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AbstractWe describe an algorithm for the monotone linear complementarity problem (LCP)that converges from any positive, not necessarily feasible, starting point and exhibitspolynomial complexity if some additional assumptions are made on the starting point.If the problem has a strictly complementary solution, the method converges sub-quadratically. We show that the algorithm and its convergence properties extendreadily to the mixed monotone linear complementarity problem and, hence, to allthe usual formulations of the linear programming and convex quadratic programmingproblems.1 IntroductionThe monotone linear complementarityproblem (LCP) is to �nd a vector pair (x; y) 2 IRn�IRnsuch that y =Mx+ q; (x; y) � 0; xTy = 0; (1)where q 2 IRn and M is an n�n positive semide�nite (p.s.d.) matrix. The mixed monotonelinear complementarity problem (MLCP) is to �nd a vector triple (x; y; z) 2 IRn � IRn� IRmsuch that " y0 # = " M11 M12M21 M22 # " xz #+ " q1q2 # (2a)(x; y) � 0; xTy = 0; (2b)where M = " M11 M12M21 M22 #�This research was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, Illinois 60439. 1



is p.s.d. All conventional formulations of the linear programming (LP) and convex quadraticprogramming (QP) problems can be posed in the form (2) by writing out their conditionsfor optimality. For instance, consider the QP problem given byminw2IRp 12wTQw+ cTw (3)subject to wi � li (i 2 L � f1; � � � ; pg); wi � ui (i 2 U � f1; � � � ; pg);Cw � d; Aw = b; (4)where Q is symmetric p.s.d., C 2 IRmI�p, A 2 IRmE�p, and so on. If we de�neEL = [eTi ]i2L; EU = [eTi ]i2U;where ei is the i-th unit vector from the standard basis, andl = [li]i2L; u = [ui]i2U ;then we can state the optimality conditions for (3),(4) in the form (2) by de�ningn = jLj+ jUj+mI ; m = p +mE;and M22 = " Q �ATA 0 # ; M12 = 264 EL 0�EU 0C 0 375 ; M21 = " �ETL ETU �CT0 0 0 # ;M11 = 0; q1 = 264 �lu�d 375 ; q2 = " c�b # :In this paper, we focus on an algorithm for (1) and its convergence properties. Wethen show, using recent work involving the relationship between problems (1) and (2), thatthis algorithm can be extended painlessly to (2) and, hence, to all the usual LP and QPformulations. Little loss of e�ciency is involved in solving LPs and QPs by embedding themin algorithms for (2), provided the linear algebra takes account of the particular structureof each problem. Hence we feel that the linear complementarity formulation is the best oneto consider because of its generality, simplicity of notation, and practical e�ciency of thealgorithms on all its special cases.In two recent papers [10, 9], we described algorithms for (1) that are globally convergent,have polynomial complexity when the starting point (x0; y0) satis�es certain assumptions,and exhibit subquadratic convergence of the complementarity gap �k = (xk)Tyk=n to zero.Neither the starting point nor the iterates are feasible in general. In both algorithms, most2



of the work at each iteration consists of a single matrix factorization and between one andthree triangular solves with the computed factors. These methods were the �rst interior-pointmethods with this desirable combination of properties.The local analysis in both [10] and [9] requires existence of a strictly complementarysolution, that is, (x�; y�) solving (1) such that x� + y� > 0. This assumption is alwayssatis�ed if the LCP is a reformulated linear programming problem and, as shown in Monteiroand Wright [7], it is necessary for superlinear convergence of Newton-based primal-dualalgorithms. The earlier paper [10] makes an additional assumption: existence of a strictlyfeasible point, that is, (�x; �y) such that �y =M �x+q, (�x; �y) > 0. This assumption is undesirablebecause it is usually not satis�ed by large practical problems.In this paper, we describe an algorithm that is quite similar to the one in [10], exceptthat it does not use the clumsy merit function �(x; y) = xTy+ky�Mx�qk and allows more
exibility in the choice of parameters and starting point. As we mention at the end of Section3, we can also allow more 
exibility in the choice of steplength, bringing the algorithm closeto current computational practice. The analysis here is considerably stronger than in [10].The strict feasibility assumption is no longer required, technical arguments are streamlined,and R-subquadratic convergence of the iterates (xk; yk) to a strictly complementary solutionis proved.The new algorithm is quite di�erent from the one in [9], where the ratio of complemen-tarity gap � to infeasibility norm krk is kept constant until the \fast" phase, when smallvariations are allowed. To achieve this e�ect, a correction to the basic path-following stepis computed (at a cost of one additional back-substitution) and a messy planar search pro-cedure is performed. The complications in [9] made it possible to prove boundedness ofthe iteration sequence f(xk; yk)g, which was a vital element in the asymptotic convergenceanalysis. Our use of a stronger technical result (Lemma 4.3) removes the dependence onboundedness. Instead, as mentioned above, we prove convergence of the iteration sequenceas a consequence of the main results.Our algorithm is speci�ed in Section 2. In Section 3 we prove global linear convergenceand polynomial complexity. Some technical results are proved in Section 4; these are usedto prove superlinear convergence in Section 5. Section 6 shows that the algorithm andits convergence properties can be extended to the mixed problem (2) because (2) can bereformulated as (1). We stress at the outset that this reformulation need not be performedexplicitly; it su�ces to observe that the (x; y) iterates generated by our extended algorithmare the same as those that would be obtained by reformulating the problem as (1) andapplying the algorithm of Section 2 directly, except possibly for some swapping of componentsto be discussed later.Unless otherwise speci�ed, k � k denotes the Euclidean norm of a vector. Iteration num-bers appear as superscripts on vectors and matrices and as subscripts on scalars. To avoidnotational clutter in Sections 3, 4, and 5, we drop the iteration index k from vector andmatrix quantities in the proofs. It is retained explicitly in the statement of each result.We denote the solution set and strictly complementary solution set byS = f(x�; y�) j (x�; y�) solves (1)g ; Sc = f(x�; y�) 2 S jx� + y� > 0g ;3



