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Abstract

A model is proposed for the formation and evolution of three-dimensional sedimen-
tary structures such as longshore sand ridges on the continental shelf in water deeper
than that of the shoaling region. Owing to the striking similarity between the bar
spacing and the length scales in which interactions among the most energetic modes of
shallow water waves take place, we argue that these bars are formed slowly by flows in
the turbulent boundary layer generated by weakly nonlinear, dispersive waves. Hence
the model is based on the interaction between surficial, weakly nonlinear shallow water
waves, having weak spanwise spatial dependence, and the bottom topography. While
such underwater structures are not the result of a single formative agent, it is ar-
gued that the mechanism proposed in this study does contribute significantly to their
generation and evolution.

i



1 Introduction

The dynamics of sand ridges are not well understood. Sand ridges are underwater barlike
features of the continental shelf, composed of loose granular sediment. Hundreds of meters
long and up to a few meters high, sand ridges are usually found in groups, arranged in more
or less parallel rows separated from each other by hundreds of meters. They may be loosely
classified as either tidal ridges or longshore sand ridges. Tidal ridges are oriented more or
less parallel to the prevailing direction of the local ocean currents, whereas longshore sand
ridges are oriented normal to the direction in which the overlying water waves propagate.
In this study we propose a possible mechanism for the formation and evolution of longshore
sand ridges.

It deserves emphasis that the often complex seabed structures appearing off many conti-
nental coasts are likely to owe their existence to a multitude of causes. We introduce here a
very simple, wave-generated mechanism that does provide a dynamical model of wave-bottom
interaction leading to the formation of barlike structures in suitable oceanographic environ-
ments. It is not suggested that the intentionally crude model can account for everything
we observe. The model is constructed in such a way, however, that it can be implemented
using data that is sometimes available from field studies, and without introducing adjustable
parameters.

The plan of this paper is as follows. In this introduction, a précis is provided of the
morphology of oceanic sedimentary structures; observational and laboratory research in this
area is briefly reviewed, and various sedimentation and sandbar models are outlined. The
equations describing the evolution of the water waves are covered in Section 2. Section 3
deals with the wave-driven boundary layer and with a consequent mass transport equation.
To give a qualitative idea of the behavior of solutions to the model, we present in Section
4 several numerical simulations. Section 5 reviews the preceding sections and lists open
questions worthy of future pursuit.

1.1 Morphology of Oceanic Sedimentary Structures

Until recently, it was thought that sand ripples, like those found in the beach zone, and their
larger cousins the sandbars and sand ridges were morphologically similar. We now recognize
a variety of different sedimentary structures, defining the categories by shape or generating
mechanism. Examples are sand ripples, ridge-runnel systems, tidal ridges, and longshore
sand ridges.

In the near-beach zone, including the breaker zone, occur small sand ripples on the order
of a few centimeters high, which come in a multitude of shapes and forms. Larger structures,
such as crescentic bars, occur as well. In this region the fluid flow is quite complex, since there
are both incident and reflected waves, tidal flow effects, and turbulence and entrainment of
air from wave breaking.

The ridge-runnel system, so common in the near-beach zones in the American Northeast
and in the Great Lakes [1], is composed of a large bump 3 to 15 meters away from the beach,



about 0.3 meters high and up to perhaps 7 to 10 meters in length, which is preceded by a
runnel. The runnel may or may not be scoured with small ripples. The system is thought
to be formed by storms eroding the beach and the dune fields and/or by tidal currents [1].
Davis et al. [1] provide observational evidence for their claim that storms seem to play a
minor role in the evolution of these structures once they have formed.

Tidal ridges, which were noticed by Off [2], are rhythmic features oriented parallel to
the direction of tidal currents. They are 8 to 30 meters high, 7 to 60 kilometers long, and
spaced 1 to 10 kilometers apart. Allen [3] found that their height is roughly proportional
to the square root of their spacing and that they are composed of sand, silt, and mud. He
reported that they occur where tidal currents reach at least 2 to 7 km/h and where there is
an ample supply of sediment. Tidal ridges are also prominent in the neighborhood of river
deltas. Tidal ridges may have a fairly flat dome, suggesting to some researchers that erosion
effects play a very minor role.

Sandbars are distributed in complicated patterns on the continental shelf, and it is some-
times difficult to discern which is a tidal ridge and which is a longshore sand ridge, the object
of attention in this study. For example, Figure 1 taken from a paper by Swift [4] shows the
relative orientation of different types of ridges. Note that some bars fan out around river
deltas, while some are oriented parallel to or almost normal to the coast.

Longshore sand ridges are common features of the continental shelf in water deeper than
the surt zone, from the near-shore region to the farthest reaches of the shelf. The better-
known ridge fields are those found in the shallowest end of this range, primarily because they
are readily seen, as illustrated in Figure 2, which shows the bar system off central Harrison
County, Mississippi. Other near-shore systems are found along the coasts of the Carolinas,
Florida, the northern coast of Alaska, the Black Sea, the Baltic Sea, and even large lakes
such as Lake Michigan. McBride and Moslow [5] trace the origins of many of the sand ridge
fields on the inner shelf of the Eastern U.S. to ebb-tidal delta deposition and the ensuing
erosion from tidal flows.

Longshore sand ridges can also be found in the farthest reaches of the shelf hugging every
continent around the world. These are the sand ridges of interest to us. Observations seem
to indicate that a mean slope in the neighborhood of 0.02 to 0.05 favors the formation of
longshore sand ridges [6]. Such ridges are composed mostly of fine sand and silt, sometimes
of mud. The mean sediment particle size ranges between 0.1 and 0.5 millimeters. Groups of
up to 12 ridges have been found that are more or less parallel to each other. Some ridge fields
are observed to change position over time. Their migration rates vary from place to place; for
instance, the ridges on Sable Island Bank have been estimated to move at rates ranging from
0.5 meters per year, in water 60 meters deep, to 5 meters per year, in 30-meter depths [7].
Ridge fields are routinely found in regions where the water depth is small compared with the
wavelength of an overlying internal wave environment with frequencies in the infragravity
range [8].

It is clear that the formation and maintenance of these sedimentary structures are con-
nected with the ambient hydrodynamics. One possibility is that ridges are generated by
major events such as storms, while another prospect is that they come about as a result of



systematic aspects of the surrounding fluid flows. Lau and Travis [6] found that sandbars
beyond the breaker zone do not disappear but simply change location after a severe storm.
Short, in his field observations in Northern Alaska [8], found that severe storms seem to re-
work the bars, but that some sandbars photographed in 1949 and 1955 were still identifiable
after approximately 30 years. Preliminary data from the so-called Super Duck [9] experi-
ments show this bar “reworking” as a consequence of major storms. Other evidence points in
the same direction and inclines one to the view that systematic aspects of the hydrodynamic
environment play a decisive role in ridge generation. A related question is whether wave
breaking is an essential ingredient in the generative processes leading to sand ridges. While
categorical evidence does not present itself, it is true that sand ripples form in a laboratory
flume under the action of waves and that sand ridges appear in regions where there is no
apparent breaking. Both the above points will figure in the mathematical conceptualization
of the situation to be presented in this paper.

