
Preprint MCS-P404-1293, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439A LIMITED-MEMORY ALGORITHM FORBOUND-CONSTRAINED OPTIMIZATIONbyRichard H. Byrd,� Peihuang Lu,y and Jorge Nocedal yzABSTRACTAn algorithm for solving large nonlinear optimization problems with simple bounds is de-scribed. It is based on the gradient projection method and uses a limited-memory BFGSmatrix to approximate the Hessian of the objective function. We show how to take advantageof the form of the limited-memory approximation to implement the algorithm e�ciently. Theresults of numerical tests on a set of large problems are reported.Key words: bound-constrained optimization, limited-memory method, nonlinear optimization,quasi-Newton method, large-scale optimization.1 IntroductionIn this paper we describe a limited-memory quasi-Newton algorithm for solving large nonlinearoptimization problems with simple bounds on the variables. We write this problem asmin f(x) (1:1)subject to l � x � u; (1:2)where f : <n ! < is a nonlinear function whose gradient g is available, the vectors l and urepresent lower and upper bounds on the variables, respectively, and the number of variablesn is assumed to be large. The algorithm does not require second derivatives or knowledge ofthe structure of the objective function and can therefore be applied when the Hessian matrix isnot practical to compute. A limited-memory quasi-Newton update is used to approximate theHessian matrix in such a way that the storage required is linear in n.�Computer Science Department, University of Colorado at Boulder, Boulder, Colorado 80309. This author wassupported by NSF grant CCR-9101795, ARO grant DAAL 03-91-G-0151, and AFOSR grant AFOSR-90-0109.yDepartment of Electrical Engineering and Computer Science, Northwestern University, Evanston IL 60208;nocedal@eecs.nwu.edu. These authors were supported by National Science Foundation Grants CCR-9101359 andASC-9213149, and by Department of Energy Grant DE-FG02-87ER25047-A004.zThis author was also supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Con-tract W-31-109-Eng-38, while at the Mathematics and Computer Science Division, Argonne National Laboratory,Argonne, IL 60439. 1

The algorithm described in this paper is similar to the algorithms proposed by Conn, Gould,and Toint [9] and Mor�e and Toraldo [20], in that the gradient projection method is used todetermine a set of active constraints at each iteration. Our algorithm is distinguished from thesemethods by our use of line searches (as opposed to trust regions) but mainly by our use of limited-memory BFGS matrices to approximate the Hessian of the objective function. The propertiesof these limited-memory matrices have far-reaching consequences in the implementation of themethod, as will be discussed later on. We �nd that by making use of the compact representationsof limited-memory matrices described by Byrd, Nocedal, and Schnabel [6], the computationalcost of one iteration of the algorithm can be kept to be of order n.We used the gradient projection approach [16], [18], [3] to determine the active set, becauserecent studies [7], [5] indicate that it possesses good theoretical properties, and because it alsoappears to be e�cient on many large problems [8], [20]. However, some of the main componentsof our algorithm could be useful in other frameworks, as long as limited-memory matrices areused to approximate the Hessian of the objective function.2 Outline of the AlgorithmAt the beginning of each iteration, the current iterate xk , the function value fk , the gradient gk,and a positive de�nite limited-memory approximation Bk are given. This allows us to form aquadratic model of f at xk,mk(x) = f(xk) + gTk (x� xk) + 12(x� xk)TBk(x� xk): (2:1)Just as in the method studied by Conn, Gould, and Toint [9], the algorithm approximatelyminimizes mk(x) subject to the bounds given by (1.2). This is done by �rst using the gradientprojection method to �nd a set of active bounds, followed by a minimization of mk treating thosebounds as equality constraints.To do this, we �rst consider the piecewise linear pathx(t) = P (xk � tgk; l; u);obtained by projecting the steepest descent direction onto the feasible region, whereP (x; l; u)i = 8><>: li if xi < lixi if xi 2 [li; ui]ui if xi > ui. (2:2)We then compute the generalized Cauchy point xc, which is de�ned as the �rst local minimizerof the univariate, piecewise quadratic qk(t) = mk(x(t)):The variables whose value at xc is at lower or upper bound, comprising the active set A(xc), areheld �xed. We then consider the following quadratic problem over the subspace of free variables,2

min fmk(x) : xi = xci ; 8i 2 A(xc)g (2:3)subject to li � xi � ui 8i =2 A(xc): (2:4)We �rst solve or approximately solve (2.3), ignoring the bounds on the free variables, which canbe accomplished either by direct or iterative methods on the subspace of free variables or by adual approach, handling the active bounds in (2.3) by Lagrange multipliers. We then truncatethe path toward the solution so as to satisfy the bounds (2.4).After an approximate solution �xk+1 of this problem has been obtained, we compute the newiterate xk+1 by a backtracking line search along dk = �xk+1 � xk that ensures thatf(xk+1) � f(xk) + ��kgTk dk; (2:5)where �k is the steplength and � is a parameter that has the value 10�4 in our code. We thenevaluate the gradient at xk+1, compute a new limited-memory Hessian approximation Bk+1 andbegin a new iteration.Because in our algorithm every Hessian approximation Bk is positive de�nite, the approximatesolution �xk+1 of the quadratic problem (2.3){(2.4) de�nes a descent direction dk = �xk+1 � xk forthe objective function f . To see this, �rst note that the generalized Cauchy point xc, which is aminimizer of mk(x) on the projected steepest descent direction, satis�es mk(xk) > mk(xc) if theprojected gradient is nonzero. Since the point �xk+1 is on a path from xc to the minimizer of (2.3),along which mk decreases, the value of mk at �xk+1 is no larger than its value at xc. Therefore wehave f(xk) = mk(xk) > mk(xc) � mk(�xk+1) = f(xk) + gTk dk + 12dTkBkdk:This inequality implies that gTk dk < 0 if Bk is positive de�nite and dk is not zero.The Hessian approximations Bk used in our algorithm are limited-memory BFGS matrices(Nocedal [21] and Byrd, Nocedal, and Schnabel [6]). Even though these matrices do not takeadvantage of the structure of the problem, they require only a small amount of storage and, as wewill show, allow the computation of the generalized Cauchy point and the subspace minimizationto be performed in O(n) operations. The new algorithm therefore has computational demandssimilar to those of the limited-memory algorithm (L-BFGS) for unconstrained problems describedby Liu and Nocedal [19] and Gilbert and Lemar�echal [14].In the next three sections we describe in detail the limited-memory matrices, the computationof the Cauchy point, and the minimization of the quadratic problem on a subspace.3 Limited-Memory BFGS MatricesIn our algorithm, the limited-memory BFGS matrices are represented in the compact form de-scribed by Byrd, Nocedal, and Schnabel [6]. At every iterate xk the algorithm stores a smallnumber, say m, of correction pairs fsi; yig; i = k � 1; : : : ; k �m, wheresk = xk+1 � xk; yk = gk+1 � gk:3

