
Parallel Performance of a Symmetric Eigensolver basedon the Invariant Subspace Decomposition ApproachChristian Bischofy Steven Huss-Ledermanz Xiaobai SunyAnna Tsaoz Thomas TurnbullzyMath. & Comp. Sci. Div., Argonne National Laboratory, Argonne, IL 60439zSupercomputing Research Center, Bowie, MD 20715AbstractIn this paper, we discuss work in progress on a com-plete eigensolver based on the Invariant Subspace De-composition Algorithm for dense symmetric matrices(SYISDA). We describe a recently developed acceler-ation technique that substantially reduces the overallwork required by this algorithm and review the algorith-mic highlights of a distributed-memory implementationof this approach. These include a fast matrix-matrixmultiplication algorithm, a new approach to parallelband reduction and tridiagonalization, and a harnessfor coordinating the divide-and-conquer parallelism inthe problem. We present performance results for thedominant kernel, dense matrix multiplication, as wellas for the overall SYISDA implementation on the IntelTouchstone Delta and the Intel Paragon.1. IntroductionComputation of eigenvalues and eigenvectors is anessential kernel in many applications, and severalpromising parallel algorithms have been investigated[26, 3, 28, 22, 25, 6]. The work presented in this pa-per is part of the PRISM (Parallel Research on In-variant Subspace Methods) Project, which involves re-searchers from Argonne National Laboratory, the Su-percomputing Research Center, the University of Cal-ifornia at Berkeley, and the University of Kentucky.The goal of the PRISM project is the development ofalgorithms and software for solving large-scale eigen-value problems based on the invariant subspace de-composition approach (ISDA) suggested by Auslanderand Tsao [1].The symmetric invariant subspace decompositionalgorithm (SYISDA) for an n � n symmetric matrixA proceeds as follows.�This paper is PRISM Working Note #15, available viaanonymous ftp to ftp.super.org in the directory pub/prism.Typeset by AMS-TEX

Scaling: Compute upper and lower bounds on thespectrum �(A) of A and compute � and � suchthat for B = �A+ �I we have �(B) � [0; 1], withthe mean eigenvalue of A being mapped to 12 .Eigenvalue Smoothing: Let pi(x), i = 1; 2; : : : bepolynomials such that limi!1 pi([0; 1]) = f0; 1g,that is, in the limit all values are mapped to either0 or 1. IterateC0 = B;Ci+1 = pi(Ci); i = 0; 1; : : : ;until jjCi+1�Cijj is numerically negligible (in it-eration k, say), at which point all the eigenvaluesof Ck are near either 0 or 1.Invariant Subspace Computation: Find an or-thogonal matrix [U; V ] such that the columns of Uand V form orthonormal bases for the range spaceof Ck and its complementary orthogonal sub-space, respectively. That is, UTU = I, V TV =I; UTV = 0, and the range of CkU is U .Decoupling: Update the original A with [U; V ], i.e.,form [U; V ]T A [U; V ] = �A1 A2� :Since the invariant subspaces of any matrix poly-nomial of a symmetric matrix A are also invariantsubspaces of A, the columns of U and V span com-plementary invariant subspaces of A, and hence theirapplication to A decouples the spectrum of A. Thesubproblems A1 and A2 can now be solved indepen-dently and the algorithm applied further recursively,with the number of subproblems doubling at everystage. If eigenvectors are desired as well, we also up-date the current eigenvector matrix. Orthogonality ofthe eigenvectors is guaranteed due to the exclusive useof orthogonal transformations.We have considerable freedom in implementingSYISDA, particularly with respect to choosing the