respectively. The range space of a matrix is denoted by R(�).2 The AlgorithmThe algorithm generates a sequence of strictly positive iterates (xk; yk). To describe the stepbetween successive iterates, we de�ne�k = (xk)Tyk=n; rk = yk �Mxk � q; e = (1; 1; � � � ; 1)T ;Xk = diag(xk1; xk2; � � � ; xkn); Y k = diag(yk1 ; yk2 ; � � � ; ykn):We refer to �k as the complementarity gap and to rk as the residual. Each step is calculatedas follows.Given ~
 2 (0; 1), ~� 2 [0; 1), ~� 2 [0; 1), solve" M �IY k Xk # " ukvk # = " rk�XkY ke+ ~��ke # : (5)Choose ~� = arg min�2[0;�̂]�k(�) 4= (xk + �uk)T (yk + �vk)=n; (6)where �̂ is the largest number in [0; 1] such that the following inequalities are satis�edfor all � 2 [0; �̂):(xk + �uk)T (yk + �vk) � (1� ~�)(1 � �)(xk)Tyk; if rk 6= 0; (7a)(xki + �uki )(yki + �vki ) � (~
=n)(xk + �uk)T (yk + �vk); i = 1; � � � ; n: (7b)The search direction obtained from (5) is simply the Newton step for the system ofnonlinear equations F (x; y) = " Mx � y + qXY e # = " 0~��ke # ;from the point (xk; yk).The inequality (7b), usually referred to as a centering condition, ensures that the iteratesdo not approach the boundary of the nonnegative orthant too closely. Because we restrict ~
to the range [
min; 
max] for 0 < 
min < 
max � 1=2, (7b) implies thatxiyi � 
k�k � 
min�k; 8k: (8)4



The condition (7a) is used to ensure that improvement in the complementarity gap �k doesnot outstrip improvement in the infeasibility krkk by too much; a vector pair (x; y) that iscomplementary but not feasible is of no interest. Note that we need not enforce condition(7a) if the current point is already feasible.We can now state our algorithm.Given �
 2 (0; 1=2), 
min and 
max with 0 < 
min < 
max � 1=2, �� 2 (0; 1=2),� 2 (0; �
), �� 2 (0; 1], and (x0; y0) with x0iy0i � 
max�0 > 0;t0  1, 
0 
max;for k = 0; 1; 2; � � �if �k = 0 then stop;(* attempt a fast step *)Solve (5){(7) with ~� = 0, ~� = �
tk , ~
 = 
min + �
tk(
max � 
min);if (xk + ~�uk)T (yk + ~�vk)=n � ��kthen �k  ~�, �k  ~�, �k  ~�, 
k+1  ~
;tk+1  tk + 1;(xk+1; yk+1) (xk; yk) + �k(uk; vk);go to next k;end if(* revert to a safe step *)Solve (5){(7) with ~� 2 [��; 1=2], ~� = 0, ~
 = 
k;�k  ~�, �k  0, �k  ~�, 
k+1  ~
;tk+1  tk;(xk+1; yk+1) (xk; yk) + �k(uk; vk);go to next k;end for.The algorithm can be motivated in a few sentences. We begin each major iteration bytrying to take a fast step, which uses an a�ne scaling search direction. To encourage longersteps to be taken we use a strictly positive value of ~� and a value ~
 smaller than the current
k. The fast steps are accepted only if they produce a reduction in �k of at least a factor of�. Otherwise, the algorithm reverts to taking a safe step, whose major distinguishing featureis its use of a strictly positive value ~� � �� of the centering parameter.Safe steps tend to be taken on early iterations, while fast steps are taken toward thetail of the sequence. There may be a gray area in which both safe and fast steps are taken.5



The algorithm can be modi�ed to try fast steps only when there is some reasonable hopethat they will be accepted. (Earlier versions of the algorithm used a threshold criterion�k � ��, with �� a user-de�ned parameter, to decide whether to calculate the safe step.) Forthe sake of simplicity, we do not consider such modi�cations here, but note simply that thesuperlinear convergence properties of the algorithm will hold provided that the fast step iseventually tried on every iteration. Besides omitting the threshold ��, the algorithm abovedi�ers from the one described in [10] in that the duality gap � is used directly in place ofthe merit function �, and the particular choices 
min = �
 and 
max = 2�
 are relaxed.3 Global Convergence and Polynomial ComplexityIn this section, we show that the algorithm converges globally to the solution set of (1)from any starting point (x0; y0) > 0. When the algorithm is initialized in a certain way, thenumber of iterations is quadratic in the problem dimension n. Throughout the section, wemake the following assumption.Assumption 1 The LCP (1) is feasible; that is, there is a pair (x; y) such that y =Mx+ qand (x; y) � 0.Assumption 1 implies that S 6= ; (see, for example, [1, Theorem 3.1.2]).If we de�ne the monotonically decreasing sequence f�kg by�0 = 1; �k+1 = (1 � �k)�k;it is easy to see that rk = �kr0. We have the following simple result, whose proof followsthat of [9, Lemma 3.1].Lemma 3.1 The constant �̂ de�ned by�̂ 4= 1Yk=0(1 � �k) � 1Yk=1(1 � �
k)is strictly positive, and we have for all k � 0 that�k � �̂�k�0: (9)We can also show that all iterates remain strictly positive, except when �nite terminationoccurs.Lemma 3.2 For all iterates generated by the algorithm, we have either (xk; yk) > 0 or�k = 0.Proof. We prove the result by induction. Note �rst that the assertion is trivially satis�edby the initial iterate (x0; y0) > 0. If �k = 0, the algorithm terminates at the k-th iterate. For6



