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Automatic differentiation (AD) is a technique for generating efficient and reliable deriva-
tive codes from computer programs with a minimum of human effort. Derivatives of model
output with respect to input are obtained exactly. No intrinsic limits to program length or
complexity exist for this procedure. Calculation of derivatives of complex numerical models
is required in systems optimization, parameter identification, and systems identification. We
report on our experiences with the ADIFOR (Automatic Differentiation in Fortran) tool
on a two-dimensional groundwater flow and contaminant transport finite-element model,
ISOQUAD, and a three-dimensional contaminant transport finite-element model, TLS3D.
Derivative values and computational times for the automatic differentiation procedure are
compared with values obtained from the divided differences and handwritten analytic ap-
proaches. We found that the derivative codes generated by ADIFOR provided accurate
derivatives and ran significantly faster than divided-differences approximations, typically
in a tenth of the CPU time required for the imprecise divided-differences method for both
codes. We also comment on the benefit of automatic differentiation technology with respect
to accelerating the transfer of general techniques developed for using water resource com-
puter models, such as optimal design, sensitivity analysis, and inverse modeling problems,
to field problems.



1 INTRODUCTION

Calculation of derivatives of computer models is necessary for a wide variety of procedures
of interest to numerical modelers, for example, sensitivity analysis, optimization, and in-
verse problems.  Several methods have traditionally been used to obtain derivatives of
computer model output with respect to input. Analytical calculation can be used whenever
it is reasonable to write analytic derivatives and then code them by hand (see, for example,
Chang et al. [1992]). If a code is extremely complex, this approach may be infeasible.
Symbolic differentiation programs often generate very large and inefficient derivative for-
mulas. Writing an adjoint code to calculate derivatives is a well-defined procedure that
calculates exact derivatives very efficiently (Leitmann, 1981). This method, however, also
requires a potentially large amount of human effort.

One of the most common procedures used to obtain model derivatives of complex com-
puter models is the divided-differences method.  This method calculates derivatives by
perturbing model input by small finite amounts and dividing the resulting model output
perturbations by input perturbations (see, for example, Gorelick et al., 1984). This proce-
dure may fail to give accurate derivatives and is inefficient since it requires as many model
simulations as there are input parameters of interest. In general, however, the divided-
differences method does not require much human effort and, until recently, has been the
only universally applicable approach available to obtain derivatives for very complex com-
puter models.

This paper describes the application of automatic differentiation to obtain codes that
evaluate derivatives of complex computer models efficiently, exactly, and with a minimum of
human effort. Automatic differentiation is a method that produces a derivative code, given
the model code and a list of parameters that are considered dependent and independent with
respect to differentiation. The method produces a code that will evaluate derivatives exactly
(up to machine precision), usually in much less time than the approximate finite-differences
method. There are no inherent limits on program size or complexity.

We applied the automatic differentiation tool ADIFOR (Automatic Differentiation in
Fortran) to a two-dimensional and a three-dimensional groundwater flow and contaminant
transport finite-element model to demonstrate the method. The CPU times for automatic
differentiation were much faster than for the divided-differences method for both mod-
els, and somewhat slower than handwritten optimized analytic derivative code (written by
Chang et al. [1992]) for the two-dimensional model. In both cases automatic differentiation
produced exact derivatives.

2 AUTOMATIC DIFFERENTIATION AND ADIFOR

Automatic differentiation techniques rely on the fact that every function, no matter how
complicated, is executed on a computer as a (potentially very long) sequence of elementary
operations such as additions, multiplications, and elementary functions such as sin and cos.
By applying the chain rule,
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over and over again to the composition of those elementary operations, one can compute
derivate information of f exactly and in a completely mechanical fashion.

There are two canonical ways of propagating derivatives in automatic differentiation
(Griewank, 1989). In the forward mode, we propagate derivatives of intermediate values
with respect to the input parameters. In the reverse mode, we maintain derivatives of the
final result with respect to intermediate quantities. The reverse mode is closely related to
the previously mentioned adjoint approach. As a (very rough) rule of thumb, the run time
and storage requirements of the forward mode are linear in the number of model inputs of
interest, while the run time of the reverse mode is linear in the number of model outputs of
interest w.r.t. differentiation. The storage requirements of the reverse mode are harder to
assess and may be substantial because one must remember or recompute every intermediate
value that nonlinearly impacts the final result.

