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Abstract

We describe an algorithm for the monotone linear complementarity problem (LCP)
that converges from any positive, not necessarily feasible, starting point and exhibits
polynomial complexity if some additional assumptions are made on the starting point.
If the problem has a strictly complementary solution, the method converges sub-
quadratically. We show that the algorithm and its convergence properties extend
readily to the mixed monotone linear complementarity problem and, hence, to all
the usual formulations of the linear programming and convex quadratic programming
problems.

1 Introduction

The monotone linear complementarity problem (LCP) is to find a vector pair (z,y) € R"xR"
such that
y=Mz+gq, (x,9)20, aly=0, (1)

where ¢ € R™ and M is an n X n positive semidefinite (p.s.d.) matrix. The mized monotone
linear complementarity problem (MLCP) is to find a vector triple (z,y,2) € R" x R™ x R™

such that
Y My My, z q1
— 2
)=l ] ] 2

() >0, aTy=0, (2h)

where
My My,
M =
[ My My, ]

*This research was supported by the Office of Scientific Computing, U.S. Department of Energy, under
Contract W-31-109-Eng-38.
TMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,

Argonne, Hlinois 60439.



is p.s.d. All conventional formulations of the linear programming (LP) and convex quadratic
programming (QP) problems can be posed in the form (2) by writing out their conditions
for optimality. For instance, consider the QP problem given by

min %wTQw +clw (3)
wElRp

subject to

wlzll (iE;CC{l,"',p}), w; < u; (iEUC{l,"',p}),
Cw>d, Aw=hb, (4)

where () is symmetric p.s.d., C € R™™*? A ¢ R™#*? and so on. If we define
Ec=lelliec,  Eu=[eflieu,
where ¢; is the ¢-th unit vector from the standard basis, and
[ = [liliec, u = [uiieu,
then we can state the optimality conditions for (3),(4) in the form (2) by defining

n= L]+ U +mp,  m=p+mp,

and
E 0
_ AT L T T T
M22 = Q . ) M12 = _EM 0 ) M21 = EE EM ¢ )
A 0 0 0 0

c 0

—1
C
Mn:(), Q1 = [ 5 QQ:l_b]

—d

In this paper, we focus on an algorithm for (1) and its convergence properties. We
then show, using recent work involving the relationship between problems (1) and (2), that
this algorithm can be extended painlessly to (2) and, hence, to all the usual LP and QP
formulations. Little loss of efficiency is involved in solving I.LPs and QPs by embedding them
in algorithms for (2), provided the linear algebra takes account of the particular structure
of each problem. Hence we feel that the linear complementarity formulation is the best one
to consider because of its generality, simplicity of notation, and practical efficiency of the
algorithms on all its special cases.

In two recent papers [10, 9], we described algorithms for (1) that are globally convergent,
have polynomial complexity when the starting point (2, y°) satisfies certain assumptions,
and exhibit subquadratic convergence of the complementarity gap pux = (z*)Ty*/n to zero.
Neither the starting point nor the iterates are feasible in general. In both algorithms, most
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of the work at each iteration consists of a single matrix factorization and between one and
three triangular solves with the computed factors. These methods were the first interior-point
methods with this desirable combination of properties.

The local analysis in both [10] and [9] requires existence of a strictly complementary
solution, that is, (a*,y*) solving (1) such that «* 4+ y* > 0. This assumption is always
satisfied if the LCP is a reformulated linear programming problem and, as shown in Monteiro
and Wright [7], it is necessary for superlinear convergence of Newton-based primal-dual
algorithms. The earlier paper [10] makes an additional assumption: existence of a strictly
feasible point, that is, (z,y) such that y = Mz +¢, (z,y) > 0. This assumption is undesirable
because it is usually not satisfied by large practical problems.

In this paper, we describe an algorithm that is quite similar to the one in [10], except
that it does not use the clumsy merit function ¢(z,y) = 2y + ||y — Mz — q|| and allows more
flexibility in the choice of parameters and starting point. As we mention at the end of Section
3, we can also allow more flexibility in the choice of steplength, bringing the algorithm close
to current computational practice. The analysis here is considerably stronger than in [10].
The strict feasibility assumption is no longer required, technical arguments are streamlined,
and R-subquadratic convergence of the iterates (%, y*) to a strictly complementary solution
is proved.

The new algorithm is quite different from the one in [9], where the ratio of complemen-
tarity gap p to infeasibility norm ||r|| is kept constant until the “fast” phase, when small
variations are allowed. To achieve this effect, a correction to the basic path-following step
is computed (at a cost of one additional back-substitution) and a messy planar search pro-
cedure is performed. The complications in [9] made it possible to prove boundedness of
the iteration sequence {(z*,4*)}, which was a vital element in the asymptotic convergence
analysis. Our use of a stronger technical result (Lemma 4.3) removes the dependence on
boundedness. Instead, as mentioned above, we prove convergence of the iteration sequence
as a consequence of the main results.

Our algorithm is specified in Section 2. In Section 3 we prove global linear convergence
and polynomial complexity. Some technical results are proved in Section 4; these are used
to prove superlinear convergence in Section 5. Section 6 shows that the algorithm and
its convergence properties can be extended to the mixed problem (2) because (2) can be
reformulated as (1). We stress at the outset that this reformulation need not be performed
explicitly; it suffices to observe that the (z,y) iterates generated by our extended algorithm
are the same as those that would be obtained by reformulating the problem as (1) and
applying the algorithm of Section 2 directly, except possibly for some swapping of components
to be discussed later.