the remainder of the proof, we assume that (xk; yk) > 0 and prove that either (xk+1; yk+1) > 0or �k+1 = 0. We consider the cases rk 6= 0 and rk = 0 separately.If rk 6= 0, the constraint (7a) is applied to the choice of �k. Hence, combining (7a) and(7b), we have that(xki + �uki )(yki + �vki ) � (~
=n)(1 � ~�)(1� �)(xkTyk); 8� 2 [0; �k):Since �k � 1, ~
 > 0, ~� 2 [0; 1), and xkTyk > 0, the right-hand side of this expression isstrictly positive for all � 2 [0; �k). Since (xki ; yki ) > 0, it follows that (xki +�uki ; yki +�vki ) > 0for all � 2 [0; �k). If xki + �kuki = 0 or yki + �kvki = 0 for some index i, we have from (7b)that �k+1 = (xk + �kuk)T (yk + �kvk)=n = 0:The alternative case is (xk+1; yk+1) = (xk + �kuk; yk + �kvk) > 0;so our claim holds.Consider now the remaining case rk = 0, for which (7a) is not enforced. Suppose �rstthat there exist � values in the range [0; �k] such thatxki + �uki = 0 or yki + �vki = 0; (10)for some index i = 1; � � � ; n, and let ��k be the smallest of these values. It follows from (7b)that (xk + ��kuk)T (yk + ��kvk) = 0: (11)Since rk = 0, equation (5) implies that vk = Muk. Hence, by positive semide�niteness ofM , we have ukTvk � 0. Using the second part of (5), we �nd that(xk + �uk)T (yk + �vk) = (xkTyk)(1� �(1 � ~�)) + �2ukTvk � (xkTyk)(1� �(1� ~�)): (12)Now since ��k 2 [0; �k] � [0; 1], the relations (11) and (12) can be satis�ed simultaneouslyfor � = ��k only if ~� = 0 and ��k = �k = 1. Hence we are left with two possibilities.Either ��k = �k = 1 and �k+1 = 0, or there are no � 2 [0; �k] with the property (10), so(xk+1; yk+1) > 0. Therefore our claim holds again for the case of rk = 0, and we are done.Finite termination of the algorithm with �k = 0 and rk = 0 is, of course, the simplecase. Throughout the remainder of the paper, we make the implicit assumption that �nitetermination does not occur and that the algorithm generates an in�nite sequence of iteratesf(xk; yk)g, k = 0; 1; � � �.The next lemma contains an inequality that is used in a number of places in the analysis.Similar results appear in Potra [8, Lemma 4.1], Mizuno [5, Lemma 3.3], and Wright [9,Lemma 3.2]. 7



Lemma 3.3 Let (x�; y�) 2 S. Then for all k � 0 there is a constant C1 such thatkykk1 + kxkk1 � C1 [�0 + �k=�k + ky�k1 + kx�k1] : (13)When the initial point satis�es x0 = �xe; y0 = �ye; (14)for some positive �x and �y, we have�xkykk1 + �ykxkk1 � n�0 + n�k=�k + �xky�k1 + �ykx�k1: (15)Proof. As in the proof of [9, Lemma 3.2] we obtain the inequalities0 � �2k(x0)Ty0 + (1� �k)2(x�)Ty� + xTy + �k(1� �k)((x0)Ty� + (x�)Ty0)��k((x0)Ty + (y0)Tx)� (1� �k)((x�)Ty + xTy�) (16)and �k((x0)Ty + (y0)Tx) � �2k(x0)Ty0 + xTy + �k(1� �k)((x0)Ty� + (y0)Tx�): (17)By de�ning �C1 = mini=1;���;nmin(x0i ; y0i );and noting that 1 � �k � 1, we havekyk1 + kxk1 � �C�11 h�kn�0 + n�k=�k + kx0k1ky�k1 + ky0k1kx�k1i ;which implies (13) for appropriately de�ned C1. The other inequality (15) follows triviallyfrom (14) and (17).For purposes of polynomial complexity, we assume that the initial point is de�ned by(14), where �x and �y satisfy the following assumptions:kx�k1 � �x; ky�k1 � �y; �y � kqk1; �y � kMek1�x = kMx0k1: (18)We also �nd the diagonal matrix Dk de�ned byDk = (Xk)�1=2(Y k)1=2useful in the subsequent analysis. The next lemma allows us to bound quantities involvingthe steps uk and vk.Lemma 3.4 For all k � 0, there is a constant ! such thatkDkukk2 + k(Dk)�1vkk2 � !�k: (19)If the initial step is chosen according to (14) and (18), then! = 2n2
min  5 + 9̂�!2 ; (20)and so ! = O(n2). 8



