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Abstract

In this paper, we discuss work in progress on a com-
plete eigensolver based on the Invariant Subspace De-
composition Algorithm for dense symmetric matrices
(SYISDA). We describe a recently developed acceler-
ation technique that substantially reduces the overall
work required by this algorithm and review the algorith-
maic highlights of a distributed-memory implementation
of this approach. These include a fast matriz-matriz
multiplication algorithm, a new approach to parallel
band reduction and tridiagonalization, and a harness
for coordinating the divide-and-conquer parallelism in
the problem. We present performance results for the
dominant kernel, dense matriz multiplication, as well
as for the overall SYISDA implementation on the Intel
Touchstone Delta and the Intel Paragon.

1. Introduction

Computation of eigenvalues and eigenvectors is an
essential kernel in many applications, and several
promising parallel algorithms have been investigated
[26, 3, 28, 22, 25, 6]. The work presented in this pa-
per is part of the PRISM (Parallel Research on In-
variant Subspace Methods) Project, which involves re-
searchers from Argonne National Laboratory, the Su-
percomputing Research Center, the University of Cal-
ifornia at Berkeley, and the University of Kentucky.
The goal of the PRISM project 1s the development of
algorithms and software for solving large-scale eigen-
value problems based on the invariant subspace de-
composition approach (ISDA) suggested by Auslander
and Tsao [1].

The symmetric invariant subspace decomposition
algorithm (SYISDA) for an n X n symmetric matrix
A proceeds as follows.
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Scaling: Compute upper and lower bounds on the
spectrum A(A) of A and compute o and 7 such
that for B = a« A+ I we have A(B) C [0, 1], with
the mean eigenvalue of A being mapped to %

Eigenvalue Smoothing: Let p;(z), i = 1,2,... be
polynomials such that lim;_ p;([0,1]) = {0, 1},
that is, in the limit all values are mapped to either
0 or 1. Tterate

Co IB,CZ'_H :pi(CZ»),i:O,l,...,

until ||Ci41 — Ci|| is numerically negligible (in it-
eration k, say), at which point all the eigenvalues
of '} are near either 0 or 1.

Invariant Subspace Computation: Find an or-
thogonal matrix [U, V] such that the columns of U
and V form orthonormal bases for the range space
of C% and its complementary orthogonal sub-
space, respectively. That is, UTU = I, VTV =
I, UTV =0, and the range of C}U is U.

Decoupling: Update the original A with [U, V], i.e.,
form

(U, VI" AU, V] = (Al Az) :

Since the invariant subspaces of any matrix poly-
nomial of a symmetric matrix A are also invariant
subspaces of A, the columns of U and V span com-
plementary invariant subspaces of A, and hence their
application to A decouples the spectrum of A. The
subproblems A; and As can now be solved indepen-
dently and the algorithm applied further recursively,
with the number of subproblems doubling at every
stage. If eigenvectors are desired as well, we also up-
date the current eigenvector matrix. Orthogonality of
the eigenvectors is guaranteed due to the exclusive use
of orthogonal transformations.

We have considerable freedom in implementing
SYISDA, particularly with respect to choosing the



polynomials p; and the method for computing the in-
variant subspaces. As in [27, 25, 6], we use predom-
inantly the first incomplete Beta function Bi(z) =
322 — 223 in our implementation. In addition, in Sec-
tion 2, we describe an acceleration technique we have
recently developed that substantially reduces the num-
ber of iterations required in the Eigenvalue Smooth-
ing step. We note that other functional iterations,
such as approximation methods for the matrix sign
function [14, 15, 21, 2], can be used in the Eigenvalue
Smoothing step as well.

The two key primitives of the algorithm are matrix-
matrix multiplication, which accounts for the major-
ity of the computation, and computation of the range
and null space of a matrix having eigenvalues clus-
tered around 0 and 1. The sequential complexity of
SYISDA, when applied to dense matrices, is consider-
ably greater than that of other algorithms. Nonethe-
less, the algorithm is promising from both a scalability
and a numerical point of view [27, 6]. First, since most
of the computation is in matrix multiplication, high ef-
ficiencies and near optimal speedups are achieved on
large problems. Second, since the algorithm performs
only orthogonal transformations, orthogonality in the
computed eigenvectors is guaranteed.

