
Preprint MCS-P397-1193, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., January 1994.Parallel language constructs for paradigm integrationand deterministic computations�K. M. Chandya and I. T. FosterbaDepartment of Computer Science, California Institute of Technology, 256-80, Pasadena,California 91125, U.S.A.bMathematics and Computer Science Division, Argonne National Laboratory, Argonne,Illinois 60439, U.S.A.We describe parallel extensions of sequential programming languages for writing pro-grams that integrate di�erent programming paradigms and that execute in heterogeneousenvironments comprising both distributed and shared memory. The extensions can beused to write programs with dynamic process and communication structures. Programscan use shared-memory, message passing, and data parallel programming paradigms, andcan be written in a way that permits the compiler and run-time system to verify thatthey are deterministic. The extensions also provide the programmer with control over howdata and processes are mapped to processors, and hence how computational resources areallocated to di�erent parts of a program. A subset of these ideas has been incorporatedin an extension to Fortran called Fortran M. However, the underlying sequential notationis not central to the ideas.1. INTRODUCTIONThis paper provides an overview of research at Argonne and Caltech on languageextensions for parallel programming. This goal of this work is to develop programminglanguage constructs that support dynamic process/communication structures and multi-paradigm programming but which nevertheless permit programs to be written in a waythat allows the compiler and run-time system to verify that they are deterministic.Parallel programs with dynamic process structures have computations in which pro-cesses can be created and terminate execution; communication channels can be created,reconnected, and deleted; and shared variables can be created and deleted. Programs forreactive systems, programs that use sophisticated load-balancing schemes, and programsfor irregular scienti�c problems often have dynamic process structures. The language ex-tensions considered in this paper are intended to support parallel programs with dynamicprocess structures. The extensions can also be used for computations with static processstructures in which there are �xed sets of processes, channels, and shared variables.�This research was supported by the NSF Center for Research in Parallel Computation ContractCCR-8809615 and by the DOE O�ce of Scienti�c Computing under Contract W-31-109-Eng-38.1



Multiparadigm programs may combine both message passing and shared memory,and task parallelism and data parallelism. The integration of message passing and sharedmemory allows the use of heterogeneous networks of computers, where some nodes canbe shared-memory multiprocessors. The integration of task and data parallelism is usefulin multidisciplinary simulation, for example, where several disciplinary simulation models(which may be data parallel programs) must be integrated into a task parallel program.The language extensions described in this paper provide a simple mechanism for couplingmultiple data-parallel programs.Determinism is valuable for several reasons. Reasoning about deterministic programsis often simpler than reasoning about nondeterministic programs. Also, compiler supportfor verifying determinacy is helpful in debugging because debugging nondeterministic pro-grams is even more intractable than debugging deterministic programs. A deterministicprogram will produce the same results on a single workstation or a multicomputer; thisfeature allows a programmer to develop a program on a workstation and later execute theprogram on a network of workstations or parallel computer, knowing that the output (fora given input) will remain unchanged.Many of the ideas presented have been incorporated in an extension of Fortran calledFortran M. We chose Fortran because many people developing scienti�c applicationsuse Fortran; we could equally have chosen some other sequential imperative language.An implementation of Fortran M that supports message passing and task parallelism,but not shared memory or data parallelism, is available from anonymous ftp serverinfo.mcs.anl.gov (directory /pub/fortran-m) at Argonne National Laboratory. Thiscompiler has been used to develop libraries of parallel programs in linear algebra, spectralmethods, mesh computations, computational chemistry, and computational biology, andto explore the integration of task and data parallelism.2. DETERMINISMOur approach to achieving determinism is based on the diamond property and theChurch-Rosser theorem [5, 13], well-known in functional programming.2.1 TheoryLet G be a labeled directed graph, where each edge of the graph has a single label,and for each vertex v and each label l there is at most one edge directed from v with labell. A path in the graph is de�ned by the initial vertex at which the path originates, anda sequence of labels; the path is traversed by traversing the edge from the initial vertexwith the �rst label in the sequence, then the edge with the second label, then the edgewith the third label, and so on.A terminal vertex is a vertex without outgoing edges. A maximal path is either a �nitepath that ends in a terminal vertex or an in�nite path (i.e., a path that has an in�nitenumber of edges).The Diamond Property We restrict attention to graphs G with the following diamondproperty. If there are edges from a vertex v with distinct labels l and r, then there arepaths l; r and r; l from v, and both paths end at the same vertex; see Figure 1. The2



