Parallel Tridiagonalization through Two-Step Band Reduction

Christian Bischof

Xiaobai Sun

Mathematics & Computer Science Div.
Argonne National Laboratory
9700 S. Cass Ave.

Argonne, 1L 60439-4844
U.S.A.

Bruno Lang

FB Mathematik
Universitat Wuppertal
Gauss-Strafle 20
42097 Wuppertal

Germany

Argonne Preprint ANL-MCS-P412-0194
to appear in Proc. of the 199 Scalable High-Performance Computing Conference, Knozxville,
May 1994

Abstract

We present a two-step variant of the “successive
band reduction” paradigm for the tridiagonalization of
symmetric matrices. Here we reduce a full matriz first
to narrow-banded form and then to tridiagonal form.
The first step allows easy exploitation of block orthog-
onal transformations. In the second step, we employ
a new blocked version of a banded matriz tridiagonal-
wzation algorithm by Lang. In particular, we are able
to express the update of the orthogonal transforma-
tion matriz in terms of block transformations. This
erpression leads to an algorithm that is almost en-
tirely based on BLAS-3 kernels and has greatly im-
proved data movement and communication character-
wstics. We also present some performance results on
the Intel Touchstone DELTA and the IBM SP1.

1 Introduction

Reduction to tridiagonal form is a major step in
eigenvalue computations for symmetric matrices. If
the matrix is full, the conventional Householder tridi-
agonalization approach [9, p. 276] or a block variant
thereof [8] is the method of choice. These two ap-

This work was supported by the Applied and Compu-
tational Mathematics Program, Advanced Research Projects
Agency, under contract DM28E04120, and by the Office of Sci-
entific Computing, U.S. Department of Energy, under Contract
W-31-109-Eng-38.

proaches also underlie the parallel implementations
described, for example, in [12] and [6].

The approach described in this paper, on the other
hand, is a two-step instantiation of the “successive
band reduction” framework suggested by Bischof and
Sun [4]. We first reduce the dense matrix to band-
width nb using block orthogonal transformations em-
ploying the so-called WY representation [5]; this is
described in Section 2. The remaining narrow-banded
matrix is then reduced to tridiagonal form using a new
variant of an algorithm originally suggested in [13]. In
particular, we have devised a way of blocking the or-
thogonal transformations. The new algorithm is de-
scribed in Section 3. The reason for considering this
two-step approach is that in our experience the reduc-
tion of A is a computational bottleneck in the tradi-
tional approaches for tridiagonalization. By accom-
plishing the tridiagonalization in two parts, we are
able to work on A more efficiently in either of the
two parts. We have also devised ways for blocking the
aggregation of orthogonal transformations in either of
the two parts, resulting in good efficiency here as well.

2 Reduction of a Full Matrix to Nar-
row Banded Form

Block orthogonal transformations express the prod-
uct Hy---Hy of k Householder transformations H; =
I —wul' w; € R™ as a rank-k update of the form
I —WYT[5] or I — WSWT[14], where W, Y € R***

and S € RF¥** As a result, the application of
these transformations now involves BLAS-3 opera-
tions, such as matrix-matrix multiplication, which
perform efficiently on contemporary high-performance
architectures [7]. What complicates the formulation of
block algorithms for tridiagonalization is the fact that,
if one wishes to reduce a matrix directly to tridiagonal
form, the update of the next column must involve the
full remainder of the matrix to be reduced, not just a
part of it. To illustrate, partition

a b7
(0 %)
where b is a vector, and C' is a matrix. To reduce b to

a multiple of the canonical unit vector, one employs a
Householder transformation

H:I—(S)(O,UT),

for properly chosen u. If one now considers the sym-
metric application of H to A, one sees that the up-
date of the second column of A requires knowledge
of the matrix-vector product «”C. As a result, any
reduction approach that directly goes to tridiagonal
form must access all of the remaining data. There-
fore, even block approaches to implementing tridiag-
onalization [8, 6] can at most halve the data transfer
cost compared with the traditional approach.