These correction pairs contain information about the curvature of the function and, in conjunctionwith the BFGS formula, de�ne the limited-memory iteration matrix Bk. The question is how tobest represent these matrices without explicitly forming them.In [6] it is proposed to use a compact (or outer product) form to de�ne the limited-memorymatrix Bk in terms of the n�m correction matricesYk = [yk�m ; : : : ; yk�1] ; Sk = [sk�m; : : : ; sk�1] : (3:1)More speci�cally, it is shown in [6] that if � is a positive scaling parameter and if the m correctionpairs fsi; yigk�mi=k�1, satisfy sTi yi > 0, then the matrix obtained by updating �I m-times, using theBFGS formula and the pairs fsi; yigk�mi=k�1, can be written asBk = �I �WkMkWTk ; (3:2)where Wk = h Yk �Sk i ; (3:3)Mk = " �Dk LTkLk �STk Sk #�1; (3:4)and where Lk and Dk are the m�m matrices(Lk)i;j = ((sk�m�1+i)T (yk�m�1+j) if i > j0 otherwise; (3:5)Dk = diag hsTk�myk�m ; : : : ; sTk�1yk�1i : (3:6)(We should point out that (3.2) is a slight rearrangement of Equation (3.5) in [6].) Note thatsince Mk is a 2m� 2m matrix, and since m is chosen to be a small integer, the cost of computingthe inverse in (3.4) is negligible. It is shown in [6] that by using the compact representation (3.2)various computations involving Bk become inexpensive. In particular, the product of Bk times avector, which occurs often in the algorithm of this paper, can be performed e�ciently.There is a similar representation of the inverse limited-memory BFGS matrix Hk that ap-proximates the inverse of the Hessian matrix:Hk � 1� I + �Wk �Mk �WTk ; (3:7)where �Wk � h 1�Yk Sk i ;�Mk � 264 0 �R�1k�R�Tk R�Tk (Dk + 1�Y Tk Yk)R�1k 375 ;4

and (Rk)i;j = ((sk�m�1+i)T (yk�m�1+j) if i � j0 otherwise. (3:8)(We note that (3.7) is a slight rearrangement of equation (3.1) in [6].)Since the algorithm performs a backtracking line search, we cannot guarantee that the con-dition sTk yk > 0 always holds (cf. Dennis and Schnabel [12]). Therefore, to maintain the positivede�niteness of the limited-memory BFGS matrix, we discard a correction pair fsk ; ykg if thecurvature condition sTk yk > eps kyk2 (3:9)is not satis�ed for a small positive constant eps. If this happens, we do not delete the oldest cor-rection pair, as is normally done in limited-memory updating. This means that the m directionsin Sk and Yk may actually include some with indices less than k �m.4 The Generalized Cauchy PointThe objective of the procedure described in this section is to �nd the �rst local minimizer of thequadratic model along the piecewise linear path obtained by projecting points along the steepestdescent direction, xk � tgk , onto the feasible region. We de�ne x0 = xk and, throughout thissection, drop the index k of the outer iteration, so that g; x and B stand for gk; xk and Bk . Weuse subscripts to denote the components of a vector; for example, gi denotes the i-th componentof g. Superscripts will be used to represent iterates during the piecewise search for the Cauchypoint.To de�ne the breakpoints in each coordinate direction, we computeti = 8><>: (x0i � ui)=gi if gi < 0(x0i � li)=gi if gi > 01 otherwise (4:1)and sort fti; i = 1; : : : ; ng in increasing order to obtain the ordered set ftj : tj � tj+1; j = 1; :::; ng.We then search along P (x0 � tg; l; u), a piecewise linear path that can be expressed asxi(t) = (x0i � tgi if t � tix0i � tigi otherwise.Suppose that we are examining the interval [tj�1; tj]. Let us de�ne the (j � 1)-th breakpoint asxj�1 = x(tj�1)so that on [tj�1; tj] x(t) = xj�1 +�tdj�1;where �t = t � tj�15

