
STABILITY OF LINEAR EQUATIONS SOLVERS ININTERIOR-POINT METHODS�STEPHEN J. WRIGHTySIAM J. MAT. ANAL. APPLS c 1994 Society for Industrial and Applied MathematicsVol. 0, No. 0, pp. 000{000, Month 1994 012Abstract. Primal-dual interior-point methods for linear complementarity and linear program-ming problems solve a linear system of equations to obtain a modi�ed Newton step at each iteration.These linear systems become increasingly ill-conditioned in the later stages of the algorithm, butthe computed steps are often su�ciently accurate to be useful. We use error analysis techniquestailored to the special structure of these linear systems to explain this observation and examine howtheoretically superlinear convergence of a path-following algorithm is a�ected by the roundo� errors.Key words. primal-dual interior-point methods, error analysis, stabilityAMS(MOS) subject classi�cations. 65G05, 65F05, 90C331. Introduction. The monotone linear complementarity problem (LCP) is theproblem of �nding a vector pair (x; y) 2 Rl n � Rl n such thaty =Mx+ q; (x; y) � 0; xTy = 0;(1)where M (a real, n � n positive semide�nite matrix) and q (a real vector with nelements) are given. Note that M need not be symmetric. It is well known that (1)includes the linear programming problem as a special case. Speci�cally, for the linearprogramming formulationminz cT z subject to Az � b; z � 0;(2)where A 2 Rl m�p, we can introduce the dual variable � 2 Rl m for the constraintAz � b and obtain the following necessary and su�cient conditions for optimality ofthe primal-dual pair (z; �):� 0 �ATA 0 � � z� �+ � c�b � � � 00 � ; � z� � � � 00 � ;(3a) zT (c �AT�) + �T (Az � b) = 0:(3b)For appropriate de�nitions ofM and q, (3) has the form (1). Little is lost from eitherthe practical or theoretical point of view by applying interior-point algorithms for (1)to the special cases of linear and convex quadratic programming, provided that thespecial structure of each problem is exploited in the solution of the linear systems ateach iteration.Interior-point methods for (1) generate a sequence of iterates (xk; yk) that arestrictly positive. Many such methods require a linear system of the form� M �IY X � � uv � = � r�XY e + ��e � ;(4)whereX = diag(x1; x2; : : : ; xn); Y = diag(y1; y2; : : : ; yn); e = (1; 1; : : : ; 1)T ;� = xTy=n; r = y �Mx� q; � 2 [0; 1];� This work was based on research supported by the O�ce of Scienti�c Computing, U.S. Depart-ment of Energy, under Contract W-31-109-Eng-38.y Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South CassAvenue, Argonne, IL 60439. 1



2 STEPHEN J. WRIGHTto be solved for a search direction (u; v) at each iteration. A�ne-scaling methods solve(4) with � = 0 to �nd a search direction, then step a fraction of the distance along thisdirection to the boundary of the nonnegative orthant de�ned by (x; y) � 0. A�ne-scaling steps (u; v) are simply Newton steps for the system of nonlinear equationsF (x; y) = � Mx+ q � yXY e � = � 00 � :(5)Path-followingmethods (see, for example, Monteiro and Adler [10], Zhang [19], Wright[14]) generate steps by using generally positive values of � in (4). (As we see later, thealgorithm of [14] allows � = 0 on some iterates in an attempt to attain the rapid localconvergence associated with Newton's method.) Potential-reduction methods (see,for example, Kojima, Mizuno, and Yoshise [6], Kojima, Kurita, and Mizuno [5]) alsodetermine search directions by solving systems like (4), but they refer to a logarithmicpotential function to decide how far to move along the computed direction. Predictor-corrector methods (see, for example, Ye and Anstreicher [18], Ji, Potra, and Huang[4], Potra [12]) take steps with either � = 0 or � = 1.The system (4) is highly structured; since the diagonals of X and Y are strictlypositive, we can rearrange the system to obtain(M +X�1Y )u = r � y + ��X�1e;(6a) v = �X�1Y u� y + ��X�1e:(6b)In the case of linear programming (2), equation (6a) contains even more structure.Its form is � Z�1Yz �ATA ��1Y� � � uzu� � = � AT� � c+ ��Z�1e�Az + b+ ����1e � ;(7)where Yz and Y� are positive diagonal matrices andZ = diag(z1; : : : ; zp); � = diag(�1; : : : ; �m):The matrix in (7) can be made symmetric inde�nite by multiplying the �rst blockrow by �1. This system can be reduced even further by eliminating either uz or u�.For instance, if uz is eliminated, we obtain(AY �1z ZAT + ��1Y�)u� = (b� Az + ����1e) � AY �1z Z(AT� � c + ��Z�1e):(8) Some interior-point codes for linear programming use the formulation (8), withmodi�cations for handling dense columns in A and for dealing with non-standard lin-ear programming formulations (see Lustig, Marsten, and Shanno [7, 8] and Xu, Hung,and Ye [17]). Other codes, notably those of Fourer and Mehrotra [1] and Vanderbei[13], handle the formulation (7). Analysis of algorithms for these formulations arediscussed in another preprint [16]. In this paper, we focus on the system arising fromgeneral monotone LCP (6), and analyze the behavior of Gaussian elimination withpivoting applied to this system.Since for any index i = 1; : : : ; n, at least one of xi and yi is zero at the solution, wewould expect some of the diagonal elements of X�1Y to approach zero and some toapproach +1 as the solution set is approached. Hence the coe�cient matrix in (6a)tends to become increasingly ill-conditioned during the later stages of the algorithm.From the standard error analysis of linear systems, we might therefore expect that