Proof. It is easy to see that the step (u; v) can be partitioned as(u; v) = (�u; �v) + (û; v̂);where " M �IY X # " �u�v # = " 0�XY e+ �k�ke # (21)and " M �IY X # " û̂v # = " r0 # : (22)(Because of nonsingularity of the coe�cient matrix in (21) and (22), both (�u; �v) and (û; v̂)are well de�ned.) As in [9, Lemma 3.3], we can show thatkD�uk � 2n�1=2k
1=2min ; kD�1�vk � 2n�1=2k
1=2min : (23)For the other component (û; v̂), we have from the second part of (22) thatDû +D�1v̂ = 0 ) v̂ = �D2û:Hence from the �rst part of (22) and positive semide�niteness of M , we haveMû� v̂ = r ) (M +D2)û = r ) ûTD2û � ûTr:Therefore kDûk2 � kDûkkD�1rk:Using (8) together with Lemmas 3.1 and 3.3, we have thatkDûk � kD�1rk �Xi  xiyi!1=2 krk1= Xi (xiyi)�1=2xi�kkr0k1� kr0k1
1=2min�1=2k �kkxk1� kr0k1
1=2min�1=2k C1 [�k�0 + �k + �kky�k1 + �kkx�k1]� kr0k1
1=2min�1=2k C1�k h1 + (�0 + ky�k1 + kx�k1)=(�̂�0)i= C2�1=2k ; (24)for some appropriately de�ned constant C2. Since kDûk = kD�1v̂k, we therefore havekD�1v̂k = kDûk � C2�1=2k : (25)9



By combining (23) and (25), we obtainkDuk2 + kD�1vk2� (kD�uk+ kDûk)2 + (kD�1�vk+ kD�1v̂k)2� 20@2n�1=2k
1=2min + C2�1=2k 1A2� !�k;where ! is de�ned in an obvious way.The special result (20) is proved by analysis similar to that of Lemma 3.4 in Wright [9].The key theorem of this section shows that there is a uniform lower bound on the steplength �k on each safe step.Theorem 3.5 If a safe step is taken at iteration k, then�k � ��(1 � 
max)2! ;where ! is as de�ned in Lemma 3.4.Proof. We prove the result by showing that the conditions (7a) and (7b) hold for all �in the range "0; ��(1� 
max)2! # : (26)We further show that the complementarity gap �k(�) de�ned in (6) is decreasing on theinterval (26). These observations are su�cient to prove the result.Because of (5), we have that (7a) is satis�ed if(x+ �u)T (y + �v) � (1� �)xTy, xTy(1� � + ��k) + �2uTv � (1� �)xTy, �kxTy + �uTv � 0: (27)From Lemma 3.4 we have juTvj � kDukkD�1vk � !�k: (28)Since �k � �� and � is in the range (26), we have�kxTy + �uTv � ��xTy � �juTvj� ��xTy � ��(1� 
max)2! !�k= ��xTy �1 � 1� 
max2n �> 0:10



Therefore (27) and hence (7a) are satis�ed for � in the range (26).By using (5), we note that (7b) is satis�ed if(xi + �ui)(yi + �vi) � 
k(x+ �u)T (y + �v)=n, xiyi(1� �) + ��k�k + �2uivi � (
k=n) hxTy(1� �+ �k�) + �2uTvi : (29)Because of (8), (29) is true provided that
k(1 � �)�k + ��k�k + �2uivi � 
k h(1 � �+ �k�)�k + �2uTv=ni, �k(1� 
k)�k + �(uivi � 
kuTv=n) � 0:Now from (28) and juivij = jDiiuijjD�1ii vij � kDukkD�1vk � !�k;we have�k(1� 
k)�k +�(uivi� 
kuTv=n) � �k(1� 
k)�k ��(!�k +!�k=n) � ��(1� 
k)�k � 2�!�k:Since � lies in the range (26) and 
k 2 [
min; 
max], we have��(1 � 
k)�k � 2�!�k � ��(1 � 
k)�k � 2! ��(1� 
max)2! �k � 0:Therefore (29) and hence (7b) hold for the interval in question.Finally, from (6), (28), and (26), we haven�0k(�) = (xTv + yTu) + 2�uTv� (�k � 1)xTy + 2�!�k� (�k � 1)n�k + ��(1� 
max)�k� (�k + ��=n� 1)n�k< 0;since �k 2 [��; 1=2]. Hence the minimizer of �k(�) subject to the conditions (7a) and (7b)lies beyond the interval (26), and we have the result.We can now show that � decreases by a factor strictly less than one on each safe iteration.Theorem 3.6 If a safe step is taken at iteration k, then�k+1 � �k "1 � ��(1� 
max)8! # ; (30)where ! is as de�ned in Lemma 3.4. 11



Proof. By Theorem 3.5, �k(�) is decreasing for� 2 "0; ��(1� 
max)2! # ;and �k lies beyond this interval. Because of (28), we have�k(�) = �k[1� �(1 � �k)] + �2uTv=n� �k "1� ��(1� 
max)2! (1� �k)#+ ��2(1� 
max)24n!2 !�k:Since 1 � �k � 1=2, �� 2 (0; 1=2), 1� 
max < 1, and n � 1, we have�k(�) � �k "1� ��(1� 
max)4! #+ ��(1� 
max)8! �k = �k "1 � ��(1 � 
max)8! # ;giving the desired result.If we take fast iterations into account, we �nd that�k+1 � �k max 1 � ��(1 � 
max)8! ; �! ; (31)so we have geometric convergence of f�kg to zero from any starting point (x0; y0) > 0. Forthe special choice of starting point (14), (18), we have the following polynomial complexityresult.Corollary 3.7 Let � > 0 be given. Suppose that the starting point is de�ned by (14), (18)where �0 = �x�y � 1=�� for some constant � � 0 independent of n. Then there is an integerK� with K� = O(n2 log(1=�))such that �k � � for all k � K�.Proof. From (30) and the fact that ! = O(n2) (Lemma 3.4), we �nd that there is aconstant � independent of n such that�k+1 � (1� �=n2)�k (32)when a safe step is taken on iteration k. By adjusting � if necessary, the inequality (32) alsoholds for fast steps. The result follows from this inequality by a standard argument (see, forexample, Zhang [14, Theorem 7.2]).We note in passing that the same global convergence and complexity results can be ob-tained even if the exact minimizing ~� is not found in (6). Instead, we can merely require ~� tosatisfy conditions like those often seen in line search methods for unconstrained minimization.One such pair of conditions is �k(~�) � �k(0) + �~��0k(0); (33a)~� � � ~�max; (33b)12