polynomials pi and the method for computing the in-variant subspaces. As in [27, 25, 6], we use predom-inantly the �rst incomplete Beta function B1(x) =3x2 � 2x3 in our implementation. In addition, in Sec-tion 2, we describe an acceleration technique we haverecently developed that substantially reduces the num-ber of iterations required in the Eigenvalue Smooth-ing step. We note that other functional iterations,such as approximation methods for the matrix signfunction [14, 15, 21, 2], can be used in the EigenvalueSmoothing step as well.The two key primitives of the algorithm are matrix-matrix multiplication, which accounts for the major-ity of the computation, and computation of the rangeand null space of a matrix having eigenvalues clus-tered around 0 and 1. The sequential complexity ofSYISDA, when applied to dense matrices, is consider-ably greater than that of other algorithms. Nonethe-less, the algorithm is promising from both a scalabilityand a numerical point of view [27, 6]. First, since mostof the computation is in matrix multiplication, high ef-�ciencies and near optimal speedups are achieved onlarge problems. Second, since the algorithm performsonly orthogonal transformations, orthogonality in thecomputed eigenvectors is guaranteed.In the next section, we briey describe the parallelalgorithm. In Section 3, we give recent performanceresults for our implementation of SYISDA on the In-tel Touchstone Delta and the Intel Paragon. Section4 concludes with some brief comments about the algo-rithm presented.2. The parallel algorithmThe parallel implementation incorporates several al-gorithmic improvements developed since our initial in-vestigations on serial machines. The �rst improvementis our method of computing the subspaces in the In-variant Subspace Computation step. To �nd theorthogonal transformation that decouples A, we haveto �nd the range and null space of a matrix that hasonly two distinct eigenvalues, 0 and 1. As it turns out,the Invariant Subspace Computation step can beachieved essentially via a tridiagonalization of Ck, us-ing a methodology we shall refer to as rank-revealingtridiagonalization (RRTRID).In order to reduce the given matrix to tridiagonalform, we employ a variant of the successive band re-duction (SBR) framework suggested by Bischof andSun in [9], which eliminates subdiagonals of Ck in apiecemeal fashion as illustrated in Figure 1. In com-parison, conventional Householder tridiagonalizationapproaches [19] or block variants thereof [16] elimi-

nate all subdiagonals at one time. This traditionalapproach also underlies the parallel implementationsdescribed in [20] and [17]. The SBR variant used inour implementation is discussed in detail in [7]; per-formance results are given in [6] and in another paperat this conference [10]. An exciting new developmentdiscussed in [10] is the ability to fully block all stagesof the succession of band reductions.Figure 1. Reduction to tridiagonal form by asequence of band reductionsThe key observation in the context of SYISDA isthat, under some very general conditions, a bandedmatrix having only two distinct eigenvalues and band-width n=2j must be block diagonal, with each blockbeing of size at most n=2j�1. In particular, a tridiago-nal matrix with such a spectrum is block diagonal withblocks of size at most 2 � 2. Hence, after the matrixhas been reduced to tridiagonal form, one only needsto solve some (completely independent) 2 � 2 eigen-value problems to obtain the desired invariant sub-spaces. We are able to skip large numbers of the or-thogonal transformations, since the block diagonalityof the matrices generated results in many transforma-tions that would act on columns that are already neg-ligible and hence need not be performed. This prop-erty has been demonstrated in extensive testing [6, 11],particularly of the sequential algorithm. Algorithmicdetails of RRTRID, as well as some of the subtle nu-merical issues are discussed in [8].It is important to realize that, unlike other ap-proaches for computing so-called rank-revealing fac-torizations [4, 5, 12, 30], tridiagonalization does notinvolve any data-dependent pivoting strategies. Inparticular, in the parallel setting, the predictabilityof data ow greatly contributes to simplicity of imple-mentation as well as to the ability to overlap commu-nication and computation.We have developed a sequential code for perform-ing both SBR and RRTRID that incorporates some ofthe blocking schemes discussed in our previous papers,with promising results [6, 11]. However, the parallelimplementation of RRTRID currently only performsunblocked operations. Nonetheless, the skipping al-luded to previously still leads to good performance.A second algorithmic change was necessitated bythe use of the rank-revealing tridiagonalization scheme