LINEAR EQUATIONS IN INTERIOR-POINT METHODS 3rounding errors in the step (u; v) make it useless in advancing the algorithm towardsconvergence. In this paper, we show that while the theoretical superlinear propertiessuggested by the exact analysis are not generally observed, implementations of thealgorithms can still exhibit rapid convergence if the parameters are set to appropriatevalues. For a particular path-following infeasible-interior-point algorithm with strongtheoretical convergence properties, these conclusions are presented in Section 4 andcon�rmed by computational experiments in Section 5. Section 3 lays the groundworkby deriving bounds on the rounding errors in the computed values of (u; v), for a wideclass of algorithms that includes the algorithm of Sections 4 and 5. Section 2 presentsthe assumptions and a fundamental result from error analysis.Linear systems that arise in logarithmic barrier methods for constrained opti-mization methods were analyzed by Poncele�on [11]. The Newton equations for eachlogarithmic subproblem are similar to (6a) in that the large elements occur only on thediagonal. Despite the apparent ill-conditioning of these systems, Poncele�on showedthat their sensitivity to structured perturbations from a certain class is governed bythe conditioning of the underlying problem and does not depend on the current valueof the barrier parameter. Poncele�on's analysis is somewhat di�erent from that ofSection 3 | she looks at the relative error in the components of the solution, ratherthan starting with the absolute error | but her conclusions are consistent with thoseobtained in Section 3.In subsequent sections, subscripts denote components of a vector, while iterationindices (usually k) appear as subscripts on scalars and as superscripts on vectors andmatrices. The sets B and N form a partition of the index set f1; 2; : : :; ng de�ned inAssumption 1 below. If x 2 Rl n, thenxB = [xi]i2B; X = diag(x) = diag(x1; x2; : : : ; xn); XB = diag(xB);and so on. For the matrixM 2 Rl n�n, we haveMBN = [Mij]i2B;j2N ;and similarly for MBB , MNB , and MNN . Given any matrix H = [hij], we de�nejHj = [jhijj] and denote the j-th column of H by H�;j. The notation k � k denotesthe 1-, 2-, or 1-norm of a vector or matrix, while �(�) denotes the correspondingcondition number.For any two nonnegative numbers � and �, we write � = O(�) if there is amoderate constant � such that � � ��. When W is a matrix or vector, we writeW = O(�) to denote kWk = O(�). We use � = 
(�) to indicate that both � = O(�)and � = O(�).We use u to denote unit roundo�, which we de�ne implicitly by the statementthat when x and y are any two oating point numbers, op denotes +;�;�; =, and(z) denotes the oating point representation of any real number z, we have(x opy) = (x opy)(1 + �); j�j � u:(9)(See Golub and Van Loan [2, Section 2.4.2].) We assume throughout that u is smallenough that O(u)� 1, where O(�) is the order notation de�ned above.2. Assumptions and Basic Results. In the remainder of the paper, we focuson path-following interior-point methods. \Infeasible" variants of these methods areamong the most widely used practical algorithms for linear programming and LCPs[7, 8] and have also been the subject of extensive theoretical investigations, which



4 STEPHEN J. WRIGHThave shown that they can have strong convergence properties under weak assumptions[19, 15, 14]. The path-following infeasible-interior-point framework stated below alsoincludes the class of predictor-corrector methods, for appropriate choices of the initialpoint and parameters.Path-following algorithms restrict their iterates (xk; yk) to neighborhoods of theform N () = f(x; y) > 0 jxiyi � (xT y=n)g � Rl n+ � Rl n+;(10)where Rl n+ denotes the nonnegative orthant in Rl n. All iterates generated by the algo-rithms lie in N (min), where min 2 (0; 1=2) is a constant. Other quantities neededto de�ne the general algorithm include�k = (xk)Tyk=n; rk = yk �Mxk � q; max 2 (min ; 1=2];Xk = diag(xk); Y k = diag(yk):We de�ne the algorithmic framework as follows:Algorithm PFIgiven 0 2 [min; max] and (x0; y0) 2 N (0)for k = 0; 1; 2; : : :choose �k 2 [0; 1] and �nd (uk; vk) that satis�es� M �IY k Xk � � ukvk � = � rk�XkY ke+ �k�ke � ;(11) choose k+1 2 [min; max] and �k > 0 such that(xk+1; yk+1) = (xk; yk) + �k(uk; vk) 2 N (k+1)and Qkj=0(1� �j) � K�k+1=�0 when r0 6= 0, for some constant K > 0;end (for)The decrease in krkk at each iteration is linear | in fact, rk+1 =Qkj=0(1� �j)r0 |so the last condition in Algorithm PFI is equivalent tokrk+1k=kr0k � K�k+1=�0:(12)Hence, krkk = O(�k) for all k, so the infeasibility is always bounded by a multiple ofthe complementarity gap �.When the initial point is feasible (r0 = 0), predictor-corrector algorithms such asthat of Ji, Potra, and Huang [4] are special cases of Algorithm PFI. This frameworkalso includes the infeasible-interior-point algorithms of Zhang [19] and Wright [15, 14].These algorithms choose k+1 and �k so that a step �k of nontrivial length can alwaysbe taken without violating the required conditions.In practical implementations of interior-point methods, the framework of Algo-rithm PFI is usually modi�ed slightly. In linear programming codes, di�erent steplengths are usually chosen for the primal and dual components of x, as experience hasshown that this strategy tends to reduce the number of iterations slightly. Moreover,explicit membership of the neighborhood (10) is usually not enforced. (A more com-mon strategy, for which there is no supporting theory, is to �nd the largest value of