Unless otherwise specified, || - || denotes the Euclidean norm of a vector. Iteration num-
bers appear as superscripts on vectors and matrices and as subscripts on scalars. To avoid
notational clutter in Sections 3, 4, and 5, we drop the iteration index k from vector and
matrix quantities in the proofs. It is retained explicitly in the statement of each result.

We denote the solution set and strictly complementary solution set by

S=A"y") (@ y7) solves (1)}, S°={(z",y") € S|a" +y" >0},



respectively. The range space of a matrix is denoted by R(-).

2 The Algorithm

The algorithm generates a sequence of strictly positive iterates (z*,y*). To describe the step
between successive iterates, we define

Uk = (xk)Tyk/nv rk:yk_Mxk_Q7 € = (1717"'71)T7

XF = diag(:z;’f,:z;g, e :L’k), Yh = diag(yf7y§, T 795)-

?%'n

We refer to py, as the complementarity gap and to r* as the residual. Each step is calculated
as follows.

Given 4 € (0,1), 3 € [0,1), & € [0,1), solve

M -1 uk B rk (5)
Yk Xk LA —XkYke—l—&,uke )
Choose
& = arg min pi() = («F +au) (" + oot /. (6)

where & is the largest number in [0, 1] such that the following inequalities are satisfied
for all a € [0, &):

(e + aut) (5 + avt)

(1= B)(1—a)a")Ty*,  ifrk 0, (Ta)
(:1; + au; )(yl—l—ozv) k

>
> (F/n)(x" 4+ au®)T (y* + av®), 1=1,---,n. (7b)

The search direction obtained from (5) is simply the Newton step for the system of
nonlinear equations
| Mz—y+q | 0
F(l’,y)-[ XYe ]_[&ﬂk€]7
from the point (2%, y*).

The inequality (7b), usually referred to as a centering condition, ensures that the iterates
do not approach the boundary of the nonnegative orthant too closely. Because we restrict %
to the range [Ymin, Ymax) f0r 0 < Ymin < Ymax < 1/2, (7b) implies that

TiYi 2 Vel = Yminklks VEk. (8)



The condition (7a) is used to ensure that improvement in the complementarity gap iy does

not outstrip improvement in the infeasibility ||r*|| by too much; a vector pair (z,y) that is

complementary but not feasible is of no interest. Note that we need not enforce condition

(7a) if the current point is already feasible.
We can now state our algorithm.

Given ¥ € (0,1/2), Ymin and Ymax With 0 < Ymin < Ymax < 1/2, 0 € (0,1/2),
p €(0,7), i1 € (0,1], and (2°,y°) with 2Py > Ymaxpo > 0;

tO — 17 70 — ’Vmax;

for

k=0,1,2,-
if pr =10 then stop;

(* attempt a fast step *)

Solve (5)*(7) with ¢ = 0, B = :}/tk, ’N}/ = Ymin + :}/tk (’Vmax - ’Vmin)

if  (oF +au) (Yt + avt)/n < pp
then oy « &, B« B, 0% — &, Y1 —
tppr — tr + 1;
(#y5) () o, o)
go to next k;

end if

(* revert to a safe step *)

Solve (5)-(7) with & € [5,1/2], §
Oék%dvﬂlﬂ%ov0-1695-7”}/164—1H
tk-l—l — tk,

(551, 41) o (o g) + ap(a o0

go to next k;

0,7 =;

¥;

end for.

?

The algorithm can be motivated in a few sentences. We begin each major iteration by
trying to take a fast step, which uses an affine scaling search direction. To encourage longer
steps to be taken we use a strictly positive value of 3 and a value 7 smaller than the current
~k. The fast steps are accepted only if they produce a reduction in pj of at least a factor of
p. Otherwise, the algorithm reverts to taking a safe step, whose major distinguishing feature

is its use of a strictly positive value & > o of the centering parameter.

Safe steps tend to be taken on early iterations, while fast steps are taken toward the
tail of the sequence. There may be a gray area in which both safe and fast steps are taken.



The algorithm can be modified to try fast steps only when there is some reasonable hope
that they will be accepted. (Earlier versions of the algorithm used a threshold criterion
pr < fi, with i a user-defined parameter, to decide whether to calculate the safe step.) For
the sake of simplicity, we do not consider such modifications here, but note simply that the
superlinear convergence properties of the algorithm will hold provided that the fast step is
eventually tried on every iteration. Besides omitting the threshold p, the algorithm above
differs from the one described in [10] in that the duality gap p is used directly in place of
the merit function ¢, and the particular choices i = 7 and ynax = 27 are relaxed.

3 Global Convergence and Polynomial Complexity

In this section, we show that the algorithm converges globally to the solution set of (1)
from any starting point (2% y%) > 0. When the algorithm is initialized in a certain way, the
number of iterations is quadratic in the problem dimension n. Throughout the section, we
make the following assumption.

Assumption 1 The LCP (1) is feasible; that is, there is a pair (x,y) such that y = Mx + ¢
and (x,y) > 0.

Assumption 1 implies that S # 0 (see, for example, [1, Theorem 3.1.2]).
If we define the monotonically decreasing sequence {v;} by
vo =1, Vipr = (1 — ag)vg,

it is easy to see that r* = 3%, We have the following simple result, whose proof follows

that of [9, Lemma 3.1].

