
Parallel Tridiagonalization through Two-Step Band ReductionChristian Bischof Bruno LangXiaobai SunMathematics & Computer Science Div. FB MathematikArgonne National Laboratory Universit�at Wuppertal9700 S. Cass Ave. Gauss-Stra�e 20Argonne, IL 60439-4844 42097 WuppertalU.S.A. GermanyArgonne Preprint ANL-MCS-P412-0194to appear in Proc. of the 1994 Scalable High-Performance Computing Conference, Knoxville,May 1994AbstractWe present a two-step variant of the \successiveband reduction" paradigm for the tridiagonalization ofsymmetric matrices. Here we reduce a full matrix �rstto narrow-banded form and then to tridiagonal form.The �rst step allows easy exploitation of block orthog-onal transformations. In the second step, we employa new blocked version of a banded matrix tridiagonal-ization algorithm by Lang. In particular, we are ableto express the update of the orthogonal transforma-tion matrix in terms of block transformations. Thisexpression leads to an algorithm that is almost en-tirely based on BLAS-3 kernels and has greatly im-proved data movement and communication character-istics. We also present some performance results onthe Intel Touchstone DELTA and the IBM SP1.1 IntroductionReduction to tridiagonal form is a major step ineigenvalue computations for symmetric matrices. Ifthe matrix is full, the conventional Householder tridi-agonalization approach [9, p. 276] or a block variantthereof [8] is the method of choice. These two ap-This work was supported by the Applied and Compu-tational Mathematics Program, Advanced Research ProjectsAgency, under contract DM28E04120, and by the O�ce of Sci-enti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38.

proaches also underlie the parallel implementationsdescribed, for example, in [12] and [6].The approach described in this paper, on the otherhand, is a two-step instantiation of the \successiveband reduction" framework suggested by Bischof andSun [4]. We �rst reduce the dense matrix to band-width nb using block orthogonal transformations em-ploying the so-called WY representation [5]; this isdescribed in Section 2. The remaining narrow-bandedmatrix is then reduced to tridiagonal form using a newvariant of an algorithm originally suggested in [13]. Inparticular, we have devised a way of blocking the or-thogonal transformations. The new algorithm is de-scribed in Section 3. The reason for considering thistwo-step approach is that in our experience the reduc-tion of A is a computational bottleneck in the tradi-tional approaches for tridiagonalization. By accom-plishing the tridiagonalization in two parts, we areable to work on A more e�ciently in either of thetwo parts. We have also devised ways for blocking theaggregation of orthogonal transformations in either ofthe two parts, resulting in good e�ciency here as well.2 Reduction of a Full Matrix to Nar-row Banded FormBlock orthogonal transformations express the prod-uct H1 � � �Hk of k Householder transformations Hi =I � uiuTi ; ui 2 Rn as a rank-k update of the formI �WY T [5] or I �WSWT [14], where W;Y 2 Rn�k



and S 2 Rk�k. As a result, the application ofthese transformations now involves BLAS-3 opera-tions, such as matrix-matrix multiplication, whichperform e�ciently on contemporary high-performancearchitectures [7]. What complicates the formulation ofblock algorithms for tridiagonalization is the fact that,if one wishes to reduce a matrix directly to tridiagonalform, the update of the next column must involve thefull remainder of the matrix to be reduced, not just apart of it. To illustrate, partitionA = � � bTb C � ;where b is a vector, and C is a matrix. To reduce b toa multiple of the canonical unit vector, one employs aHouseholder transformationH = I � � 0u �� 0 ; uT � ;for properly chosen u. If one now considers the sym-metric application of H to A, one sees that the up-date of the second column of A requires knowledgeof the matrix-vector product uTC. As a result, anyreduction approach that directly goes to tridiagonalform must access all of the remaining data. There-fore, even block approaches to implementing tridiag-onalization [8, 6] can at most halve the data transfercost compared with the traditional approach.On the other hand, if one reduces a full matrix tobandwidth nb, one can employ a standard one-sidedQR factorization algorithm to reduce A(nb+ 1 : n; 1 :nb) to upper triangular form without the need to ac-cess any other part of A, accumulate the nb House-holder transformations in a block orthogonal trans-formation, and only then access the remainder of A.This approach reduces data accesses by a factor ofnb and has been shown to perform e�ciently on par-allel machines [3, 2] and in out-of-core factorizationapproaches [10].We have implemented this algorithm using a two-dimensional block torus wrapping. The block size nbof the block torus wrapping is also the block size usedfor orthogonal transformations, which are expressedwith the WY representation [5]. To develop a portablecode, and to allow a maintainable implementation, wechose to base our implementation on the Chameleonparallel programming tools [11].The performance of this code is promising. Its per-formance on the reduction of a full random matrix tobandwidth 10, including the accumulation of orthogo-nal transformations, on the Intel Touchstone DELTAis shown in Figure 1. In these experiments, the matrix