LINEAR EQUATIONS IN INTERIOR-POINT METHODS 5� in [0; 1] that keeps (xk; yk) + �(uk; vk) in the nonnegative orthant and then choose�k to be a �xed fraction of this length.) The predictor-corrector strategy of Mehrotra[9], used also in the codes of Lustig, Marsten, and Shanno [8], Vanderbei [13], andXu, Hung, and Ye [17], adds extra terms to the lower part of the right-hand side on\corrector" iterations. Nevertheless, the coe�cient matrices used in these practicalalgorithms are the same as in (11), and our conclusions about the accuracy of thecomputed steps continue to hold, with minor modi�cations to the analysis of Section3. For most of our analysis, we make the following assumptions about the data forproblem (1) and its solution set:Assumption 1.a) Problem (1) has a unique solution (x�; y�) such that x� + y� > 0 (i.e. strictcomplementarity holds). We can de�ne an associated partition B;N of theindex set f1; : : : ; ng such that x�i > 0 for all i 2 B and y�i > 0 for all i 2 N .b) The quantitieskMk; kM�1BBk; kX�Bk; k(X�B)�1k; kY �Nk; k(Y �N )�1kare all moderate in size.Assumption 1 implies that the coe�cient matrix in (11) approaches a nonsingularlimit, since there are 2n� 2n permutation matrices P and � such thatP � M �IY � X� �� = 2664 X�B 0 0 00 Y �N 0 0�I MBN MBB 00 MNN MNB �I 3775 ;(13)and each of the submatrices on the diagonal of (13) is nonsingular.When the problem (1) is derived from a linear program as in (3), existence of asolution implies existence of a strictly complementary solution. However, for both thisspecial case and the general case of M symmetric positive semide�nite, uniquenessof the solution and well-conditioning of MBB are often not satis�ed in practice, soAssumption 1 is quite strong. As we see, however, this Assumption plays an importantrole in showing that the errors in the computed solutions are not disastrous for theinterior-point algorithm, just as well-conditioning of the square coe�cient matrix Ain a linear system Az = b is needed to ensure that the relative errors in the computedversion of z are not too large. Our computational experience (Section 5) tends toindicate that Assumption 1 is necessary as well as su�cient for rapid local convergenceof the algorithm.We make one further assumption on the iterates generated by the basic algorithm.Assumption 2. The iterates generated by Algorithm PFI satisfylimk!1 (xk; yk) = (x�; y�):Of course, it is not necessary to make this assumption for any reasonable instance ofAlgorithmPFI, since convergence to a solution should be one of the properties impliedby the particular schemes for choosing �k, �k, and k. We make this assumption heremerely to divorce the error estimates of the next section from any particular variantof Algorithm PFI.By the implicit function theorem, the nonsingularity of the matrix (13), equation(11), and krkk = O(�k), we havek(uk; vk)k = O(�k); k(xk; yk)� (x�; y�)k = O(�k):(14)



6 STEPHEN J. WRIGHTWe also have the following simple result.Lemma 2.1. There are positive constants C1 and C2 such that for all k su�cientlylarge, we have C1�k � xki � C2�k; 8i 2 N;(15a) C1�k � yki � C2�k; 8i 2 B:(15b)Proof. Because of Assumption 2, we can de�ne an index K and positive constants�C1 and �C2 such that xki 2 [ �C2; �C1]; 8k � K; 8i 2 B;yki 2 [ �C2; �C1]; 8k � K; 8i 2 N:Therefore, since (xk; yk) > 0, we have for k � K, i 2 N , thatxki yki < (xk)Tyk = n�k ) xki < n�kyki � n�k�C2 :Also, xki yki � k�k � min�k ) xki � min�kyki � min�k�C1 :Therefore (15a) holds with C1 = min= �C1 and C2 = n= �C2. The proof of (15b) issimilar.Finally, we state a result from the roundo� error analysis of Gaussian elimination,for reference in the next section.Theorem 2.2. Suppose that the m �m linear system Az = b is solved by usingGaussian elimination, possibly with row and/or column pivoting. Let us denote therow permutation matrix by P , the column permutation matrices by �, the computedunit lower triangular factor by L̂, and the computed upper triangular factor by Û .Then the computed solution ẑ solves the perturbed system (A +H)ẑ = b, wherejPH�j � �m(2 + �m)jL̂jjÛ j;(16)and �m = mu=(1�mu) = O(u).Proof. Follows immediately from Theorem 6.4 of Higham [3].During Gaussian elimination, the size of the largest element in each column ofthe remaining submatrix may grow as multiples of the pivot rows are added to laterrows in the matrix. We quantify this growth by the growth factor �, de�ned as thesmallest positive number such thatmaxi=1;:::;m jÛijj � � maxi=1;:::;m j(PA�)ijj; for all j = 1; 2; : : : ;m.(17)We then have the following simple corollary of Theorem 2.2.Corollary 2.3. Let the system Az = b be as in Theorem 2.2, and suppose thepivots Ûjj are chosen so that jL̂ijj � 1 for all i = 2; : : : ;m, j = 1; : : : ; i� 1. ThenkH�;jk � m�m(2 + �m)�kA�;jku:(18)



LINEAR EQUATIONS IN INTERIOR-POINT METHODS 73. Error Bounds for the Steps. In this section, we derive estimates for thedi�erence between the step actually computed by solving (6), which we denote by(û; v̂), and the corresponding exact values, denoted by (u; v). We treat the cases inwhich (û; v̂) is determined by Gaussian elimination with row partial pivoting and withcomplete pivoting.We start with a purely technical result.Lemma 3.1. Let G be a square matrix partitioned asG = � G11 G12G21 G22 � ;where G11 and G22 are also square. Suppose that G11 and G22 � G21G�111 G12 arenonsingular. Then G is nonsingular and G�1 has the form� G�111 + G�111 G12(G22 �G21G�111 G12)�1G21G�111 �G�111 G12(G22 �G21G�111 G12)�1�(G22 � G21G�111 G12)�1G21G�111 (G22 � G21G�111 G12)�1 � :Our �rst main result concerning components of û is the following.Theorem 3.2. Let û be computed by applying Gaussian elimination with rowpartial pivoting to (6a), and suppose that the growth factor � is not too large. Thenfor all � su�ciently small, we havekûBk = O(u+ �); kûNk = O(�):Proof. We assume that � is much smaller than all the quantities in Assumption1(b), so that �� 1. We retain only the lowest-order terms in u and � in the analysissince, by our assumptions, higher order terms are small enough to be absorbed intolower-order terms with minor perturbations of the coe�cients.From Theorem 2.2 and (18), we have, by permuting the rows and columns of (6a),that � MBB +X�1B YB + EBB MBN +EBNMNB +ENB MNN +X�1N YN + ENN � � ûBûN �= � rB � yB � ��X�1B erN � yN � ��X�1N e � ;(19)where kEBBk � �O(kMBB +X�1B YBk+ kMNBk)u;(20a) kENBk � �O(kMBB +X�1B YBk+ kMNBk)u;(20b) kEBNk � �O(kMNN +X�1N YNk+ kMBNk)u;(20c) kENNk � �O(kMNN +X�1N YNk+ kMBNk)u:(20d)Now from Assumption 1(b) and Lemma 2.1, we havekX�1B YBk = O(�); kX�1N YNk = O(��1);and kMBBk, kMBNk, kMNBk, and kMNNk are all O(1). Combining these observa-tions with (20), we obtainkEBBk = O(u); kENBk = O(u); kEBNk = O(��1u); kENNk = O(��1u):