where � 2 (0; 12), � 2 (0; 1), and ~�max is the largest value in [0; �̂] for which (33a) holds(where �̂ is de�ned in (7)). It is easy to show, using the techniques in this section, that theexact minimum from (6) satis�es (33); that Theorem 3.5 is still true if we scale the lowerbound by � ; and that Corollary 3.7 continues to hold.If the relaxed conditions (33) are adopted, we can use techniques more like those inpractical codes to choose ~�. In particular, we can use an Armijo-like procedure in which wecalculate the step length �top along (uk; vk) to the boundary of the positive orthant, thenback o� from this length until (33) and (7) are all satis�ed. For appropriate choices of theparameters, the popular choice ~� = :9995min(1; �top) is usually accepted.4 Bounds for the Fast-Step ComponentsIn this section we show that when �k = 0, the step norms kukk and kvkk are both O(�k) forall su�ciently large k. This result is essential to the local convergence analysis of the nextsection. For notational convenience, we use ukB to denote the vector whose components areuki for i 2 B, ukN as the subvector made up of uki , i 2 N , and so on.We make the following assumption throughout the remainder of this section.Assumption 2 Sc 6= ;.Given any strictly complementary solution (x�; y�), we can de�ne the partitionf1; 2; � � � ; ng = N [B;where B = fi jx�i > 0g; N = fi j y�i > 0g: (34)(It is well known that B and N are independent of the particular choice of (x�; y�).)We start by showing that xkN and ykB can be bounded in terms of �k.Lemma 4.1 Let K1=2 be the smallest integer such that �k � 1=2 for all k � K1=2. Thenthere is a constant C4 > 0 such that0 < xki � C4�k; 8i 2 N ; 0 < yki � C4�k; 8i 2 B: (35)Proof. Note that K1=2 is well de�ned, by the results of Section 3 and the fact that f�kgis a decreasing sequence. Let (x�; y�) be a strictly complementary solution. By rearranging(16) and noting that (x0)Ty + xTy0 > 0; (x�)Ty� = 0;we have xTy� + yTx� � �2k1� �kn�0 + n�k1 � �k + �k �(x0)Ty� + (x�)Ty0�� 2�2kn�0 + 2n�k + �k �(x0)Ty� + (x�)Ty0� :13



By (9), we can therefore de�ne a constant �C4 > 0 such thatxTy� + (x�)Ty � �C4�k:Since (x; y) > 0 and (x�; y�) � 0 we havei 2 N ) xiy�i � �C4�k ) xi � �C4�ky�ii 2 B ) x�iyi � �C4�k ) yi � �C4�kx�i :The result (35) follows when we de�neC4 = �C4max maxi2B 1x�i ; maxi2N 1y�i ! :The next result gives the required bounds on half the components of the vector pair(uk; vk).Lemma 4.2 Let K1=2 be as de�ned in Lemma 4.1. Then there is a constant C5 > 0 suchthat for all k � K1=2 we havekukNk � C5�k; kvkBk � C5�k: (36)Proof. For i 2 N we have from (19) thatyixi (ui)2 = jDiiuij2 � kDuk2 � !�k:Hence from (35) and (8), we have(ui)2 � !�kxiyi = !�kx2ixiyi � !�kC24�2k
min�k = !C24
min�2k:Therefore kuNk �  n!
min!1=2C4�k;giving the �rst inequality in (36). The proof of the second inequality is similar.To obtain bounds on the remaining components of (uk; vk), we need the following twotechnical lemmas.Lemma 4.3 (Monteiro and Wright [6, Lemma 2.2].) Let f 2 IRq and H 2 IRp�q be given.Then there exists a nonnegative constant L = L(f;H) with the property that for any diagonalmatrix S > 0 and any vector h 2 Range(H), the (unique) optimal solution �w = �w(S; h) ofminw fTw + 12 kSwk2 ; subject to Hw = h, (37)satis�es k �wk1 � L njfT �wj+ khk1o :14



The second technical lemma identi�es the components ukB and vkN as the solution of aquadratic program. It is an extension of a result of Ye and Anstreicher [12, Lemma 3.5]and is proved in Wright [10]. We use DkB to denote the diagonal submatrix composed of theelements Dkii for i 2 B, and so on.Lemma 4.4 (Wright [10, Lemma 5.2]) The vector pair (ukB; vkN) solves the convex quadraticprogram min(w;z) 12kDkBwk2 � �k�keTB(XkB)�1w + 12k(DkN )�1zk2 � �k�keTN(Y kN )�1z; (38)subject to MBBw = rkB �MBNukN + vkB; (39a)MNBw � z = rkN �MNNukN : (39b)The main result of this section is as follows.Theorem 4.5 Let K1=2 be as de�ned in Lemma 4.1. Then if �k = 0, there is a constantC6 > 0 such that kukk � C6�k; kvkk � C6�k:Proof. It follows from Lemmas 4.3 and 4.4 and the inequality (9) that there is a constantL > 0 such thatk(ukB; vkN)k � L(krkk+ kukNk+ kvkBk) � L(�kkr0k+ 2C5�k) � L �kr0k=(�̂�0) + 2C5��k:By combining this inequality with (36), we obtain the result.Note that the bound on the solution of (37) is independent of the positive diagonalmatrix S. This feature is not present in the analysis of [10, Section 5] and [9, Section 5],where estimates of the elements of DkB and DkN are used in the bound for (ukB; vkN). In[10], these estimates follow from boundedness of the iterates (xk; yk) which, in turn, followfrom existence of a strictly feasible point. Since the estimates are no longer required, thestrict feasibility assumption is not required either. In [9], the estimates are obtained bysynchronizing reductions in �k and krkk, which complicates the algorithm considerably.Awkward technical devices such as auxiliary sequences are used in both paper, but are notneeded here.5 Local Superlinear ConvergenceIn this section, we show that for all k su�ciently large, step k is a fast step and thatconsequently the sequence f�kg converges subquadratically to zero. The treatment in thissection follows that of Wright [10, Section 6] and [9, Section 6].Throughout the analysis, we will make use of the constant C7 de�ned byC7 4= max �1; 2C26� : (40)We start with a simple technical result. 15