4 6 8 10 12 14 16
8

10

12

14

16

18

20

22

24
Per-Node Performance for Block Band Reduction on DELTA

sqrt of number of processors

M
fl

op
s/

se
c

Local Matrix size 500x500

nb = 1

nb = 2

nb = 5

nb = 10
Final Bandwidth is 10

Figure 1: Per-Node Performance of Blocked Band Re-duction Code on the Intel DELTATable 1: Preliminary Performance Results on 16-NodeIBM SP1n nb b Mops/proc. Mops/total1000 1 20 10.1 1621000 15 15 18.7 2992000 1 20 10.0 1602000 10 10 26.2 4193000 1 10 10.9 1743000 15 15 33.7 5394000 20 20 38.2 611size on each processor was kept constant at 500�500.The execution rates are based on the standard sym-metric op count of (8n3)=3. These experiments wereperformed in double precision.Some preliminary performance results on an IBMSP1, using the EUI-H transport layer, are shown inTable 1. Here n is the overall matrix size, nb is theblock size used, b is the number of sub(super)diagonalsthe full matrix is reduced to, and the last twocolumns are per-processor performance and overallperformance for a double-precision run, again basedon the standard op count. These results should betaken because a lower bound on the ultimate perfor-mance, as the performance of the IBM software andof Chameleon is improving rapidly. We see that theperformance of the blocked code is superior to that of2



the unblocked code, on both the DELTA and the SP1.For example, on the SP1, in the time that we can re-duce a 2000 � 2000 matrix to tridiagonal form usingthe unblocked approach, we can reduce a 3000� 3000matrix to bandwidth 10, even though the latter re-duction involves roughly 3.5 times more oating-pointoperations.We note that the code we have implemented cannot only reduce a full matrix to banded form but alsonarrow the band of a matrix that is already banded.We will report elsewhere on the performance of thistransformation.3 Reduction of a Narrow Banded Ma-trix to Tridiagonal FormTo complete our tridiagonal reduction, we are nowfaced with the task of reducing a narrow-banded ma-trix to tridiagonal form. To this end, Lang [13] sug-gested the following algorithm, which we illustrate onthe 15 � 15 matrix with bandwidth 3 shown in Fig-ure 2. In the �rst step, we generate a Householdertransformation (labeled (1,1)), which reduces a(2:4,1)to a multiple of the �rst canonical unit vector e1�. Asindicated by the dashed lines in the band matrix, theapplication of this transformation generates �ll-in inentries a(6,2), a(7,2), and a(7,3). The �rst columnof this so-called bulge is eliminated by Householdertransformation (1,2), which reduces a(5:7,2), gener-ating, as indicated by the dotted lines, �ll in a(9,5),a(10,5), and a(10,6). Again, we generate a transfor-mation, labeled (1,3), to eliminate the �rst column ofthat bulge. After applying transformations (1,4) and(1,5), the �rst column of the bulge has been chasedout. Notice that once transformation (1,2) has beencompleted, we can also reduce a(3:5,2) via the trans-formation labeled (2,1), which again generates a bulgethat is chased by transformations labeled (2,2), (2,3),and (2,4).Unlike the traditional approaches, which rely onBLAS-1 operations, this algorithm allows for the useof BLAS-2 kernels. If one desires to accumulate theorthogonal transformations, one can apply the orthog-onal transformations in a matrix Q on the y, usingBLAS-2 kernels. If the size n of the matrix is muchlarger than the semibandwidth b, however, the accu-mulation of the orthogonal transformations is by farthe dominant portion of the work, since a Householderupdate involving b rows of A requires only O(b2) ops,�In the sequel, we assume that we always reduce vectors tomultiples of e1 , and omit this fact for brevity.

