
APPLICATION OF AUTOMATIC DIFFERENTIATION TOGROUNDWATER TRANSPORT MODELSC. H. Bischof,1 G. J. Whi�en,2 C. A. Shoemaker,2 Alan Carle,3 and A. A. Ross1(1) Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 60439(2) School of Civil and Environmental EngineeringCornell UniversityIthaca, New York 14853(3) Center for Research on Parallel ComputationRice UniversityHouston, Texas 77251Argonne Preprint MCS-P414-0194to appear in the Proceedings of the International Conference on Computational Methodson Water Resources, Heidelberg, July 1994Automatic di�erentiation (AD) is a technique for generating e�cient and reliable deriva-tive codes from computer programs with a minimum of human e�ort. Derivatives of modeloutput with respect to input are obtained exactly. No intrinsic limits to program length orcomplexity exist for this procedure. Calculation of derivatives of complex numerical modelsis required in systems optimization, parameter identi�cation, and systems identi�cation. Wereport on our experiences with the ADIFOR (Automatic Di�erentiation in Fortran) toolon a two-dimensional groundwater 
ow and contaminant transport �nite-element model,ISOQUAD, and a three-dimensional contaminant transport �nite-element model, TLS3D.Derivative values and computational times for the automatic di�erentiation procedure arecompared with values obtained from the divided di�erences and handwritten analytic ap-proaches. We found that the derivative codes generated by ADIFOR provided accuratederivatives and ran signi�cantly faster than divided-di�erences approximations, typicallyin a tenth of the CPU time required for the imprecise divided-di�erences method for bothcodes. We also comment on the bene�t of automatic di�erentiation technology with respectto accelerating the transfer of general techniques developed for using water resource com-puter models, such as optimal design, sensitivity analysis, and inverse modeling problems,to �eld problems.
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1 INTRODUCTIONCalculation of derivatives of computer models is necessary for a wide variety of proceduresof interest to numerical modelers, for example, sensitivity analysis, optimization, and in-verse problems. Several methods have traditionally been used to obtain derivatives ofcomputer model output with respect to input. Analytical calculation can be used wheneverit is reasonable to write analytic derivatives and then code them by hand (see, for example,Chang et al. [1992]). If a code is extremely complex, this approach may be infeasible.Symbolic di�erentiation programs often generate very large and ine�cient derivative for-mulas. Writing an adjoint code to calculate derivatives is a well-de�ned procedure thatcalculates exact derivatives very e�ciently (Leitmann, 1981). This method, however, alsorequires a potentially large amount of human e�ort.One of the most common procedures used to obtain model derivatives of complex com-puter models is the divided-di�erences method. This method calculates derivatives byperturbing model input by small �nite amounts and dividing the resulting model outputperturbations by input perturbations (see, for example, Gorelick et al., 1984). This proce-dure may fail to give accurate derivatives and is ine�cient since it requires as many modelsimulations as there are input parameters of interest. In general, however, the divided-di�erences method does not require much human e�ort and, until recently, has been theonly universally applicable approach available to obtain derivatives for very complex com-puter models.This paper describes the application of automatic di�erentiation to obtain codes thatevaluate derivatives of complex computer models e�ciently, exactly, and with a minimum ofhuman e�ort. Automatic di�erentiation is a method that produces a derivative code, giventhe model code and a list of parameters that are considered dependent and independent withrespect to di�erentiation. The method produces a code that will evaluate derivatives exactly(up to machine precision), usually in much less time than the approximate �nite-di�erencesmethod. There are no inherent limits on program size or complexity.We applied the automatic di�erentiation tool ADIFOR (Automatic Di�erentiation inFortran) to a two-dimensional and a three-dimensional groundwater 