8 STEPHEN J. WRIGHTTherefore (19) can be rewritten as� MBB + �EBB MBN + �EBNMNB + �ENB MNN +X�1N YN + �ENN �� ûBûN � = � bBbN � ;(21)where k �EBBk = O(�+ u); k �ENBk = O(u);k �EBNk = O(��1u); k �ENNk = O(��1u);(22)and bB = rB � yB � ��X�1B e; bN = rN � yN � ��X�1N e:If we denote the coe�cient matrix in (21) by G, with G11 =MBB + �EBB and so on,we have from Assumption 1(b) and Lemma 3.1 thatG�111 = [I +M�1BB �EBB ]�1M�1BB =M�1BB +O(� + u):Since kG21k = O(1); kG12k = O(1 + ��1u); kG�111 k = O(1);and since kXNY �1N k = O(�) from (15a), we haveG22 � G21G�111 G12 = X�1N YN �I +XNY �1N (MNN + �ENN ) �XNY �1N G21G�111 G12�= X�1N YN �I + O(�)O(1 + ��1u) +O(�)O(1)O(1)O(1 + ��1u)�= X�1N YN [I +O(�+ u)]:Hence (G22 � G21G�111 G12)�1 = (I +O(�+ u))Y �1N XN = O(�):Substitution in Lemma 3.1, together with Assumption 1(b) and some manipulation,yields (G�1)11 =M�1BB +O(� + u); (G�1)12 = O(� + u);(G�1)21 = O(�); (G�1)22 = O(�):We have krk = O(�) in exact arithmetic, but roundo� errors in the calculation ofr = y�Mx� q restrict us to assuming that krk = O(�+u). Using this fact togetherwith Assumption 1(b), formula (14), and Lemma 2.1, we havekbBk = O(�+ u); kbNk = O(1):Therefore, from (21), we haveûB = (G�1)11bB + (G�1)12bN = O(�+ u);ûN = (G�1)21bB + (G�1)22bN = O(�);as required.Our next result bounds the di�erence between u and û.



LINEAR EQUATIONS IN INTERIOR-POINT METHODS 9Theorem 3.3. Suppose the assumptions of Theorem 3.2 hold. Then for all �su�ciently small, we have kûB � uBk = O(�+ u);(23a) kûN � uNk = O(�(�+ u));(23b)and, for all i 2 N , ui=xi = �1 + O(� + �);(24a) ûi=xi = �1 + O(� + �+ u):(24b)Proof. The expression (23a) follows immediately from (14) and Theorem 3.2,since kûB � uBk � kûBk+ kuBk = O(� + u):For (23b), note �rst from (6) and (21) thatMNBuB+(MNN+X�1N YN )uN = bN = (MNB+ �ENB )ûB+(MNN+X�1N YN+ �ENN )ûN :Hence, from (14), (22), (23a), Assumption 1(b), and Theorem 3.2, we haveX�1N YN (uN � ûN ) = MNB(ûB � uB) +MNN (ûN � uN ) + �ENBûB + �ENN ûN= O(�+ u) + O(�) + O(�u) +O(u) = O(�+ u):From (15a), we have XNY �1N = O(�) and so (23b) is proved.From (4), we have yiui + xivi = �xiyi + ��and therefore uixi = �1 � viyi + ��xiyi :(25)Because xiyi � min�, we have �=(xiyi) = O(1). Also from Assumption 2 and (14), wehave for i 2 N that vi=yi = O(�). Hence, (24a) is obtained by using these estimatesin (25). For (24b), we have from (15a), (23b), and (24a) that for all i 2 N ,ûixi = uixi + 1xiO(�(� + u)) = �1 +O(�+ �) + O(�+ u):Note that in Theorems 3.2 and 3.3, we have ignored possible errors that areintroduced into the computation during the formation of the right-hand side b fromthe vectors r, x, and y, and the scalars � and �. Since the formation process introducesa relative perturbation of O(u) into each component of b, we lose nothing by ignoringthe perturbations.We now turn to recovery of the step v̂. From the exact formula (6b), we havevi = �yi(1 + ui=xi) + ��=xi:(26)In the actual computation of v̂, we have only the computed value û available to us.Moreover, errors are introduced when each of the �ve or six oating-point operations



10 STEPHEN J. WRIGHTon the right-hand side of (26) are performed. The exact nature of these errors willdepend on the order in which the operations in (26) are performed. Two possibilitiesare suggested by the parentheses in the expressions�yi[1 + (ui=xi)] + (��)=xi; [�yi � (yiui)=xi] + �(�=xi):We can, however, perform an analysis that takes all the possibilities into account, aswe show in the following theorem.Theorem 3.4. Suppose the assumptions of Theorem 3.3 hold and that v̂ iscomputed from the formula (6b) (equivalently, (26)) with û replacing u. Then wehave kv̂B � vBk = O(�(�+ u));(27a) kv̂N � vNk = O(�+ u);(27b)and, for all i 2 B, vi=yi = �1 +O(� + �);(28a) v̂i=yi = �1 +O(� + �+ u):(28b)Proof. In all the formulae of this proof, we use the notation �j , j = 1; 2; : : :,to represent scalar quantities of order u (We certainly have �j � 10u throughoutthe proof.) Recall that relative errors of O(u) are incurred whenever a real number isapproximated by a oating-point number and when an arithmetic operation involvingtwo oating-point numbers is performed (cf. (9)). Therefore, regardless of the orderin which the operations required to recover v̂i are performed, we havev̂i = ��yi�1 + �1 + ûixi (1 + �2)� (1 + �3) + ��xi (1 + �4)� (1 + �5):(29)By rearranging and combining terms in (29), we obtainv̂i = �yi(1 + �6)� yiûixi (1 + �7) + ��xi (1 + �8)= �yi � yiuixi + ��xi + yixi (ui � ûi)� �6yi � �7 yiûixi � �8��xi :By substituting from (26), we obtainjvi � v̂ij = ����yixi ���� jui � ûij+ O(u) �jyij+ ����yiûixi ����+ ������xi ����� :(30)Consider �rst the case of i 2 B. From (30) together with Assumption 2, Theorem3.2, expressions (15) and (23a), and �j = O(u), we havejvi � v̂ij = O(�(� + u)) + O(u) [O(�) + O(�(�+ u)) + O(��)] = O(�(�+ u));proving (27a). For i 2 N , we have from Assumption 2, Theorem 3.2, and expressions(15) and (23b) that����yixi ���� = O(��1); jui � ûij = O(�(�+ u)); ����yiûixi ���� = O(1); ������xi ���� = O(1):