Several significant differences exist in the near and far ends of the continental shelf insofar
as the fluid environment is concerned. First, in the near-shore zone, strong incident and re-
flected components to the wave field may be identified. Second, the effect of wind stresses on
the boundary layer flows is quite significant in the nearshore. Third, while significant asym-
metry exists in the velocity field in both areas, quite pronounced asymmetry can occur in the
acceleration field in the nearshore case. Bijker et al. [10] made laboratory measurements of
acceleration and velocity fields for water waves with fairly high Stokes numbers, in the range
of 12-57. They found the net transport to be in the direction of the wave, particularly if the
wave was very nonlinear. Smaller particles seemed to be transported mostly by the Stokes
flow, whereas larger particles responded in the main to the “acceleration” field. Hallermeier
[11] analyzed a large experimental data set and found an empirical rule for the prediction
of ripple characteristics based on the acceleration field, which suggests that this field may
be an important sand-transport mechanism in the near-beach zone. Elgar et al. [12] made
measurements in the shoaling region, in water depths in the range of 1-6 meters, over a
topography with mean slope of 5%, and confirmed in the field the existence of the velocity
and acceleration field asymmetry. They found that the acceleration asymmetry becomes
increasingly significant with decreasing water depth. These investigations suggest that the
acceleration field becomes ever more important as the distance to the beach decreases; our
model would not apply in this area, since the adopted transport equation does not include
acceleration effects.

1.2 Sediment-Transport Models

As mentioned, much of the work on sedimentation has been aimed at understanding how
the sediment moves, rather than how it generates patterns. Most researchers working on
sediment transport assume an outer fluid flow at the edge of a boundary layer and attempt
to model sediment motion on the bed and in the boundary layer. Sleath [13] presents a good
review of the subject, and we therefore content ourselves with a cursory summary of the



various sedimentation models.

A model developed by Bagnold [14,15] assumed that wave-induced oscillatory water mo-
tion causes sediment to move back and forth with a net expenditure of energy. Although
no net transport results in such an oscillatory flow, the energy dissipation acts to keep the
sediment in suspension. Once in suspension, any steady current superimposed on this os-
cillatory flow will then cause a net transport of the suspended sediment in the direction of
the instantaneous total bottom stress. Originally a bed-load model, Bagnold’s model has
also been applied to suspended-load transport for low Froude number flows. A threshold
of motion parameter called the Shield’s parameter is incorporated into the model to reflect
the fact that a critical amount of energy must be imparted on the bed before transport can
occur. Smith [16] and Fredsce [17] applied this model to the ocean environment. They as-
sumed a constant eddy viscosity and obtained criteria for the onset of instability and ripple
formation. Richards [18] used instead a turbulent scale that increases linearly in height from
the bed, thus obtaining two modes of instability that yield small- and large-scale ripples, re-
spectively. Bagnold’s model has also been used with some success in the near-shore zone, in
a version that includes the effect of wind on sediment transport rate [19]. However, Bailard
and Inman [15] found that the model did not perform adequately when the waves are not
normally incident to the beach.

Another sedimentation model by Raudkivi [20] and by Williams and Kemp [21] attributes
the formation of ripples to a chance piling of sediment. This deformation then causes the
flow to separate, with subsequent building up of the ripple downstream. They attribute the
initial small deformation to the random action of highly turbulent velocities, or “bursts,”
close to the bed.

Last, we mention the model in the Longuett-Higgins paper [22]. He showed how a
second-order drift velocity, which was first noted by Stokes [23], develops in the boundary
layer from an outer linear oscillatory flow or in the bulk of the fluid through the action
of nonlinear waves. This drift velocity is capable of transporting sediment, particularly
suspended sediment. A number of people have studied this mechanism; of note are Johns
[24], who developed explicit expressions appropriate for the ocean environment and studied
the character of the drift velocity and its stability, and Blondeaux [25] and Vittori and
Blondeaux [26], who looked at the stability and formation for Froude numbers at which flow
separation does not occur. They determined adequate height, spacing, and onset thresholds,
by comparison with laboratory experiments. The second of these papers introduced more
structure and made a case for the inclusion of nonlinear effects in the flow immediately
outside of the boundary layer.

1.3 Sedimentary Bar Models

Among the researchers who have coupled a sedimentation transport model to an oceanic
wave field to look at the process of bar formation in the oceanic environment are Holman
and Bowen [27]. They use the fully three-dimensional, linearized water wave equations to
compute the drift velocity, which in turn they couple to Bagnold’s transport model for



suspended load. In particular, they examine the edge-wave case in an effort to compute
the formation of crescentic bars in the shoaling region. Bowen [28] has also examined the
performance of this model in predicting the spacing of longshore ridges and reports good
qualitative agreement with field observations.

Laboratory and field observations indicate that standing wave patterns display a Bragg
resonance process with an underlying wavy bottom [29] [30]. In a steady-state situation, the
ripples develop a spacing that is roughly half the local average length of the water waves.
This first-order theory [29,31-33] is applicable in principle to the near-shore environment,
since it relies on the scouring effect of a standing wave pattern. It has been widely studied
since it is easily implemented in the laboratory; at one or another time, various researchers
have implicated this mechanism as the general reason we observe stable sandbars in the
near-shore area.

The ridge and runnel system have been modeled with a variant of Bagnold’s transport
formula by Dean [19] and deVriend [34]. The extent of the model’s success is somewhat
difficult to discern, however. Since the undertow and the local bed slope are significant and
since the effect of the wind in generating stresses on the surface of the ocean must be taken
into account, modeling the formation of runnels is very difficult. Russell and Osorio [35] and
Bijker et al. [36] found that on a sloping beach, the mass transport velocity near the bed
was onshore before breaking and offshore after. This effect, which seems to be independent
of wave reflection from the beach, may explain why these bar systems are usually found close
to the plunge line of breakers.

Huthnance [37] developed a theory for the formation of tidal ridges based on an instability
that is triggered by a small protuberance on the shelf. The ensuing boundary layer develops
a bar that is fed by bedload. The resulting steady-state bar is finite in extent and parallel
to the assumed, always-present currents. Equilibrium is reached when the supply of sand
is exhausted. Huthnance notds that the tops of these ridges are flat rather than rounded,
which he claimed dismisses erosion as being the source for the generation of these structures.
Huthnance’s study does not address the periodic nature of these bars, nor does it suggest a
relation between their height and spacing.

Among the first to suggest that infragravity standing waves may be responsible for long-
shore sand ridge formation was Suhaida [38]. He did so at a time when few people saw
anything fundamentally different about near-shore sandbars where a strong standing-wave
field may be present, and bars or ridges far from the beach where little or no standing wave
pattern is to be found. Short [8], in field measurements of sand ridges in Alaska, found a
loose correlation between the ridge spacing and the average peak infragravity component
wavelength.

Lau and Travis [6] derived a drift velocity from a Stokes water-wave field for a bed with
constant slope. Their model yields the spacing and the number of ridges from the period-
icity of the drift velocity. They made use of the SRIT (slightly resonant interacting triads)
approximation developed by Lau and Barcilon [39] and Mei and Umliiata [31] for weakly
nonlinear shallow-water waves to solve approximately for the wave motion.