Lemma 5.1 For all k � 0, we have �k+1�
tk+1 � � �k�
tk ;where � = max  1 � ��(1� 
max)8! ; ��
! < 1;and so the sequence ( �k�
tk )converges monotonically and geometrically to zero.Proof. When a safe step is taken, we have from (30) and tk = tk+1 that�k+1�
tk+1 � "1� ��(1� 
max)8! # �k�
tk :For a fast step, we have �k+1 � ��k and tk+1 = tk + 1 and so�k+1�
tk+1 �  ��
! �k�
tk :The result follows immediately from these two bounds.We now show that fast steps are taken for all k su�ciently large.Theorem 5.2 De�ne K to be the smallest index such that�k�
tk(
max � 
min) � �2C7 (41)for all k � K. Then a fast step is taken on iteration k, with step length �k satisfying1 � �k � 1 �C7 �k�
tk(
max � 
min) : (42)Moreover, we have �k+1 � 2C7�
tk(
max � 
min)�2k � ��k: (43)Proof. The proof is structured like that of Theorem 3.5, in that we show that theconditions (7a) and (7b) hold for all � satisfying� 2 "0; 1 � C7 �k�
tk(
max � 
min)# (44)and then show that �k(�) is decreasing on this interval.16



We start with condition (7a). Note from Theorem 4.5, (40), and � 2 (0; 1], we have(x+ �u)T (y + �v)=n = (1� �)�k + �2uTv=n � (1� �)�k � C72 �2k: (45)Now for � in the interval (44), we have� � 1 � C7 �k�
tk(
max � 
min) ) C7�k2 � (1� �)�
tk 
max � 
min2 � (1 � �)�
tk :Therefore(1��)�k�C7�k2 �k � (1��)�k��
tk(1��)�k = (1��
tk)(1��)�k = (1��k)(1��)�k; (46)since �k = �
tk for a fast step. Relation (7a) follows from (45) and (46).For (7b), we again use Theorem 4.5, (5), (40), and (8) to derive(xi+�ui)(yi+�vi) = xiyi(1��)+�2uivi � 
k(1��)�k�kukkvk � 
k(1��)�k�C72 �2k: (47)Meanwhile, assuming that a fast step is computed, we have
k+1(x+ �u)T (y + �v)=n = 
k+1(1� �)�k + 
k+1�2uTv=n � 
k+1(1 � �)�k + C72 �2k: (48)Combining (47) and (48), we �nd that (7b) is satis�ed if(
k � 
k+1)(1� �) � C7�k: (49)Now, since �
 2 (0; 1=2], we have
k�
k+1 = �
tk�1(
max�
min)��
tk(
max�
min) = �
tk�1(1��
)(
max�
min) � �
tk(
max�
min):Therefore (49) is satis�ed if �
tk(
max � 
min)(1� �) � C7�k: (50)But (50) is clearly satis�ed for all � in the interval (44), so we deduce that (7b) holds.Finally, we examine �k(�) from (6). For � 2 [0; 1] we have�0k(�) = ��k + 2�uTv=n � ��k + C7�2k = �(1� C7�k)�k:Now from (41), we clearly have C7�k < 1, and therefore �0k(�) < 0. Hence the complemen-tarity gap is certainly decreasing on the interval (44). We deduce that the step length �klies above the upper bound of the interval (44), so the proof of (42) is complete.17



For (43), we use (42) to obtain�k+1 = (x+ �ku)T (y + �kv)=n= (1� �k)�k + �2kuTv=n� C7�
tk(
max � 
min)�2k + C72 �2k� 2C7�
tk(
max � 
min)�2k; (51)giving the �rst inequality in (43). The second inequality is an immediate consequence of(41).We can now state our asymptotic rate-of-convergence result.Theorem 5.3 The sequence f�kg converges superlinearly to zero with Q-order 2.Proof. See [10, Theorem 6.3 (ii)].So far, we have used the term \convergence" to denote convergence of �k and krkk tozero. Fast convergence of the actual iterates (xk; yk) to a solution was not proved in Wright[10], [9], but it is easy to show. A key result is a bound on the distance of (xk; yk) to thesolution set S.Lemma 5.4 Suppose that Assumption 2 holds. Then there is a constant C3 such thatdist �(xk; yk);S� 4= min(x;y)2S k(xk; yk)� (x; y)k1 � C3�k:Proof. Note �rst that for any (x�; y�) 2 S, we havey � y� = (Mx+ q + r)� (Mx� + q) =M(x� x�) + r;and so from Lemma 3.1k(x; y)� (x�; y�)k1 � (1 + kMk1)kx� x�k1 + �kkr0k1� (1 + kMk1)kx� x�k1 + �kkr0k1=(�̂�0): (52)Now from Mangasarian [3, Theorem 2.6], we have that there is a constant �C3 such thatmin(x�;Mx�+q)2S kx� x�k1 � �C3 