of Bischof and Sun. The rank-revealing tridiagonal-ization scheme requires that the rank-de�cient ma-trix, Ck, have only two distinct eigenvalues. As in[27], we began by using �rst incomplete Beta function,B1(x) = 3x2 � 2x3, exclusively in the EigenvalueSmoothing step. However, because B1 has a �xedpoint at 1=2, Ck occasionally has eigenvalues at 1=2.Fortunately, we have discovered an inexpensive meansof detecting and addressing this situation. Supposethat Ck has eigenvalues 0, 1=2, and 1 of multiplici-ties m1, m2, and m3, respectively. It is easily shownthat m2 = 4(trace(Ck) � trace(C2k)). Both trace(Ck)and trace(C2k) = kCkk2F are inexpensive computations.Here, k�kF denotes the Froebenius norm. If m2 > 0,we then apply either 3x� 2x2 or 2x2� x to Ck. Boththese quadratic functions map 0 and 1 to themselves;the pertinent di�erence between them is that one maps1=2 to 1 and the other maps 1=2 to 0. The quadraticused is chosen to make the divide as even as possible.In practice, after the application of this quadratic, theclusters of eigenvalues at 0 and 1 require \tighteningup." We accomplish this by a few further applicationsof the pi.The �nal algorithmic feature found in our currentparallel implementation is an acceleration techniquethat signi�cantly reduces the number of iterations ofB1 required in the early divides. Since most of thework in SYISDA occurs in the early divides, e�ortsto improve performance must be aimed at these di-vides. In fact, in the early divides, the number ofapplications of B1 required tends to be larger thanin later stages. One reason for this is that when noa priori spectral information is available, Scaling isdone using bounds obtained from Gershgorin disks[19]. Since these bounds are generally quite poor, Bfrom the Scaling step tends to have eigenvalues closerto 1=2 than would be the case if better bounds onthe spectrum were available, as is the case in laterdivides. Since the convergence rate of the incompleteBeta function iteration is very slow for values near 1=2,we sought strategies to improve the rate of convergencefor matrices having eigenvalues near 1=2.B1 takes on the value 1=2 three times: at 1=2, �,and 1� �, where � = (1+p3)=2 � 1:366. We proposethe following scheme, which is a slight modi�cation ofa technique suggested by Pan and Schreiber [29]. Theyessentially observed that if we take the matrix B and\stretch" it so that its eigenvalues now lie over someinterval, say [��; 1 + �], where 0 < � � � � 1, thenthe eigenvalues of B near 1=2 are moved away from 1=2and B1 will still map the eigenvalues of B into [0; 1].By \stretching", we mean to apply a linear function
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Figure 2. Behavior of Acceleration Techniquethat maps 0 and 1 to 1� � and �, respectively, leav-ing 1=2 �xed. Repeating this strategy several times,namely, a \stretch" followed by one application of B1,at the beginning of the Eigenvalue Smoothing stepleads to a substantial reduction in the number of it-erations required in the early stages of the algorithm.Since values near (1 � p3)=2 are mapped near 1=2,we must be careful not to \stretch" too aggressively.We have found that applying this strategy six or seventimes with � = :3 leads to about a 1=3 reduction in thenumber of iterations required in the early stages of thealgorithm. Figure 2 compares the e�ect of two itera-tions of this acceleration strategy (solid curve) versustwo regular iterations of B1 (dashed curve). Note thepoorer behavior of this iteration near 0 and 1; this iso�set by the substantially improved convergence forvalues near 1=2. In any case, values away from 1=2converge quadratically to either 0 or 1 in the later it-erations, so this boundary behavior does not in factprove to be detrimental.In the latter stages of SYISDA, because goodbounds can be ascertained from previous divides, di-vides tend to occur quickly without acceleration anduse of the acceleration strategy often leads to increasednumbers of iterations. Therefore, we do not apply thistechnique to small problems. In any case, since themajority of the computation performed by SYISDAoccurs in the early divides, the savings realized resultsin a signi�cant performance improvement. We haveobserved improvements in run time of roughly 25%.The number of iterations required is now typically be-tween 15 and 20 for the �rst divide, as opposed tobetween 25 and 30 for the original incomplete Betafunction iteration.The orchestration of multiple subproblems cur-



