one-fourththe value that T
Mantissa gives. (In reality, the ratio is not exactly one-fourth,since the value of the Ada 83 attribute is necessarily selected from a quantizedset and is not generally a multiple of four.) To avoid problems of upwardsinconsistency, in which Ada 83 programs give di�erent results in Ada 9X, wehave given this attribute a new name, Model_Mantissa. The old attribute,12

Mantissa, is no longer de�ned by the language, which of course poses a prob-lem of a di�erent kind, classed as an upwards incompatibility (in which validAda 83 programs no longer compile successfully). To ameliorate this problem,we have recommended that implementations continue to provide the obsolescentattributes as implementation-de�ned attributes for an appropriate transition pe-riod; they should recognize the old attributes and allow them, but produce awarning message. Uses of the old attributes can be adjusted on a case-by-casebasis to use the new attributes instead.Like Mantissa, the Emin attribute also changes its value by a factor of aboutfour in Ada 9X, and it has consequently been renamed Model_Emin. On theother hand, an attribute like Epsilon changes its value little, if at all. It isde�ned in terms of the radix and mantissa length of model numbers, and al-though these are both changing radically, their changes complement each other.If Epsilon changes at all, it is due to the fact that mantissa lengths are nolonger quantized. Nevertheless, because its value might change, this attributehas also been renamed (as Model_Epsilon).Several of the model-related attributes of
oating-point types have beenomitted without replacement, and there are a small number of new attributes.Many of the model-related attributes of �xed-point types have been omitted aswell, since �xed-point arithmetic no longer uses the concept of model numbersfor the basis of its accuracy requirements.These attributes are all presented in Annex A, along with other attributesof real types that do not relate to the model. The model-related attributeshave implementation-de�ned meanings and values if the Numerics Annex is notimplemented, or if the relaxed mode is in e�ect. Their de�nition in terms of themodel is given in the Numerics Annex.3 \Primitive Function" AttributesSeveral new attributes of
oating-point types, called the \primitive function"attributes, are de�ned in Annex A. Based on ISO/IEC DIS 11729 (for Ada 83),these environmental enquiry and manipulation functions give low-level accessto the parts (mantissa and exponent) of
oating-point values, cover exact scal-ing by a power of the hardware radix, include various directed roundings, andhandle exact remainder computations and other similar computations whoseresults must be accurate to the level of machine numbers. It is not possible toachieve otherwise in Ada results that are simultaneously as accurate, e�cient,and portable.In the aforementioned draft international standard, these attributes are rep-resented as subprograms in a generic package. In order to avoid con
icts withother attributes of Ada 9X, we have changed some of their names, and thereare slight di�erences in the complement of functions provided. With allowancefor these changes, the account [3] of the proposed secondary standard in the13

Ada Yearbook 1992 is also relevant to the version of the primitive functions inAda 9X.3References[1] W. S. Brown. A Simple but Realistic Model of Floating-Point Computation.TOMS 7(4):445{480, December 1981.[2] K. W. Dritz. Towards an Ada Standard for the Elementary Functions.F. Long (ed.), Ada Yearbook 1991, Chapman & Hall, London, 1991, pp. 283{290.[3] K. W. Dritz. Development of an Ada Standard for Primitive Floating-PointFunctions. F. Long (ed.), Ada Yearbook 1992, Chapman & Hall, London,1992, pp. 295{302.[4] P. L'Ecuyer. E�cient and Portable Combined Random Number Generators.CACM 31(6):742{749,774, June 1988.[5] P. N. Hil�nger. Implementing Ada Fixed-Point Types Having ArbitraryScales. Computer Science Report No. 582, Univ. of California at Berkeley,June 1990.[6] G. S. Hodgson. The Developing Standards for Complex Scalar and ArrayTypes, Basic Operations, and Elementary Functions for Ada. C. Loftus (ed.),Ada Yearbook 1993, IOS Press, Amsterdam, 1993, pp. 369{382.[7] ISO/IEC CD 8652. Programming Languages|Ada. Committee Draft,September 1993.[8] ISO/IEC JTC1/SC22 N 1455. Programming Languages|Rationale for theProgramming Language Ada. Draft version 4.0, September 1993.[9] G. Marsaglia and A. Zaman. A New Class of Random Number Generators.Annals of Applied Probability 1(3):462{480, August 1991.[10] S. K. Park and K. W. Miller. Random Number Generators: Good Ones areHard to Find. CACM 13(10):1192{1201, October 1988.[11] B. A. Wichmann and I. D. Hill. A Pseudo-Random Number Generator.Report DITC 6/82, National Physical Laboratory, Teddington, England,June 1982.3Subsequent to the publication of the 1992 yearbook, the proposed secondary standard forthe primitive functions was also changed slightly in response to public comment.14