(�Mx� q;�x; xT(Mx+ q))+


2� �C3 


(r � y; xT(y � r))+


2� �C3(krk2 + xTy + kxk1krk1)� �C3(�kkr0k2 + n�k + �kkxk1kr0k1):If we substitute from (13) and (9), we obtain from the last inequality that there is a constantĈ3 such that min(x�;Mx�+q)2S kx� x�k1 � Ĉ3�k: (53)The result follows by combining (52) with (53).18



Theorem 5.5 If Assumption 2 holds, the iterates (xk; yk) converge R-subquadratically to apoint in S.Proof. We show �rst that the sequence f(xk; yk)g is Cauchy. Since fast steps are takenfor all k � K (Theorem 5.2), then for any k1; k2 with K � k1 < k2, we have from Theorem4.5 that k(xk2; yk2)� (xk1 ; yk1)k � k2�1Xk=k1 k(uk; vk)k � p2C6 k2�1Xk=k1 �k:From (43), we �nd that f�kg is bounded by a geometric sequence and thereforek2�1Xk=k1 �k � k2�1Xk=k1 �k�k1�k1 � �k11� �:Hence, k(xk2 ; yk2)� (xk1; yk1)k � p2C61� � �k1 ; (54)which approaches zero as k1; k2 !1. Hence, the sequence is Cauchy and therefore conver-gent to a limit point (x�; y�) (say). Because of Lemma 5.4 and the fact that S is closed, wehave (x�; y�) 2 S.By using the same arguments that led to (54), we have for k � K thatk(xk; yk)� (x�; y�)k � p2C61 � � �k:The R-subquadratic convergence of (xk; yk) to (x�; y�) follows from this bound and Theorem5.3.6 Extension to MLCP, LP, and QPWe conclude by showing that the algorithm of this paper can be extended to the mixed LCP(2) and, hence, to all the usual formulations of linear and convex quadratic programmingproblems. The crucial result here is due to G�uler [2], who showed that any generalized linearcomplementarity problem involving a maximal monotone operator can be reformulated asa standard LCP (1). The analysis in this section shows that the operator represented by(2a) is in fact maximal monotone and, hence, satis�es the assumptions of Theorem 3.2 in[2]. The following extension of Assumption 1 is essential to our analysis.Assumption 3 The MLCP (2) is feasible; that is, there is a vector triple (x; y; z) with(x; y) � 0 satisfying (2a).We de�ne T to be a multivalued mapping from IRn to subsets of IRn such that y 2 T (x)whenever there exists a z 2 IRm such that (x; y; z) satis�es (2a). The graph of T is given byG(T ) = f(x; y) j y =M11x+M12z + q1; 0 =M21x+M22z + q2; some z 2 IRmg: (55)19



Because of Assumption 3, we have G(T ) 6= ;. It is easy to check that T is monotone, that is,for all (x; y) 2 G(T ) and (�x; �y) 2 G(T ), we have (x� �x)T (y� �y) � 0. In Theorem 6.3 below,we show that T is in fact maximal monotone, that is, there is no other monotone operator�T : IRn ! IRn such that G(T ) is strictly contained in G( �T ). The following two technicallemmas lay the foundation for this theorem.Lemma 6.1 Suppose M is positive semide�nite. Then Mu = 0,MTu = 0.Proof. Mu = 0 ) uTMu = 0 ) uT (M +MT )u = 0;and so u is a minimizer of the convex quadratic function f(u) = uT (M +MT )u. Thereforerf(u) = 0 ) (M +MT )u = 0 ) MTu = 0;and the forward implication is proved. The converse is similar.Lemma 6.2 Let the p.s.d. matrix M be partitioned asM = " M11 M12M21 M22 #where M11 and M22 are square and M�2 4= " M12M22 #has full column rank. Then if D is a diagonal matrix with strictly positive diagonal entries,then " M11 +D M12M21 M22 #is nonsingular.Proof. Let (x; z) be a vector pair such that" M11 +D M12M21 M22 # " xz # = " 00 # : (56)Then, using the p.s.d. property of M , we haveh xT zT i " M11 +D M12M21 M22 # " xz # = 0) h xT zT iM " xz #+ xTDx = 0 ) xTDx � 0 ) x = 0:From (56) we have M�2z = 0, and thus z = 0 by the full rank assumption. Hence (56) issatis�ed only by (x; z) = (0; 0), and the result is proved.Our main result is the following. 20



