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iiAbstractLongshore sand ridges are frequently observed to occur on the continental shelfwhere the overlying ocean is strati�ed. This study formulates a model for the formationand evolution of three-dimensional longshore sand ridges on the continental shelf. Themodel is based on the interaction of interfacial, weakly nonlinear waves in a strati�edocean with the sedimentary bottom topography.



11 IntroductionLongshore sand ridges are underwater barlike features composed of loose granular sediment.Sand ridges hundreds of meters long and up to a few meters high are usually found ingroups, arranged in more or less parallel rows separated from each other by hundreds ofmeters oriented normal or at some small angle to the direction in which the overlying waterwaves propagate [McBride & Moslow1991].Shallow-water, weakly nonlinear interfacial waves appear as highly coherent groups hav-ing well-de�ned wavelength and are observed propagating shoreward on a density strati�ca-tion, such as the picnocline. Their crests are generally oriented along isobaths [Apel1979,Baines1981]. Their wavelengths range from 200 to 1600 meters, depending on the depth,which can be considerably larger than the local water column depth. An estimate of theenergy contained in the larger ones is in the order of 0:1 MJ/m2. They have been seen toappear twice a day in some areas, coinciding with the tidal cycle, and originate mostly inplaces where there are sharp changes in the bottom topography, such as on the edge of thecontinental shelf. Since the contribution of coriolis forces in this problem is negligible (i.e.,the wave periods for the waves under consideration range between fractions of a minute andan hour), the sole forcing agent is gravitational. As the density strati�cation collapses inthe shallower reaches of the shelf, the water column is no longer able to support an internalwave. Hence, in our formulation of the model for the internal wave case, we assume that thewave �eld is strictly unidirectional.As a result of experimental observations of sand structures acted upon by water waves[Boczar-Karakiewicz, Amos & Drapeau1990], a two-dimensional model for the formationand evolution of sand ridges was proposed in [Boczar-Karakiewicz, Bona & Cohen1986].This model was informally tested against �eld data, and based on encouraging results, wasextended to three-dimensions, with the aim of making it more relevant to the ocean setting[Restrepo & Bona1993]. In addition to complementing this last study, the present studyshows how the mechanism may be extended to the situation in which a simply strati�edocean approximation is needed. The primary motivation for considering the strati�ed caseis that the mechanism is applicable in the deeper reaches of the continental shelf, and forreasons given later, it may be easier to test in the ocean setting than the version presentedin [Restrepo & Bona1993]. A secondary motivation is to show how this model accounts fortime-dependent forcing.Referring to Figure 1, we envision infragravity waves coming into the purview of themodel at the line x = 0, where the long waves begin \feeling" the bottom topography. Theshoreward direction, x, increases as the wave travels shoreward. The spanwise direction,given by y, is approximately parallel to the line of constant phase of the incoming waves.The waves propagate shoreward, possibly at an angle with respect to the prevailing directionof maximum gradient of the bottom topography. The extent of the model is limited in thelongshore direction by the disintegration of the interface supporting the internal waves, bythe approach to the breaking zone, by any singularity in the depth, or by signi�cant energytransfer from low to high frequencies, re
ecting a severe imbalance between nonlinear and