In the next section, we briefly describe the parallel
algorithm. In Section 3, we give recent performance
results for our implementation of SYISDA on the In-
tel Touchstone Delta and the Intel Paragon. Section
4 concludes with some brief comments about the algo-
rithm presented.

2. The parallel algorithm

The parallel implementation incorporates several al-
gorithmic improvements developed since our initial in-
vestigations on serial machines. The first improvement
is our method of computing the subspaces in the In-
variant Subspace Computation step. To find the
orthogonal transformation that decouples A, we have
to find the range and null space of a matrix that has
only two distinct eigenvalues, 0 and 1. As it turns out,
the Invariant Subspace Computation step can be
achieved essentially via a tridiagonalization of C}, us-
ing a methodology we shall refer to as rank-revealing
tridiagonalization (RRTRID).

In order to reduce the given matrix to tridiagonal
form, we employ a variant of the successive band re-
duction (SBR) framework suggested by Bischof and
Sun in [9], which eliminates subdiagonals of C} in a
piecemeal fashion as illustrated in Figure 1. In com-
parison, conventional Householder tridiagonalization
approaches [19] or block variants thereof [16] elimi-

nate all subdiagonals at one time. This traditional
approach also underlies the parallel implementations
described in [20] and [17]. The SBR variant used in
our implementation is discussed in detail in [7]; per-
formance results are given in [6] and in another paper
at this conference [10]. An exciting new development
discussed in [10] is the ability to fully block all stages
of the succession of band reductions.

FiGurg 1. Reduction to tridiagonal form by a
sequence of band reductions

The key observation in the context of SYISDA is
that, under some very general conditions, a banded
matrix having only two distinct eigenvalues and band-
width n/2/ must be block diagonal, with each block
being of size at most n/2/~!. In particular, a tridiago-
nal matrix with such a spectrum is block diagonal with
blocks of size at most 2 x 2. Hence, after the matrix
has been reduced to tridiagonal form, one only needs
to solve some (completely independent) 2 x 2 eigen-
value problems to obtain the desired invariant sub-
spaces. We are able to skip large numbers of the or-
thogonal transformations, since the block diagonality
of the matrices generated results in many transforma-
tions that would act on columns that are already neg-
ligible and hence need not be performed. This prop-
erty has been demonstrated in extensive testing [6, 11],
particularly of the sequential algorithm. Algorithmic
details of RRTRID, as well as some of the subtle nu-
merical issues are discussed in [8].

It is important to realize that, unlike other ap-
proaches for computing so-called rank-revealing fac-
torizations [4, 5, 12, 30], tridiagonalization does not
involve any data-dependent pivoting strategies. In
particular, in the parallel setting, the predictability
of data flow greatly contributes to simplicity of imple-
mentation as well as to the ability to overlap commu-
nication and computation.

We have developed a sequential code for perform-
ing both SBR and RRTRID that incorporates some of
the blocking schemes discussed in our previous papers,
with promising results [6, 11]. However, the parallel
implementation of RRTRID currently only performs
unblocked operations. Nonetheless, the skipping al-
luded to previously still leads to good performance.

A second algorithmic change was necessitated by
the use of the rank-revealing tridiagonalization scheme