ow and contaminanttransport �nite-element model to demonstrate the method. The CPU times for automaticdi�erentiation were much faster than for the divided-di�erences method for both mod-els, and somewhat slower than handwritten optimized analytic derivative code (written byChang et al. [1992]) for the two-dimensional model. In both cases automatic di�erentiationproduced exact derivatives.2 AUTOMATIC DIFFERENTIATION AND ADIFORAutomatic di�erentiation techniques rely on the fact that every function, no matter howcomplicated, is executed on a computer as a (potentially very long) sequence of elementaryoperations such as additions, multiplications, and elementary functions such as sin and cos.By applying the chain rule,@@tf(g(t))jt=to) = ( @@sf(s)js=g(to))( @@tg(t)jt=to); (1)2



over and over again to the composition of those elementary operations, one can computederivate information of f exactly and in a completely mechanical fashion.There are two canonical ways of propagating derivatives in automatic di�erentiation(Griewank, 1989). In the forward mode, we propagate derivatives of intermediate valueswith respect to the input parameters. In the reverse mode, we maintain derivatives of the�nal result with respect to intermediate quantities. The reverse mode is closely related tothe previously mentioned adjoint approach. As a (very rough) rule of thumb, the run timeand storage requirements of the forward mode are linear in the number of model inputs ofinterest, while the run time of the reverse mode is linear in the number of model outputs ofinterest w.r.t. di�erentiation. The storage requirements of the reverse mode are harder toassess and may be substantial because one must remember or recompute every intermediatevalue that nonlinearly impacts the �nal result.There have been various implementations of automatic di�erentiation, and an extensivesurvey was prepared by Juedes (1991). Recently, new approaches to automatic di�erenti-ation have been explored in the ADIFOR (Bischof et al., 1992) and ODYSSEE (Rostainget al., 1993) projects. Both tools transform Fortran code, applying the rules of automaticdi�erentiation, and generating new Fortran code that, when executed, computes deriva-tives without the overhead associated with \tape interpretation" schemes. We used theADIFOR tool in our experiments, which, as we will describe shortly, mainly employs theforward mode. In contrast, ODYSSEE employs the reverse mode.ADIFOR provides automatic di�erentiation for programs written in Fortran 77. Given aFortran subroutine (or collection of subroutines) describing a \function," and an indicationof which variables in parameter lists or common blocks correspond to \independent" and\dependent" variables with respect to di�erentiation, ADIFOR produces portable Fortran77 code that allows the computation of the derivatives of the dependent variables withrespect to the independent ones.ADIFOR accepts almost all of Fortran 77, in particular, arbitrary calling sequences,nested subroutines, common blocks, and equivalences. The ADIFOR-generated code triesto preserve vectorization and parallelism in the original code and employs a consistentsubroutine-naming scheme that allows for code tuning, the exploitation of domain-speci�cknowledge, and the exploitation of vendor-supplied libraries.ADIFOR employs a hybrid forward/reverse mode approach to generating derivatives.For each assignment statement, it generates code for computing the partial derivatives of theresult with respect to the variables on the right-hand side using the reverse mode approach,and then employs the forward mode to propagate overall derivatives. For example, thestatement y = x(1) � x(2) � x(3) � x(4) � x(5)gets transformed into the code shown in Figure 1. Note that none of the common subex-pressions x(i) � x(j) is recomputed in the reverse mode section.ADIFOR-generated code can be used in various ways (Bischof and Hovland, 1991): In-stead of simply producing code to compute the Jacobian J , ADIFOR produces code tocompute J � S, where the \seed matrix" S is initialized by the user. So if S is the iden-tity, ADIFOR computes the full Jacobian, and if S is just a vector, ADIFOR computes theproduct of the Jacobian by a vector. \Compressed" versions of sparse Jacobians can be com-puted by exploiting the same graph-coloring techniques that are used for divided-di�erences3