and dj�1i = (�gi if tj�1 < ti0 otherwise: (4:2)Using this notation, we write the quadratic (2.1), on the line segment [x(tj�1); x(tj)], asm(x) = f + gT (x� x0) + 12(x� x0)TB(x � x0)= f + gT (zj�1 + �tdj�1) + 12(zj�1 + �tdj�1)TB(zj�1 + �tdj�1);where zj�1 = xj�1 � x0: (4:3)Therefore on the line segment [x(tj�1); x(tj)], m(x) can be written as a quadratic in �t,m̂(�t) = (f + gTzj�1 + 12zj�1TBzj�1) + (gTdj�1 + dj�1TBzj�1)�t+12(dj�1TBdj�1)�t2� fj�1 + f 0j�1�t + 12f 00j�1�t2;where the parameters of this one-dimensional quadratic arefj�1 = f + gTzj�1 + 12zj�1TBzj�1;f 0j�1 = gTdj�1 + dj�1TBzj�1 ; (4.4)f 00j�1 = dj�1TBdj�1: (4.5)Di�erentiating m̂(�t) and equating to zero, we obtain �t� = �f 0j�1=f 00j�1. Since B is positivede�nite, this de�nes a minimizer provided tj�1 +�t� lies on [tj�1; tj]. Otherwise the generalizedCauchy point lies at x(tj�1) if f 0j�1 > 0, and beyond or at x(tj) if f 0j�1 < 0.If the generalized Cauchy point has not been found after exploring the interval [tj�1; tj], weset xj = xj�1 +�j�1dj�1; �j�1 = tj � tj�1; (4:6)and update the directional derivatives f 0j and f 00j as the search moves to the next interval. Let usassume for the moment that only one variable becomes active at tj , and let us denote its indexby b. Then tb = tj , and we zero out the corresponding component of the search direction,dj = dj�1 + gbeb; (4:7)where eb is the b-th unit vector. From the de�nitions (4.3) and (4.6) we havezj = zj�1 +�tj�1dj�1: (4:8)Therefore, using (4.4), (4.5), (4.7), and (4.8), we obtainf 0j = gTdj + djTBzj= gTdj�1 + g2b + dj�1TBzj�1 +�tj�1dj�1TBdj�1 + gbeTb Bzj= f 0j�1 +�tj�1f 00j�1 + g2b + gbeTb Bzj (4.9)6

and f 00j = djTBdj= dj�1TBdj�1 + 2gbeTb Bdj�1 + g2bebTBeb= f 00j�1 + 2gbeTb Bdj�1 + g2bebTBeb: (4.10)The only expensive computations in (4:9) and (4:10) areebTBzj ; ebTBdj�1; ebTBeb;which can require O(n) operations since B is a dense limited-memory matrix. Therefore it wouldappear that the computation of the generalized Cauchy point could require O(n2) operations,since in the worst case n segments of the piecewise linear path can be examined. This cost wouldbe prohibitive for large problems. However, using the limited memory BFGS formula (3.2) andthe de�nition (4.2), the updating formulae (4.9)-(4.10) becomef 0j = f 0j�1 +�tj�1f 00j�1 + g2b + �gbzjb � gbwTb MWT zj ; (4:11)f 00j = f 00j�1 � 2�g2b � 2gbwTb MWTdj�1 + �g2b � g2bwTb Mwb; (4:12)where wTb stands for the b-th row of the matrix W . The only O(n) operations remaining in(4.11) and (4.12) are WT zj and WTdj�1. We note, however, from (4.7) and (4.8) that zj anddj are updated at every iteration by a simple computation. Therefore, if we maintain the two2m-vectors pj � WTdj =WT (dj�1 + gbeb) = pj�1 + gbwb;cj � WT zj = WT (zj�1 + �tj�1dj�1) = cj�1 +�tj�1pj�1;then updating f 0j and f 00j using the expressionsf 0j = f 0j�1 +�tj�1f 00j�1 + g2b + �gbzjb � gbwTb Mcj ;f 00j = f 00j�1 � �g2b � 2gbwTb Mpj�1 � g2bwTb Mwb;will require only O(m2) operations. If more than one variable becomes active at tj | an atypicalsituation | we repeat the updating process just described, before examining the new interval[tj ; tj+1]. We have thus been able to achieve a signi�cant reduction in the cost of computing thegeneralized Cauchy point.Remark. The examination of the �rst segment of the projected steepest descent path, during thecomputation of the generalized Cauchy point, requires O(n) operations. However, all subsequentsegments require only O(m2) operations, where m is the number of correction vectors stored inthe limited-memory matrix.Since m is usually small, say less than 10, the cost of examining all segments after the �rstone is negligible. The following algorithm describes in more detail how to achieve these savingsin computation. Note that it is not necessary to keep track of the n-vector zj since only the7

component zjb corresponding to the bound that has become active is needed to update fj 0 andfj 00.Algorithm CP: Computation of the generalized Cauchy pointGiven x; l; u; g, and B = �I �WMWT
� Initialize

For i = 1; : : : ; n computeti := 8><>: (xi � ui)=gi if gi < 0(xi � li)=gi if gi > 01 otherwise (n operations)di := (0 if ti = 0�gi otherwiseF := fi : ti > 0 gp := WTd (2mn operations)c := 0f 0 := gTd = �dTd (n operations)f 00 : = �dTd� dTWMWT d = ��f 0 � pTMp (O(m2) operations)�tmin := � f 0f 00told := 0t := minfti : i 2 Fg (using the heapsort algorithm)b := i such that ti = t (remove b from F).�t := t � 0� Examination of subsequent segmentsWhile �tmin > �t doxcpb := (ub if db > 0lb if db < 0zb := xcpb � xbc := c+�tp (O(m) operations)f 0 := f 0 +�tf 00 + g2b + �gbzb � gbwTb Mc (O(m2) operations)f 00 := f 00 � �g2b � 2gbwTb Mp� g2bwTb Mwb (O(m2) operations)p := p+ gbwb (O(m) operations)db := 0�tmin := � f 0f 00told := t 8