Lemma 3.1 The constantB defined by

>
3

10— = 10 -7

k=0

is strictly positive, and we have for all k > 0 that

pe > Buypo. (9)

We can also show that all iterates remain strictly positive, except when finite termination
occurs.

Lemma 3.2 For all iterates generated by the algorithm, we have either (z*,y*) > 0 or
HE = 0.

Proof. We prove the result by induction. Note first that the assertion is trivially satisfied
by the initial iterate (2 4°) > 0. If y, = 0, the algorithm terminates at the k-th iterate. For



the remainder of the proof, we assume that (z*,y"*) > 0 and prove that either (z*+1 y**1) > 0
or pir41 = 0. We consider the cases r* # 0 and r* = 0 separately.

If r* = 0, the constraint (7a) is applied to the choice of ay. Hence, combining (7a) and
(7b), we have that

(«f + aub)(yF + avk) > (F/n)(1 = (1 = a)(=*"yh),  Va € [0,an).

Since a < 1,4 > 0, 3 e [0,1), and :L'kTyk > 0, the right-hand side of this expression is
strictly positive for all a € [0, a). Since (z¥,y¥) > 0, it follows that (zF +au?, yF +avf) > 0
for all « € [0, ). If 2% + apuf = 0 or yF + apvf = 0 for some index 7, we have from (7h)
that

s = (2 + )T (5 + o) fn = 0.

The alternative case is
(xk-l_l? yk+1) = (xk + akukv yk + akvk) > 07

so our claim holds.
Consider now the remaining case r* = 0, for which (7a) is not enforced. Suppose first
that there exist « values in the range [0, ax] such that

¥+ auf =0 or y' 4+ avf =0, (10)
for some index 1 = 1,---,n, and let a; be the smallest of these values. It follows from (7b)
that

(l‘k + @kuk)T(yk + @kvk) = 0. (11)

Since ¥ = 0, equation (5) implies that v* = Mu*. Hence, by positive semidefiniteness of
M, we have wF ok > 0. Using the second part of (5), we find that

(" + ou*)T (5" + av®) = (") (1 = o(1 = 5)) + a*u" oF > (F yh) (1 - a(1 = 5)). (12)

Now since a; € [0,ax] C [0, 1], the relations (11) and (12) can be satisfied simultaneously
for @« = aj only if & = 0 and ap = ap = 1. Hence we are left with two possibilities.
Either o = a = 1 and g1 = 0, or there are no a € [0, ;] with the property (10), so
(a4 )

Finite termination of the algorithm with p; = 0 and 7* = 0 is, of course, the simple

> 0. Therefore our claim holds again for the case of 7* = 0, and we are done. m

case. Throughout the remainder of the paper, we make the implicit assumption that finite
termination does not occur and that the algorithm generates an infinite sequence of iterates
{(xkv yk)}v k= 07 17 .

The next lemma contains an inequality that is used in a number of places in the analysis.
Similar results appear in Potra [8, Lemma 4.1], Mizuno [5, Lemma 3.3], and Wright [9,
Lemma 3.2].



Lemma 3.3 Let (2*,y*) € S. Then for all k > 0 there is a constant Cy such that
"l + 1l < O [ + g/ ve + [yl + [la[h] - (13)
When the initial point satisfies
2 = Epe, y’ = &ye, (14)
for some positive £, and £, we have
Elly* e+ & llet |l < npo + g fvi + Elly™ [l + &l (15)
Proof. As in the proof of [9, Lemma 3.2] we obtain the inequalities

0 < @) Y + (1= ) (@) y" + 2Ty + (L — ) ()T y" + (27)7y°)

()T + () ) — (1= ) (@) + 2Ty7) (16)
and
ve((2%) Ty + (1) ) < vy + 2Ty + (1 — v ) (@) Ty + (). (17)
By defining
Cy = Z_1(1{111(17%1(1(111&( ?,y?),

and noting that 1 — v, <1, we have
lylls + el < O [vano + npus /v + 12 oo lly™ s + 15 lloo 271

which implies (13) for appropriately defined Cy. The other inequality (15) follows trivially
from (14) and (17). [

For purposes of polynomial complexity, we assume that the initial point is defined by
(14), where ¢, and ¢, satisfy the following assumptions:

o7 lloe <&y My llee <& &2 Mlallees & = [ Mellbe = [Ma®]lo. (18)
We also find the diagonal matrix D* defined by
Dk — (Xk)—1/2(yk)1/2

useful in the subsequent analysis. The next lemma allows us to bound quantities involving
the steps u”* and v*.

Lemma 3.4 For all k > 0, there is a constant w such that
D"+ [[(DF) ™1 * < wps. (19)
If the initial step is chosen according to (14) and (18), then

2n? 9\’
( ﬂ) (20)

Ymin

and so w = O(n?).