1
2

3

4

5

(1,1)

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

(2,4)

(3,1)

(3,2)

(3,3)

(3,4)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15(1,5)Figure 2: Illustration of the Tridiagonalization Algo-rithmbut induces an O(nb) ops update for the correspond-ing columns of Q.We have developed an algorithm that allows for ablocked update of Q by exploiting the freedom inher-ent in the partial ordering of the transformations. Asin Figure 2, let (k; l) denote the transformation thatreduces the lth bulge induced by the reduction of thekth column. In our convention the �rst bulge con-sists of the subdiagonal entries of the kth column it-self. Also let the term \kth sweep" denote transfor-mations (k; 1); (k; 2); : : :. If we use \<" to denote thelogical precedence of a transformation over another,then the order of generation of Householder transfor-mations and their application to A must satisfy thecolumn order requirement: (k; l) < (k + 1; l),same-sweep chasing requirement: (k; l) < (k; l +1), and thesuccessive-sweep chasing requirement: (k; l) <(k + 1; l� 1).Once the transformations have been generated,however, we have considerably more freedom in ap-plying these transformations to Q. First note thattransformations are applied only to Q from one side,so that all transformations generated by one sweepcan be applied to Q at the same time, since they in-volve disjoint sets of rows or columns. That is, weneed not be concerned with the \same-sweep chasingrequirement" any more. Since transformations mustbe applied to any particular column of Q in the sameorder as they were applied to A, we still must satisfythe column order and the successive-sweep chasing re-quirements. So even if we generate orthogonal trans-formations in the usual order (1,1), (1,2), (1,3), (1,4),(1,5), (2,1), (2,2), : : :, we can apply them to Q in a dif-ferent order, as long as it is consistent with the column3



200 400 600 800 1000 1200 1400
25

30

35

40

45

50

55

60

Order of the banded matrix

M
eg

af
lo

ps

Overall performance

nb=1

nb=7

nb=16

Figure 3: Tridiagonalization Performance (includingAccumulation of Q) on a Single Node of the IBM SP1order and successive-sweep chasing requirements. Forexample, if we assume that we reduced the �rst threecolumns, and saved the associated transformations, asshown in Figure 2, we can accumulate transforma-tions (1; k); (2; k) and (3; k) into a block transforma-tion [5, 14], and apply them \bottom-up" as indicatedby the numbers in circles. The bottom-up approachis mandated by the successive-sweep chasing require-ment, and the antidiagonal gathering of transforma-tions then satis�es the column order requirement. Ingeneral, if we use O(nb � n) workspace to save theHouseholder transformations associated with the re-duction of nb columns, we can then use orthogonaltransformations with blocksize nb for the update ofQ. Hence, the overall fraction of work performed inthis algorithm via block orthogonal transformationsis (1 � 3bn ), and almost all work is performed usingblock orthogonal transformations in the case where Ais large and the band is small.The performance of the serial code on a single nodeof the IBM SP1 is given in Figure 3. For these timings,the \shape" of the matrixA was �xed, or precisely, theratio of bandwidth b to matrix size n was kept con-stant at 3=40. For nb > 1, the update of Q was donevia block transformations, whereas nb = 1 refers toupdating Q on the y. All computations were done indouble precision, and the performance data are basedon the standard op count of 6bn2 for the reductionof A and 2n3 for the update of Q. As can readily beseen, the blocking leads to a signi�cant improvementin the overall performance.In Figure 4 the times for reducing A and updating