Boczar-Karakiewicz conducted a number of interesting field and laboratory studies [29]
[40]. In the analysis of her findings [41], she combined the hydrodynamic approximation
of Lau and Barcilon with the boundary-layer theory of Longuett-Higgins [22]. Exploiting
the large discrepancy between the time scales relevant to wave propagation and sediment
dynamics, these investigators formulated the first evolutionary model for sand ridge forma-
tion. A variant of the original model was informally tested against field data [42] yielding
encouraging results. As a result of the above field data comparison, it became clear that it
was necessary to extend the original model to reflect the fact that the sedimentary features
were not always oriented perpendicularly to the prevailing direction of the progressive waves
traveling overhead, and that the original model was in some sense more difficult to test in
the field because in the vast spans of the ocean, the wave field data showed significant di-
rectional information. The prevalence of the oblique orientation of the bars, has also been
documented in [5] for the inner shelf. This study presents this extention to the original model
to three-dimensions, it also clarifies several key issues that were not covered in the original
presentation, and it also shows how realistic wave spectra can be incorporated in the form
of wave packets [43].

Referring to Figure 3, we envision infragravity waves coming into the purview of the
model at the line x = 0, which is determined in relatively deep water as the location where
the waves begin to be significantly influenced by the bottom topography. The z direction
increases as the wave travels shoreward. The spanwise direction, which is the y coordinate
in our reference frame is approximately parallel to the line of constant phase of the incoming
waves. The waves propagate shoreward, possibly at an angle with respect to the prevailing
direction of maximum gradient of the bottom topography. In the deeper reaches of the shelf,
the drift velocity is produced by waves supported by the picnocline, while in the shallower
end of the ocean where the water column is more isotropic, the drift velocity is a boundary
layer manifestation of the waves on the ocean surface. The extent of the model is limited
in the shoreward direction by the disintegration of the interface supporting the internal
waves, by the approach to the breaking zone for surface waves, by any singularity in the
depth, or by significant energy transter from low to high frequencies that are ignored by
the hydrodynamic modeling. The spanwise direction is limited by the same sort of issues.
Taking advantage of the disparate time scales for bottom and fluid evolution, we assume
that the gently sloping bottom is fixed in the time span in which the water wave begins
its trip towards the shore, progresses, and eventually dissipates in the shallow end of the
model’s purview. Taking advantage of this assumption, we can then decouple the problem:
starting with some initial bottom configuration, we can obtain the hydrodynamics of the
water surface, which evolves on a time scale ¢, say. This in turn yields the drift velocity in
the boundary layer; the resultant drift velocity is then used in a transport equation to update
the bottom topography, which is evolving on a time scale T' that is considerably longer than
t.

A few comments are deserved about the general mechanism for longshore ripple and sand
ridge formation. If a standing-wave pattern exists in the surface waves, whether it be a result
of linear or nonlinear effects, the scouring effect of the waves presumably generates ripples



obeying a Bragg scattering mechanism (see [29]). This is a first-order phenomenon whose
effectiveness in influencing the shape of the bottom topography relies on the existence of
both a reflected and an incident wave. Generally, the reflected component becomes weaker
and weaker the further it travels seaward. Yet, far from the shore there are abundant fields
of large-scale bars. In this deeper region it is suggested that the Bragg mechanism gives
way to the second-order, strictly nonlinear theory that is presented in this study. Thus,
we envision that both mechanisms operate along the continental shelf; but in the very near-
shore reaches, the first-order theory is prevalent, while in the deeper reaches, the second-order
theory prevails.

The second-order drift velocity is not exclusively the result of progressive waves incident
on the shore. Reflected waves may also contribute. For very mild slopes and relatively large
distances from the shore, however, the reflected component is sometimes quite weak. It is
worth emphasizing that the boundary layer drift velocity, which we propose is responsible for
sediment movement, is not strictly a result of nonlinear surface waves. However, we believe
that both nonlinear and dispersive effects in the water waves influence the features of the
sedimentary topography below.

2 Hydrodynamics of the Water-Wave Problem

We believe that striking similarities exists between the typical bar spacing and orientation
and the characteristics of the most energetic water long waves. These waves are nonlinear
and dispersive. The goal in the present section is to develop a crude but useful model for the
important aspects of the overlying hydrodynamics on the surface and in the body of the fluid.
This simple model will retain what we think is the bare minimum phenomenology required
to test our conjecture both analytically and experimentally. To make the connection clear
between the full problem and the crude model, we dedicate this section to formulation of
the simple hydrodynamic model.

Figure 4 is an illustration of the hydrodynamic problem. The free surface is given by
z = n(x,t) and the bottom by z = —H(x,T'), where the notation x = (x,y) is used to denote
the transverse coordinates. A thin boundary layer of thickness ¢ hugs the bottom topography.
The spatial domain for the hydrodynamic problem is Qr = R* x [—H(T) + &,7(t)] ~
R? x [=H(T),n(t)], since § < |H]|. The T is used to remind us that the scale of time
evolution of the bottom is different from that of the fluid environment; hence, it appears
here as a parameter. The fluid is subjected solely to gravitational forcing.

The following introduces the notation to be used throughout this study. The velocity field
is given by (u,w), where the first entry is the transverse velocity (u,v) and w is the vertical
velocity. Position is represented by the vector (x, z). The standard three-component gradient
operator is explicitly split into its transverse and vertical coordinates, so that Vs =V 4 20..
The same convention is followed for the Laplacian operator Asz. Incompressibility and irrota-
tionality are assumed to hold in the bulk of the fluid, and its viscosity is assumed negligible
in Q7. The bottom is taken to be impermeable which together with no-slip conditions for



the fluid /bottom interface leads to
¢, =—-VH-Vo¢, at z=—H, (1)

where
(u,w) = Vso. (2)

Because of the continuity equation, the velocity potential ¢ is harmonic in the flow domain.

At the air-water interface, conservation of momentum requires the pressure to be con-
tinuous. The assumed constant value of the pressure immediately above the water is set to
zero. Hence, the pressure at the interface when the surface is quiescent is zero. Furthermore,
a kinematic condition on the interface leads to ¢, = n; + V-V at z = 1.

2.1 Hamiltonian Formulation of the Hydrodynamic Problem

In this subsection, a useful Hamiltonian formulation of the hydrodynamic problem is pro-
posed. This aspect relies heavily on ideas developed by Zakharov and Shabhat [44], Miles
[45], Bowman [46], and especially Benjamin [47] and Benjamin and Olver [48].

To begin, we note that the motion of the entire fluid body can be determined once the
free surface motion is known. Specifically, if the function n that describes the free surface,
and the velocity potential at the free surface, ® = ¢(x,z = n,t), are known, then Qp is
determined by 1 and ¢ is determined by the condition ¢ = ® at the free surface, together
with the boundary condition at the bottom, the fact that ¢ is harmonic in Qp, and the
asymptotic conditions |V3é| — 0 as |r| — oo.

Consider the Hamiltonian £ = FE(n,®). The choice of label E reflects the fact that
the Hamiltonian for this problem is conserved and is numerically equal to the sum of the
potential energy V and the the kinetic energy K. As shown by Benjamin and Olver [48], the
evolution of the free surface is given by the Hamiltonian system

_ ok
T 5w
Ok
b, = ——
t 5777 (3)

where F is the Hamiltonian.