Proof. 1t is easy to see that the step (u,v) can be partitioned as

(uv v) = (ﬂ, T)) + (ﬁv 6)7

Y] e ] 21
L) =

(Because of nonsingularity of the coefficient matrix in (21) and (22), both (u,v) and (4, 0)
are well defined.) As in [9, Lemma 3.3], we can show that

where

ST~

and

. 2n,u1/2 N 2n,u1/2
Ipal < 2 ) < 2 (23)
min Vmin
For the other component (@, 0), we have from the second part of (22) that
Di+D'=0 = o=-D*.
Hence from the first part of (22) and positive semidefiniteness of M, we have
Ma—t=r = (M+D)=r = a'D*<alr
Therefore
| Da||* < || Da|||| D~ .
Using (8) together with Lemmas 3.1 and 3.3, we have that
2\ 172
i < D7 <3 () i
= D ()T e
< Al o,
minfk
< ey o 4 ol + il
= 1/2 1/2 1 [VkHo Mk VENY |11 VE||T |1
minfk
< e O [t Gl 170/ o)
/2, 1/
minik
= O’ (24)
for some appropriately defined constant Cy. Since ||Dd|| = ||[D~'6||, we therefore have
1A A 1/2
[0l = D] < Cupll? (25)
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By combining (23) and (25), we obtain

[Dull* + 1D~ v]*
< (IDull + | Dal)* + (1D~ ol + [ D~

2”N1/2 1/2 i
2 1/k2 —I'C?fuk/

Vmin

)2

IA

< wpg,

where w is defined in an obvious way.

The special result (20) is proved by analysis similar to that of Lemma 3.4 in Wright [9].
[

The key theorem of this section shows that there is a uniform lower bound on the step
length o on each safe step.

Theorem 3.5 [f a safe step is taken at iteration k, then

(1 = Ymax)

Qap >
2w ’

where w is as defined in Lemma 3./.

Proof. We prove the result by showing that the conditions (7a) and (7b) hold for all «

in the range
(1 = Ymax)
0, ——| . 26
o, 1) (26)
We further show that the complementarity gap px(a) defined in (6) is decreasing on the

interval (26). These observations are sufficient to prove the result.
Because of (5), we have that (7a) is satisfied if

(o +au)(y+av) > (1-a)eTy
& :L'Ty(l —a+ aoy) + oculv > (1- oz):z;Ty
& Uk:ijy +aoulv > 0. (27)
From Lemma 3.4 we have
o] < | Dulll Dol < wp. (25)

Since o, > & and « is in the range (26), we have

oty +au’v > exly —alulv|

o 1_ max
> gyTy — CU = mad)
2w
1_ max
n
> 0.

10



Therefore (27) and hence (7a) are satisfied for « in the range (26).
By using (5), we note that (7b) is satisfied if

(x4 au) (y + av)/n
(Yr/n) [J?Ty(l —a+ opa) + oz2uTv] . (29)

(25 + aug)(y: + av;)

>
& 2l — a) + aopuy + tuvy; >

Because of (8), (29) is true provided that

Y

(1 — @)y, + aoppr + o u; Vi [(1 —a+ opa)ug + oz2uTv/n]

& o1 =)y + alu; —yutv/n) > 0.
Now from (28) and
Juivi| = [ D || D7 vi] < (| Dul[[| D70 < wps,
we have
o1 =)k + a(uiv; — yruv/n) > op(1 =) e — alwpr +wpr/n) > 5(1— ) e — 20wy
Since « lies in the range (26) and Y% € [Ymin, Ymax), We have

(1 = Ymax)

> 0.
9w U =

o(1 — ) — 20wpy, > o(1 — i) pp — 2w

Therefore (29) and hence (7b) hold for the interval in question.
Finally, from (6), (28), and (26), we have

(:L'Tv + yTu) +2aulv

(op — 1):1;Ty + 2awpiy

(71— Vs + (01— s i
(ok +0/n—1)nuy

0,

i (a)

AN VAN VAN VAN

since oy, € [0,1/2]. Hence the minimizer of ux(a) subject to the conditions (7a) and (7b)
lies beyond the interval (26), and we have the result. [
We can now show that p decreases by a factor strictly less than one on each safe iteration.

Theorem 3.6 [f a safe step is taken at iteration k, then

(1 — Ymax)
Sw ’

fhtr < pg |1 — (30)

where w is as defined in Lemma 3./.

11



Proof. By Theorem 3.5, p(«) is decreasing for

o(l — max
oc lO, M] |
2w
and ay, lies beyond this interval. Because of (28), we have
pi(a) = mll = a(l = o)) + *ulv/n
5'1— max 5-21_ max2
2w 4dnw
Since 1 — oy, >1/2, 5 € (0,1/2), 1 — Ymax < 1, and n > 1, we have
5'1_ max 5-1_ max 5-1_max
i) < g |1 — (L= max) |, 01— ),Uk:,uk L O = Yimax) 7
4w 8w Sw
giving the desired result. [
If we take fast iterations into account, we find that
o(l — max
HE+1 S pE max (1 - %7/)) ’ (31)

so we have geometric convergence of {u} to zero from any starting point (2°,3°) > 0. For
the special choice of starting point (14), (18), we have the following polynomial complexity
result.

Corollary 3.7 Let € > 0 be given. Suppose that the starting point is defined by (14), (18)
where po = £,€, < 1/€7 for some constant 7 > 0 independent of n. Then there is an integer
K, with

K. = 0(n*log(1/e))
such that py < e for all k> K..

Proof. From (30) and the fact that w = O(n?) (Lemma 3.4), we find that there is a

constant 6 independent of n such that
s < (1= 6/n)ju (32)

when a safe step is taken on iteration k. By adjusting ¢ if necessary, the inequality (32) also
holds for fast steps. The result follows from this inequality by a standard argument (see, for
example, Zhang [14, Theorem 7.2]).