200 400 600 800 1000 1200 1400
10

20

30

40

50

60

70

Order of the banded matrix

M
eg

af
lo

ps

Performance profile 

A

Q : nb=1

Q : nb=7

Q : nb=16

Figure 4: Performance of the Reduction and of theUpdate on a Single Node of the IBM SP1Q are separated. The former is not a�ected by theblocking. We observe that the blocked update of Qcan almost run at the full speed attainable for ma-trix multiplication on that machine. This capabilityis especially important because the update of Q dom-inates for larger matrices. For example, for n = 1400and b = 105, the work on Q takes about 82% of thetotal time.A parallel implementation of this algorithm is inprogress. In order to enhance data locality and reducecommunication requirements, the narrow-banded ma-trix is replicated across rows of the two-dimensionallogical process mesh. The orthogonal transformationmatrix Q is stored in the same 2-D block torus wrapmapping as before. We also mention that, unlike theoriginal code used in [13], we employ the same packedstorage scheme as in LAPACK [1], which allows usto formulate the packed storage block algorithm moresuccinctly, and naturally employs BLAS-2 kernels. Wealso mention that in addition to increasing the com-putational e�ciency on each node, the use of blocktransformations also decreases the number of commu-nication steps of the algorithm by a factor nb, whichreduces the impact of memory latency.4 SummaryWe have presented an approach for reducing a ma-trix to tridiagonal form through a particular instanti-ation of the successive band reduction (SBR) frame-work. By �rst reducing the matrix to narrow band,and then applying a new blocked variant of Lang's4



tridiagonalization algorithm, we arrived at an algo-rithm that accomplishes the tridiagonalization andthe accumulation of the orthogonal transformationsalmost exclusively with BLAS-3 kernels, and also re-duces data access and communication costs by a factorthat is proportional to the block size. The techniquespresented in this paper are also directly applicable tothe reduction of matrices to bidiagonal form, the usualcondensed form employed for singular value decompo-sition algorithms.References[1] E. Anderson, Z. Bai, C. Bischof, J. Dem-mel, J. Dongarra, J. DuCroz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov,and D. Sorensen, LAPACK User's Guide, SIAM,Philadelphia, 1992.[2] E. Anderson, A. Benzoni, J. Dongarra, S. Moul-ton, B. Tourancheau, and R. van de Geijn,LAPACK for distributed memory architectures:Progress report, in Parallel Processing for Scien-ti�c Computing, SIAM, Philadelphia, 1991.[3] C. H. Bischof, A pipelined block QR decom-position algorithm., in Parallel Processing forScienti�c Computing, G. Rodrigue, ed., SIAM,Philadelphia, 1989, pp. 3{7.[4] C. H. Bischof and X. Sun, A framework forband reduction and tridiagonalization of symmet-ric matrices, Preprint MCS{P298{0392, Mathe-matics and Computer Science Division, ArgonneNational Laboratory, 1992.[5] C. H. Bischof and C. F. Van Loan, The WY rep-resentation for products of Householder matrices,SIAM Journal on Scienti�c and Statistical Com-puting, 8 (1987), pp. s2{s13.[6] J. Dongarra and R. van de Geijn, Reduction tocondensed form for the eigenvalue problem ondistributed-memory architectures, Parallel Com-puting, 18 (1992), pp. 973{982.[7] J. J. Dongarra, I. S. Du�, D. C. Sorensen, andH. A. V. der Vorst, Solving Linear Systems onVector and Shared-Memory Computers, SIAM,Philadelphia, 1991.[8] J. J. Dongarra, S. J. Hammarling, and D. C.Sorensen, Block reduction of matrices to con-densed form for eigenvalue computations, Tech.

Rep. ANL/MCS{TM{99, Mathematics and Com-puter Science Division, Argonne National Labo-ratory, September 1987.[9] G. H. Golub and C. F. V. Loan, Matrix Com-putations, The Johns Hopkins University Press,1983.[10] R. G. Grimes and H. D. Simon, Solution of large,dense symmetric generalized eigenvalue problemsusing secondary storage, ACM Transactions onMathematical Software, 14 (1988), pp. 241{256.[11] W. D. Gropp and B. Smith, Chameleon par-allel programming tools users manual, Tech.Rep. ANL-93/23, Argonne National Laboratory,March 1993.[12] B. Hendrikson and D. Womble, The torus-wrapmapping for dense matrix calculations on mas-sively parallel computers, Tech. Rep. SAND92-0792, Sandia National Laboratories, 1992.[13] B. Lang, A parallel algorithm for reducing sym-metric matrices banded matrices to tridiagonalform, SIAM Journal on Scienti�c Computing, 14(1993), pp. 1320{1338.[14] R. Schreiber and C. Van Loan, A storage e�cientWY representation for products of Householdertransformations, SIAM Journal on Scienti�c andStatistical Computing, 10 (1989), pp. 53{57.

5