We specialize Equation (3) for the case of weakly nonlinear shallow-water waves. Define
the parameters @ < 1 and # < 1, where « is characteristic of the size of the nonlinearities
and 3% characteristic of the degree of dispersiveness of the surface waves. In terms of physi-
cally relevant parameters, o« = a/hg and 3 = ho/A, where a is the typical wave height, hg the
characteristic of the fluid column size, and A the typical length of the water waves. Further,
it is assumed that O(a) ~ O(3%). The Stokes number S, which is a measure of the balance
between nonlinear to dispersive effects, is defined as the ratio a/3%. For S < 1, nonlinear
effects are weak, and only a small portion of energy transfer occurs on moderate space-time
scales, so that O(1) nonlinear effects are possible only after very large scales. For S ~ 1,



inertial effects are of the same order as dispersive effects. In view of this, we take n = O(«),
¢ = O(«), and the differentiations 0., 0, V = O(3). We defer the description of the bottom
topography to a later stage, but for now assume that H = O(1), VH = O(«),
An approximation to ¢, which satisfies the boundary value problem, is
o(r,z,t)= ®(r,t) — 12V0(r,t) — =2V-(HVO(r,1))
O(c) O(ai?) O(a?)

which can be easily derived using Rayleigh’s trick [49]. The gradient of the above expression

U(r, 2, t) = u(r,t) — {V[V-(Hu(r,1))] + %ZQV(V-u(r,t))} (4)

gives the velocity anywhere in the inviscid domain of the fluid.
The potential energy is exactly

1
V= /d2r§gn2. (5)
R2

The kinetic energy is calculated by using the approximation developed above for the velocity
potential, Equation (4):
1 H H?
K= [ dr{5(H+n)(VO) + S(VH-VO) - —(V?0)), (6)
R2

which is an expression of O(a’3?), and O(a?3%).

Thus, in terms of the velocity at the surface u = V® and the displacement, the energy
is =V + Ko+ aK;+---, and V is as before. Substituting £ in Equation (3), to lowest
order, yields the wave equation. To the next order,

ne+ Ve[(H +n)u] + V-[uV(H?)-VH + %V(H?’V-u)] =0 (7)
u + (u-Viju+ ¢Vy =0, (8)

a version of a Boussinesq system [50]. The Boussinesq system (BSS) is a shallow-water,
long-wavelength, weakly nonlinear approximation to the Euler equation which admits bidi-
rectional waves as solutions. The version given by Equations (7) and (8), however, has a
couple of troublesome characteristics from the standpoint of modelling a physical situation.
Specifically, the system is linearly unstable and rather poor at conveying accurately the full
dispersion relation [51]. The instability can be shown by the substitution of plane wave
solutions into the linearized version of Equation (8), and the degree to which the equation’s
dispersion relation differs appreciably from the full-water wave dispersion is most apparent
for the higher wavenumbers. By making changes in the dispersive term (i.e., regularizing),
it is possible to overcome the instability problem and improve the agreement between the
full dispersion relation and the long wave limit.
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The BSS is regularized by exploiting the specific form of the bottom topography. Using
the wave equation obtained for lowest order, and the fact that VH = O(«), we approximate

V[uV(H2)VH + %V(H?’V-u)] - —%V-[V(H%)] +0(a). ()

Thus, the regularized system (RB) adopted in this study, as an approximate model for the
water waves, is

et S 4 )] = SV V(0] =0 (10)
u; + (u-Vju+ ¢V = 0. (11)

Since the velocity is in terms of the surface values, rather than in terms of averaged-depth
velocity, say, the irrotational condition, with v and v being respectively the shoreward and
spanwise velocity components, remains in the simple form

Uy = U, (12)

which is quite convenient in the development of three-dimensional problems. We could
use RB as the working model for the hydrodynamics. However, there are good reasons to
simplify further the problem: (1) RB is an initial value problem, requiring that both 7 and
u be known at some time #y. This is obviously problematic in an ocean setting. (2) RB,
or any of its variants for that matter, are not thoroughly understood from a mathematical
standpoint. (3) A far simpler description of the water wave problem, which is to be presented
below, could still be adequate to test the conjecture.
Using the convention in what follows that new « scale x old, we adopt the scaling

9 0

r— 1% (13)

\/_

where hg is a characteristic depth of the water column.
In addition, the spanwise dependence is scaled to reflect the fact that waves are propa-
gating primarily in the shoreward direction. To do so, we assume that there is a constant

¢ < 1 such that
O(|#-K|) = x O(|§-K), (14)

for which a consistent uniform expansion of the RB exists and that is physically relevant.

If nonlinear, dispersive, and weak y variation effects are to balance, the size of the constant
must be of the order of a'/?. Proceeding,

y—£&y  gu—{ju, (15)

which will alter the regularized system but will not affect the irrotational condition, Equation
(12). This scaling was proposed independently in [52], but is actually not new. It is known
as the “parabolic approximation” [53].
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2.2 Description of the Bottom Topography
Let T = O(a't), where

Laboratory data [29] suggests that there are several time scales in this problem: a fast
time scale ¢, and slower time scale 7 = O(at), which measure the evolution of the fluid
quantities. There is yet another slow time scale T = O(a't), where o’ = O(«a) and is
assumed to be fixed by the minimal time scale T' > ¢ in which appreciable changes occur
in the forcing of the infra-gravity waves at « = 0. It is characteristic of the evolution of
the bottom topography. For the sake of simplicity and clarity of presentation, we shall set
o = « here. Some brief comments on this important issue on time scales will be made in
the last section of this paper.

In addition, the data suggests that the typical height and slopes of the longshore sand
ridges are such that ¢ = O(V"h) = O(«). Such restriction is consistent with the approxi-
mations made in the RB. Furthermore, the type of longshore sand ridge under consideration
is such that the measure of longshore spatial variation is larger than the spatial variations
of the fluid quantities. It is suggested that the sand ridge shoreward variation be X = az.
Hence, two scales of shoreward variation exist, so that

O — O+ ad.. (17)

Thus the bottom in scaled variables is
MX,y, T)=1+4cf(X,y,T), (18)

where the function f = O(1).
By substituting an expansion of the form

n = fota'fitd’fat-
= g0—|—oz1g1—|—0é2g2—|-“' (19)

into Equations (10), (11), and (12), and matching order by order, it is possible to solve for
the surface quantities to lowest orders in . Our interest is limited to the lowest-order theory.
We refer the interested reader to [52] for the details of the higher-order theory.

At the first two orders we obtain the relations, with G(X,y,T) = ef Xy D)

&)
0. _
Oél : /:'770 =0 (20)
o ,C771 = g1(770,U0,1)07 G; vavyvt)v
where ,
L = att - axx - %al’l’tt' (21)
L is a linear operator that shows up at every order. The inhomogeneous term G; is
gl = (1 ‘|‘ ﬂ2att/3)n0yy ‘I‘ G(l ‘|‘ 26281515/3)7701’1’ ‘|‘ 2(1 ‘|‘ 6281515/3)77095)( (22)

+(u2/2)s — (wono)wt — (1 — 28°00/3)70,.
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RB is not formally valid for very long evolution distances and are strictly valid for S =
O(1), but they are quite robust [54]. In this study, the value of S is in the range of 10 to 30,
hence the inconsistent appearance of the 3? term at lowest order.