0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

number of processors

G
flo

ps

local dim=100

local dim=200

local dim=300

local dim=450

Figure 3. Total performance of BiMMeR onDelta
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Figure 4. Total performance of BiMMeR onParagonrently consists of two separate stages [25, 6]. The �rststage encompasses the early divides, where large sub-problems are solved sequentially and the scalabilityof the dense matrix multiplication and rank-revealingtridiagonalization lead to high e�ciencies. As the sub-problem size decreases, there is a point at which com-munications overhead makes it impractical to solvethat subproblem over the entire mesh. The amountof work required to �nd the eigensolution of the re-maining subproblem is very small, but the cost of theupdate of the eigenvector matrix Z, whose leadingdimension is still the size of the original matrix A,is still substantial. The second stage, or End Game,handles the small subproblems remaining, exploitingparallelism at two levels: �rst, by solving individual

subproblems in parallel on single nodes and second,by performing distributed updates of the accumulatedeigenvector matrix.Through the use of two-dimensional torus wrap, nodata redistribution is required between divides. As thesubproblem size decreases, the proportion of the to-tal time required for communication during individualmatrix multiplications increases and the granularity oflocal computation decreases. However, this approachguarantees near-perfect load balancing in the costlyearly stages. A discussion of the rationale used to ar-rive at this scheme is presented in [25]. When thesubproblems become small (dimension of a few hun-dred), they are currently solved using DSYEV (QRalgorithm) from LAPACK.Since the computational cost for SYISDA is domi-nated by dense matrix-matrix multiplication, its per-formance depends heavily on the matrix multipli-cation code. We have developed a double preci-sion distributed matrix multiplication code, BiMMeR,that incorporates features needed by SYISDA. Asusual, a critical issue in achieving high e�ciency isdata locality, i.e., maximum reuse of data in oatingpoint computations. To this end, we designed BiM-MeR to exploit the availability of highly optimizedassembly-coded implementations of matrix multiplica-tion on single nodes and to ensure maximal granular-ity in local computations. The Broadcast-Multiply-Roll (BMR) algorithm [18] has been demonstrated toscale extremely well on loosely coupled square pro-cessor meshes and uses two readily portable commu-nication kernels: one-dimensional broadcast and roll.Since many distributed-memory machines do not cur-rently overlap communication and computation e�ec-tively, BiMMeR uses a variant of BMR that is highlysynchronous [24, 23].In Figures 3 and 4, we give the total performancefor BiMMeR on square partitions of the Intel Delta formatrices having size 100� 100, 200� 200, 300� 300,and 450�450 on each processor and some preliminaryresults on the Intel Paragon for matrices having size100�100, 200�200, and 450�450 on each processor.Our code has also achieved a parallel e�ciency of 86%,with overall peak performance in excess of 8 Gops on256 nodes of the Delta for an 8800� 8800 double pre-cision matrix [24]. Note that BiMMeR has achieveda parallel e�ciency of about 80%, with peak perfor-mance thus far of about 9:5 Gops on 256 nodes ofthe Paragon for a 7200�7200 double precision matrix.We expect performance on the Paragon to improve asthe machine matures.