of Bischof and Sun. The rank-revealing tridiagonal-
ization scheme requires that the rank-deficient ma-
trix, C}, have only two distinct eigenvalues. As in
[27], we began by using first incomplete Beta function,
Bi(z) = 327 — 22>, exclusively in the Eigenvalue
Smoothing step. However, because 9B; has a fixed
point at 1/2, Cj occasionally has eigenvalues at 1/2.
Fortunately, we have discovered an inexpensive means
of detecting and addressing this situation. Suppose
that Cy has eigenvalues 0, 1/2, and 1 of multiplici-
ties my, ms, and mg, respectively. It is easily shown
that my = 4(trace(Cy) — trace(C?)). Both trace(Cy)
and trace(C?) = ||C'k||iw are inexpensive computations.
Here, ||-||p denotes the Froebenius norm. If my > 0,
we then apply either 3z — 222 or 222 — z to C}. Both
these quadratic functions map 0 and 1 to themselves;
the pertinent difference between them is that one maps
1/2 to 1 and the other maps 1/2 to 0. The quadratic
used is chosen to make the divide as even as possible.
In practice, after the application of this quadratic, the
clusters of eigenvalues at 0 and 1 require “tightening
up.” We accomplish this by a few further applications
of the p;.

The final algorithmic feature found in our current
parallel implementation 1s an acceleration technique
that significantly reduces the number of iterations of
B1 required in the early divides. Since most of the
work in SYISDA occurs in the early divides, efforts
to improve performance must be aimed at these di-
vides. In fact, in the early divides, the number of
applications of B required tends to be larger than
in later stages. One reason for this is that when no
a priori spectral information is available, Scaling is
done using bounds obtained from Gershgorin disks
[19]. Since these bounds are generally quite poor, B
from the Scaling step tends to have eigenvalues closer
to 1/2 than would be the case if better bounds on
the spectrum were available, as is the case in later
divides. Since the convergence rate of the incomplete
Beta function iteration is very slow for values near 1/2,
we sought strategies to improve the rate of convergence
for matrices having eigenvalues near 1/2.

B, takes on the value 1/2 three times: at 1/2, p,
and 1 — p, where p = (1++/3)/2 ~ 1.366. We propose
the following scheme, which is a slight modification of
a technique suggested by Pan and Schreiber [29]. They
essentially observed that if we take the matrix B and
“stretch” 1t so that its eigenvalues now lie over some
interval, say [—a, 1+ «], where 0 < o« < p — 1, then
the eigenvalues of B near 1/2 are moved away from 1/2
and 2By will still map the eigenvalues of B into [0, 1].
By “stretching”, we mean to apply a linear function

FiGure 2. Behavior of Acceleration Technique

that maps 0 and 1 to 1 — « and «, respectively, leav-
ing 1/2 fixed. Repeating this strategy several times,
namely, a “stretch” followed by one application of B,
at the beginning of the Eigenvalue Smoothing step
leads to a substantial reduction in the number of it-
erations required in the early stages of the algorithm.
Since values near (1 & +/3)/2 are mapped near 1/2,
we must be careful not to “stretch” too aggressively.
We have found that applying this strategy six or seven
times with o = .3 leads to about a 1/3 reduction in the
number of iterations required in the early stages of the
algorithm. Figure 2 compares the effect of two itera-
tions of this acceleration strategy (solid curve) versus
two regular iterations of B, (dashed curve). Note the
poorer behavior of this iteration near 0 and 1; this is
offset by the substantially improved convergence for
values near 1/2. In any case, values away from 1/2
converge quadratically to either 0 or 1 in the later it-
erations, so this boundary behavior does not in fact
prove to be detrimental.

In the latter stages of SYISDA, because good
bounds can be ascertained from previous divides, di-
vides tend to occur quickly without acceleration and
use of the acceleration strategy often leads to increased
numbers of iterations. Therefore, we do not apply this
technique to small problems. In any case, since the
majority of the computation performed by SYISDA
occurs in the early divides, the savings realized results
in a significant performance improvement. We have
observed improvements in run time of roughly 25%.
The number of iterations required 1s now typically be-
tween 15 and 20 for the first divide, as opposed to
between 25 and 30 for the original incomplete Beta
function iteration.