2dispersive e�ects in the wave train. The spanwise direction is limited by the same sort ofissues. The absence of a re
ected component originating, perhaps, in the shoaling regionmay be justi�ed by the collapse of the density strati�cation in the shallower reaches of theshelf, the water column no longer being able to support an internal wave.Field data from the continental shelf suggests that there are two time scales: a fasttime scale t, which measures the evolution of the 
uid quantities, and a long time scale Twhich measures the evolution of the bottom topography. In addition, the data suggests thatthe typical height and slope of the longshore sand ridges, represented in this study by thefunction h, is such that " = O(rnh) = O(�), where � is a small-valued parameter typicalof the ratio of the amplitude of the water waves to the depth of the water column belowthe 
uid interface in an assumed two-density 
uid. Furthermore, the type of longshore sandridge under consideration is such that longshore spatial variation is larger than the spatialvariations of the 
uid quantities. It is proposed that the sand ridge shoreward variation beX = �x. Hence, two scales of shoreward variation exist, so that@x ! @x + �@X (1)@t ! @t + �@� : (2)We will assume in this study that the conditions are such that @� = 0. The bottom in scaledvariables may be represented byh(X; y; T ) = 1 + "f(X; y; T ); (3)where the function f = O(1).The plan of this paper is as follows. In Section 2, the main hydrodynamical issues for theinternal waves are considered, as well as the mass transport problem. In order to illustratethe main features of the model, Section 3 presents a few computed examples, followed inSection 4 with some closing remarks and suggestions for future work.2 The HydrodynamicsWe begin by developing the Hamiltonian formulation to the two-
uid internal wave problem,relying on Bowman's work [Bowman1986]. As illustrated in Figure 2, the domain is describedby 
1 � R2 � [�H; �], and 
2 = R2 � [�;D]. The lower layer (1) has a uniform density�1, and the upper layer (2) a density �2 < �1. The 
uid is subjected solely to gravitationalforcing. The velocity �eld is now given in each layer by (u; w)i, where the subscript refersto layer 1 or 2. The interface between the two 
uids is given by z = �(r; t) and the bottomby z = �H(r; T ). The transverse variable r = (x; y), where x increases shoreward and y isthe spanwise coordinate. The 
uid is assumed incompressible and irrotational in each layer.In terms of a scalar potential, the velocity is given by (u; w)i = r3�i. From conservationof mass, the equations of motion within the 
uid are �3�i = 0, in 
i. At the interface, thepressure is continuous; hence the dynamical boundary condition is �i;t = �12 jr3�ij2 � g�i�,at z = �.



3The bottom, which is assumed impermeable, has a normal velocity that agrees with thatof the 
uid. Thus �1;z = �rH�r�1 at z = �H. The kinematic condition on the interfaceis D(z��)Dt = 0, or �i;z = �t +r�i�r� at z = �. Finally, we make the simplifying \rigid-lid"assumption �2;z = 0; at z = D, (4)the constant air-water interface.With conjugate variables � and U � �2r�2� �1r�1 the Hamiltonian system that yieldsthe description of the dynamics of the internal waves takes the form�t = �r�( �E�U)Ut = �r(�E�� ); (5)where the Hamiltonian E is numerically equal to the sum of the potential and the kineticenergy for this problem.The potential energy is simplyV = ZR2 d2r12g(�1 � �2)�2: (6)The total kinetic energy is the sum of contributions from both layers; thusK = �1 ZR2 d2r �Z�H 12 jr3�1j2dz + �2 ZR2 d2r DZ�� 12 jr3�2j2dz = K1 +K2: (7)De�ne the parameters �� 1, and � � 1. Assume that O(�) � O(�2), and take H = O(1),rH = O(�), � = O(�), � = O(�). Further, consider the di�erentiations @z; @t;r = O(�).Referring to the results from [Restrepo & Bona1993], we calculate the kinetic energy inthe lower layer using an approximation for the velocity potential,�1(r; z; t) = �1(r; t) � 12z2r2�1(r; t) � zr�(Hr�1(r; t)),O(�) O(��2) O(��2)so that K1 = �1 ZR2 d2rf12(H + �)(r�1)2 + H2 (rH�r�1)2 � H36 (r2�1)2g; (8)which is an expression of O(�3�2) and O(�2�4).The boundary condition given by Equation (4) can be exploited to �nd K2 as a surfaceintegral. Using Green's theorem and assuming that the gradients of the potential tend tozero as jr j ! 1, we have K2 = ��2 ZR2 d2rr�1r�2: (9)



4De�ne the pseudo-di�erential operator G � �k coth(HkD). Its precise structure isa result of satisfying the boundary conditions on the interface and on the ocean surface.Adding the expressions for K1 and K2, using the de�nition of U, and the operator G, weobtain as the total kinetic energyK = 12 ZR2 d2rf 1�1 (H + �)U2 + H2�2�21 U�GU + �2H�21 (rH�U)2g+O(�3�2); (10)or rearranging,K = 12 ZR2 d2rf 1�1 [(H + �)� H2�2�21D ]U2 + H2�2�21 U�MU + �2H�21 (rH�U)2g+O(�3�2); (11)where M = ID +G = 1D � k coth(HkD).Depending on the size of D=�, there are three physically distinct possibilities:� If D=� � 1, then U�MU = O(�2D=�2), and M � 1=D � Dr23 . For this case, theterms �U�U and U�MU balance if �2D=�2 � 1. A Boussinesq system is obtained.� If D=� � 1, then U�MU = O(�2=�). For this case, if ��2=D � 1, the result is theintermediate long-wave equation.� If D=� � 1, then U�MU = O(�2=�), and M � jk j. If �� � 1, the outcome is theBenjamin-Ono equation.Note that this last case corresponds to a very deep upper layer, lying over a thinner lowerlayer, and hence is not considered relevant in this study. In the ocean setting the densitystrati�cation is most appropriately described by a continuous function with respect to depth.However, if a two-
uid approximation is adequate, the relevant case to the problem at handamong those presented above is the �rst one.By substituting the expressions for the potential and kinetic energy, Equations (6) and(11), into Equation (5), the general equation for the dynamics of the internal wave �eld isobtained: �t = �r�f[ 1�1 (H + �)� H2�2�21D ]Ug � �2�21r�fH(rH)2U+H2MUgUt = �r�f 12�21U�U+ (�1 � �2)g�g: (12)The result from linear theory may be recovered by neglecting second- and higher-order termsin Equation (12). The solutions proportional to expfi(kx� !t)g satisfy!� = ( 1�1 � �2H�21D + �2HM�21 )kHU!U = k(�1 � �2)g�: (13)