t := minfti : i 2 Fg (using the heapsort algorithm)b := i such that ti = t (Remove b from F)�t := t� toldend while� �tmin := maxf�tmin; 0g� told := told + �tmin� xcpi := xi + tolddi; 8 i such that ti � t� For all i 2 F with ti = t, remove i from F .� c := c+ �tminpThe last step of this algorithm updates the 2m-vector c so that upon terminationc = WT (xc � xk): (4:13)This vector will be used to initialize the subspace minimization when the primal direct methodor the conjugate gradient method is used, as will be discussed in the next section.Our operation counts take into account only multiplications and divisions. Note that thereare no O(n) computations inside the loop. If nint denotes the total number of segments explored,then the total cost of Algorithm CP is (2m+2)n+O(m2)�nint operations plus n logn operationswhich is the approximate cost of the heapsort algorithm [1].5 Methods for Subspace MinimizationOnce the Cauchy point xc has been found, we proceed to approximately minimize the quadraticmodel mk over the space of free variables and impose the bounds on the problem. We considerthree approaches to minimize the model: a direct primal method based on the Sherman-Morrison-Woodbury formula, a primal iterative method using the conjugate gradient method, and a directdual method using Lagrange multipiers. Which of these is most appropriate seems problemdependent, and we have experimented numerically with all three. In all these approaches we �rstwork on minimizing mk ignoring the bounds, and at an appropriate point truncate the move soas to satisfy the bound constraints.The following notation will be used throughout this section. The integer t denotes the numberof free variables at the Cauchy point xc; in other words there are n� t variables at bound at xc.As in the preceding section, F denotes the set of indices corresponding to the free variables, andwe note that this set is de�ned upon completion of the Cauchy point computation. We de�neZk to be the n � t matrix whose columns are unit vectors (i.e., columns of the identity matrix)that span the subspace of the free variables at xc. Similarly Ak denotes the n� (n� t) matrix ofactive constraint gradients at xc, which consists of n � t unit vectors. Note that ATkZk = 0 andthat AkATk + ZkZTk = I: (5:1)9

5.1 A Direct Primal MethodIn a primal approach, we �x the n� t variables at bound at the generalized Cauchy point xc, andsolve the quadratic problem (2.3) over the subspace of the remaining t free variables, startingfrom xc and imposing the free variable bounds (2.4). Thus we consider only the points x 2 <n ofthe form x = xc + Zk d̂; (5:2)where d̂ is a vector of dimension t. Using this notation, for points of the form (5.2) we can writethe quadratic (2.1) asmk(x) = fk + gTk (x� xc + xc � xk) + 12(x� xc + xc � xk)TBk(x� xc + xc � xk)= (gk + Bk(xc � xk))T (x� xc) + 12(x� xc)TBk(x� xc) + � d̂T r̂c + 12 d̂T B̂k d̂+ ; (5.3)where is a constant, B̂k = ZTk BkZkis the reduced Hessian of mk, and r̂c = ZTk (gk +Bk(xc � xk))is the reduced gradient of mk at xc. Using (3.2) and (4.13), we can express this reduced gradientas r̂c = ZTk (gk + �(xc � xk)�WkMkc); (5:4)which, given that the vector c was saved from the Cauchy point computation, costs (2m+ 1)t+O(m2) extra operations. Then the subspace problem (2.3) can be formulated asmin m̂k(d̂) � d̂T r̂c + 12 d̂T B̂kd̂+ (5.5)subject to li � xci � d̂i � ui � xci i 2 F ; (5.6)where the subscript i denotes the i-th component of a vector. The minimization (5.5) can besolved either by a direct method, as we discuss here, or by an iterative method as discussed inthe next subsection, and the constraints (5.6) can be imposed by backtracking.Since the reduced limited-memory matrix B̂k is a small-rank correction of a diagonal matrix,we can formally compute its inverse by means of the Sherman-Morrison-Woodbury formula andobtain the unconstrained solution of the subspace problem (5.5),d̂u = �B̂�1k r̂c: (5:7)We can then backtrack towards the feasible region, if necessary, to obtaind̂� = ��d̂u;10

where the positive scalar �� is de�ned by�� = maxf� : � � 1; li � xci � �d̂ui � ui � xci ; i 2 Fg: (5:8)Therefore the approximate solution �x of the subproblem (2.3)-(2.4) is given by�xi = (xci if i =2 Fxci + (Zkd̂�)i if i 2 F . (5:9)It remains only to consider how to perform the computation in (5.7). Since Bk is given by(3.2) and ZTk Zk = I , the reduced matrix B̂ is given byB̂ = �I � (ZTW)(MWTZ);where we have dropped the subscripts for simplicity. Applying the Sherman-Morrison-Woodburyformula (see, for example, [17]), we obtainB̂�1 = 1� I + 1�ZTW (I � 1�MWTZZTW)�1MWTZ 1� ; (5:10)so that the unconstrained subspace Newton direction d̂u is given byd̂u = 1� r̂c + 1�2ZTW (I � 1�MWTZZTW)�1MWTZr̂c: (5:11)Given a set of free variables at xc that determines the matrix Z, and a limited-memory BFGSmatrix B de�ned in terms of �;W and M , the following procedure implements the approachjust described. Note that since the columns of Z are unit vectors, the operation Zv, amountsto selecting appropriate elements from v. Here and throughout the paper our operation countsinclude only multiplications and divisions. Recall that t denotes the number of free variables andthat m is the number of corrections stored in the limited memory matrix.Direct Primal Method1. Compute Zr̂c by (5.4) ((2m+ 1)t+ O(m2) operations)2. v := WTZr̂c (2mt operations)3. v := Mv (O(m2) operations)4. Form N � (I � 1�MWTZZTW)� N := 1�WTZZTW (2m2t +mt operations)� N := I �MN (O(m3) operations)5. v := N�1v (O(m3) operations)6. d̂u := 1� r̂c + 1�2ZTWv (2mt+ t operations)11