following theorem is proved in [5, 13].Theorem Either all maximal paths from a vertex v are �nite and end in the sameterminal vertex, or all maximal paths from v are in�nite.
l r

r l

v

u t

wFigure 1: The Diamond Property2.2 ApplicationA vertex represents a state in a parallel program, and an edge labeled r representsa state transition resulting from process r taking a step. If there is an edge labeled rfrom a vertex v then process r is executable in state v, and if there is no edge labeled rfrom vertex v then process r is suspended in state v. There is at most one edge labeledr from a vertex v because processes are deterministic, and a process does not choosenondeterministically from two or more transitions.In terms of state transitions, the diamond property is as follows. If distinct processesl and r are both executable in a state v, and a step by process l takes the program fromstate v to a state u, and a step by process r takes the program from state v to a statet, then process r is executable in state u and process l is executable in state t, and thestate that obtains after process r takes a step from state u is the same as the state thatobtains after process l takes a step from state t.3. PARADIGM INTEGRATIONWe now explore mechanisms by which processes can communicate so that parallelprograms have the diamond property, thus guaranteeing that the �nal state is independentof the interleaving of process computations.3.1 Message PassingThe �rst communication mechanism we explore is message passing on single-writer,single-reader channels. Associated with each channel are two tokens: a sender token anda receiver token. An invariant of the program is: for each channel there exists at mostone sender token and one receiver token. 3



A process can send a message on a channel if and only if it holds the sender tokenfor that channel. Likewise, a process can receive a message from a channel if and onlyif it holds the receiver token for the channel. Thus the sender and receiver tokens arecapabilities that confer certain rights to the holder of the tokens [7, 6].The send command is nonblocking, and the receive command is blocking. The stateof a channel is a queue of messages. Sending a message m on a channel appends m to thetail of the queue of messages in the channel. Receiving a message from a channel into avariable v waits until the queue of messages in the channel is nonempty, makes v becomethe message at the head of the queue, and then deletes the message from the queue.Processes can communicate sender tokens and receiver tokens to other processes.Therefore di�erent processes can send or receive messages on the same channel at dif-ferent points in a computation. To ensure that the single token invariant is maintained,a token that is communicated is no longer accessible to the sending process.The proof that parallel programs that use this (and only this) communication mech-anism have the diamond property is straightforward. See Figure 2.
v

u t

w

send message w on
channel c

receive from channel c
into variable v

into variable v

send message w on

receive from channel c

channel c

channel c is nonempty

Figure 2: Channels with the Diamond Property3.2 Shared MemoryNext we describe constructs that allow concurrent processes in parallel programs toshare variables while maintaining the diamond property.We associate with each deterministic shared variable a number of identical tokens. Aprocess can write a shared variable at a point in a computation only if at that point itholds all tokens associated with the variable. A process can read a shared variable at apoint in a computation only if at that point it holds at least one token associated withthe variable. If a process p can write a shared variable v at a point in the computationthen no other process can read or write v at that point because p holds all the tokensassociated with v.Processes can send tokens to each other. Therefore, at di�erent points in a compu-tation, di�erent processes can read or write a shared variable. A process can modify thenumber of tokens associated with a shared variable at points in the computation at whichthe process holds all the tokens associated with the variable.Programs in which processes share deterministic shared variables (and do not shareany other type of variable) satisfy the diamond property because concurrent reads can4