5Thus, c2 � !2k2 = g(�1 � �2)�1 [1� �2�1Hk coth(kD)]: (14)The relevant case in this study is the �rst one:�t = �r�f 1�1 (H + �)Ug � �2�21r�fH(rH)2U+ 13H2Drr�UgUt = �r�f 12�21U�U+ (�1 � �2)g�g: (15)Equation (12) may be shown to be linearly unstable [Bona1975]. To circumvent thisproblem, we carry out an ad-hoc procedure that \regularizes" the equation. The lowest-order relations �t = �r�f 1�1HUgUt = �rf(�1 � �2)g�g (16)are used to modify the troublesome parts of the dispersive terms to get the regularized modelfor the hydrodynamics relevant in this study, namely,�t = �r�f 1�1 (H + �)Ug+ D�23�21 r�[r(H�t)]Ut = �rf 12�21U�U+ (�1 � �2)g�g: (17)Let 
 � (�1��2)�1 be the Boussinesq parameter, and let the typical thickness of the lowerlayer be h0. The scaling adopted here ist pgh0t� U ph0U�1pga �  �=a h Hh0 d Dh0 r r� ; (18)where the convention new scale� old is being used. Equation (17) is, in scaled variables,�t +r�f 1�1 (h+ ��)Ug � d�2 �23�1r�[r(h�t)] = 0Ut +rf12U�U + 
�g = 0: (19)Additionally, the spanwise variables are scaled to re
ect the weak spanwise dependence ofthe waves: y  �1=2y ŷ�u ��1=2ŷ�u: (20)We think of � = O(�1=2).The substitution of a uniform expansion of the form� = f0 + �1f1 + �2f2 + � � �U = g0 + �1g1 + �2g2 + � � � (21)into Equation (19), followed by matching order by order yields the internal wave equationto lowest orders in �.



6Explicitly, after crossdi�erentiating Equation (19),�0 : L�0 = 0�1 : L�1 = G1(�0; u0; v0; G;x;X; y; t)�2 : L�2 = G2(�0; u0; v0; �1; u1; v1; G;x;X; y; t) (22)where L = @tt � 
@xx � d�2�2@xxtt3�1 ;G = "�f(X; y; T ): (23)The inhomogeneous term in the �rst-order equation is given byG1 = (
 + d�2�2@tt3�1 )�0yy +G(
 + d2�2�2@tt3�1 )�0xx + 2(
 + d�2�2@tt3�1 )�0xX+(u20=2)x � (u0�0)xt: (24)Assuming that lowest-order wave packet expansion for the surface velocity is of the formu0(x;X; y; t) = P3j=1 aj(X; y)ei(kjx�!jt) + c:c::; (25)and making use of the lowest-order relation u0t + 
r�0 = 0 to obtain the surface amplitude�0(x;X; y; t) = 3Xj=1 !j
kj aj(X; y)ei(kjx�!jt) + c:c: (26)we are able to obtain a lowest order description of the internal waves in terms of wavepackets centered at kj with support �kj < kj . A solution of the above-mentioned form ispossible if the relation between the frequency and wavenumber of the wave carriers satis�esthe dispersion relation, having inconsistently assumed that the dispersive term operates atall orders, !2j � k2j
 + d�2�2k2j3�1 = 0: (27)The solution must also satisfy the compatibility conditionjk12� Z X0+2�=jk1X0 e�ijk1x(Gj + G?j )dx = 0;where j = 1; 2; 3; (28)starred quantities conjugated.As discussed in [Restrepo & Bona1993], only weak resonance is to be expected. Substi-tuting Equations (25) and (26) into Equation (22) and applying the compatibility condition,we obtain, for the weakly resonant triad case in which k2 = 2k1 � �, !2 = 2!1, where thedetuning parameter � � 0, the equations for spatial variation of the �rst two wave packets:a1x + i"fD1E1a1 � i�F1a1yy + i�D1S1e�i�xa?1a2 = 0a2x + i"fD2E2a2 � i�F2a2yy + i�D2S2e+i�xa21 = 0; (29)