On the other hand, if one reduces a full matrix to
bandwidth nb, one can employ a standard one-sided
QR factorization algorithm to reduce A(nb+1:n,1:
nb) to upper triangular form without the need to ac-
cess any other part of A, accumulate the nb House-
holder transformations in a block orthogonal trans-
formation, and only then access the remainder of A.
This approach reduces data accesses by a factor of
nb and has been shown to perform efficiently on par-
allel machines [3, 2] and in out-of-core factorization
approaches [10].

We have implemented this algorithm using a two-
dimensional block torus wrapping. The block size nb
of the block torus wrapping is also the block size used
for orthogonal transformations, which are expressed
with the WY representation [5]. To develop a portable
code, and to allow a maintainable implementation, we
chose to base our implementation on the Chameleon
parallel programming tools [11].

The performance of this code is promising. Its per-
formance on the reduction of a full random matrix to
bandwidth 10, including the accumulation of orthogo-
nal transformations, on the Intel Touchstone DELTA
is shown in Figure 1. In these experiments, the matrix

Per-Node Performance for Block Band Reduction on DELTA

24

22 : :
nb = 10 Loca Matrix size 500x500

Final Bandwidth is 10

Il Il Il
4 6 8 10 12 14 16
sqgrt of number of processors

8 I I

Figure 1: Per-Node Performance of Blocked Band Re-
duction Code on the Intel DELTA

Table 1: Preliminary Performance Results on 16-Node

IBM SP1
| n | nb | b | Mflops/proc. | Mflops/total |

1000 1|20 10.1 162
1000 | 15 | 15 18.7 299
2000 1|20 10.0 160
2000 | 10 | 10 26.2 419
3000 1|10 10.9 174
3000 | 15 | 15 33.7 539
4000 | 20 | 20 38.2 611

size on each processor was kept constant at 500 x 500.
The execution rates are based on the standard sym-
metric flop count of (8n3)/3. These experiments were
performed in double precision.

Some preliminary performance results on an IBM
SP1, using the EUI-H transport layer, are shown in
Table 1. Here n is the overall matrix size, nb is the
block size used, b is the number of sub(super)diagonals
the full matrix is reduced to, and the last two
columns are per-processor performance and overall
performance for a double-precision run, again based
on the standard flop count. These results should be
taken because a lower bound on the ultimate perfor-
mance, as the performance of the IBM software and
of Chameleon is improving rapidly. We see that the
performance of the blocked code is superior to that of

the unblocked code, on both the DELTA and the SP1.
For example, on the SP1, in the time that we can re-
duce a 2000 x 2000 matrix to tridiagonal form using
the unblocked approach, we can reduce a 3000 x 3000
matrix to bandwidth 10, even though the latter re-
duction involves roughly 3.5 times more floating-point
operations.

We note that the code we have implemented can
not only reduce a full matrix to banded form but also
narrow the band of a matrix that is already banded.
We will report elsewhere on the performance of this
transformation.

3 Reduction of a Narrow Banded Ma-
trix to Tridiagonal Form

To complete our tridiagonal reduction, we are now
faced with the task of reducing a narrow-banded ma-
trix to tridiagonal form. To this end, Lang [13] sug-
gested the following algorithm, which we illustrate on
the 15 x 15 matrix with bandwidth 3 shown in Fig-
ure 2. In the first step, we generate a Householder
transformation (labeled (1,1)), which reduces a(2:4,1)
to a multiple of the first canonical unit vector e;*. As
indicated by the dashed lines in the band matrix, the
application of this transformation generates fill-in in
entries a(6,2), a(7,2), and a(7,3). The first column
of this so-called bulge is eliminated by Householder
transformation (1,2), which reduces a(5:7,2), gener-
ating, as indicated by the dotted lines, fill in a(9,5),
a(10,5), and a(10,6). Again, we generate a transfor-
mation, labeled (1,3), to eliminate the first column of
that bulge. After applying transformations (1,4) and
(1,5), the first column of the bulge has been chased
out. Notice that once transformation (1,2) has been
completed, we can also reduce a(3:5,2) via the trans-
formation labeled (2,1), which again generates a bulge
that is chased by transformations labeled (2,2), (2,3),
and (2,4).