occur in arbitrary order, and no operation on a shared variable can occur concurrentlywith a write to the variable.An attractive property of this restricted form of shared variable is that it can beimplemented e�ciently on even weakly coherent shared-memory architectures, and ondistributed-memory architectures via message-passing.3.3 Data ParallelismIn a data-parallel programming paradigm, the program consists of a series of operationsthat are applied identically to all or most elements of a data structure. Data parallelprogramming languages often allow the programmer to specify (a) how data is distributedover processors, and (b) the computation that is to be performed on each data item; thecompiler then determines what computation and communication should be performed ateach processor [15, 10].We allow individual processes to execute programs written in a data-parallel notation.These programs may create distributed data structures which are local to that process.They may interact with other (data or task parallel) computations by operating on arraysof channels or deterministic shared variables. If the data parallel notation is deterministicand prevents replication of tokens among its threads of control (hence ensuring that thetoken invariant is maintained), then data-parallel processes are indistinguishable fromsequential processes, and the diamond property is satis�ed.4. FORTRAN MFor concreteness, we outline how channels, deterministic shared variables, and dataparallelism are incorporated into a sequential programming language (Fortran). Thepresentation is necessarily somewhat simpli�ed; for details, see [8, 3].A process declaration is syntactically identical to a subroutine except that (i) thekeyword process replaces the keyword subroutine, (ii) the arguments of a process can betokens, (iii) all process parameters other than tokens are passed by value, and (iv) thebody of a process can include statements and data types, described later, that are not inthe sequential language.Processes are created by executing a parallel block which has the formPROCESSESlist of process callsENDPROCESSESwhere list of process calls is a list of process calls with end of line as the separator betweensuccessive elements of the list, where a process call has the same syntax as a subroutinecall except that the keyword PROCESSCALL is used in place of the keyword CALL. Anexample of a parallel block is:PROCESSESPROCESSCALL P(V, W)PROCESSCALL Q(A, B, C): : :ENDPROCESSES 5



where P, and Q, are process names; V, W are the arguments of P; and A, B, C are thearguments of Q.The execution of a parallel block causes all the processes in its list of process callsto be created; the states of the newly created processes are their initial states. Theprocesses created within the parallel block in a process t are called the children of processt. Execution of process t is suspended while any of its children are in execution, andexecution of t is resumed when all its children terminate. A computation of a parallelblock is a fair interleaving of the computations of its constituent processes.All variables of a process are either local variables of the process or arguments of theprocess. An argument of a process can be a variable passed by value or it can be a token.A runtime error occurs if the same token is passed to more than one child process in aparallel block. The initial value of an uninitialized local variable is a speci�ed defaultvalue to ensure that initial states are deterministic.A Fortran M program is initiated as a single process executing the main program; theprogram terminates when this process terminates execution.4.1 ChannelsA type in the extended language is a type in the underlying sequential language or isof the form outport(T) or inport(T), where T is a type in the extended language. Thevalue of a variable of type outport(T) is either a special symbol NULL or a sender tokenfor a channel of type T. Likewise, the value of a variable of type inport(T) is NULL or areceiver token for a channel of type T.Channels are typed. A message in a channel of type T is a value of type T or a specialmessage end of channel.Four statements are provided in the extended language for message-passing. Thesestatements are designed to be similar to statements in Fortran for operations on �les. Inthe following, keywords are capitalized, variable names are italicized, oport is variable oftype outport(T) and iport is a variable of type inport(T) for some T, v is a variable,and ls is a statement label.1. CHANNEL(OUT=oport, IN = iport)This statement creates a channel of type T, and makes oport become the sendertoken associated with the channel and iport become the receiver token associatedwith the channel.2. SEND(PORT = oport) vThe value of oport is a sender token or NULL. If oport = NULL when the send isexecuted, an error occurs. If oport is a sender token, a message with value v is senton the channel corresponding to the token. If the message itself is a token, (i.e., ifthe value of v is a token), then after the message is sent, v becomes NULL becausethe sender no longer holds the token after the token is sent.3. ENDCHANNEL(PORT = oport)If oport = NULL when the statement is executed, an error occurs. If the oport is asender token, then an end of channelmessage is sent on the channel correspondingto oport and then oport becomes NULL. Making oport NULL destroys the sender tokencorresponding to the channel; thus, no further messages can be sent on the channel.6