7to O(�=X). The constants areDj = 1=2(1 � d�2�2!2j3�1 )Ej = kj(
 � d2�2�2!2j3�1Fj = 1=2kjS1 = k2�k1!1 fk2 � k1 + !1
 (!1k1 + !2k2 )gS2 = 2!2k21 + 2!21: (30)For three wave packet weak resonance the relation among the frequency and wavenumbers!j = j!1, k2 = 2k1� �, and k3 = 3k1�� is given by the dispersion relation. The procedureis the same as the two wave group case and yieldsa1x + i"fD1E1a1 � i�F1a1yy + i�D1S211e�i�xa?1a2 + i�D1S321ei�xa?2a3 = 0a2x + i"fD2E2a2 � i�F2a2yy + i�D2S2e+i�xa21 + i�D2S312ei�xa?1a3 = 0a3x + i"fD3E3a3 � i�F3a3yy + i�D3S3e�i�xa1a2 = 0; (31)to O(�=X). The constants are, with subscripts 1; 2; or 3,Dj = 1=2(1 � d�2�2!2j3�1 )Ej = kj(
 � 2d�2�2!2j3�1 )Fj = 1=2kjS3 = k2+k1!3 fk2 + k1 + 3!1
 (!1k1 + !2k2 )gS2 = 2!2k21 + 2!21Sijl = ki�kll!1 fki � kj + l!1
 (!iki + !jkj )g: (32)In this study we restrict our attention to the triad case.2.1 The Mass Transport ProblemThe drift velocity is the second-order steady state 
ow in the sediment-laden boundary layerthat hugs the bottom topography generated by the passage of the overlying water waves.The boundary layer is assumed to have a characteristic thickness �bl � h0. For simplicitythe sediment in the boundary layer is assumed to move from place to place at a rate equalto the drift velocity.In order to compute the drift velocity, an explicit expression for the 
uid velocity imme-diately outside of the sediment-laden boundary layer is required. From inviscid theory, inscaled variables, the shoreward velocity is explicitlyUb � 
x̂�U(r;�h; t)= 
u(r; t)� 
�2f�h[(huxx(r; t)) + �(hvxy(r; t))] + 12h2(uxx(r; t) + �vxy(r; t))g; (33)



8and the span-wise velocityVb � 
ŷ�U(r;�h; t)= 
v(r; t)� 
�2f�h[(huxy(r; t)) + �(hvyy(r; t))] + 12h2(uxy(r; t) + �vyy(r; t))g (34)in the neighborhood of the boundary layer. The bottom velocities to lowest order areU0b = 
(u0 + �2 h22 u0xx)= P2j=1 Cjaj(X; y)ei(kjx�!jt) + c:c:V0b = 
v0 + 
�2 (h2)y2 u0x + 
�2 h22 u0xy= �iP2j=1 1kj [Cjajy(X; y) + i
�2 kj2 (h2)y]ei(kjx�!j t) + c:c:; (35)where Cj = 
(1� �2k2j h22 ).As shown in [Restrepo & Bona1993], for high Reynolds 
ows, the equations of motion inthe boundary layer are given by �~u0t � ~u0nn = �U0bt�~v0t � ~v0nn = �V0btp0n = 0�~u0x + ~w0n = 0; (36)to lowest order.A solution of Equation (36) of the form~ul = 2Xj=1�lPl(x; y; n)ei(kjx�!jt) + c:c:; (37)with a similar representation for ~vl, subject to no-slip boundary conditions on the bottomand matching of the inviscid solution to the boundary layer solution su�ciently far abovefrom the bottom, is found by integrating Equation (36). The result is~u0 = P2j=1 Cjaj(1� e�n�j )ei(kjx�!jt) + c:c:~v0 = iP2j=1 kj(�2(h2)yaj=2 �Cjajy=k2j )(1 � e�n�j)ei(kjx�!j t) + c:c:~w0 = i�P2j=1 kjCjaj(1� n�j � e�n�j )=�jei(kjx�!jt) + c:c:; (38)where �j = (1 � i)q�!j=2. The vertical velocity ~w is found by integrating the continuityequation.The drift velocity [Longuett-Higgins1953] is given byU = hu1i+ hR t ~u0d~t~u0xi+ hR t ~w0d~t~u0niV = hv1i + hR t ~u0d~t~v0xi + hR t ~w0d~t~v0ni: (39)It is assumed that the viscous boundary layer is sediment-laden, composed of cohesionless,rarely interacting sand particles.