LINEAR EQUATIONS IN INTERIOR-POINT METHODS 11Therefore we obtain from (30) thatjvi � v̂ij = O(�+ u); 8i 2 N;as required.The inequalities (28) are proved in the same way as (24).Gaussian eliminationwith complete pivoting is possibly more relevant to practicalalgorithms, since sparse elimination algorithms rearrange both rows and columns andhence can be regarded as approximations to the complete pivoting strategy. The mainerror results for complete pivoting are the same as those for partial pivoting. To justifythis claim, we note �rst that the nonbasic indices will eventually be used as pivotsbefore any of the basic indices are used, because of the large sizes of yi=xi, i 2 N .Moreover, the error matrices EBN and ENN are O(u) rather than O(��1u), becausethe elements yi=xi, i 2 N cannot appear in a pivot row except on the diagonal, sothey cannot \contaminate" other elements in the nonbasic columns ofM +X�1Y . Inother words, û actually solves the system� MBB +X�1B YB + EBB MBN +EBNMNB +ENB MNN +X�1N YN + ENN � � ûBûN �= � rB � yB � ��X�1B erN � yN � ��X�1N e � ;(31)where kEBBk � �O(kMBB +X�1B YBk+ kMNBk)u = O(u);(32a) kENBk � �O(kMBB +X�1B YBk+ kMNBk)u = O(u);(32b) kEBNk � �O(kMNNk+ kMBNk)u = O(u);(32c) kENNk � �O(kMNNk+ kMBNk)u = O(u):(32d)By de�ning G as the coe�cient matrix in (31) and partitioning as before, we obtainafter some manipulation that(G�1)11 = M�1BB +O(�+ u); (G�1)12 = O(�);(G�1)21 = O(�); (G�1)22 = O(�):Therefore, using kbBk = O(�+ u) and kbNk = O(1), we haveûB = (G�1)11bB + (G�1)12bN = O(�+ u);ûN = (G�1)21bB + (G�1)22bN = O(�);which is the same error result as the one obtained for partial pivoting in Theorem3.2. The other results in the section also hold for complete pivoting, with minormodi�cations to the proofs.4. E�ect of Roundo� Error on Local Convergence. We now consider thealgorithm in [14], which can be described as follows. Given parameters k+1 2(min ; k] and �k 2 [0; 1), the step �k is chosen as�k = arg min�2(0;1]�k(�) 4= (xk + �uk)T (yk + �vk)=n;(33)



12 STEPHEN J. WRIGHTsubject to (xk; yk) + �(uk; vk) 2 N (k+1);(34a) �k(�) � (1� �)(1� �k)�k; if rk 6= 0;(34b)for all� 2 [0; �k]. The choices of �k, k+1, and �k at each iteration are made accordingto the following scheme.given � 2 (0; 1), min , max with 0 < min < max < 1=2, �� 2 (0; 1=2),� 2 (0; �), and (x0; y0) with x0i y0i � max�0 > 0;t0  1, 0  max;for k = 0; 1; 2; : : :if �k = 0 then stop;Find (uk; vk) and �k from (11), (33), and (34) with�k = 0, �k = �tk , k+1 = min + �tk (max � min);if �k(�k) � ��kthen accept this step; tk+1  tk + 1; go to next k;end ifFind (uk; vk) and �k from (11), (33), and (34) with�k 2 [��; 1=2], �k = 0, k+1 = k;accept this step; tk+1  tk; go to next k;end for.This algorithm takes two types of steps | \safe" steps, for which �k � ��, and \fast"steps, for which �k = 0. Theoretically, the safe steps ensure good global convergenceproperties and complexity, while the fast steps ensure asymptotic superlinear conver-gence. The counter tk keeps track of the number of fast steps taken prior to iterationk. The choice of step length �k ensures that krk+1k = O(�k+1). To see this, notefrom condition (34b) that�k+1 = (1� �k)(1 � �k)�k = 24 kYj=0(1� �j)(1� �j)35�0:Since kYj=0(1 � �j) � 1Yj=0(1� �j) = �̂ > 0; rk+1 = kYj=0(1� �j)r0;we have �k+1=�0 � �̂krk+1k=kr0k;so condition (12) holds with K = �̂�1.



LINEAR EQUATIONS IN INTERIOR-POINT METHODS 13We focus on this algorithm because of its strong theoretical properties, namely,global convergence from any positive starting point (x0; y0), polynomial complexitywhen properly initialized, and superlinear local convergence. Also, the method per-forms well in computational tests and is quite similar (at least in its \non-superlinear"phase where �k � ��) to the algorithm implemented by Lustig, Marsten, and Shanno[8]. We assume throughout that �nite termination does not occur, that is, the algo-rithm generates an in�nite sequence of strictly positive iterates (xk; yk).In this section, we examine how the behavior of this algorithm is a�ected whenthe computed steps (ûk; v̂k) are used in place of the exact steps (uk; vk). We start byshowing that near-unit steplengths can eventually be taken by this algorithm withoutviolating the positivity condition (xk; yk) > 0. Consequently, there exists the possi-bility of rapid convergence of the sequence of complementarity gaps �k to zero, evenin the presence of roundo� error. We re�ne the results to show that for the safe steps(�k � ��), we actually have �k = 1 when �k is su�ciently small.In all the analysis below, our convention is to use the iteration index k in thestatement of each result, but omit it in the proofs.Lemma 4.1. For all k su�ciently large, we have(xk + �ûk; yk + �v̂k) � 0;for all � 2 [0; ��k], where j1� ��kj = O(�k + �k + u):(35)Proof. We consider �rst the indices i 2 N . From (27b), we havejv̂ij = jvij+ O(�+ u) = O(�+ u);while from Assumption 2 we have for large k that yki � y�i > 0. Hence yki + �v̂ki > 0for all � 2 [0; 1] and all k su�ciently large. On the other hand, we have from (24b)that xi + �ûi = xi + �xi(�1 +O(� + � + u)):Therefore, if xi + �iûi = 0 for some index i, then we must have1� �+ �O(� + �+ u) = 0 ) j1� �j = O(� + � + u):Hence xi + �ûi � 0 for all � 2 [0; ��], for �� satisfying (35).The case of i 2 B is proved in a similar way by using (28b).We now show that near-unit steps produce fast linear convergence of the comple-mentarity gap to zero.Theorem 4.2. If k is su�ciently large, then(xk + �kûk)T (yk + �kv̂k) = [1� �k(1� �k) +O(�k + u)](xk)T yk:Proof. For any i = 1; : : : ; n, we have from the second part of equation (4) that(xi + �ûi)(yi + �v̂i)= xiyi + �yiui + �xivi + �yi(ûi � ui) + �xi(v̂i � vi) + �2ûiv̂i= (1� �)xiyi + ���+ �yi(ûi � ui) + �xi(v̂i � vi) + �2ûiv̂i:(36)