To continue, we assume that the shoreward velocity is

w(z, X,y,t) = Y2 [a;(X,y) + O(a)]eme=%it) + cee.
FE2 [b(X ) + O] elhr=0 e,

where c.c. stands for complex conjugate of the expression immediately preceding its ap-

(23)

pearance. The a’s and b’s are respectively the complex incident and reflected wave packets.
These wave packets are centered at k; and have support Ak; < k;. The reality of the physical
variables implies that a_; = a% and b_; = b%. The spanise velocity at the surface must then
be
v(vavyvt) = Z? 1 —ki[a]y(X y) + O( )] ihye=tdD) 4 ¢
+3000 (0N y) + Oa)]e R 4 ce.

J

(24)

in order to satisfy Equation (12). Since, to lowest order, ug; + 7o, = 0, an expression for the
surface amplitude is readily available: the replacement of the lowest-order velocity into the
momentum equation yields

2

= L PlaXoy) + (@)l e

_2 .

-I-Z—] (X,y) + O(a)]e’he=wit) e e, (25)
j=1 "7

The appropriateness of making use of a small number of packets comes from field data.
Figure 5 suggests that most of the energy in the waves is found in the first few packets [55].
The figure also shows the shifting of energy from lower frequencies to higher ones as the
wave travels shoreward over a decreasing water column depth.

The ansatz in Equation (23) implies that no, = 0 is satisfied. The conditions required
for the omission of such a term as well as its implications are the subject of a concurrent
study [56]. This form of the solution is extremely convenient since it turns the initial value
problem into a boundary value problem.

A solution of the form given by Equations (23), (24), and (25) is valid provided that the
following relation holds between the frequency and the wavenumber:

2
w? — K — =0, (26)
14 5%+

which gives the dispersion relation for the j-th carrier, the positive root k; corresponding to
the shoreward-directed wave, and the negative to the seaward wave.

The solution must also satisty a compatibility condition. Since the dispersion relation for
gravity water waves is such that «'(x) > 0 and w”(k) < 0, perfect resonance is not possible.
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At most we expect what we refer to as “slight resonance.” With ky = 2k; — 6, wy = 2wy,
where the detuning parameter 6 < 0, the compatibility condition is

it

/Xo—l—%/jkl eﬂf’“ll’(g + G7)dx = 0, where j = 1,2 (27)
o J 7 - J =544

Xo

starred quantities conjugated.

Application of the compatibility condition to the lowest-order terms in Equation (22)
yields, after some algebra, the evolution equations for the packet centers in Equation (23),
and Equation (25):

1o+ icf Dy Eray — i€ Fray,, +iaDySe= % ata; =
(o + e f Dy Fyay — i€ Fyagy, + iaDySyetidq?
bie — icf Dy Eyby + i€ Fyby,, — iaDy S1etiobib,
byw — e f Dy Esby + i Fybay, — icDySpe=i0op2 =

(28)

o o o O

having substituted back X = az. The constants are
w? .
D = [2(1- 622?])] '
ki(1 = 56°w7)
1/2k; (29)
—kr‘(;lkl {hy — k1 + wl((}j—; + %)}
Sy = 2(k3/) + 2w])/ws.

SQ%E%E
1

Equation (28), along with appropriate boundary conditions, determines in an approxi-
mate way the ocean surface. The incident and reflected waves are decoupled owing to the
assumptions and restrictions on the spatial variation of the bottom topography. If the spa-
tial scales of variation in the bottom topography in the shoreward direction are of the same
order as those of the surface waves, then scattering plays an important role in the energetics
of these surface waves; hence the reflected component must be included even if the backwash
is negligible. If, on the other hand, the longshore sand ridges being considered were

h(x7X7y7T) = 1 —I_ €f($,X,y,T), (30)

the resulting surface equations, to lowest order, would be

a1y — i f Dy Eyyyay + ie f Dy By g by — i€ Frany, + iaDy Sie~®%aza,
(e — 16 f Dy Byygas + ie f Dy Bapig bye®® — i€ Fyay,, + iaDy Syeti0%42
bio + icf Dy Eyyyby — ie f D1 Erpfay + i€ by, — iaDy Syet07brb,
byw + 12 f Dy Eyby — ic f Dy Eye=28% jF ay + i€ Fybyy, — iaDySye=00b2 =

(31)

o O o O

to O(6/X), with

e p2r/ik .
Y = ]2—;/0 (fow + 2ik; fr — K2 f)da
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_ ]k 27T/jk1 i — 97 |z
fi = 2—;/0 (fow + 2ik; fo — k2 fle™ 7117 da
]k ik . k1@
T T A ) 32

The most striking differences between the way Equations (28) and (31) describe the surface
is that, in the latter case, the terms involving the bottom topography, which attenuate and
modulate the waves as they propagate, involve the bottom topography, its slope, and its
curvature; and the energy in the reflected wave does not depend exclusively on the boundary
conditions.

3 The Mass Transport Problem

The drift velocity is the second-order steady state flow that is created by the passage of over-
lying water waves in the sediment-laden boundary layer that hugs the bottom topography.
The boundary layer is assumed to have a characteristic thickness é6,; < hg. The sediment
in the boundary layer is assumed, without loss of generality, to move from place to place
at a rate equal to the drift velocity. To compute the drift velocity, we must find the fluid
velocity immediately outside of the sediment-laden boundary layer. From Equation (4) in
scaled variables, the shoreward velocity is explicitly

U, = #U(r,—h,t)

= u(r,t) — B h(htge(r.)) + E(hvny (5] + T2 (g (2. 1) + vy (,8))), )
and the spanwise velocity
Vi = §-U(r,—h,1) (34)

= w(r,t) = B{=h(huay(r, 1)) + E(hvyy (r,1))] + 352 (e (v,1) + Evyy (v,1))}
in the neighborhood of the boundary layer. If we neglect the reflected component, the bottom
velocities to lowest order are

Up = U0+52§u0m '
= Yia Cja (X, y)elke=Wit) e e,
‘/Ob = v0_|_62(h2)yu0x+ﬂ2%uoxy
) ; k; W(k;z—
—i 3 o [Cia(Xoy) +ip* 2 (h?), e a0 e,

where C; =1 — ﬂzkfg

(35)

3.1 Hydrodynamics of the Boundary Layer

In the boundary layer the transverse momentum, vertical momentum, and the continuity
equations are, respectively,
u; +u-Vu+wu, = —%Vp + vAu + vu,,
w; + -V + ww, = —%pz + g 4+ vAD + v, (36)
Vau+ w, = 0,
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where v is the assumed isotropic eddy viscosity. Across the boundary layer the flow velocity
changes from zero at the bottom boundary to some finite value characteristic of the exterior
inviscid fluid. The derivatives with respect to z of any flow quantity are thus, in general, much
greater than those with respect to « or y. Hence, within the boundary layer, |Vu| < |u.|,
|V?u| < |u..|, etc. We conclude that the transverse momentum in Equation (36) is well
approximated by

1
u; +u-Vu +wu, = ——Vp+ rvu... (37)
P

The velocity @ must also be small. The continuity statement in Equation (36) suggests that
the boundary layer and w are of equal order of smallness. Therefore, none of the terms
on the left-hand side of Equation (37) can be neglected. If \/ghg is representative of the
magnitude of the velocity u and A represents a distance in the transverse direction over
which u changes appreciably, then (v/gho)?/A = O(u-Vu). Since &, is the boundary layer
thickness, v\/gho /63, is a measure of vu,,. Thus,

O(6;,R/A*) =1, where R = 7”7:“))\. (38)

The dimensionless constant R is the Reynolds number. We assume that the boundary layer
does not change significantly as a function of wave frequency. Thus, A can be replaced by
ho in R, so that R = \/ghoho/v. We arrive, then, at a working definition for the boundary

layer thickness:
dur = \/v[ho(gho)'/?, (39)

which is nondimensionalized by dividing by hg. In this scaling, it is implied that the size of
the Reynolds number and the boundary layer thickness are controlled mostly by the viscous
effects (i.e., the size of v).