9The mass transport equation [Restrepo & Bona1993] is@h(x; y; T )@T = K�0 (�x + �y); (40)where �0 is the mean sediment concentration and � and � are the shoreward mass 
ux andthe longshore mass 
ux, respectively:� � Z �bl0 �(x; z0)U(x; z0))dz0� � Z �bl0 �(x; z0)V(x; z0))dz0: (41)Note that when weak y dependence scaling is adopted in Equation (40) the longshore mass
ux is O(�2) smaller than the shoreward 
ux.In the remainder of this study, we assume, for simplicity, that the sediment concentrationis constant and equal to �0 in the boundary layer. In terms of Equation (39), and upon useof Equation (41), the mass 
ux components, to lowest order, are� = 2Xj=1 2kjC2j jaj j2!j�j I1j + 2Xj=1 �kjC2j jaj j2�3j I2j + c:c:; (42)where I1j = �j�bl � ��j2 � 32 + 12(1� ��j)e�2�j�bl+e��j�bl[cos�j�bl � sin�j�bl][1� ��j(�j�bl + 1)] (43)and I2j = 32(1=2 � �j�bl) + e�2�j�bl=4�e��j�bl[1 + �bl�j] cos �j�bl + 2e��j�bl sin�j (44)for the shoreward mass 
ux, and� = 2Xj=1 iC2j a?jajy!j�j Jj +O(�3) + c:c: (45)for the longshore directed mass 
ux, withJj = �j�bl � 1� 12(1 � e�2�j�bl) + e��j�bl(cos�j�bl � sin�j�bl)+��j [12(1 + e�2�j�bl) + e��j�bl(i�bl�j=2 � 1)]: (46)



10The quantities I11, I21, and J1 are plotted parametrically in Figures 3, 4, and 5.The hydrodynamic forcing, which shows up in the boundary conditions ai(x = 0; y),may be changing in time. Since the adjustment time for the water waves is in time scalesgreater than t, it is suggested that the boundary conditions that appropriately re
ect variableforcing condition is ai(0; y) = Ai(y; T ). To summarize, then, the internal waves are obtainedby solving the systema1x � iK1a1yy + iK3f(x; y)a1 + iK5e�i�xa?1a2 = 0a2x � iK2a2yy + iK4f(x; y)a2 + iK6e+i�xa21 = 0a1(x = 0; y) = A1(y; T )a2(x = 0; y) = A2(y; T ) (47)plus appropriate boundary conditions on y = 0 and y = N . The K coe�cients are O(�; "),and are given by Equation (29) and Equation (30). The bottom evolution, on the otherhand, is Equation (40): @@T h(x; y; T ) = K�0 (�x + �y)h(x; y; 0) = H(x; y): (48)Equations (47) and (48) constitute the full model.The solution of the system is achieved by using the following prescription: The initialbottom con�guration H(x; y) determines the function f(x; y) in Equation (47) at T = 0.The 
ow on the interface is found by solving Equation (47). The drift velocities � and � arecomputed and used in Equation (48) to update the bottom h. The new bottom is then usedin the triad equations, and the whole process is repeated until some T �nal. In the iterationprocess the boundary conditions are updated, should the conditions for the forcing are timedependent.3 Qualitative Features of the SolutionsSome of the main qualitative features of the full model were presented in [Restrepo &Bona1993]. Further examples are presented here and are meant to give the reader a morecomplete picture of the model's behavior.To better discern the e�ects of di�erent bottom topographies on the internal waves andon the eventual bottom topography after the passage of many waves, we now turn to thecase in which the initial bottom con�gurations are strictly x-dependent and the boundaryconditions are constant. Brie
y, in this case, a larger number of bars form when the gradientis slight, the distance separating the bars increases seaward for the positively sloped case, andinitial bottom discontinuities in the x direction tend get \smoothed out" after the passageof many waves.Figure 6 shows the bottom topography, which wasf(x; y; 0) = ( 0:005x x > 180:00 otherwise (49)