7. Find �� satisfying (5.8) (t operations)8. Compute �xi as in (5.9) (t operations)The total cost of this subspace minimization step based on the Sherman-Morrison-Woodburyformula is 2m2t+ 6mt+ 4t +O(m3) (5:12)operations. This is quite acceptable when t is small (i.e., when there are few free variables).However, in many problems the opposite is true: few constraints are active and t is large. In thiscase the cost of the direct primal method can be quite large, but the following mechanism canprovide signi�cant savings.Note that when t is large, it is the computation of the matrixWTZZTW = " Y T�ST #ZZT h Y �S i = " Y TZZTY �Y TZZTS�STZZTY �2STZZTS #in Step 4, which requires 2m2t operations, that drives up the cost. Fortunately we can reducethe cost when only a few variables enter or leave the active set from one iteration to the nextby saving the matrices Y TZZTY; STZZTY and STZZTS. These matrices can be updated toaccount for the parts of the inner products corresponding to variables that have changed status,and to add rows and columns corresponding to the new step. In addition, when t is much largerthen n � t, it seems more e�cient to use the relationship Y TZZTY = Y TY � Y TAATY , whichfollows from (5.1), to compute Y TZZTY . Similar relationships can be used for the matricesSTZZTY and STZZTS. These devices can potentially result in signi�cant savings, but theyhave not been implemented in the code experimented with in Section 6.5.2 A Primal Conjugate Gradient MethodAnother approach for approximately solving the subspace problem (5.5) is to apply the conjugategradient method to the positive de�nite linear systemB̂k d̂u = �r̂c (5:13)and stop the iteration when a boundary is encountered or when the residual is small enough.Note that the accuracy of the solution controls the rate of convergence of the algorithm, once thecorrect active set is identi�ed, and should therefore be chosen with care. We follow Conn, Gould,and Toint [8] and stop the conjugate gradient iteration when the residual r̂ of (5.13) satis�eskr̂k < min(0:1;qkr̂ck)kr̂ck:We also stop the iteration at a bound when a conjugate gradient step is about to violate a bound,thus guaranteeing that (5.6) is satis�ed. The conjugate gradient method is appropriate here sincealmost all of the eigenvalues of B̂k are identical.12

We now describe the conjugate gradient method and give its operation counts. Note that thee�ective number of variables is t, the number of free variables. Given Bk , the following procedurecomputes an approximate solution of (5.5).The Conjugate Gradient Method1. r̂ := r̂c computed by (5.4) ((2m+ 1)t+O(m2) operations)2. p := �r̂; d̂ := 0, and �2 := r̂T r̂ (t operations)3. Stop if kr̂k < min(0:1;pkr̂ck)kr̂ck4. �1 := maxf� : l̂ � x̂c + d̂+ �p � ûg (t operations)5. q := B̂kp (4mt operations)6. �2 := �2=pT q (t operations)7. If �2 > �1 set d̂ := d̂+ �1p and stop;otherwise compute:� d̂ := d̂+ �2p (t operations)� r̂ := r̂ + �2q (t operations)� �1 := �2; �2 = r̂T r̂; � := �2=�1 (t operations)� p := �r̂ + �p (t operations)� go to 3The matrix-vector multiplication of Step 5 should be performed as described in [6]. The totaloperation count of this conjugate gradient procedure is approximately(2m+ 2)t+ (4m+ 6)t� citer +O(m2); (5:14)where citer is the number of conjugate gradient iterations. If we compare this with the costof the primal direct method (5.12), for t >> m, the direct method seems more e�cient unlessciter � m=2. Note that the costs of both methods increase as the number of free variables tbecomes larger. Since the limited-memory matrix Bk is a rank 2m correction of the identitymatrix, the termination properties of the conjugate gradient method guarantee that the subspaceproblem will be solved in at most 2m conjugate gradient iterations.We point out that the conjugate gradient iteration could stop at a boundary even when theunconstrained solution of the subspace problem is inside the box. Consider, for example, thecase when the unconstrained solution lies near a corner and the starting point of the conjugategradient iteration lies near another corner along the same edge of the box. Then the iteratescould soon fall outside of the feasible region. This example also illustrates the di�culties thatthe conjugate gradient approach can have on nearly degenerate problems [11].13

5.3 A Dual Method for Subspace MinimizationSince it often happens that the number of active bounds is small relative to the size of theproblem, it should be e�cient to handle these bounds explicitly with Lagrange multipliers. Suchan approach is often referred to as a dual or a range space method (see [15]).We will write x � xk + dand restrict xk + d to lie on the subspace of free variables at xc by imposing the conditionATk d = ATk (xc � xk)� bk:(Recall that Ak is the matrix of constraint gradients.) Using this notation, we formulate thesubspace problem as min gkTd+ 12dTBkd (5.15)subject to ATk d = bk (5.16)l � xk + d � u: (5.17)We �rst solve this problem without the bound constraint (5.17). The optimality conditions for(5.15){(5.16) are gk +Bkd� +Ak�� = 0; (5.18)ATk d� = bk: (5.19)Premultiplying (5.18) by ATkHk , where Hk is the inverse of Bk , we obtainATkHkgk + ATk d� +ATkHkAk�� = 0;and using (5.19), we obtain (ATkHkAk)�� = �ATkHkgk � bk: (5:20)Since the columns of Ak are unit vectors and Ak has full column rank, we see ATkHkAk is aprincipal submatrix of Hk. Thus, (5.20) determines ��, and hence d� is given byBkd� = �Ak�� � gk: (5:21)(In the special case where there are no active constraints, we simply obtain Bkd� = �gk:) If thevector xk+d� violates the bounds (5.17), we backtrack to the feasible region along the line joiningthis infeasible point and the generalized Cauchy point xc.The linear system (5.20) can be solved by the Sherman-Morrison-Woodbury formula. Usingthe inverse limited-memory BFGS matrix (3.7), and recalling the identity ATkAk = I , we obtainATkHkAk = 1� I + (AT �W)(�M �WTA):14