To get an estimate of the size of w, we conclude from the continuity condition in Equation
(36) that

w0 = O(B/gho R7V?). (40)

With Equation (40) in hand, we can infer from the vertical momentum balance that p, =
O(éy); that is, the pressure is approximately constant throughout the layer.

For high Reynolds number flow, with éyn = z + h, where z = R'/?z and w = R'?w, the
equations for the boundary layer are

p

pus + affuu, + avuy] + awu, = —%px + Uy

puy + afuv, + avv,] + awv, = — 5Dy + v (41)
Pn = O(bn)

Blus + avy) + 1w, = 0,

having invoked the scaling that reflects weak y dependence of the flow as well. A locally flat
bed has been assumed. In contrast, suppose that the bed had some finite curvature K, say.
This would change the vertical momentum balance in Equation (41) to

pn = KO(u?), (42)
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but the pressure change across the layer is still of O(64), so we are justified in the assumption
that the bed be locally flat.
The following boundary data is used to solve Equation (41):

u=v=w=>0 atn =20 (43)
and
u — Uy
v — Vp, n — oo. (44)

The velocity (U, V3) immediately outside of the layer gives rise to the following pressure
gradients:

_épx = [BUy + aB(UUs, + aVUyy)
_apy = 6‘/1)15 + aﬂ(Ub‘/bx + a%‘/l)y)-

We thus have all the required information to solve for the velocities in the boundary layer.
Performing the usual expansion

(45)

u = &0—|—Oﬂ~ll"'

v o= 1~)0—|—Oﬂ~)1"', (46)
we obtain as the lowest-order equations

511015 — ﬂOnn = 6UObt

517015 - f)Onn = 6‘/0625
47
Do _ 0 (47)
61201’ + wo, = 0.
A solution of Equation (47) of the form
2 .
U = Z OélPl(l', Y, n)el(kﬂx_wﬂt) + c.c., (48)
j=1

subject to the boundary conditions given by Equations(43) and (44), is found by integrating
Equation (47). The same procedure is used to obtain ©. The result is

Uy = ?:1 Cia;(1 — e‘”AJ)ei(kJ“’_wﬂt) + c.c. o
Do = i3 imy ki(BH(R%)yai/2 — Ciagy[K7)(1 —e" el 4 e (49)
we = 1 Z?Zl k;iCia;(1 —nA; — e‘”AJ)/Ajel(kﬂx_wﬂt) + c.c.,

where A; = (1 —¢)y/pw;/2. The vertical velocity w is found by integrating the continuity
equation.

With the expressions for the velocity in the boundary layer, we proceed to obtain the
drift velocity, the source of net movement of the suspended sedimentary particles. The drift
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velocity is the time average displacement rate of a fluid particle. Define the time average of
the quantity A as

(A) = %/f% A(s)ds = 1/;” A(s)ds. (50)

T

The drift velocity [22] to lowest order is obtained by substituting the expressions in (49) in

U = (u)+ <ft u0d§u0x> + <ft wodfu0n> (51)
Vo= (v1) + ([T uodtve,) + (Jf woedtvoy,).

3.2 The Mass Transport Equation

Since the mean slopes in the regions of principal interest here are very low, down-slope
gravitational transport, which is important in the coastal environment, plays a negligible role
in the formation of sand ridges, we assume that sediment movement in regions sufficiently
removed from the shoaling region is accomplished primarily by suspension. Hence, we adopt
results from the Longuett-Higgins theory to characterize the effect of the water waves on the
fluid motion in the boundary layer. Furthermore, since the ratio of bar height to separation
is significantly below the critical value of 0.1 (which has been identified by Sleath [13] as
the value over which flow in the boundary layer separates behind the crests of the bars and
vortex formation takes place), the flow in the boundary layer is adequately characterized by
the lowest-order dynamical quantities. In what follows, the fluid wave field is assumed to
be entirely represented by the incident wave. Further, we assume that the viscous boundary
layer is sediment-laden, composed of cohesionless, rarely interacting, sand particles.

The sediment concentration p in coastal environments has a very weak influence on
the fluid flow [57]. Typical values for the concentration are p ~ 107 — 10™* ppm, and
this situation is assumed thoughout the shelf. Chapalain [57] and Boczar-Karakiewicz
et al. [58] concluded that time independent and vertically uniform parameters of eddy
viscosity and eddy diffusivity are adequate in providing satistactory accuracy for sediment
morphology models on the shelf. In this study we adopt a very simple model for the sediment
concentration [13].

An equation of continuity for the sediment concentration is the advection-diffusion equa-
tion

pe + Ve(up) + [(w—vs)pla = 0, (52)

where vy is the sediment “fall velocity” and n = (z + h(X,y,T))/én. For simplicity assume
that, apart from random fluctuations, u and p do not vary much over small transverse spatial
scales, so that the second term of the above equation may be neglected. In light of this, the
sediment concentration changes at a rate dp/dn proportional to the vertical flux. Hence,

wp = =P, (53)

where v is the diffusivity constant.
The flux, which is the product of the concentration and the velocity, can be split into
a time-dependent part C* and a time-independent part C™. Boczar-Karakiewicz et al. [7]
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found that in the sand ridge areas, the ratio C'*/C™ = O(107%) for the off-shore case. This
situation is assumed to apply throughout the shelf, so that the sediment concentration is
represented solely by its time-independent part. Employing this assumption and substituting
Equation (53) into Equation (52), we have as the equation for sediment concentration

Yp, +vpp = 0. (54)

The boundary condition may be taken as

v Op
L2~ r) (55)
where P(r) has the flavor of Svendsen’s [59] empirical “pick-up function,” which incorporates
such effects as the degree of wave asymmetry and skewness of sediment flux, and a Shield’s
parameter, which sets a threshold fluid velocity at which sediment will be picked up, based on
the sediment particles’” buoyancy and geometry and on the fluid’s velocity field and viscocity.
Solving Equation (54), we obtain as the sediment concentration

p=P(r)e””, (56)

where 0 = vy /5. The fall velocity vy is species-dependent. It is either measured or estimated
by calculating the balance of drag to buoyant forces for a particle falling freely into a static
fluid. The diffusivity constant + is hard to estimate: sedimentologists usually measure its
value in the field.

For the sake of clarity, the mass transport equation is derived by assuming transverse
dependence in the z direction only. The generalization to variations in y follow in a straight-
forward manner. Let T' € [0,00) and IIy € R x [A(T),(], where ( > h(T) + &y, be the
boundary layer time-space domain, and consider a differential “volume” element in such a
domain, as shown in Figure 6, which is bounded on the bottom by the ocean topography
and on the top by a flat lid 2/ = (. It is assumed that the sediment concentration p is
entirely negligible for z/ > ( and moves on fast time scales. In what follows p : Iy — R!.
The sediment concentration and drift velocity are thought to be C''(Il7), and the bottom
topography h € C'(T), and piecewise linear in Il7.