4. RECEIVE(PORT = iport, END = ls) vIf iport = NULL an error occurs. If iport is a receiver token, then a message isreceived into variable v from the channel corresponding to the token if the messageis not end of channel. If the next message is end of channel, then v remainsunchanged, iport becomes NULL (which destroys the receiver token for the channel),and execution continues from the statement labeled ls.4.2 Shared variablesThe syntax for declaring and using deterministic shared variables is similar to that forpointers in Fortran 90.REAL, POINTER :: xREAL, DETERMINISTIC SHARED VARIABLE :: yIn Fortran 90, x is of type pointer to a real value. Likewise, y is of type deterministicshared real variable.A variable y of type T, DETERMINISTIC SHARED VARIABLE is a reference to a datastructure of type T or a special symbol NULL. The inquiry functions TOTAL TOKENS(y) andTOKENS HELD(y) give the total number of tokens associated with deterministic sharedvariable y, and the number of tokens associated with y held by the process in which thefunction is called, respectively.All operations on a deterministic shared variable y other than SEND, RECEIVE, andALLOCATE, and parameter passing to processes, are operations on y itself, and not on thetokens associated with y. The operations SEND, RECEIVE, and ALLOCATE are operationson the tokens associated with y and do not modify the value of y.Statements for dynamic storage allocation are similar to allocation statements in For-tran 90.c declare variablesREAL, POINTER :: xREAL, DETERMINISTIC SHARED VARIABLE :: yc allocate variablesALLOCATE(x)ALLOCATE(y)The �rst allocate statement is standard Fortran 90; it allocates storage for a new data itemof type REAL and makes x become a pointer to it. Likewise, the second allocate statementallocates storage for a new data item y of type REAL DETERMINISTIC SHARED VARIABLE.Exactly one token is associated with a deterministic shared variable immediately af-ter it is created. Hence TOTAL TOKENS(y) = 1 immediately after y is allocated, andTOKENS HELD(y) = 1 in the process in which the allocate statement is executed, immedi-ately after execution of the statement. A statement is provided for increasing the numberof tokens associated with a shared variable; this can only be executed by a process thatholds all current tokens.Tokens can be transferred between processes by message-passing on channels. Execu-tion of 7



SEND(PORT = op) y(COUNT=k)sends k tokens associated with variable y. Similarly, the execution ofRECEIVE(PORT = ip) ysuspends until a message arrives and receives a message from the channel correspondingto input port ip into y in the following way. Let the message received be MSG.1. An error is posted if y is nonnull, and y and MSG reference di�erent data itemsbecause all the tokens associated with y must reference the same data item.2. If y is nonnull, and y and MSG reference the same data item, then the number oftokens held by the receiver corresponding to y is increased by the number of tokensin the message.3. If y is NULL before the receive, then after the receive y references the same dataitem as MSG, and the number of tokens corresponding to y held by the receiver isthe number of tokens in the message.4.3 Data parallelismPrograms can use data distribution statements [10] to create distributed arrays. Se-mantically, distributed arrays are indistinguishable from nondistributed arrays. That is,they are accessible only to the process in which they are declared and are passed by valueto subprocesses. Operationally, elements of a distributed array are distributed over thenodes of the virtual computer in which the process is executing. Hence, operations ona distributed array may require communication. Data-distribution statements allow FMprograms to specify certain classes of data-parallel computations.A complimentary approach to the integration of data parallelism is to allow Fortran Mprograms to call data parallel programs, written for example in Fortran D [4].4.4. Resource managementResource management constructs allow the programmer to specify how processes anddistributed data are to be mapped to processors and hence how computational resourcesare to be allocated to di�erent parts of a program [9]. These constructs in
uence perfor-mance but not the result computed. Hence, a program can be developed on a uniprocessorand then tuned on a parallel computer by changing only mapping constructs. For exam-ple, a programmer can specify that di�erent components of a program are either to beexecuted in disjoint partitions of a multicomputer, or multiprocessed in a single partition,without changing program logic.In Fortran M, these constructs are based on the concept of a virtual computer: a col-lection of virtual processors, which may or may not have the same shape as the physicalcomputer on which a program executes. A virtual computer is an N -dimensional array,and mapping constructs are modeled on array manipulation constructs. The PROCESSORSdeclaration speci�es the shape and dimension of a processor array, the LOCATION anno-tation maps processes to speci�ed elements of this array and the SUBMACHINE annotationspeci�es that a process should execute in a subset of the array [8].8