14 STEPHEN J. WRIGHTNow, by Assumption 2 and relations (15a) and (27), we havei 2 N ) jxi(v̂i � vi)j = O(�)O(�+ u);i 2 B ) jxi(v̂i � vi)j = O(1)O(�(�+ u)):A similar result holds for jyi(ûi � ui)j. For the last term in (36), we have from (14),(27), and Theorem 3.2 thati 2 B ) jûiv̂ij � O(�+ u)(jvij+ jv̂i � vij) = O(�(� + u))i 2 N ) jûiv̂ij = O(�)(jvij+ jv̂i � vij) = O(�(�+ u)):We also have �=(xiyi) � 1=min = O(1). Using these estimates in (36), we obtain(xi + �ûi)(yi + �v̂i) = xiyi(1 � �) + ���+ �O(�(�+ u))= xiyi(1 � �) + �� [� + O(�+ u)] :(37)By summing over i, we obtain(x+ �û)T (y + �v̂) = xTy [(1� �+ ��) + �O(�+ u)] ;(38)which yields the desired result.We now examine the safe steps, for which �k � ��, and show that �k = 1 satis�esthe criteria (33) and (34) for large enough k, even when the computed search direction(ûk; v̂k) is used in place of the exact direction (uk; vk). That is, a unit step is taken.Theorem 4.3. Suppose that �� is substantially larger than u, in a sense to bede�ned below. Then for all su�ciently large k, if a safe step (with �k � ��, k+1 = k,and �k = 0) is computed, the step length parameter satisfying (33) and (34) will be�k = 1.Proof. From (38), we have(x+ �û)T (y + �v̂)xTy = (1� �) + � [� +O(�+ u)] :(39)Therefore (34b) will hold for all � 2 [0; 1] (with (u; v) replaced by (û; v̂) and �k = 0),provided that the term in square brackets in (39) is nonnegative. But nonnegativityis guaranteed for u� �� and � su�ciently small, so �k = 1 satis�es this inequality.Consider now (34a), with k+1 = k. From (37) and (38), we have(xi + �ûi)(yi + �v̂i)(x+ �û)T (y + �v̂)=n = (1 � �)xiyi + ��[� + O(�+ u)](1� �)� + ��[� +O(�+ u)]� xiyi=�+ [� �C10(�+ u)]�=(1� �)1 + [� + C11(�+ u)]�=(1� �) ;(40)for some positive constants C10 and C11. Since xiyi � k� for all i = 1; : : : ; n, we �ndthat (34a) is satis�ed if � �C10(�+ u)� +C11(�+ u) � max;or, equivalently, �+ u� � 1� maxC10 +C11 :



LINEAR EQUATIONS IN INTERIOR-POINT METHODS 15This last inequality, and therefore (34a), holds provided that � and u are small enoughwith respect to ��, as we have assumed.Finally, we show that �̂(�) 4= (x+ �û)T (y + �v̂)=nis decreasing on the interval � 2 [0; 1]. Since from (38), we have�̂(�)� = 1� �+ �� + �O(�+ u);the derivative �̂0(�) is nonpositive provided that� 1 + � +O(� + u) � 0:(41)Since �� � � � 1=2 and, by our assumptions in the �rst part of this proof, �� dominatesthe O(� + u) term, we have that (41) holds.We have shown that all � 2 [0; 1] satisfy the conditions (34) with (u; v) replacedby (û; v̂). Moreover, the function in (33) is decreasing over this interval. We concludethat �k = 1 is the step chosen by the line search procedure, giving the result.We turn now to fast step, for which �k = 0, �k = �tk , and k+1 = min+�tk (max�min). The (exact) analysis in Wright [14] shows that fast steps are eventually alwaystaken by the algorithm. Note that if the fast step is accepted, we havek � k+1 = (�tk�1 � �tk )(max � min) = �tk(��1 � 1)(max � min) = 
(�k):(42)The following theorem gives an estimate for the length of a fast step.Theorem 4.4. If a fast step is attempted at iteration k, where k is su�cientlylarge and u� 1, then �k � �1 + �k�k + u�tk ��1 ;where �k satis�es 0 � �k � O(1).Proof. As in (37), we have for �k = 0 that(xi + �ûi)(yi + �v̂i) = xiyi(1 � �) + ��O(�+ u) � k�(1� �)� ��(�+ u)�(1)k ;(43)where 0 � �(1)k � O(1). From (38) we have(x+ �û)T (y + �v̂)=n = � [1� �+ �O(�+ u)] � � h1� �+ �(� + u)�(2)k i ;(44)where 0 � �(2)k � O(1). Putting (43) and (44) together, we deduce that (34a) holdsprovided that k(1� �)� �(�+ u)�(1)k � k+1[1� �+ �(�+ u)�(2)k ];which in turn is true if(k � k+1)(1� �) � �(�+ u)(�(1)k + �(2)k ):