The orchestration of multiple subproblems cur-
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rently consists of two separate stages [25, 6]. The first
stage encompasses the early divides, where large sub-
problems are solved sequentially and the scalability
of the dense matrix multiplication and rank-revealing
tridiagonalization lead to high efficiencies. As the sub-
problem size decreases, there is a point at which com-
munications overhead makes it impractical to solve
that subproblem over the entire mesh. The amount
of work required to find the eigensolution of the re-
maining subproblem is very small, but the cost of the
update of the eigenvector matrix Z, whose leading
dimension is still the size of the original matrix A,
is still substantial. The second stage, or End Game,
handles the small subproblems remaining, exploiting
parallelism at two levels: first, by solving individual

subproblems in parallel on single nodes and second,
by performing distributed updates of the accumulated
eigenvector matrix.

Through the use of two-dimensional torus wrap, no
data redistribution is required between divides. As the
subproblem size decreases, the proportion of the to-
tal time required for communication during individual
matrix multiplications increases and the granularity of
local computation decreases. However, this approach
guarantees near-perfect load balancing in the costly
early stages. A discussion of the rationale used to ar-
rive at this scheme is presented in [25]. When the
subproblems become small (dimension of a few hun-
dred), they are currently solved using DSYEV (QR
algorithm) from LAPACK.

Since the computational cost for SYISDA is domi-
nated by dense matrix-matrix multiplication, its per-
formance depends heavily on the matrix multipli-
cation code. We have developed a double preci-
sion distributed matrix multiplication code, BiMMeR,
that incorporates features needed by SYISDA. As
usual, a critical issue in achieving high efficiency is
data locality, i.e., maximum reuse of data in floating
point computations. To this end, we designed BiM-
MeR to exploit the availability of highly optimized
assembly-coded implementations of matrix multiplica-
tion on single nodes and to ensure maximal granular-
ity in local computations. The Broadcast-Multiply-
Roll (BMR) algorithm [18] has been demonstrated to
scale extremely well on loosely coupled square pro-
cessor meshes and uses two readily portable commu-
nication kernels: one-dimensional broadcast and roll.
Since many distributed-memory machines do not cur-
rently overlap communication and computation effec-
tively, BIMMeR uses a variant of BMR that is highly
synchronous [24, 23].

In Figures 3 and 4, we give the total performance
for BiMMeR on square partitions of the Intel Delta for
matrices having size 100 x 100, 200 x 200, 300 x 300,
and 450 x 450 on each processor and some preliminary
results on the Intel Paragon for matrices having size
100 x 100, 200 x 200, and 450 x 450 on each processor.
Our code has also achieved a parallel efficiency of 86%,
with overall peak performance in excess of 8 Gflops on
256 nodes of the Delta for an 8800 x 8800 double pre-
cision matrix [24]. Note that BiMMeR has achieved
a parallel efficiency of about 80%, with peak perfor-
mance thus far of about 9.5 Gflops on 256 nodes of
the Paragon for a 7200 x 7200 double precision matrix.
We expect performance on the Paragon to improve as
the machine matures.



3. Parallel performance of eigensolver

We are currently studying both the numerical perfor-
mance and scaling properties of our algorithm. Since
our code currently uses only the unblocked versions of
SBR, we expect our performance to continue to im-
prove. Preliminary results indicate that SYISDA pro-
vides excellent scaling and accuracy [6]. Our code can
currently accommodate matrices of local dimension up
to about 450. The terminology local dimension refers
to the size of the matrix block on each processor.
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have been tested so far. For a given matrix dimen-
sion, one of two matrices was generated and solved on
different size partitions. We plan to expand our test
suite substantially in the future.

Preliminary results on the Paragon were obtained
under Release 1.1.3 of the operating system and by
running our code compiled with the “-g” option and
default parameters. Due to a variety of complications,
the Paragon data is incomplete. Nonetheless, our re-
sults are quite promising and we expect improvements
in performance under future releases of the operating
system.