The mass flux per unit length at z in a time interval [T, T + AT] is given by

T+ATd ‘ dz’ v N = T+ATd ‘ dz'M ! 57
/T T/h(l’ﬂ') Z'p(a, 2" (:z:,z)z/T T/h(l’ﬂ') Z'M(x, ). (57)

Consider a portion of the region, say [x,z 4+ Az], in a time interval [T, T + AT]. Since mass
cannot spontaneously vanish or be created, the net amount of sediment between point x
and = + Az must be compensated by a change in the concentration of the sediment or by
a topographical change in the bottom surface. The flux difference in the space and time

intervals [@, 2 + Az], [T, T + AT] is thus

T+ATd ¢ Y Ap. o T+ATd ¢ o / "
/T Tv/h(l’-l—Aac,T) - (x T T2 ) _‘/T T/h(x,q—) ~ ($,Z )7 ( )
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and the total mass in the given portion at time T' is given by

[ [ ae (59)
Z'p(€, 7).
@ h(€,T) P
The change in total mass in a time interval [T, T + AT] resulting from net accumulation is
given by
60
[T e - e [ i), (60)
or equivalently,
e+ Az (6, T+AT)
JRC / d='pl€, ). (61)

Equating (58) and (61), dividing by A:L'AT, and formally taking the limit as Az and AT go

to zero, we obtaian, on the right-hand side,

s+ e A
By AL o s [T dE [LETFAD dzp(e, ) ~
(gT)+ATajﬂl

hmAT—>OA1’—>O A IAT f +A df fh r dZ/p(€7 Z/) = ( )
Oh(z,
pla, bz, T)) ),
and on the other side of the equation,
A g oA g I T AU M (o A ) = [, d=/ M (2,21)) =
A
mA o Ao A;AT rt T{fc (o4 M) dz’[M( ")+ A:Jc—g(x ) 4]
fh(x,T M(z,2")} = limAr_oAp0 A ATACL'f /—fM(l' 2 =
Wz, >+Ax5r
oy 4=/ G (2, 2) .
(63)
Hence, the mass transport equation is
Oh(x,T) K’ o ¢ . .
) _ v d ; 1
or p(x, h(z,T)) Ox /h(x,T) ple, (e, ), (64)

where K’ is a constant of proportionality. Since the boundary layer is assumed very thin,
we may define the mass transport flux as

5bl
/0 pla, 2" U(x, 2"))dz'

T
5bl ! ! !
v = / pla, 2" YV (x,2"))d, (65)
0
so that the transport equation now reads

oh(z,T) K
—or poﬂx- (66)
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The generalization of Equation (66) to one more space dimension is

h(z,y.T) K
Ohta.y, 1) _ Ky, (67)

aT P
where 1 and v are the shoreward mass flux and the longshore mass flux, respectively. Note
that when weak y dependence scaling is adopted in Equation (67), the longshore mass flux
is O(«) smaller than all other quantities in the equation.

In the remainder of this paper, we assume, for simplicity, that the sediment concentration
is constant and equal to p, in the boundary layer. In terms of Equation (51), and upon use
of Equation (65), the calculation of the mass flux components, to lowest order, is

2 2k;C3a L BhiCFlay|”
_ Z aj|” ]_I_ZMI%—FC.C., (68)
wigj i=1 %
where
60' 3 1 —20 5
1y = ojon — T]_§+2(1—5 aj)e o
e 0u [cos o6y — sino;éu][l — Boj(o;0n + 1)] (69)
and

3
IQJ‘ = 5(1/2 — 0']‘551) + 6_20J5bl/4
_e—u [1 4 éyoj] cos o;0m + 2¢=71%0 gin o (70)
for the shoreward mass flux, and

2 *
@Caa]y

W;io;

22: —L LT+ 0(B°) + c.c. (71)

for the longshore directed mass flux, with
1 —20 5bl —0 5bl :
J = ojby—1-— 5(1 — e 2O 4 7% (cos 00y — sinoOy)
1BA; [ (1+ e2750u) 4 = Nbu(is, o2 — 1)), (72)

Before proceeding, two important remarks are in order. First, we note that the bottom
need not be slightly perturbed to initiate the development of bars. Second, the time-scale
discrepancy may be estimated by examining the ratio of the magnitude of the time rate
of change of the bottom to the Eulerian velocity. Such comparison leads in a straightfor-
ward manner to the conclusion that ¢/T = O(«)O(8,)O0(p) ~ O(1077), assuming that the
boundary layer thickness is typically O(107%hg) and the sediment concentration is O(10™%)



21

4 Qualitative Features of the Solutions to the Full
Model

Some of the qualitative features of the full model are presented in this section, using examples
computed numerically with the fixed-point method, which is described in [60]. The main
points of the section are (1) to present the effects of different initial bottom configurations
and boundary conditions on the surface and on the eventual bottom topography after the
passage of many surface waves, and (2) to show that the smaller reflected wave plays a
relatively minor role in determining the shape of the ocean surface and therefore of the
sand-ridge topography when the bottom is assumed to be very mildly sloped.

To better discern the effects of different bottom topographies on the surface waves and
on the eventual bottom topography after the passage of many waves, we now turn to the
case in which the initial bottom configurations are strictly z-dependent and the boundary
conditions are constant. Briefly, in this case, a larger number of bars form when the gradient
is slight, the distance separating the bars increases seaward for the positively sloped case,
and initial bottom discontinuities in the x direction tend to get “smoothed out” after the
passage of many waves.

Waves at T' = 0 that are traveling normal to the shore over topography initially described
by f = 0.006x are displayed in Figure 7. Superimposed, but not drawn to scale, is the
eventual bottom topography. Figure 8 shows the evolution of an initially stepped bottom at
three different times. For these figures a« = 0.1, = 0.2, § = 0.08, and w; = 1.8.

A bottom, which initially had gradients in the y direction, bends the water waves, af-
fecting the eventual bottom topography by producing a series of bars with refractive fea-
tures. Consider, for example, the case in which the initial bottom topography is f(x,y) =
0.0075z — 0.005y , with all other parameters as before, except wy; = 1.2. Figure 9 shows a;
at T'= 0. A striking way in which refraction takes place can be seen in the case for which
the boundary conditions at # = 0 are y dependent. The case for which f(x,y)=0at T =0
and the boundary conditions are A; = 0.5 + 0.001y and Ay = 0.02 4+ 0.001y, corresponding
to an incoming gravity wave that has slightly higher amplitude at one end than at the other,
is shown in Figures 10 and 11 for ay(T = 0) and f(7T = 400AT'), respectively. The eventual
fate of a bottom that initially was smooth but sloped, f(z,y) = 0.0075z — 0.005y, is illus-
trated in Figures 12, 13, and 14. Compare these with Figure 9. The boundary conditions
are 4; = 0.5 and A, = 0.02.