5. EARLIER WORKThe work described in this paper integrates well-known ideas about the Church-Rossertheorem [5, 13], capabilities [7, 6], channels [11], and distributed shared memory [12].An implementation in a widely-used sequential language (Fortran) provides a parallelnotation that supports (i) dynamic process structures, (ii) paradigm integration and(iii) compiler veri�cation of determinism, and that runs on multicomputer networks or(weakly-coherent) shared-memory systems. Nondeterministic constructs can be included,if required.A comparison of Fortran M with data-parallel languages [15, 10] and high-level lan-guages [2] highlights some of the weaknesses and strengths of our approach. Fortran Memploys processes explicitly, and uses explicit exchange of tokens between processes. Caremust be taken by the Fortran M programmer to avoid starvation: processes waiting fortokens that never arrive. Our experiments with writing libraries suggest that avoidingstarvation is not di�cult in Fortran M because if there exists any computation in whichprocesses do not starve, then processes do not starve in all computations; so, we merelyneed to demonstrate one correct computation, and that is often easy to do by showingthat the communication of tokens and messages in the Fortran M program corresponds todata 
ow in the sequential program. Some of this work could be handled automaticallyby a compiler using data-
ow technology. Data-parallel languages [15, 10] and applicativelanguages [2] do not require the programmer to deal with processes, messages or tokens.A weakness of Fortran M is that it is a small extension of Fortran, a sequential im-perative language, whereas high-level languages such as Id and Sisal are designed fromthe outset to be functional. On the other hand, Fortran M uses theory from functionallanguages to provide a deterministic parallel extension to a language that is widely usedby scienti�c application programmers. Since Fortran M compiles to Fortran, powerfulFortran optimizing compilers available on most platforms can be used to advantage. Fur-thermore, the central ideas of this paper can be used with other sequential imperativelanguages.A comparison of Fortran M with parallel programs using message-passing librariessuch as P4 [1] or PVM [14] is also instructive. A focus of Fortran M is the developmentof reliable programs by (i) separating deterministic and nondeterministic components(and allowing simpler reasoning and debugging for the deterministic parts) and (ii) type-checking messages (since channels are typed). Also, Fortran M allows dynamic processstructures, and can be used to integrate shared-memory, distributed-memory and data-parallel paradigms. Libraries, by their very nature, provide no compile-time type checkingand are not guaranteed to be deterministic. Also, libraries do not (generally) supportdynamic process structures. Users of libraries can, however, continue to use the sequentiallanguage and compiler with which they are familiar, whereas Fortran M users have to learnthe extensions to Fortran and use the Fortran M compiler. The extensions are simple,and the time required to learn the extensions is of the same order as the time required tolearn a message-passing library. 9



References[1] Boyle, J., R. Butler, T. Disz, B. Glick�eld, E. Lusk, R. Overbeek, J. Patterson, andR. Stevens, Portable Programs for Parallel Processors, Holt, Rinehart and Winston,1987.[2] Cann, D. C., J. T. Feo, and T. M. DeBoni, Sisal 1,2: High Performance ApplicativeComputing, Proc. Symp. Parallel and Distributed Processing, IEEE CS Press, LosAlamitos, Calif., 1990, 612{616.[3] Chandy, K. M. and I. Foster, A Deterministic Notation for Cooperating Processes,Preprint MCS-P346-0193, Mathematics and Computer Science Division, ArgonneNational Laboratory, Argonne, Ill. 60439, 1993.[4] Chandy, K. M., I. Foster, K. Kennedy, C. Koelbel, and C.-W. Tseng, Integrated Sup-port for Task and Data Parallelism, Intl J. Supercomputer Applications (to appear).[5] Church, A. and J. B. Rosser, Some Properties of Conversion, Trans. American Math.Soc., 39, 1936, 472{482.[6] Cohen, E. and D. Je�erson, Protection in the Hydra Operating System, Proc. 5thSymp. Operating Systems Principles, ACM, 1975, 141{150.[7] Dennis, J. B., and E. C. Van Horn, Programming Semantics for MultiprogrammedComputations, Comm. ACM, 9, 1966, 143{155.[8] Foster, I. and K. M. Chandy, Fortran M: A Language for Modular Parallel Program-ming, Preprint MCS-P327-0992, Argonne National Laboratory, Argonne Ill. 60439,1992.[9] Foster, I., R. Olson, and S. Tuecke, Productive Parallel Programming: The PCNApproach, Scienti�c Programming, 1(1), 1992.[10] Fox, G., S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, M.Wu,Fortran D Language Speci�cation, Technical Report TR90-141, Computer Science,Rice Univ., Houston, TX, 1990.[11] Hoare, C. A. R., Communicating Sequential Processes, Comm. ACM, 21(8), 1969,666{677.[12] Li, K., and P. Hudak, Memory Coherence in Shared Virtual Memory Systems, ACMTrans. Comp. Systems, 7(4), 1989, 321{359.[13] McLennan, B. J., Functional Programming: Practice and Theory, Addison-Wesley,Reading, Mass. 1990[14] Sunderam, V., PVM: A Framework for Parallel Distributed Computing, ConcurrencyPractice and Experience, 2, 1990, 315{339.[15] Thinking Machines Corporation, CM Fortran Reference Manual, Thinking Machines,Cambridge, Mass., 1989. 10