Unlike the traditional approaches, which rely on
BLAS-1 operations, this algorithm allows for the use
of BLAS-2 kernels. If one desires to accumulate the
orthogonal transformations, one can apply the orthog-
onal transformations in a matrix ¢ on the fly, using
BLAS-2 kernels. If the size n of the matrix is much
larger than the semibandwidth b, however, the accu-
mulation of the orthogonal transformations 1s by far
the dominant portion of the work, since a Householder
update involving b rows of A requires only O(b?) flops,

*In the sequel, we assume that we always reduce vectors to
multiples of e, and omit this fact for brevity.

Figure 2: Hlustration of the Tridiagonalization Algo-
rithm

but induces an O(nb) flops update for the correspond-
ing columns of @.

We have developed an algorithm that allows for a
blocked update of @) by exploiting the freedom inher-
ent in the partial ordering of the transformations. As
in Figure 2, let (k,l) denote the transformation that
reduces the {th bulge induced by the reduction of the
kth column. In our convention the first bulge con-
sists of the subdiagonal entries of the kth column it-
self. Also let the term “kth sweep” denote transfor-
mations (k, 1), (k,2),... If we use “<” to denote the
logical precedence of a transformation over another,
then the order of generation of Householder transfor-
mations and their application to A must satisfy the

column order requirement: (k,!) < (k+ 1,1),

same-sweep chasing requirement: (k1) < (k, 1+

1), and the

successive-sweep chasing requirement: (k,[) <

(k+1,0-1).

Once the transformations have been generated,
however, we have considerably more freedom in ap-
plying these transformations to . First note that
transformations are applied only to) from one side,
so that all transformations generated by one sweep
can be applied to @ at the same time, since they in-
volve disjoint sets of rows or columns. That is, we
need not be concerned with the “same-sweep chasing
requirement” any more. Since transformations must
be applied to any particular column of () in the same
order as they were applied to A, we still must satisfy
the column order and the successive-sweep chasing re-
quirements. So even if we generate orthogonal trans-
formations in the usual order (1,1), (1,2), (1,3), (1,4),
(1,5),(2,1), (2,2), ..., we can apply them to @ in a dif-
ferent order, as long as it is consistent with the column

Overall performance
60 T

55

Megaflops
IS
a

N
=)

35

30

25 I I | | |
200 400 600 800 1000 1200 1400
Order of the banded matrix

Figure 3: Tridiagonalization Performance (including
Accumulation of (}) on a Single Node of the IBM SP1

order and successive-sweep chasing requirements. For
example, if we assume that we reduced the first three
columns, and saved the associated transformations, as
shown in Figure 2, we can accumulate transforma-
tions (1, k), (2, k) and (3, %) into a block transforma-
tion [5, 14], and apply them “bottom-up” as indicated
by the numbers in circles. The bottom-up approach
is mandated by the successive-sweep chasing require-
ment, and the antidiagonal gathering of transforma-
tions then satisfies the column order requirement. In
general, if we use O(nb * n) workspace to save the
Householder transformations associated with the re-
duction of nb columns, we can then use orthogonal
transformations with blocksize nb for the update of
(). Hence, the overall fraction of work performed in
this algorithm via block orthogonal transformations

is (1 — —), and almost all work is performed using
n

block orthogonal transformations in the case where A
is large and the band is small.

The performance of the serial code on a single node
of the IBM SP1 is given in Figure 3. For these timings,
the “shape” of the matrix A was fixed, or precisely, the
ratio of bandwidth & to matrix size n was kept con-
stant at 3/40. For nb > 1, the update of () was done
via block transformations, whereas nb = 1 refers to
updating) on the fly. All computations were done in
double precision, and the performance data are based
on the standard flop count of 66n? for the reduction
of A and 2n? for the update of Q. As can readily be
seen, the blocking leads to a significant improvement
in the overall performance.

In Figure 4 the times for reducing A and updating

Performance profile
70 T

60

o
=)

Megaflops
B
o

w
=}

10 I I | | |
200 400 600 800 1000 1200 1400
Order of the banded matrix

Figure 4: Performance of the Reduction and of the
Update on a Single Node of the IBM SP1

() are separated. The former is not affected by the
blocking. We observe that the blocked update of Q)
can almost run at the full speed attainable for ma-
trix multiplication on that machine. This capability
is especially important because the update of) dom-
inates for larger matrices. For example, for n = 1400
and b = 105, the work on @ takes about 82% of the
total time.