Theorem 6.3 Suppose that Assumption 3 holds. Then the mapping T whose graph is givenby (55) is maximal monotone.Proof. We prove the result by appealing to a theorem of Minty [4], which states that Tis maximal monotone if and only if R(I + T ) = IRn. In the remainder of the proof, we showthat for any w 2 IRn, there is an (x; y) 2 G(T ) such that x+y = w, and hence w 2 R(I+T ).In other words, for any w the following linear system must have a solution triple (x; y; z):" M11 M12M21 M22 # " xz #� " y0 # = " �q1�q2 # ; x+ y = w: (57)We show �rst that solutions to (57) can be obtained from solutions to the following system:264 M11 �M12 �I�M21 �M22 0I 0 I 375264 x�zy 375 = 264 �q1��q2w 375 ; (58)where �z 2 IR �m, and �q2 2 IR �m and the matrices �M12, �M21, �M22 are quantities to be de�ned,with the crucial property that the submatrix�M�2 = " �M12�M22 # 2 IR(n+ �m)� �m (59)has full column rank.Let v 2 IRm be any vector such that M�2v = 0, where M�2 is de�ned as in Lemma 6.2.Then M " 0v # = 0and hence, by Lemma 6.1, MT " 0v # = 0 ) " MT21MT22 # v = 0: (60)Let V2 2 IRm�d (0 � d � m) be the matrix whose columns form a basis for the subspacewith the property M�2v = 0, and de�ne V1 2 IRm�(m�d) so that the columns of V1 are a basisfor R(V2)?. Then, de�ning the nonsingular matrix V = [V1 jV2], we have" M11 M12M21 M22 # " xz # = " y � q1�q2 #, " I 00 V T # " M11 M12M21 M22 # " I 00 V # " I 00 V �1 # " xz # = " y � q1�V Tq2 #, 264 M11 �M12 0�M21 �M22 00 0 0 375264 x(V �1z)1(V �1z)2 375 = 264 y � q1�V T1 q2�V T2 q2 375 ; (61)21



where �M12 =M12V1; �M22 = V T1 M22V1; �M21 = V T1 M21:To verify that �M�2 has full column rank, let w be a vector for which �M�2w = 0. Then" M12V T1 M22 #V1w = 0 ) " M12V TM22 #V1w = 0 ) M�2V1w = 0 ) V1w 2 R(V2);and hence w = 0 by de�nition of V1 and V2, proving the assertion.For (61) to be consistent, it is necessary that V T2 q2 = 0. This follows, however, fromAssumption 3 and (60), sinceq2 2 R([M21 jM22]) ) V T2 q2 = 0:De�ning �m = m� d and�z = (V �1z)1 (�rst �m components of V �1z);ẑ = (V �1z)2 (last m� �m components of V �1z);�q2 = V T1 q2;we �nd that any solution (x; y; �z) of (58) can be transformed into a solution (x; y; z) of (57)by setting z = V " �ẑz # ;where ẑ is chosen arbitrarily.It remains to show that (58) does in fact have a solution. By adding the third block rowin (58) to the �rst block row, we obtain the equivalent system264 M11 + I �M12 0�M21 �M22 0I 0 I 375264 x�zy 375 = 264 �q1 + w��q2w 375 : (62)Since, by our choice of transformations V1 and V2, we clearly have that�M = " M11 �M12�M21 �M22 #is p.s.d., while �M�2 has full rank, it follows from Lemma 6.2 that the upper left 2� 2 blockin the coe�cient matrix of (62) is nonsingular and, hence, that (62) has a unique solutiontriple (x; y; �z). Hence we have identi�ed (x; y) 2 G(T ) with x + y = w, and our proof iscomplete.Because of (61), the graph of T can be restated asG(T ) = f(x; y) j y =M11x+ �M12�z + q1; 0 = �M21x+ �M22�z + �q2; some �z 2 IR �mg;22



with �M�2 full rank. If we de�ne a matrix W 2 IR(n+ �m)�n such that the columns of W form abasis for R( �M�2)?, we can eliminate �z from the de�nition of G(T ) altogether and writeG(T ) = f(x; y) jFx�Gy = ag; (63)where F = W T " M11�M21 # ; G = W T " I0 # ; a = W T " �q1��q2 # :The form (63) is the canonical form used by G�uler. It is not di�cult to verify that a conditionused by G�uler to prove maximal monotonicity of T|namely, nonsingularity of F + G|issatis�ed by (63). As shown in [2, Theorem 3.2] conversion of (63) to the form (1) can now beachieved by premultiplying Fx� Gy = a by a nonsingular operator and possibly swappingsome components of x and y. As G�uler notes, this reformulation process need not actuallybe carried out to apply the algorithm of Section 2 to the problem (2). Instead, we canextend our algorithm to (2) and note that the sequence of (xk; yk) iterates generated bythe extended algorithm is the same as the sequence that would be generated by the basicalgorithm applied to the LCP reformulation, subject possibly to the swapping of componentsbetween xk and yk just mentioned.The extension of our algorithm to (2) is fairly obvious, so we omit the details, notingsimply that the linear system to be solved at each iteration is264 M11 M12 �IM21 M22 0Y k 0 Xk 375264 ukwkvk 375 = 264 yk �M11xk �M12zk � q1�M21xk �M22zk � q2�XkY ke+ ~��ke 375 ; (64)which is a generalization of (5). Existence of a solution to (64) follows from the samereasoning as in the proof of Theorem 6.3. We need to note that when (2) is feasible, we have�M21xk �M22zk � q2 2 R([M21 jM22])and, hence, V T2 [�M21xk �M22zk � q2] = 0:Also, we need to apply Lemma (6.2) with D = (Xk)�1Y k. Although the step components ukand vk are uniquely determined by (64), the wk components are not, unless the submatrixM�2 has full rank.Finally, we note that our analysis depends crucially on the existence of feasible pointsfor (1) and (2). When (2) arises from an LP or QP, a feasible primal-dual point mustexist. This requirement is a little troubling, since in practice many LPs are either primal ordual infeasible. Ye, Todd, and Mizuno [13] and Xu, Hung, and Ye [11] have alleviated thisdi�culty in the case of linear programming by describing augmentation/reformulation of anLP in standard form, which has the property that the resulting mixed LCP possesses both afeasible point and a strictly complementary solution. Since all the assumptions of this paperare satis�ed by these reformulations, our algorithm can be applied with con�dence.23
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