We note in passing that the same global convergence and complexity results can be ob-
tained even if the exact minimizing & is not found in (6). Instead, we can merely require & to
satisfy conditions like those often seen in line search methods for unconstrained minimization.
One such pair of conditions is

p(0) + €y (0), (33a)
T Omaxs (33b)

fur(c)

<
a 2

12



where € € (0,1), 7 € (0,1), and Gupax is the largest value in [0, 4] for which (33a) holds
(where & is defined in (7)). It is easy to show, using the techniques in this section, that the
exact minimum from (6) satisfies (33); that Theorem 3.5 is still true if we scale the lower
bound by 7; and that Corollary 3.7 continues to hold.

If the relaxed conditions (33) are adopted, we can use techniques more like those in
practical codes to choose &. In particular, we can use an Armijo-like procedure in which we
calculate the step length ai.p along (u®,v*) to the boundary of the positive orthant, then
back off from this length until (33) and (7) are all satisfied. For appropriate choices of the
parameters, the popular choice & = .9995 min(1, atop) is usually accepted.

[

4 Bounds for the Fast-Step Components

In this section we show that when o} = 0, the step norms |[u*|| and ||v*|| are both O(yuy) for
all sufficiently large k. This result is essential to the local convergence analysis of the next
section. For notational convenience, we use u’ to denote the vector whose components are
uf for 1 € B, u%; as the subvector made up of u¥, 7 € N, and so on.
We make the following assumption throughout the remainder of this section.

Assumption 2 S§°¢ = ().
Given any strictly complementary solution (2*,y*), we can define the partition
{1,2,---,n} = NUB,
where
B={i]a] >0}, N ={i]y’ > 0}. (34)

(It is well known that B and N are independent of the particular choice of (x*,y*).)
We start by showing that % and y% can be bounded in terms of .

Lemma 4.1 Let K/, be the smallest integer such that vy, < 1/2 for all k > Ky/5. Then
there is a constant Cy > 0 such that

0 <af <Cyp, VieN; 0 <yl <Cym, VieB. (35)

Proof. Note that K/, is well defined, by the results of Section 3 and the fact that {v;}
is a decreasing sequence. Let (2*,y*) be a strictly complementary solution. By rearranging
(16) and noting that

(l’O)Ty _I_ $Ty0 > 07 (x*)Ty* — 07
we have

vi

Nk ONT % T,0
o+ 7w ()T (@)

< 2winpo + 2nps + v (( Ny + (") "y 0)

IA

J}Ty* _I_yTx* n o T

13



By (9), we can therefore define a constant 'y > 0 such that
ey 4+ (@) "y < Capg
Since (z,y) > 0 and (a*,y*) > 0 we have

04/%
Yl

. . C
te€B = iy <Cypp =y < 4/: .

i €N = a2yl <Cyyp = ;<

The result (35) follows when we define
_ 1 1
'y = Cymax (maX —, max —) )
i€B g 1€N yf
m

The next result gives the required bounds on haltf the components of the vector pair
(u®, o).

Lemma 4.2 Let Ky; be as defined in Lemma 4.1. Then there is a constant Cs > 0 such
that for all k > K/, we have

[ufell < Cspy Nlogll < Csp (36)
Proof. For i € N we have from (19) that

P = [ Dl < | Dul|? < wpy.

K3

Hence from (35) and (8), we have

2 2,2 2
wppi _ wppry _ wppCipg WO

(ui)? < = < = Ho-
Y XY YminHk Ymin
Therefore
o \ 12
o = (22)" Cun
giving the first inequality in (36). The proof of the second inequality is similar. [

To obtain bounds on the remaining components of (u*,v*), we need the following two
technical lemmas.

Lemma 4.3 (Monteiro and Wright [6, Lemma 2.2].) Let f € R? and H € R"*? be given.
Then there exists a nonnegative constant L = L(f, H) with the property that for any diagonal
matriz S > 0 and any vector h € Range(H), the (unique) optimal solution w = w(S,h) of

1
H%Uin w4+ 3 S|, subject to Hw = h, (37)

satisfies

], < L {17 @]+ Ao -

14



The second technical lemma identifies the components u% and v% as the solution of a
quadratic program. It is an extension of a result of Ye and Anstreicher [12, Lemma 3.5]
and is proved in Wright [10]. We use D% to denote the diagonal submatrix composed of the
elements D% for i € B, and so on.

Lemma 4.4 (Wright [10, Lemma 5.2]) The vector pair (ufy,v5;) solves the convex quadratic
program

m}g%HDéwH? — oprep(Xp) " w + gI(DX) 7 2 * = opren (Ya) ', (38)

subject to
MBBU) = T%—MBNU%—I-UE, (39&)
MNBU) —Z = T;g\; — MNNU%. (39b)

The main result of this section is as follows.

Theorem 4.5 Let Ky, be as defined in Lemma 4{.1. Then if o = 0, there is a constant
Ce > 0 such that
HukH < CG,Ukv Hka < Cg,uk.

Proof. 1t follows from Lemmas 4.3 and 4.4 and the inequality (9) that there is a constant
L > 0 such that

I o)< LN+ labol 4+ 0Bl < L(lir®) + 2Cs ) < L (1011 (Buo) +2C5) p.