16 STEPHEN J. WRIGHTThis last inequality is implied by the following bound on �:� � "1 + (�+ u)(�(1)k + �(2)k )k � k+1 #�1 = "1 + (�+ u)(�(1)k + �(2)k )�tk(��1 � 1)(max � min)#�1 ;(45)where we have used (42) to derive the �nal inequality.Using (44) again, we have(x+ �û)T (y + �v̂)=n = � [1� �+ �O(�+ u)] � � h1� �� �(� + u)�(3)k i ;where 0 � �(3)k � O(1), so the inequality (34b) is satis�ed when1� �� �(�+ u)�(3)k � (1� �)(1� �k);that is, when � � "1 + (�+ u)�(3)k�k #�1 = "1 + (�+ u)�(3)k�tk #�1 :(46)Providing we can show that �̂k(�) is decreasing on [0; 1], we have from (45) and (46)that the result holds for �k de�ned by�k = max �(3)k ; �(1)k + �(2)k(��1 � 1)(max � min)! :However, �̂0k(�) � �� [1� O(�+ u)] < 0;so �̂k(�) is certainly decreasing on [0; 1], and the result is proved.This result accurately indicates the behavior of fast steps on later iterations of thealgorithm. The quantity �k is typically either extremely small or else quite signi�cant(that is, �k = 
(1)), depending on the sign of certain products such as ûT v̂, ûiv̂i,and so on. When �k is tiny and �k + u � �tk , the value of �k is very close to 1,and the fast step is accepted with a large reduction in �. When �k is larger, or when�tk = O(u), the fast step may not lead to a very large decrease in � and may even berejected in favor of a safe step.We summarize the results of this section in the following theorem.Theorem 4.5. Suppose that u is much smaller than ��, in the sense of Theorem4.3. Then for all su�ciently large k we have that either(i) a fast step is taken, and �k+1 � ��k;(47)with �k+1 = O��k + u�tk ��k;(48)or(ii) a safe step is taken, with�k+1 = [�k +O(�k + u)]�k:(49)Proof. The condition for fast-step acceptance yields (47). The estimate (48)follows from Theorems 4.2 and 4.4 and the identity �k = 0. The safe-step estimate(49) follows from Theorem 4.2 when we use �k = 1.



LINEAR EQUATIONS IN INTERIOR-POINT METHODS 175. Computational Results. The algorithm of Section 4 was implemented indouble-precision Fortran, using the LAPACK routines dgetrf and dgetrs to solve thelinear system (6a). Our test problems are of two types.(i) The matrix M has the form M = ADAT , where A is n � nr dense with allelements drawn from a uniform distribution on [�1; 1], while D is diagonalwith diagonal elements of the form 10� , where � is drawn from a uniformdistribution on [0; 1]. Since we choose nr � n, the rank of M is nr. (Rank-de�ciency of M is not an arti�cial feature; in certain applications of (1),including (3), M is structurally rank-de�cient.) The solutions x� and y� arechosen so that the even-numbered components of x� and the odd-numberedcomponents of y� are zero, while the remaining components are uniform on[0; 1].(ii) The matrixM has the form (3a), where the matrix A is dense with elementsof the form �110�2 , where �1 and �2 are drawn from uniform distributions on[�12 ; 12 ] and [0; 1], respectively. If p and m denote the dimensions of of z and�, respectively, we choose the even-numbered components 2; 4; : : :;min(p;m)of both z� and �� to be nonzero. (It is a consequence of nondegeneracy of thesolution of (2) that the same number of components of z� and �� be nonzero.This requirement is also necessary for nonsingularity of MBB .) The nonzerocomponents of z�, �� and the complementary vector pair in (3) are all drawnfrom [0; 1].We use the following values for the constants:min = 10�5; max = 10�2; � = �=2; � = 10�1:(50)We choose the centering parameter �k at each safe iteration according to the formula�k = mid(��; �k=pn; :2); where �� = :01:(51)Though we made no special e�ort to tune these constants to their optimal values, ourexperience indicates that the choices (50), (51) are e�cient for these and other typesof problems.In Tables 1{4 we tabulate the behavior of the algorithm of Section 4. Many ofthe uninteresting safe iterates are omitted. An asterisk in the last column indicatesthat a fast step was taken from this iterate. We terminate the algorithm when � fallsbelow 10�20.These tables indicate rapid convergence of the algorithm during its �nal stages.Typically, the algorithm takes only fast steps after it has decreased � below a certainthreshold. (The experience of the author and others indicates that this threshold isquite small for linear and quadratic problems, so that superlinear convergence does notset in until quite late in the process. Preliminary experience with nonlinear problemsindicates that fast steps are typically taken at an earlier stage, that is, the thresholdis not so small.)The behavior observed in Tables 1{4 certainly con�rms the e�cacy of Gaussianelimination with partial pivoting in the context of this interior-point method. Thelinear algebra continues to produce good steps even when � is extremely small. Theconvergence of � to zero appears to be superlinear in each case (even quadratic, inthe case of Table 4). These tables do not, however, show the asymptotic behaviorsuggested by Theorem 4.5. To see it, we must continue to run the algorithm pastthe point of convergence. Table 5 shows what happens when we continue to iterateon the problem of Table 3 until � is reduced below 10�100. (The late asymptotic



18 STEPHEN J. WRIGHTTable 1Convergence of the algorithm: Problem type (i), n = nr = 20k log10 �k log10 krkk1 Fast step?0 4.0 4.71 3.7 4.32 3.2 3.33 2.7 -11.7... ... ...15 -3.7 -13.416 -4.8 -13.317 -5.7 -13.2 �18 -7.0 -13.1 �19 -9.5 -13.2 �20 -14.5 -13.5 �21 -23.8 -13.4 terminateTable 2Convergence of the algorithm: Problem type (i), n = nr = 100k log10 �k log10 krkk1 Fast step?0 4.9 6.51 4.6 6.22 4.1 5.53 3.8 4.94 3.3 -9.8... ... ...21 -5.8 -11.622 -6.7 -11.623 -7.8 -11.624 -9.0 -11.6 �25 -10.9 -11.5 �26 -14.7 -11.6 �27 -22.1 -11.8 terminate