3. Parallel performance of eigensolverWe are currently studying both the numerical perfor-mance and scaling properties of our algorithm. Sinceour code currently uses only the unblocked versions ofSBR, we expect our performance to continue to im-prove. Preliminary results indicate that SYISDA pro-vides excellent scaling and accuracy [6]. Our code cancurrently accommodate matrices of local dimension upto about 450. The terminology local dimension refersto the size of the matrix block on each processor.
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Figure 5. Eigenvalue Accuracy on Delta
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Figure 6. Eigenvector Orthogonality on DeltaEasily generated symmetric test cases with uni-formly distributed eigenvalues of dimensions 100{7200
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Figure 7. Eigenvalue Accuracy on Paragon
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Figure 8. Eigenvector Orthogonality on Paragonhave been tested so far. For a given matrix dimen-sion, one of two matrices was generated and solved ondi�erent size partitions. We plan to expand our testsuite substantially in the future.Preliminary results on the Paragon were obtainedunder Release 1.1.3 of the operating system and byrunning our code compiled with the \-g" option anddefault parameters. Due to a variety of complications,the Paragon data is incomplete. Nonetheless, our re-sults are quite promising and we expect improvementsin performance under future releases of the operatingsystem.Figures 5{8 show the residuals for eigenvalue ac-curacy and orthogonality on the Delta and Paragon.Accuracy in the residuals for a given matrix A is mea-sured by computing the maximumnormalized1-normresidual maxi kAZi � �iZik1kAk1
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local dim=450Figure 12. Time Breakdown on Paragonwhere Zi is the computed eigenvector correspondingto the eigenvalue �i. We also measured the departurefrom orthogonality residual given bymaxi;j ��[ZtZ � In]ij��to verify that the computed eigenvectors were, indeed,orthonormal. Here Z is the matrix of eigenvectors.time (min.)n p = 4 p = 8 p = 12 p = 16800 2.5 1.1 .9 .81600 17.4 6.3 4.1 3.12400 { 17.9 10.5 7.53200 { 38.5 21.6 14.84000 { { 38.8 25.64800 { { 63.0 41.15600 { { { 61.76400 { { { 88.37200 { { { 122.1Table 1. Time for complete eigensolution ofn� n matrix on p� p partition of Deltatime (min.)n p = 4 p = 8 p = 12 p = 16800 1.7 1.0 { {1600 12.3 4.3 3.1 2.72400 { 12.2 7.3 {3200 { { 15.4 11.64800 { { { 31.9Table 2. Time for complete eigensolution ofn� n matrix on p� p partition of Paragon



Figures 9 and 10 show the total performance ofSYISDA on square partitions of the Delta and Paragonfor test matrices having various local dimensions oneach processor. It is clear that SYISDA scales ex-tremely well. We see from Figure 3 that on the Delta,BiMMeR runs at about 7:8 Gops on a 16 � 16 par-tition for 7200� 7200 matrices; SYISDA achieves 6:4Gops, about 82% of what we believe to be the maxi-mum possible performance for this algorithm.Matrix multiplication and RRTRID comprise thevast majority of the computational time required bySYISDA. Figures 11 and 12 show the fraction of theSYISDA computation time spent in each of these prim-itives on both the Delta and Paragon for matrices oflocal dimensions 100 and 450. We see that RRTRID isa signi�cant portion of the calculation for small ma-trices, whereas the percentage of time spent in matrixmultiplication approaches 90% for large matrices. Thisis particularly desirable because of the extreme scala-bility of matrix multiplication. We also see that theEnd Game is very inexpensive.Tables 1 and 2 give the solution time in minutes fortest matrices of various sizes on p� p partitions of theDelta and Paragon, where p = 4; 8; 12; 16.4. ConclusionsWe have discussed algorithmic improvements to theSYISDA and given performance results on a variety ofmachines. We have seen that in addition to provid-ing good numerical performance, high e�ciencies andgood scaling are achieved, due to the preponderanceof matrix multiplication in the algorithm.In the future, we shall give performance results forSYISDA using a blocked implementation of SBR ona variety of di�erent machines, as well as numericalresults for a wide variety of test matrices. We alsoplan to compare the performance of our code to thatof other parallel codes, as available.In addition to continuing our studies of SYISDAand the data layout issues associated with the kernelswe are interested in, we are also investigating vari-ants of SYISDA aimed at reducing the amount of timespent doing dense matrix multiplication. One poten-tial method of achieving this is to use a Strassen-typealgorithm [31, 13] to perform the dense matrix multi-plications. Another particularly promising algorithm,banded SYISDA [11], uses SBR to reduce A to a nar-row band and then periodically reduces matrices inthe Eigenvalue Smoothing step to a narrow band.Multiplication of two matrices of bandwidths b only re-quires O(b2n) work versus O(n3) for two dense matri-ces. Furthermore, the special properties of the iterates
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