11at T = 0. The lighter line represents the bottom pro�le at T = 20�T ; the darker line is thebottom at T = 80�T . The parameters are � = 0:1, " = 0:2, � = 0:36, and !1 = 1:2. Forthe same range of parameters, Figure 7 shows the e�ect on the surface and on the eventualbottom of an initial topography that is approximately tuned to the interaction length of thesurface waves.A bottom that initially had gradients in the y direction bends the water waves, af-fecting the eventual bottom topography by producing a series of bars with refractive fea-tures. Consider, for example, the case in which the initial bottom topography is f(x; y) =0:0075x�0:005y , the domain is 240�x in length, and all other parameters as before. Figure8 shows the refracting bottom at T = 400�T . A striking way in which refraction takes placecan be seen in the case for which the boundary conditions at x = 0 are y dependent. Shownin Figure 9 for f(T = 400�T ) is the case for which f(x; y) = 0 at T = 0 and the boundaryconditions are A1 = 0:5 + 0:001y and A2 = 0:02 + 0:001y, corresponding to an incominggravity wave that has slightly higher amplitude at one end than at the other.Interesting con�gurations are achieved when the above-mentioned e�ects are combined.Figure 10 illustrates the refraction pattern on one of the packet centers for which A1 =0:5� 0:001y, A2 = 0:1� 0:001y, and the bottom at T = 0 was f(x; y) = 0:01y.Another curious change in pattern direction is illustrated in Figure 11. In this caseA1 = 0:5 � 0:001y, A2 = 0:1 + 0:001y, and the bottom at T = 0 is f(x; y) = 0:01y. All theparameters in Figure 11 are the same as those in Figure 10.4 Concluding DiscussionThis study shows how internal waves on the continental shelf, supported by the interface ina two-
uid idealization of the strati�ed ocean, may be capable of generating structures on asandy bottom that resemble sand ridges. It is conjectured that a signi�cant but by no meansexclusive agent for the formation and evolution of sand ridges is the second-order boundarylayer drift velocity that results from the passage of overlying nonlinear dispersive waves withwavelengths that are signi�cantly greater in extent than the local water column depth. Sincethe scouring action of the drift velocity has wave-like spatial structure, it produces coherentundulating patterns on the sandy bottom. While there are several types of sand ridges (andmost likely, a variety of sources for their formation), our model represents (albeit crudely) asensible explanation for the formation of longshore sand ridges that occur on the continentalshelf, far from the shoaling area, in which wave breaking is a rare occurrence, the wave �eldis nearly devoid of a re
ected component, and a simply strati�ed water column is present.While linear nondispersive gravity waves can produce a second-order drift velocity in theboundary layer hugging the bottom topography, we conjecture that weakly nonlinear disper-sive water waves are more likely to be the agents of formation. The claim is that there existsa closer correlation between interbar spacing and the interaction length rather than with thewavelength of the waves, which would be the case for linear waves. The interaction length isa local quantity which coincides with the distance in which the most energetic interactions inthe spectrum of the nonlinear water waves takes place, rather than the recurrence distance