(We have again omitted the subscripts of M;W and � for simplicity.) Applying the Sherman-Morrison-Woodbury formula, we obtain(ATkHkAk)�1 = �I � �ATk �W (I + � �M �WTAkATk �W)�1 �M �WTAk�: (5:22)Given gk, a set of active variables at xc that determines the matrix of constraint gradientsAk, and an inverse limited-memory BFGS matrix Hk, the following procedure implements thedual approach just described. Let us recall that t denotes the number of free variables, andlet us de�ne ta = n � t, so that ta denotes the number of active constraints at xc. As before,the operation counts given below include only multiplications and divisions, and m denotes thenumber of corrections stored in the limited memory matrix.Dual MethodIf ta = 0, compute d� = �Hkgk = �1� gk � �W �M �WT gk as follows:� w := �WTgk (0 operations)� w := �Mw (O(m2) operations)� d� := �1� gk � �Ww ((2m+ 1)n operations)If ta > 0, compute1. u = �ATkHkgk � b = �1�ATk gk �AT �W �M �WT gk � b� b := ATk (xc � xk) (0 operations)� v := �WTgk (0 operations)� v := �Mw (O(m2) operations)� u := ATk �Wv (2mta operations)� u := �1�ATk gk � u� b (ta operations)2. �� = �(ATkHkAk)�1u = ��u + �2ATk �W (I + � �M �WTAkATk �W)�1 �M �WTAku� w := �WTAku (2mta operations)� Form �N = (I + � �M �WTAkATk �W){ �N := �WTAkATkW ((2m2 +m)ta operations){ �N := I + �M �N (O(m3) operations)� w := �N�1 �Mw (O(m3) operations)� �� := �2ATk �Ww (2mta operations)� �� := ��u + �� (ta operations)3. d� = �Hk(Ak�� + gk) = �1� (Ak�� + gk)� �W (�M �WTAk�� + v)� w := �WTAk�� (2mta operations)15

� w := �Mw + v (2m operations)� d� := �1� (Ak�� + gk) + �Ww ((2m+ 1)n operations)Backtrack if necessary:� Compute �� =max f� : li � xc + �(xk + d� � xc) � ui; i 2 Fg (t operations)� Set �x = xc + ��(xk + d� � xc). (t operations)Since the vectors STgk and Y T gk have been computed while updating Hk [6], they can besaved so that the product �WT gk requires no further computation.The total number of operations of this procedure, when no bounds are active (ta = 0), is(2m+ 1)n+O(m2). If ta bounds are active,(2m+ 3)n+ 9mta + 2m2ta +O(m3)operations are required to compute the unconstrained subspace solution. By comparison, ifimplemented as described above, the direct primal method requires 2m2t + 6mt + 4t + O(m3)operations for the subspace minimization. These �gures indicate that the dual method would beless expensive when the number of bound variables is much less than the number of free variables.However, this comparison does not take into account the devices for saving costs in thecomputation of inner products discussed at the end of Section 5.1. Similarly, in the dual case, thecost of computing �WTAkATk �W could be reduced by updating this matrix from one iteration to thenext and, if ta > n� ta, by computing the matrix �WTZkZTk �W �rst, and subtracting from �WT �W .Such devices would require a more complex implementation, but might reduce the di�erence incost between the primal and dual approaches. In fact, the primal and dual approaches have morein common than appears here, in that the matrix (I � 1�MWTZZTW)�1M appearing in (5.10)can be shown to be identical to the matrix (I + � �M �WTAkATk �W)�1 �M in (5.22).6 Numerical ExperimentsWe have tested our limited-memory algorithm using the three options for subspace minimiza-tion (the direct primal, primal conjugate gradient, and dual methods) and compared the resultswith those obtained with the subroutine SUBMIN of LANCELOT [10] using partitioned BFGSupdating. Both our code and LANCELOT were terminated whenkP (xk � gk; l; u)� xkk1 < 10�5: (6:1)(Note from (2.2) that P (xk � gk; l; u)� xk is the projected gradient.) The algorithm we tested isgiven as follows.Bound L-BFGS AlgorithmChoose a starting point x0, and an integer m that determines the number of limited-memorycorrections stored. De�ne the initial limited-memory matrix to be the identity, and set k := 0.16