By combining this inequality with (36), we obtain the result. [

Note that the bound on the solution of (37) is independent of the positive diagonal
matrix S. This feature is not present in the analysis of [10, Section 5] and [9, Section 5],
where estimates of the elements of Df, and D% are used in the bound for (uf,v%). In
[10], these estimates follow from boundedness of the iterates (z*,y*) which, in turn, follow
from existence of a strictly feasible point. Since the estimates are no longer required, the
strict feasibility assumption is not required either. In [9], the estimates are obtained by
synchronizing reductions in ui and ||rg||, which complicates the algorithm considerably.
Awkward technical devices such as auxiliary sequences are used in both paper, but are not
needed here.

5 Local Superlinear Convergence

In this section, we show that for all & sufficiently large, step k is a fast step and that
consequently the sequence {u;} converges subquadratically to zero. The treatment in this
section follows that of Wright [10, Section 6] and [9, Section 6].

Throughout the analysis, we will make use of the constant C; defined by

C7 = max (1,2C2) . (40)

We start with a simple technical result.
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Lemma 5.1 For all k > 0, we have

Fet1 - Fk

»7tk+1 - nfytk’
where
o 1_ max
n = max (1—M,£) < 1,
Sw ~

and so the sequence

HE
ok
converges monotonically and geometrically to zero.

Proof. When a safe step is taken, we have from (30) and ¢ = #4411 that

Hi41 <l1- (1 = Ymax) ﬁ
Aot — 8w Ayt

For a fast step, we have pry1 < pug and tp41 =t + 1 and so

Pitr o (P Hr
Al Ty ) At

The result follows immediately from these two bounds. [

We now show that fast steps are taken for all k sufficiently large.

Theorem 5.2 Define K to be the smallest index such that

Hi P
< 41
:}/tk (’Vmax - ’Vmin) B 20’7 ( )

for all k> K. Then a fast step is taken on iteration k, with step length ay satisfying

[k
1 Z>ap 21 —Cr= : (42)
’}/tk (’Vmax - ’Vmin)
Moreover, we have

2
HE+1 < — 07
Y k (’Vmax — Ymin

Proof. The proof is structured like that of Theorem 3.5, in that we show that the
conditions (7a) and (7b) hold for all « satisfying

)ﬂi < ik (43)

[k
0,1 — Crm 44
’}/tk (’Vmax - ’Vmin) ( )

and then show that ug(«) is decreasing on this interval.
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We start with condition (7a). Note from Theorem 4.5, (40), and « € (0, 1], we have

(o ) (y + o)/ = (1= @)+ 0®" /0 > (1= )y — . (45)

Now for « in the interval (44), we have

C
a<l—Cr= ali = 7Nk§(1_

’}/tk (’Vmax - ’Vmin) 2
Therefore

C7Mk

(1—a)ps— > (=) —3*(1—a)ux = (1=3*) (1 =) = (1— ) (1 — ) pr, (46)

since (8 = ' for a fast step. Relation (7a) follows from (45) and (46).
For (7b), we again use Theorem 4.5, (5), (40), and (8) to derive

C
—Lpi. (47)

(witoug)(yi+ov) = ziy(1—a)+o?uiv; > (1 —a)pe—[Jul|[o]] = (1 —a)pr— 5

Meanwhile, assuming that a fast step is computed, we have

Perr (@ + aw) (y + av)/n =y (L= @) + s’ v/n < (L — o) + %ﬂi- (48)
Combining (47) and (48), we find that (7b) is satisfied if
(% = M) (1 — @) = Crpy. (49)
Now, since 7 € (0,1/2], we have
Y= Y41 = 77 (Ymax = Yomin) =5 (Ymax —Ymin) = 77 (1 =) (Ymax —Ymin) 2 7 (Ymax — Yomin)-
Therefore (49) is satisfied if
7 (Ynax — Ymin) (1 — @) = Crpig. (50)

But (50) is clearly satisfied for all « in the interval (44), so we deduce that (7b) holds.
Finally, we examine p; () from (6). For o € [0,1] we have

pi(a) = —px + 200 v /n < —pp + Crpf = —(1 = Crpug )iy

Now from (41), we clearly have C7uy < 1, and therefore yf(a) < 0. Hence the complemen-
tarity gap is certainly decreasing on the interval (44). We deduce that the step length ay
lies above the upper bound of the interval (44), so the proof of (42) is complete.
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For (43), we use (42) to obtain

e = (o4 apu)t(y + ap)/n
= (1 —ap)ur +aiulv/n
Cy ,  Cr
< il
B :}/tk (’Vmax - ’Vmin) H —I_ 2 H
2075
< H (51)

:}/tk (’Vmax - ’Vmin)

giving the first inequality in (43). The second inequality is an immediate consequence of
(41). ]

We can now state our asymptotic rate-of-convergence result.

Theorem 5.3 The sequence {ug} converges superlinearly to zero with Q-order 2.

Proof. See [10, Theorem 6.3 (ii)]. ]

So far, we have used the term “convergence” to denote convergence of yy, and [|r*|| to
zero. Fast convergence of the actual iterates (z*,y*) to a solution was not proved in Wright
[10], [9], but it is easy to show. A key result is a bound on the distance of (*,y*) to the
solution set S.