12which some authors have supposed [Elgar, Freilich & Guza1991]. In the two wave packetcase this distance would correspond to the length in which energetic interactions betweenthe wave packets takes place and happens to coincide with the recurrence as de�ned [Elgar,Freilich & Guza1991] for the two-mode case.Preliminary experimental evidence supports the claim that a relation may exist betweenthe features of the nonlinear long waves and the bars. Boczar-Karakiewicz et al. [Boczar-Karakiewicz, Paplinska & Winieki1981], in a series of laboratory experiments, observed arelationship between the frequency, the amplitude, and the dispersion, in the waves and thebar spacing. As described in our model, the interaction length is a nonlinear relation thatdepends on the frequency, the dispersion, and the nonlinearity of the wave. For the two-dimensional case with a 
at bottom the dependence of the interaction length as a functionof the detuning parameter is portrayed in Figure 12. Figure 13 and Figure 14 illustratethe dependence of the interaction length on the size of the nonlinear parameter �, and thedispersion parameter �. The relevant size of the parameters � and � in the sand ridge caseis as high as 0:15 for �, and 0:005 < � < 0:15. From the graphs it may be inferred that theinteraction length is more sensitive to dispersion than to nonlinearity for the above-mentionedranges of � and � in qualitative agreement with the aforementioned experiments.An interesting question that has thus far received little attention is the subject of steady-state bottom con�gurations. In numerical simulations of the present model it has beenobserved that a common but by no means exclusive long-time outcome for the evolution ofthe bottom topography is one in which the structure of the wave packet centers and thatof the bottom have similar qualitative features. It is also quite common in these numericalsimulations for the bottom to reach its steady state in a gradual fashion rather than in smallspurts of high activity followed by relative inactivity, a common observation in the formationof sand ripples [Boczar-Karakiewicz, Benjamin & Pritchard1987]. Since the temporal char-acterization of the evolution of actual sand ridges has not yet been systematically measured,it is di�cult at present to judge whether the temporal behavior of the sand ridges createdwith the present model is in fact correct.A number of interesting aspects of sand ridge dynamics require �eld observations. Oneis the measurement and characterization of the boundary layer velocities and the search forobservational evidence of a periodic structure in the drift velocity that can be correlated insome way to the passing waves. Another interesting observational project is the measurementof the evolution of the spectra of internal waves in sand ridge evolution time scales, the aimbeing to discern how the waves change with morphological changes in the bottom topography.By far the most di�cult experiment would entail the observation of the actual evolutionof the bottom topography. If the working assumption is that there may be a variety ofagents contributing to the formation and maintenance of sand ridges, we need to thoroughlyunderstand the present model and/or improve upon it with an eye towards developing aclearly veri�able experimental criteria that will enable us to di�erentiate this mechanismfrom any other, since a naive comparison between the present model and �eld data willcontribute little to the validation of the conjectured mechanism. Since interfacial internalwaves of the sort relevant to the conjecture are, in some instances, more readily identi�able in



13the ocean setting than are the surface waves; since they usually develop as strictly progressivewaves; and since the place at which they originate, say, a large promontory or the edge ofthe continental shelf, and the location where the strati�cation is no longer signi�cant, canbe �xed in the ocean setting, the model presented in this study could conceivably be testedwith some con�dence, we hope to generate interest among observational oceanographers sothat such experiments may be carried out. Some comparisons have been carried out withavailable data from the coast of Eastern Australia and New Foundland, however, the datawas incomplete.Beardsley et al. [Beardsley et al.1985] have shown that in areas o� the coast of EasternUnited States the strati�cation required to support the propagation of internal waves occursonly during summer, a period in which less sedimentary movement has been observed. Whilethere is data that shows that there is a noticeable increase of motion of sandy material duringwinter storms, the authors do not imply that no sediment movement occurs at other timesof the year over seasonal time scales. Furthermore, the appearance of winter storms doesnot explain the high degree of order in the ridges. The conclusion that sand ridges cannotbe formed by internal nonlinear long waves which may pack energy in the order of hundredsof thousands of watts-minute would be correct if it was proven that storms were the onlyagent for 
ows strong enough to produce sand movement. The truth is probably that thereare many agents for the formation of sand ridges, among them, we believe could be themechanism presented in this study.It is not that surprising that little is known about sand ridges in the deeper reaches ofthe continental shelf from direct �eld measurements. While more �eld data is being collectedand analyzed, our best recourse at present is to keep pursuing the development of modelssuch as the one presented here. An increased understanding of its inner workings may yieldclues to the dynamics of this beautiful natural phenomenon.5 AcknowledgmentsWe thank the Applied Research Laboratory at The Pennsylvania State University for makingthis project possible. This work was also supported by the O�ce of Scienti�c Computing,U.S. Department of Energy, under Contract W-31-109-Eng-38.6 References[Apel1979] Apel, J. R., \Observations of Internal Wave Signatures in ASTP Photographs," in Apollo-Soyuz Test Project. Summary Science Report#SP-H12, NASA, 1979, 505{509.[Baines1981] Baines, P. G., \Satellite Observations of Internal Waves on the Australian North-WestShelf," Australian Journal of Marine and Freshwater Research 32 (1981), 457{463.
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Figure 3: Variation of I11, with �bl = 1:0 �xed
Figure 4: Variation of I21, with �bl = 1:0 �xed

Figure 5: Parametric plot of J1, with �bl = 1:0 �xed
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