There have been various implementations of automatic differentiation, and an extensive
survey was prepared by Juedes (1991). Recently, new approaches to automatic differenti-
ation have been explored in the ADIFOR (Bischof et al., 1992) and ODYSSEE (Rostaing
et al., 1993) projects. Both tools transform Fortran code, applying the rules of automatic
differentiation, and generating new Fortran code that, when executed, computes deriva-
tives without the overhead associated with “tape interpretation” schemes. We used the
ADIFOR tool in our experiments, which, as we will describe shortly, mainly employs the
forward mode. In contrast, ODYSSEE employs the reverse mode.

ADIFOR provides automatic differentiation for programs written in Fortran 77. Given a
Fortran subroutine (or collection of subroutines) describing a “function,”
of which variables in parameter lists or common blocks correspond to “independent” and
“dependent” variables with respect to differentiation, ADIFOR produces portable Fortran
77 code that allows the computation of the derivatives of the dependent variables with
respect to the independent ones.

ADIFOR accepts almost all of Fortran 77, in particular, arbitrary calling sequences,
nested subroutines, common blocks, and equivalences. The ADIFOR-generated code tries
to preserve vectorization and parallelism in the original code and employs a consistent
subroutine-naming scheme that allows for code tuning, the exploitation of domain-specific
knowledge, and the exploitation of vendor-supplied libraries.

ADIFOR employs a hybrid forward/reverse mode approach to generating derivatives.
For each assignment statement, it generates code for computing the partial derivatives of the
result with respect to the variables on the right-hand side using the reverse mode approach,
and then employs the forward mode to propagate overall derivatives. For example, the
statement

and an indication

y = x(1) % x(2) * x(3) * x(4) * x(5)

gets transformed into the code shown in Figure 1. Note that none of the common subex-
pressions (i) * z(j) is recomputed in the reverse mode section.

ADIFOR-generated code can be used in various ways ( Bischof and Hovland, 1991): In-
stead of simply producing code to compute the Jacobian J, ADIFOR produces code to
compute J x 5, where the “seed matrix” 5 is initialized by the user. So if 5 is the iden-
tity, ADIFOR computes the full Jacobian, and if 5 is just a vector, ADIFOR computes the
product of the Jacobian by a vector. “Compressed” versions of sparse Jacobians can be com-
puted by exploiting the same graph-coloring techniques that are used for divided-differences



r$l = x(1) * x(2)
r$2 = r$1 * x(3)
r$3 = r$2 * x(4)

14 = x(5) * x(4) Reverse Mode for computing

r$5 = r$4 * x(3) dy
r$lbar = r$5 * x(2) ——t=1,....)
r$2bar = r$5 * x(1) dx(1)
r$3bar = r$4 * r$1
r$dbar = x(5) * r§2
do g$i$ = 1, g$p$
ghy(g%i$) = r$lbar * gSx(g$i$, 1)
+ r$2bar * g$x(g$i$, 2) Forward Mode:
+ r$3bar * g$x(g$i$, 3) Assembling Vy from Vx (i),
+ r$4bar * g¥x(g%i$, 4) i=1,...,5.
+ 133 * gSx(g9$i3, 5)
enddo
y =133 * x(5) } Computing function value
Figure 1: Sample of ADIFOR-generated Code
approximations of sparse Jacobians. In Bischof et al. [1994] it is also shown how one

can use the flexibility of the ADIFOR interface to “stripmine” Jacobian computations and
exploit parallelism to decrease turnaround time for derivative computations.

3 DIFFERENTIATED MODELS: TWO- AND THREE-
DIMENSIONAL FLOW AND TRANSPORT

3.1 ISOQUAD: 2D Groundwater Flow and Transport Model

ISOQUAD is a two-dimensional (vertical dimension averaged) Galerkin finite-element model
of groundwater transient flow and transport (see Pinder and Frind [1972], and Pinder and
Gray [1977]). ISOQUAD is written in Fortran 77 and is on the order of two thousand lines of
code. The model assumes the aquifer is confined but does allow for leakage. The model has
been used extensively in optimal groundwater remediation design research (Chang et al.,
1992, and Whiffen and Shoemaker, 1993). Analytic expressions that can be coded for the
derivatives of ISOQUAD are provided by Chang et al. (1992). These hand-coded, validated
derivatives have been optimized for performance and allow a comparison and validation of
ADIFOR-generated derivatives with divided-differences derivatives.