Shown in Figure 15 is the cross section of a1(x,y), and in Figure 16 a comparison of the
eventual bottom with and without contributions from the reflected field. Both figures were
computed by using Equation (28), with A; = 0.5, Ay = 0.01, By = 0.2, and By = 0.; ¢ = 0.2,
a = 0.1, 8 =0.08. The bottom was f(z,y) = 0.0062 at T = 0. The domain was 200 units
long.

As was discussed in Section 2, the reflected and incident fields are completely decoupled,
owing to the assumptions made concerning the bottom topography. The deformations on the
bottom topography due to the reflected component are entirely determined by the amount of
energy in the boundary conditions. Hence, it is necessary to include the reflected component
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when the sea-going wave backwash is not negligible.

5 Conclusions

This study presents the details of a model for the formation and evolution of three-dimensional
sedimentary structures on the continental shelf, based on the energetic interactions of weakly
nonlinear long waves with the shelf’s sedimentary topography. At present, neither the dy-
namics of sedimentation nor those of water waves are fully understood. If the conjecture is
correct, the model will improve in predictive power as understanding of sedimentation and
wave dynamics improve. The more important functions played by the model, however, is
that its development yields clues to ways in which the conjecture itself may be refined and
tested.

The model in its inception was two dimensional. Based on encouraging comparisons
with actual field data, the three-dimensional version was developed. Briefly described, the
present model couples a mass transport equation, which controls the history of the bottom
topography, to a mathematical equation, which describes the evolution of the most energetic
wave packets of surface weakly nonlinear dispersive shallow-water waves with weak spanwise
spatial dependence. To solve the coupled system, one relies on the discrepant time scales of
the bottom evolution and of the water waves to effectively decouple their interaction, making
a solution by iteration possible.

The main conjecture of this study is that a significant, but by no means exclusive, agent
for the formation and evolution of longshore sand ridges on regions of the continental shelf
that are sufficiently removed from the shoaling area is the repeated action of the second-order
oscillatory drift velocity that results from the passage of weakly nonlinear dispersive shallow-
water waves. If this conjecture is correct (1) close correlation exists between the interbar
spacing and the length in which significant energetic exchanges among the most powerful
components of the spectrum of the shallow water waves takes place; (2) close correlation
exists between the evolutionary time scales for the bars and the time required for highly
coherent nonlinear dispersive wave trains to impart sufficient energy into a boundary layer
to significantly transform a sediment-laden bottom topography; (3) longshore sand ridges
may be found in areas in which an ample supply of sediment is available and in which no wave
breaking occurs and/or in which the reflected field is absent or negligible; (4) sand ridges with
highly organized characteristics may be found in regions in which energetic coherent weakly
nonlinear dispersive waves exist; (5) the energy of these waves is of the correct magnitude to
significantly affect the topography of a sediment-laden bottom; (6) the spacing of the bars
correlates with the degree of nonlinearity and dispersion of the waves and their orientation
is affected proportionally to ¢ by the propagation direction of the waves; (7) The bottom
topography evolves in time scales measured in T" that are much longer than the characteristic
times of evolution and adjustment of the water waves, which are in turn measured in ¢ and
T respectively.

T is really a measure of the time scales in which changes occur in the wave forcing. In this
study we assumed that for infra-gravity waves, the characteristic time ¢ for their evolution
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is always shorter than the time T' required for appreciable changes to occur in the oceanic
forcing. This basic aspect of the model deserves further study. Evidence must be collected
in field studies which confirm that the time scales for the changes in the morphology of the
bars are related to the changes in the infra-gravity forcing. Another basic assumption of the
model is that the bars will evolve in a smooth manner unless there are appreciable changes
in the oceanic forcing. This also needs to be confirmed in field studies.

In the future the wave packet representation of the water waves will be replaced with
a better water wave description. Bottom drag and the effects of oceanic currents will be
included as well. Bona and Saut [61] are studying the different versions of the Boussinesq
system in order to determine, among other things, which variant best models oceanic waves
and which is well-posed as a boundary value problem. Since the model applies for the deeper
reaches of the shelf a variant of this model for a simply stratified ocean is in the works. The
more immediate task is to fully understand the current model and to develop a sensible
prescription for testing it against real data.

The sensible way to test the model is, of course, to examine oceanic field data. Compar-
isons with oceanic field data can give an idea of the predictive powers of the model; perhaps
laboratory experiments would be most fruitful since the water waves are better characterized
and controlled in this setting. Unfortunately the sediment problem does not scale well in
the laboratory. The task of making field observations, particularly in the three-dimensional
case, is a tedious, expensive, difficult enterprise, and beyond the expertize of the authors.

Several aspects of the model can be tested in the laboratory. The drift velocity created by
shallow water waves of the type identified here as responsible for the formation of longshore
sand ridges could be observed and studied in a laboratory setting since they may be studied
in a plume with a fixed bottom. Comparisons between the laboratory experiments and the
drift velocity measurements in sand ridge fields could prove fruitful. In particular, the model
assumes that the adjustment of the bottom /surface is a gradual process; thus, it would
be interesting to see whether the drift velocity is capable of changes in character to that
produced by the surface waves.

Field observations are needed to (1) determine the importance of both the reflected wave
field and oceanic currents in determining the nature of the drift velocity in sand ridge areas;
(2) correlate in some way the beginning and end of ridge fields and the physical location at
which water waves are created and eventually destroyed; (3) track the relevant wave spectra
in order to see evidence of the predicted pattern in energetic interaction lengths and its
correlation to features of the bottom topography; and (4) determine what other essential
features of the sandridge formation should be included in this crude model to make it more
robust.

Laboratory observations are required to determine how well the various Boussinesq sys-
tems model the weakly nonlinear shallow-water waves. Additionally, more experiments aimed
at furthering our understanding of the motion of sediment in the boundary layer are needed.

Elgar and his collaborators [54] have examined the issue of the recurrence of solutions
to the modally truncated Boussinesq equation numerically in the Stokes parameter regime
of O(1). They found that the two-mode case, displays recurrence-like solutions over a great
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many wavelengths. They found that as the number of modes is increased, the recurrence is
confined to fewer and fewer cycles; initially very narrow spectra undergo more recurrence-like
cycles, before the spectra flatten, than do initially broad-banded spectra. Their conclusion
is that recurrence-like solutions are an artifice of a severely truncated modal expansion of
the Boussinesq equation which then puts doubt in the validity of the conjecture made in
this study. They assume, unfortunately, that “Fermi-Pasta-Ulam recurrence” rather than
local correlation is a necessary condition for the formation of sand ridges by some forcing
action. They also incorrectly assume that their modal formulation for the surface waves and
our formulation are analogous. These objections are the subject of a forthcoming article
[56]. For now we remind the reader that the observations of Elgar et al. do not weaken in
any way our conjecture that weakly nonlinear shallow-water waves may be responsible for
the formation and evolution of sand ridges, since there is more than ample observational
evidence that these nonlinear waves travel coherently over very vast spans of ocean over
regions where sand ridges are a prominent feature of the ocean floor.

While comparisons between field data and the two-dimensional model are very encourag-
ing and this three-dimensional extention should therefore find applicability in the real-world
environment, any topographical chart of the continental shelf provides a good reminder of
the long path yet to travel toward a complete understanding and model of the full problem.
If this study has piqued the curiosity and compelled the reader to take a closer look at
sandbars, it will have succeeded.
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Figure 6: Volume element used in the derivation of the mass trasport equation
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