1. If the convergence test (6.1) is satis�ed, stop.2. Compute the Cauchy point by Algorithm CP.3. Compute a search direction dk by the direct primal method, the conjugate gradient method,or the dual method.4. Using a backtracking line search, starting from the unit steplength, compute a steplength�k such that xk+1 = xk + �kdk satis�es (2.5) with � = 10�4.5. Compute rf(xk+1).6. If yk satis�es (3.9) with eps= 10�8, add sk and yk to Sk and Yk. If more than m updatesare stored, delete the oldest column from Sk and Yk .7. Update STk Sk, Y Tk Yk , Lk and Rk, and set � = yTk yk=yTk sk :8. Set k := k + 1 and go to 1.Our code is written in double-precision Fortran 77. For the heapsort, during the generalizedCauchy point computation, we use the Harwell routine KB12AD written by Gould [13]. Thebacktracking line search was performed by the routine LNSRCH of Dennis and Schnabel [12].For more details on how to update the limited-memory matrices in Step 7, see [6]. When testingthe routine SUBMIN of LANCELOT [10] we used the default options and BFGS updating.We selected seven problems, two bound-constrained quadratic optimization problems fromthe MINPACK-2 collection [2], and �ve nonlinear problems from the CUTE collection [4], totest the algorithms. To study a variety of cases, we tightened the bounds on several problems,resulting in more active bounds at the solutions of these problems. Table 1 lists the test problemsand the bounds added to those already given in the speci�cation of the problem. The numberof variables is denoted by n, and the number of bounds active at the solution by na. We notethat in those problems without active bounds at the solution (na = 0), some bounds may becomeactive during the iteration.
17

Table 1: Test ProblemsProblem Variant n na Reference Additional BoundsEDENSCH 1 2000 0 CUTE [4] noneEDENSCH 2 2000 1 " [0; 1:5]8 odd iEDENSCH 3 2000 667 " [�1; 0:5] i = 4; 7; 10; :::EDENSCH 4 2000 999 " [0; 0:99]8 odd iEDENSCH 5 2000 100 " [0; 0:5]8 odd iLMINSURF 1 1024 124 " noneLMINSURF 2 1024 147 " [2; 10] 8 odd iLMINSURF 3 1024 172 " [5; 10] 8 odd iLMINSURF 4 1024 227 " [5:5; 6]8iPENALTY 1 1 1000 0 " nonePENALTY 1 2 1000 0 " [0; 1] 8 odd iPENALTY 1 3 1000 334 " [0:1; 1] i = 4; 7; 10; :::PENALTY 1 4 1000 500 " [0:1; 1]8 odd iRAYBENDL 1 44 4 " noneRAYBENDL 2 44 6 " [2; 95] 8 iORTHREG 1 133 0 " noneTORSION 1 1024 320 MINPACK-2 [2] noneJOURNAL 1 1024 330 MINPACK-2 [2] noneThe results of our numerical tests are given in Table 2. All computations were performedon a Sun SPARCstation 2 with a 40-MHz CPU and 32-MB memory. In every run all methodsconverged to the same solution point; in fact, this was one requirement in the selection of thetest problems. The number of corrections stored in the limited-memory method was m = 4. Werecord the number of iterations (iter), the number of inner conjugate gradient iterations (cg) forthose methods that use them, and the total CPU time (time). A � indicates that the convergencetolerance (6.1) was not met.
18

Table 2: Test Results of 3 Versions of the New Limited-Memory Method with m = 4 andLANCELOT's Subroutine SUBMIN using BFGS UpdatingProblem Variant Primal Dual CG LANCELOT/BFGSiter/time iter/time iter/cg/time iter/cg/timeEDENSCH 1 31/37.1 26/12.1 30/115/35.2 41/41/28.9EDENSCH 2 17/15.4 17/10.9 20/64/20.7 62/105/241.8EDENSCH 3 16/11.2 16/11.5 15/40/10.2 53=19=33:8�EDENSCH 4 15/9.21 15/12.4 16/42/10.2 32/16/16.9EDENSCH 5 12/7.18 12/9.6 12/24/6.22 15/3/7.5LMINSURF 1 166/76.4 166/62.3 168/1219/149 295/617/177.2LMINSURF 2 420/213 403/141 430/2312/309 112/499/85.6LMINSURF 3 474/239 462/165 542/2908/381 92/444/75.5LMINSURF 4 107/52.8 107/45.4 126/577/75.2 43/297/34.9PENALTY 1 1 96/41.1 97/21.5 98/295/43.8 47/554/73.2PENALTY 1 2 66/30.4 61/15 59/158/25.8 55/513/97.1PENALTY 1 3 30/11.3 30/10.1 30/57/9.2 33/0/41.5PENALTY 1 4 30/10.9 30/12 30/58/8.9 32/0/30.3RAYBENDL 1 1179/40.9 976/21.1 1733/13755/92.8 895/22645/65RAYBENDL 2 1425/53.1 998/24.5 1737/13137/93.2 894/20468/57ORTHREG 1 266/19.3 442/14.5 262/1504/27.8 114/164/8.4TORSION 1 57/27.7 55/27.1 59/329/39.9 11/94/15.1JOURNAL 1 132/75.5 120/54.9 155/660/91.7 8/116/16.54The test results indicate that the dual method was the fastest of the three subspace mini-mization approaches in most cases. This is to be expected for this implementation, given thatthe number of active bounds at the solution was always less than n=2. The di�erences in thenumber of iterations required by the direct primal and dual methods are due to rounding errors.We note also that the direct primal method usually had a running time either close to or fasterthan that for the conjugate gradient method. In view of the discussion in Section 5.2 and thefact that there were usually more than m=2 = 2 conjugate gradient iterations per outer iterationon the average, this is not surprising.The tests described here are not intended to establish the superiority of LANCELOT or ofthe new limited-memory algorithm, since these methods are designed for solving di�erent types ofproblems. LANCELOT is tailored for sparse or partially separable problems, whereas the limitedmemory method is well suited for unstructured or dense problems. We use LANCELOT simplyas a benchmark and, for this reason, ran it only with its default settings and did not experimentswith its various options to �nd the one that would give the best results on these problems. Also,we used BFGS updating in LANCELOT (as opposed to SR1 updating) to minimize the di�erenceswith our limited-memory code. However, a few observations on the two methods can be made.19