Figures 5-8 show the residuals for eigenvalue ac-
curacy and orthogonality on the Delta and Paragon.
Accuracy in the residuals for a given matrix A is mea-
sured by computing the maximum normalized co-norm
residual

s WAZi = AiZillo
i 14l
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where Z; is the computed eigenvector corresponding
to the eigenvalue A;. We also measured the departure
from orthogonality residual given by

max|[Z2'Z — 1,];;]|
2,]

to verify that the computed eigenvectors were, indeed,
orthonormal. Here Z is the matrix of eigenvectors.
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time (min.)
n | p=4 | p=8 | p=12 | p=16
800 2.5 1.1 9 .8
1600 17.4 6.3 4.1 3.1
2400 - 17.9 10.5 7.5
3200 - 38.5 21.6 14.8
4000 - - 38.8 25.6
4800 - - 63.0 41.1
5600 - - - 61.7
6400 - - - 88.3
7200 - - - 122.1
TaBLE 1. Time for complete eigensolution of

n X n matrix on p x p partition of Delta

time (min.)

n | p= p=8 | p=12 | p=16

800 1.7 1.0 - -
1600 12.3 4.3 3.1 2.7
2400 - 12.2 7.3 -
3200 - - 154 11.6
4800 - - - 31.9

TaBLE 2. Time for complete eigensolution of

n X n matrix on p X p partition of Paragon



Figures 9 and 10 show the total performance of
SYISDA on square partitions of the Delta and Paragon
for test matrices having various local dimensions on
each processor. It is clear that SYISDA scales ex-
tremely well. We see from Figure 3 that on the Delta,
BiMMeR runs at about 7.8 Gflops on a 16 x 16 par-
tition for 7200 x 7200 matrices; SYISDA achieves 6.4
Gflops, about 82% of what we believe to be the maxi-
mum possible performance for this algorithm.

Matrix multiplication and RRTRID comprise the
vast majority of the computational time required by
SYISDA. Figures 11 and 12 show the fraction of the
SYISDA computation time spent in each of these prim-
itives on both the Delta and Paragon for matrices of
local dimensions 100 and 450. We see that RRTRID is
a significant portion of the calculation for small ma-
trices, whereas the percentage of time spent in matrix
multiplication approaches 90% for large matrices. This
is particularly desirable because of the extreme scala-
bility of matrix multiplication. We also see that the
End Game is very inexpensive.

Tables 1 and 2 give the solution time in minutes for
test matrices of various sizes on p X p partitions of the
Delta and Paragon, where p = 4, 8,12, 16.

4. Conclusions

We have discussed algorithmic improvements to the
SYISDA and given performance results on a variety of
machines. We have seen that in addition to provid-
ing good numerical performance, high efficiencies and
good scaling are achieved, due to the preponderance
of matrix multiplication in the algorithm.

In the future, we shall give performance results for
SYISDA using a blocked implementation of SBR on
a variety of different machines, as well as numerical
results for a wide variety of test matrices. We also
plan to compare the performance of our code to that
of other parallel codes, as available.

In addition to continuing our studies of SYISDA
and the data layout 1ssues associated with the kernels
we are interested in, we are also investigating vari-
ants of SYISDA aimed at reducing the amount of time
spent doing dense matrix multiplication. One poten-
tial method of achieving this is to use a Strassen-type
algorithm [31, 13] to perform the dense matrix multi-
plications. Another particularly promising algorithm,
banded SYISDA [11], uses SBR to reduce A to a nar-
row band and then periodically reduces matrices in
the Eigenvalue Smoothing step to a narrow band.
Multiplication of two matrices of bandwidths b only re-
quires O(b?n) work versus O(n?) for two dense matri-
ces. Furthermore, the special properties of the iterates

in the Eigenvalue Smoothing step result in surpris-
ingly slow band growth in the iterated matrices. In our
sequential implementation, using specialized routines
for multiplying symmetric band matrices [32], the run
times for banded SYISDA are competitive with the
symmetric QR algorithm for large problems. In fact,
the time spent in SBR becomes the dominant time.
Banded SYISDA uses essentially the same harness as
SYISDA and the two computational kernels of SBR
and banded matrix multiplication. We intend to mod-
ify our current code to obtain an implementation of
banded SYISDA and compare the two algorithms.
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