LINEAR EQUATIONS IN INTERIOR-POINT METHODS 19Table 3Convergence of the algorithm: Problem type (i), n = 100, nr = 60.k log10 �k log10 krkk1 Fast step?0 4.5 6.11 4.3 5.82 4.1 5.53 3.7 5.04 3.2 3.95 2.8 -9.5... ... ...24 -2.8 -11.825 -3.5 -11.726 -4.4 -11.727 -5.6 -11.728 -6.7 -11.7 �29 -8.1 -11.7 �30 -10.1 -11.8 �31 -13.8 -11.8 �32 -20.8 -11.8 terminateTable 4Convergence of the algorithm: Problem type (ii), n = 200, matrix A is 40� 160k log10 �k log10 krkk1 Fast step?0 4.0 5.21 3.8 4.92 3.5 4.73 3.1 4.24 2.1 3.15 1.7 2.66 1.4 2.27 1.0 1.78 0.5 1.29 0.2 0.810 -0.7 -0.311 -2.1 -1.8 �12 -4.4 -4.1 �13 -8.3 -7.9 �14 -15.6 -10.2 �15 -28.2 -10.2 terminate



20 STEPHEN J. WRIGHTTable 5Later iterates on the problem of Table 3k log10 �k log10 krkk1 Fast step?... ... ...32 -20.8 -11.8 �33 -31.4 -11.9 �34 -42.1 -11.9 �35 -46.8 -11.9 �36 -50.9 -11.8 �37 -61.7 -11.9 �38 -71.9 -11.939 -73.9 -11.9 �40 -78.4 -11.9 �41 -90.5 -11.8 �42 -102.4 -11.9 terminateconvergence was qualitatively similar on all the problems we tried, so we report justthis one instance.) Note that fast steps are taken on each iteration with decreasefactors between 10�4 and 10�12, except for one iteration | the 38th | on which asafe step is taken with a decrease ratio of almost exactly �k = 10�2. The existence ofthese two kinds of steps and their e�ects on �k are in close accord with the predictionsof Theorem 4.5.Note that in all the tables the residual norm krkk decreases toO(u) but no further.As discussed in the proof of Theorem 3.2, this behavior is due to roundo� error in thecalculation of rk via the formula rk = yk �Mxk � q.We experimented with a version of the code in which a modi�ed complete pivotingstrategy was used for solving (6a). The columns of the coe�cient matrix were orderedby decreasing value of k � k1 before Gaussian elimination with partial pivoting wasapplied. Asymptotically, this strategy has the e�ect of ordering the nonbasic columns�rst, so the analysis at the end of Section 3 still applies. As predicted in that analysis,this version of the algorithm behaves only slightly di�erently from the partial pivotingversion described above.The assumption that MBB is nonsingular (indeed, well conditioned) plays animportant role in the analysis of Sections 3 and 4. Theoretically, the algorithm ofSection 4 is known to have fast local convergence even when MBB is singular andthe solution is not unique. We tested to see whether fast convergence was attainablein practice by forming a problem from the class (i) with nr = 25. Since B contains50 indices, the submatrix MBB is certainly rank de�cient. The result of this run issummarized in Table 6. It is clear that the behavior indicated in Theorem 4.5 doesnot occur. After taking two fast steps and converging to �k � 10�7 by iteration 14,the algorithm stalls and makes very little progress from that point on. This and othersimilar examples suggest that the assumption of MBB nonsingular probably cannotbe relaxed.Acknowledgement. I thank the editor and referees for their insightful com-ments on an earlier draft.



LINEAR EQUATIONS IN INTERIOR-POINT METHODS 21Table 6Convergence in the case of MBB rank-de�cient: Problem type (i), n = 100, nr = 25k log10 �k log10 krkk1 Fast step?0 4.2 5.91 4.0 5.52 3.6 5.13 2.7 4.24 2.1 3.4... ... ...11 -0.2 0.212 -1.2 -0.9 �13 -3.7 -3.5 �14 -7.3 -7.015 -7.4 -7.116 -7.4 -7.217 -7.6 -7.4... ... ...98 -8.4 -8.299 -8.5 -8.2100 -8.5 -8.3... ... ...REFERENCES[1] R. Fourer and S. Mehrotra, Solving symmetric inde�nite systems in an interior-pointmethod for linear programming, Mathematical Programming, 62 (1993), pp. 15{39.[2] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins UniversityPress, Baltimore, 2nd ed., 1989.[3] N. J. Higham, Accuracy and Stability of Numerical Algorithms (provisional title), 1994. Inpreparation.[4] J. Ji, F. A. Potra, and S. Huang, A predictor-corrector method for linear complementarityproblems with polynomial complexity and superlinear convergence, Technical Report 18,Department of Mathematics, University of Iowa, Iowa City, Iowa, August 1991.[5] M. Kojima, Y. Kurita, and S. Mizuno, Large{step interior point algorithms for linear com-plementarity problems, SIAM Journal on Optimization, 3 (1993), pp. 398{412.[6] M. Kojima, S. Mizuno, and A. Yoshise, An O(pnL) iteration potential reduction algorithmfor linear complementarity problems, Mathematical Programming, 50 (1991), pp. 331{342.[7] I. J. Lustig, R. E. Marsten, and D. F. Shanno, Computational experience with a primal-dual interior point method for linear programming, Linear Algebra and Its Applications,152 (1991), pp. 191{222.[8] , Computational experience with a globally convergent primal-dual predictor-correctoralgorithm for linear programming, Technical Report SOR 92{10, Program in Statisticsand Operations Research, Princeton University, Princeton, N. J., 1992.[9] S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journalon Optimization, 2 (1992), pp. 575{601.[10] R. D. C. Monteiro and I. Adler, Interior path-following primal-dual algorithms. part II:Convex quadratic programming, Mathematical Programming, 44 (1989), pp. 43{66.[11] D. B. Poncele�on, Barrier methods for large-scale quadratic programming, PhD thesis, Stan-ford University, 1990.[12] F. A. Potra, An o(nl) infeasible-interior-point algorithm for LCP with quadratic convergence,Report on Computational Mathematics 50, Department of Mathematics, University ofIowa, Iowa City, Iowa, January 1994.
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