Lemma 5.4 Suppose that Assumption 2 holds. Then there is a constant C5 such that

. A .
dist ((2*,5"),8) = min_ |I(@*,y") = (2,9)e < Copu

Proof. Note first that for any (z*,y*) € S, we have
y—y =Mz+qg+r)- (Ma"+q) =M@ —a7)+r,
and so from Lemma 3.1

1, y) = (@7 47l (L + (1Mol = 2" lloo + vallr®llos

(L4 [ Mlsc)lw = 2" lloo + pelir®lloo/ (Bpo)- (52)

Now from Mangasarian [3, Theorem 2.6], we have that there is a constant C3 such that

<
<

anin et < Gl (<M — g e (Mt g)): ]

< Gyfltr—y, 2"y =),
< Cofllrllz + 2Ty + el
< Os(llr®llz + np + vl )

If we substitute from (13) and (9), we obtain from the last inequality that there is a constant
(5 such that

. _ * < A )
($*7Mr§li}’|—lq)€$ Hx z HOO — C(31uk (53)
The result follows by combining (52) with (53). ]
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Theorem 5.5 If Assumption 2 holds, the iterates (z*,y*) converge R-subquadratically to a
point in S.

Proof. We show first that the sequence {(z*,y*)} is Cauchy. Since fast steps are taken
for all & > K (Theorem 5.2), then for any ky, ky with K < ky < ks, we have from Theorem
4.5 that

ko—1 ko—1
(2", y™) = (™ ™) < 30 NI oM < V206 3 e
k:kl k:kl

From (43), we find that {px} is bounded by a geometric sequence and therefore

ko—1 ko1 1
SN <3 P, < .
k=k; k=k; - P

Hence,

V205

H(xk27yk2)_(xk17ykl)” < 1_p:uk17 (54)

which approaches zero as ki, ks — oo. Hence, the sequence is Cauchy and therefore conver-
gent to a limit point (2*,y*) (say). Because of Lemma 5.4 and the fact that S is closed, we
have (a*,y*) € S.

By using the same arguments that led to (54), we have for k > K that

V2Cs

L—p

H(xkvyk) - (x*vy*)H < HE.

The R-subquadratic convergence of (2%, y") to (z*,y*) follows from this bound and Theorem
5.3. [

6 Extension to MLCP, LP, and QP

We conclude by showing that the algorithm of this paper can be extended to the mixed LCP
(2) and, hence, to all the usual formulations of linear and convex quadratic programming
problems. The crucial result here is due to Giiler [2], who showed that any generalized linear
complementarity problem involving a maximal monotone operator can be reformulated as
a standard LCP (1). The analysis in this section shows that the operator represented by
(2a) is in fact maximal monotone and, hence, satisfies the assumptions of Theorem 3.2 in
[2]. The following extension of Assumption 1 is essential to our analysis.

Assumption 3 The MLCP (2) is feasible; that is, there is a vector triple (x,y,z) with
(x,y) > 0 satisfying (2a).

We define T' to be a multivalued mapping from R" to subsets of R™ such that y € T'(x)
whenever there exists a z € R™ such that (z,y, z) satisfies (2a). The graph of T is given by

G(T) ={(x,y) |y = Mz + M2z + ¢1, 0= Moz + Maysz + qa, some z € R™}. (55)
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Because of Assumption 3, we have G(T') # (). Tt is easy to check that T"is monotone, that is,
for all (z,y) € G(T) and (z,%) € G(T), we have (z —z)T(y — ) > 0. In Theorem 6.3 below,
we show that T' is in fact maximal monotone, that is, there is no other monotone operator
T : R™ — RR"™ such that G(T') is strictly contained in G(T). The following two technical
lemmas lay the foundation for this theorem.

Lemma 6.1 Suppose M is positive semidefinite. Then Mu =0 & MTu = 0.

Proof.
Mu=0 = v"Mu=0 = «"(M+M"u=0,

and so u is a minimizer of the convex quadratic function f(u) = u? (M + MT)u. Therefore
Viu=0 = M+MHu=0 = M'u=0,
and the forward implication is proved. The converse is similar. [

Lemma 6.2 Let the p.s.d. matric M be partitioned as

My M,
M =
[ My M ]

where My, and M,y are square and

A My,
M, 2 [ W ]

has full column rank. Then if D is a diagonal matriz with strictly positive diagonal entries,

then
M+ D M,
My My

is nonsingular.

Proof. Let (x,z) be a vector pair such that

My +D M, z
My My z

Il
—
o O
1
—~
Ot
D
~—

Then, using the p.s.d. property of M, we have

M+D M x
T T 11 12 _
R R MR

= [J}T ZT]M[ﬁ]+$TD$ZO = :L'TD:L'§O = z=0.

From (56) we have Mz = 0, and thus z = 0 by the full rank assumption. Hence (56) is
satisfied only by (z,z) = (0,0), and the result is proved. [
Our main result is the following.
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Theorem 6.3 Suppose that Assumption 3 holds. Then the mapping T' whose graph is given
by (55) is maximal monotone.