The limited-memory method tends to spend less time per iteration than LANCELOT, but inmany cases requires more iterations. We also observed that LANCELOT is able to identify thecorrect active set sooner. This is likely to be because LANCELOT tends to form a more accurateHessian approximation than the limited-memory matrix. It should be noted that the objectivefunction in all these problems has a signi�cant degree of the kind of partial separability thatLANCELOT is designed to exploit. However, problem PENALTY 1 was coded so as to preventLANCELOT from exploiting partial separability, which may explain its poor performance on thisproblem.For comparison, we also tried the option in LANCELOT using exact Hessians. The results,shown in Table 3, indicate that in most cases the number of iterations and the computationaltime decreased signi�cantly.Table 3: Results of LANCELOT's subroutine SUBMIN using exact HessianProblem Variant LANCELOT/Exact Hessianiter/cg/timeEDENSCH 1 13/13/11.8EDENSCH 2 11/364/109.4EDENSCH 3 13/14/9.1EDENSCH 4 12/18/847.2EDENSCH 5 9/0/5.0LMINSURF 1 272/531/138.2LMINSURF 2 123/512/86.7LMINSURF 3 99/660/98.1LMINSURF 4 25/301/27.7PENALTY 1 1 62/776/99.1PENALTY 1 2 54/524/92.4PENALTY 1 3 33/0/40.9PENALTY 1 4 32/0/30.3RAYBENDL 1 108/109/2.1RAYBENDL 2 80/95/1.5ORTHREG 1 27/67/2.2TORSION 1 11/80/12JOURNAL 1 7/177/14.8Taking everything together, the new algorithm has most of the e�ciency of the unconstrainedlimited-memory algorithm (L-BFGS) [19] together with the capability of handling bounds, at thecost of a signi�cantly more complex code. Like the unconstrained method, the bound limited-memory algorithm's main advantages are its low computational cost per iteration, its modeststorage requirements, and its ability to solve problems in which the Hessian matrices are large,20

unstructured, dense, and unavailable. It is less likely to be competitive when an exact Hessianis available, or when signi�cant advantage can be taken of sparsity. A well-documented andcarefully coded implementation of the algorithm described in this paper will soon be availableand can be obtained by contacting the authors at nocedal@eecs.nwu.edu.References[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algo-rithms. Reading, Mass: Addison-Wesley Pub. Co., 1974.[2] B. M. Averick and J. J. Mor�e, \User guide for the MINPACK-2 test problem collection," Ar-gonne National Laboratory, Mathematics and Computer Science Division Report ANL/MCS-TM-157, Argonne, Ill., 1991.[3] D. P. Bertsekas, \Projected Newton methods for optimization problems with simple con-straints", SIAM J. Control and Optimization 20 (1982): 221{246.[4] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint, \CUTE: Constrained andunconstrained testing environment," Research Report, IBM T.J. Watson Research Center,Yorktown, New York, 1993.[5] J. V. Burke, and J. J. Mor�e, \On the identi�cation of active constraints," SIAM J. Numer.Anal. 25, no. 5 (1988): 1197{1211.[6] R. H. Byrd, J. Nocedal, and R. B. Schnabel, \Representation of quasi-Newton matrices andtheir use in limited memory methods," Technical report, EECS Department, NorthwesternUniversity, 1991, to appear in Mathematical Programming.[7] P. H. Calamai, and J. J. Mor�e, \Projected gradient methods for linearly constrained prob-lems" Mathematical Programming 39 (1987): 93-116[8] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, \Testing a class of methods for solvingminimization problems with simple bounds on the variables," Mathematics of Computation50, no. 182 (1988): 399{430.[9] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, \Global convergence of a class of trust regionalgorithms for optimization with simple bounds," SIAM J. Numer. Anal. 25 (1988): 433{460.[10] A. R. Conn, N. I. M. Gould, Ph.L. Toint, \LANCELOT: A FORTRAN package for large-scale nonlinear optimization (Release A)," Number 17 in Springer Series in ComputationalMathematics, Springer-Verlag, New York, 1992.[11] A. R. Conn and J. Mor�e, Private communication, 1993.[12] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimizationand Nonlinear Equations, Englewood Cli�s, N.J.: Prentice-Hall, 1983.21

[13] Harwell Subroutine Library, Release 10, Advanced Computing Department, AEA IndustrialTechnology, Harwell Laboratory, Oxfordshire, United Kingdom, 1990.[14] J. C. Gilbert and C. Lemar�echal, \Some numerical experiments with variable storage quasi-Newton algorithms," Mathematical Programming 45 (1989) 407{436.[15] P. E. Gill, W Murray and M. H. Wright, Practical Optimization, London: Academic Press,1981.[16] A. A. Goldstein, \Convex programming in Hilbert space," Bull. Amer. Math. Soc. 70 (1964):709{710.[17] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in SeveralVariables, New York, Academic Press, 1970.[18] E. S. Levitin and B. T. Polyak, \Constrained minimization problems," USSR Comput. Math.and Math. Phys. 6 (1966): 1{50.[19] D. C. Liu and J. Nocedal, \On the limited memory BFGSmethod for large scale optimizationmethods," Mathematical Programming 45 (1989): 503{528.[20] J. J. Mor�e and G. Toraldo, \Algorithms for bound constrained quadratic programming prob-lems," Numer. Math. 55 (1989): 377{400.[21] J. Nocedal, \Updating quasi-Newton matrices with limited storage," Mathematics of Com-putation 35 (1980): 773{782.
22