A parallel implementation of this algorithm is in
progress. In order to enhance data locality and reduce
communication requirements, the narrow-banded ma-
trix is replicated across rows of the two-dimensional
logical process mesh. The orthogonal transformation
matrix () is stored in the same 2-D block torus wrap
mapping as before. We also mention that, unlike the
original code used in [13], we employ the same packed
storage scheme as in LAPACK [1], which allows us
to formulate the packed storage block algorithm more
succinctly, and naturally employs BLAS-2 kernels. We
also mention that in addition to increasing the com-
putational efficiency on each node, the use of block
transformations also decreases the number of commu-
nication steps of the algorithm by a factor nb, which
reduces the impact of memory latency.

4 Summary

We have presented an approach for reducing a ma-
trix to tridiagonal form through a particular instanti-
ation of the successive band reduction (SBR) frame-
work. By first reducing the matrix to narrow band,
and then applying a new blocked variant of Lang’s

tridiagonalization algorithm, we arrived at an algo-
rithm that accomplishes the tridiagonalization and
the accumulation of the orthogonal transformations
almost exclusively with BLAS-3 kernels, and also re-
duces data access and communication costs by a factor
that is proportional to the block size. The techniques
presented in this paper are also directly applicable to
the reduction of matrices to bidiagonal form, the usual
condensed form employed for singular value decompo-
sition algorithms.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Dem-
mel, J. Dongarra, J. DuCroz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov,
and D. Sorensen, LAPACK User’s Guide, STAM,
Philadelphia, 1992.

[2] E. Anderson, A. Benzoni, J. Dongarra, S. Moul-
ton, B. Tourancheau, and R. van de Geijn,
LAPACK for distributed memory architectures:
Progress report, in Parallel Processing for Scien-

tific Computing, STAM, Philadelphia, 1991.
[3] C. H. Bischof, A pipelined block QR decom-

posttion algorithm., in Parallel Processing for
Scientific Computing, G. Rodrigue, ed., STAM,
Philadelphia, 1989, pp. 3-7.

[4] C. H. Bischof and X. Sun, A framework for
band reduction and tridiagonalization of symmet-
ric matrices, Preprint MCS-P298-0392, Mathe-
matics and Computer Science Division, Argonne
National Laboratory, 1992.

[5] C. H. Bischof and C. F. Van Loan, The WY rep-
resentation for products of Householder matrices,
SIAM Journal on Scientific and Statistical Com-
puting, 8 (1987), pp. s2-s13.

[6] J. Dongarra and R. van de Geijn, Reduction to
condensed form for the eigenvalue problem on
distributed-memory architectures, Parallel Com-

puting, 18 (1992), pp. 973-982.

[7] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and
H. A. V. der Vorst, Solving Linear Systems on
Vector and Shared-Memory Computers, SIAM,
Philadelphia, 1991.

[8] J. J. Dongarra, S. J. Hammarling, and D. C.
Sorensen, Block reduction of matrices to con-
densed form for eigenvalue computations, Tech.

Rep. ANL/MCS-TM-99, Mathematics and Com-
puter Science Division, Argonne National Labo-
ratory, September 1987.

G. H. Golub and C. F. V. Loan, Matriz Com-
putations, The Johns Hopkins University Press,
1983.

R. G. Grimes and H. D. Simon, Solution of large,
dense symmetric generalized eigenvalue problems
using secondary storage, ACM Transactions on
Mathematical Software, 14 (1988), pp. 241-256.

W. D. Gropp and B. Smith, Chameleon par-
allel programming tools users manual, Tech.
Rep. ANL-93/23, Argonne National Laboratory,
March 1993.

B. Hendrikson and D. Womble, The torus-wrap
mapping for dense matriz calculations on mas-
swely parallel computers, Tech. Rep. SAND92-
0792, Sandia National Laboratories, 1992.

B. Lang, A parallel algorithm for reducing sym-
metric matrices banded matrices to tridiagonal
form, STAM Journal on Scientific Computing, 14
(1993), pp. 1320-1338.

R. Schreiber and C. Van Loan, A storage efficient
WY representation for products of Householder
transformations, STAM Journal on Scientific and
Statistical Computing, 10 (1989), pp. 53-57.