Proof. We prove the result by appealing to a theorem of Minty [4], which states that T
is maximal monotone if and only if R({ +7') = IR™. In the remainder of the proof, we show
that for any w € R", there is an (x,y) € G(T') such that @ +y = w, and hence w € R(I+T).
In other words, for any w the following linear system must have a solution triple (x,y, z):

R e e g B e

We show first that solutions to (57) can be obtained from solutions to the following system:
Mn Mw —1 z —0
My My 0 =1 |, (58)
1 0 1 Y w

where Z € R™, and ¢, € R™ and the matrices Mys, My, My, are quantities to be defined,
with the crucial property that the submatrix

My = l My, ] € R(v+m)xm (59)

has full column rank.
Let v € R™ be any vector such that M.,v = 0, where M5 is defined as in Lemma 6.2.
Then

and hence, by Lemma 6.1,

|0 _ My | _
M [v =0 = | i |v=0 (60)

Let V, € R™*4 (0 < d < m) be the matrix whose columns form a basis for the subspace

with the property M.ov = 0, and define V3 € R™* (™% 5o that the columns of V; are a basis
for R(V3)*. Then, defining the nonsingular matrix V' = [V} | V3], we have

My My, Tl _ ¥V~ q
My My, Z —G2

(:)_]0 My My [T 0 I 0 | | y—a¢
_0 VT M21 M22 0V 0 V_l z N —VTQ2

[ Mn Mw 0 z ¥y—aq
= My My 0O (V_lz)l = _V1T92 ; (61)
0 0 0 (V~1z), —V g




where

My = MW, My = Vi Map WA, My = V" M.
To verify that M., has full column rank, let w be a vector for which M.;w = 0. Then

M12

M12
VT M,

VITMQQ]V””:O = [

]Vlwz() = MyViw =0 = Viw e R(V3),

and hence w = 0 by definition of V; and V5, proving the assertion.
For (61) to be consistent, it is necessary that V,'g; = 0. This follows, however, from
Assumption 3 and (60), since

@2 € R([Ma1 | My]) = Vg2 =0.

Defining m = m — d and

z = (V') (first m components of V~1z),
2= (V) (last m — m components of V~1z),
& = Vg,

we find that any solution (x,y,z) of (58) can be transformed into a solution (z,y,z) of (57)

by setting
where Z is chosen arbitrarily.

It remains to show that (58) does in fact have a solution. By adding the third block row
in (58) to the first block row, we obtain the equivalent system

IS

=v|

>

M11 +1 Mw 0 x —¢1 tw
My, My, 0 Z | = —q2 (62)
1 0 I Y w

Since, by our choice of transformations V; and V,, we clearly have that

v My My,

M= l My M ]

is p.s.d., while M., has full rank, it follows from Lemma 6.2 that the upper left 2 x 2 block

in the coefficient matrix of (62) is nonsingular and, hence, that (62) has a unique solution

triple (z,y,2). Hence we have identified (x,y) € G(T') with  + y = w, and our proof is

complete. [
Because of (61), the graph of T' can be restated as

G(T) = {(l’,y) | Y = Mlll' + Mlzg + q1, 0= Mgll' + Mzgg + QQ, some z € |Rm}7
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with M., full rank. If we define a matrix W € IR("+™)%" qich that the columns of W form a
basis for R(M.,)t, we can eliminate z from the definition of G(T') altogether and write

G(T) ={(z,y) | F'x — Gy = a}, (63)

where " ,
T 11 T 7| N
e[ aow ][]

The form (63) is the canonical form used by Giiler. It is not difficult to verify that a condition
used by Giiler to prove maximal monotonicity of T—mnamely, nonsingularity of F' + G—is
satisfied by (63). As shown in [2, Theorem 3.2] conversion of (63) to the form (1) can now be
achieved by premultiplying F'x — Gy = a by a nonsingular operator and possibly swapping
some components of z and y. As Giler notes, this reformulation process need not actually
be carried out to apply the algorithm of Section 2 to the problem (2). Instead, we can
extend our algorithm to (2) and note that the sequence of (x*,y*) iterates generated by
the extended algorithm is the same as the sequence that would be generated by the basic
algorithm applied to the LCP reformulation, subject possibly to the swapping of components
between 2* and y* just mentioned.

The extension of our algorithm to (2) is fairly obvious, so we omit the details, noting
simply that the linear system to be solved at each iteration is

M11 M12 -1 uk yk - Mllxk - MIQZk — ¢
My My, 0O wh | = — Mk — Myzh — ¢ ) (64)
Y# 0 X* VP — X Yhe + ouRe

which is a generalization of (5). Existence of a solution to (64) follows from the same
reasoning as in the proof of Theorem 6.3. We need to note that when (2) is feasible, we have

—lel‘k — Mzzzk — (g2 € R([le |M22])

and, hence,

‘/QT[—lel'k — MQQZk — QQ] = 0

Also, we need to apply Lemma (6.2) with D = (X*)~'Y*. Although the step components u*
and v* are uniquely determined by (64), the w* components are not, unless the submatrix
M, has full rank.

Finally, we note that our analysis depends crucially on the existence of feasible points
for (1) and (2). When (2) arises from an LP or QP, a feasible primal-dual point must
exist. This requirement is a little troubling, since in practice many LPs are either primal or
dual infeasible. Ye, Todd, and Mizuno [13] and Xu, Hung, and Ye [11] have alleviated this
difficulty in the case of linear programming by describing augmentation /reformulation of an
LP in standard form, which has the property that the resulting mixed LCP possesses both a
feasible point and a strictly complementary solution. Since all the assumptions of this paper
are satisfied by these reformulations, our algorithm can be applied with confidence.
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