The model ISOQUAD is used in its implicit time-stepping mode, on a small mesh
of 77 nodes for comparison of derivatives. The model has as input the pumping rates
of wells located on m computational nodes. Outputs include contaminant concentrations
and hydraulic head values at each of n active nodes for each time step in the simulation.
Automatic differentiation was used to obtain the following derivatives:
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The vector ¢; ¢ R" is the value of the contaminant concentration at time t, the vector
h: € R" is the hydraulic head at time t, and the vector ¢; ¢ R is the pumping rate at
each computational node at time step t. The evaluation of all three derivatives, (2)-(4),
together is considered one derivative evaluation. In this example, there are 126 independent
variables, corresponding to a hydraulic head value and a contaminant concentration value
at each of 63 active nodes.

ADIFOR-generated code produced derivatives that agreed with the validated handwrit-
ten code to the order of the machine precision, but executed in much less time than the
(imprecise) divided-differences method. In particular, for a 77-element mesh, ADIFOR-
generated code calculated derivatives (2)-(4) in about the time it would take to run the
original simulation model 17 times. The same derivatives using the divided-differences ap-
proach require 126 simulations, one for each independent variable. Automatic differentiation
code was somewhat slower than the optimized handwritten code by Chang et al. [1992],
which requires about the same time as 5 simulations.

3.2 TLS3D: 3D Groundwater Transport Model

TLS3D is a model of the three-dimensional advection diffusion equation. TLS3D employs
a Taylor least-squares finite-element procedure to solve the unsteady advection diffusion
equation. The model uses a three-dimensional serendipity Hermite element for an eight-
node hexahedron. For a complete description of the procedure and three-dimensional model,
see Park and Liggett (1991). The code provided to the authors was written in Fortran 77
and is approximately 2300 lines in length.

The model is used on three-dimensional mesh ranging in size from 3 to 32 rectangular
box elements to test the scalability of the code generated by ADIFOR. The model has as
input the three-dimensional flow field; velocity vectors, v;, for each simulation time step,
t; and an initial contaminant concentration at each node, ¢g. Model output is single-
species contaminant concentrations at each active node, ¢;, for each simulation time step t.
Automatic differentiation was used to evaluate the derivative
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Again, automatic differentiation provided a code that calculated model derivatives ex-
actly in much less time than the divided-differences method.  Four different-sized dis-

cretizations consisting of 4, 7, 16, and 32 three-dimensional elements were used to compare
derivative performances.

We obtained the following results on a SPARCstation 10 and a single node of the IBM
SP1 parallel computer. The number of independent variables equals three times the number
of nodes in the model. The columns labeled f(z) show the run time (in seconds) of the
simulation; the columns labeled m%ﬁl show the average time required for the derivatives
with respect to one independent variable, when the ADIFOR-generated code is used to
generate derivatives with respect to 48 independent variables at a time.



# Elements | SPARCstation 10 SP1 Node
(#independents) | f(z) ‘ Mf%%ll f(2) ‘ Mf%%ll
1(48) [ 2.0 020] 027] 0.7
7(96) | 45 021 | 051 0.21
16 (243) | 30.9 020 | 4.72| 0.15
32 (432) | 77.9 0.19 | 13.26 | 0.14

We see that AD is more than 5 and 7 times faster than divided-differences approximations
on the SPARCstation 10 and the SP1 node, respectively. No handcoded analytic derivatives
of TLS3D are available for comparison.

4 CONCLUSIONS

We found that automatic differentiation can provide accurate and efficient derivative codes
for the complex finite-element codes ISOQUAD and TLS3D. In particular, we found ADI-
FOR generated codes that calculated derivatives in approximately 13% of the time required
by divided differences for the two-dimensional model ISOQUAD, and between 14% and
21% of the time required by divided differences for the three-dimensional model, TLS3D.
A more detailed account of these results will be given in a forthcoming paper.

As a result of our investiations, we believe that automatic differentiation can facilitate
model changes by providing a mechanism for generating accurate and efficient derivative
codes for models with very little human effort. Automatic differentiation technology will
greatly accelerate the transfer of general techniques developed for using water resource com-
puter models, such as optimal design, sensitivity analysis, and inverse modeling problems
to field problems. Automatic differentiation can also accelerate the rate at which algorithm
and model development and testing can occur by providing exact sensitivity information
that may not otherwise be available.
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