r$1 = x(1) * x(2)r$2 = r$1 * x(3)r$3 = r$2 * x(4)r$4 = x(5) * x(4)r$5 = r$4 * x(3)r$1bar = r$5 * x(2)r$2bar = r$5 * x(1)r$3bar = r$4 * r$1r$4bar = x(5) * r$2 9>>>>>>>>>>>=>>>>>>>>>>>; Reverse Mode for computing@ y@ x(i); i = 1; : : : ; 5do g$i$ = 1, g$p$g$y(g$i$) = r$1bar * g$x(g$i$, 1)+ r$2bar * g$x(g$i$, 2)+ r$3bar * g$x(g$i$, 3)+ r$4bar * g$x(g$i$, 4)+ r$3 * g$x(g$i$, 5)enddo 9>>>>>>>>=>>>>>>>>; Forward Mode:Assembling ry from rx(i),i = 1; : : : ; 5.y = r$3 * x(5) o Computing function valueFigure 1: Sample of ADIFOR-generated Codeapproximations of sparse Jacobians. In Bischof et al. [1994] it is also shown how onecan use the 
exibility of the ADIFOR interface to \stripmine" Jacobian computations andexploit parallelism to decrease turnaround time for derivative computations.3 DIFFERENTIATED MODELS: TWO- AND THREE-DIMENSIONAL FLOW AND TRANSPORT3.1 ISOQUAD: 2D Groundwater Flow and Transport ModelISOQUAD is a two-dimensional (vertical dimension averaged) Galerkin �nite-element modelof groundwater transient 
ow and transport (see Pinder and Frind [1972], and Pinder andGray [1977]). ISOQUAD is written in Fortran 77 and is on the order of two thousand lines ofcode. The model assumes the aquifer is con�ned but does allow for leakage. The model hasbeen used extensively in optimal groundwater remediation design research (Chang et al.,1992, and Whi�en and Shoemaker, 1993). Analytic expressions that can be coded for thederivatives of ISOQUAD are provided by Chang et al. (1992). These hand-coded, validatedderivatives have been optimized for performance and allow a comparison and validation ofADIFOR-generated derivatives with divided-di�erences derivatives.The model ISOQUAD is used in its implicit time-stepping mode, on a small meshof 77 nodes for comparison of derivatives. The model has as input the pumping ratesof wells located on m computational nodes. Outputs include contaminant concentrationsand hydraulic head values at each of n active nodes for each time step in the simulation.Automatic di�erentiation was used to obtain the following derivatives:@ct+1@ht � <n�n (2)4



@ct+1@qt � <n�m (3)@ht+1@qt � <n�m: (4)The vector ct � <n is the value of the contaminant concentration at time t, the vectorht � <n is the hydraulic head at time t, and the vector qt � <m is the pumping rate ateach computational node at time step t. The evaluation of all three derivatives, (2){(4),together is considered one derivative evaluation. In this example, there are 126 independentvariables, corresponding to a hydraulic head value and a contaminant concentration valueat each of 63 active nodes.ADIFOR-generated code produced derivatives that agreed with the validated handwrit-ten code to the order of the machine precision, but executed in much less time than the(imprecise) divided-di�erences method. In particular, for a 77-element mesh, ADIFOR-generated code calculated derivatives (2){(4) in about the time it would take to run theoriginal simulation model 17 times. The same derivatives using the divided-di�erences ap-proach require 126 simulations, one for each independent variable. Automatic di�erentiationcode was somewhat slower than the optimized handwritten code by Chang et al. [1992],which requires about the same time as 5 simulations.3.2 TLS3D: 3D Groundwater Transport ModelTLS3D is a model of the three-dimensional advection di�usion equation. TLS3D employsa Taylor least-squares �nite-element procedure to solve the unsteady advection di�usionequation. The model uses a three-dimensional serendipity Hermite element for an eight-node hexahedron. For a complete description of the procedure and three-dimensional model,see Park and Liggett (1991). The code provided to the authors was written in Fortran 77and is approximately 2300 lines in length.The model is used on three-dimensional mesh ranging in size from 3 to 32 rectangularbox elements to test the scalability of the code generated by ADIFOR. The model has asinput the three-dimensional 
ow �eld; velocity vectors, vt, for each simulation time step,t; and an initial contaminant concentration at each node, c0. Model output is single-species contaminant concentrations at each active node, ct, for each simulation time step t.Automatic di�erentiation was used to evaluate the derivative@ct+1@vt � <n�3n: (5)Again, automatic di�erentiation provided a code that calculated model derivatives ex-actly in much less time than the divided-di�erences method. Four di�erent-sized dis-cretizations consisting of 4, 7, 16, and 32 three-dimensional elements were used to comparederivative performances.We obtained the following results on a SPARCstation 10 and a single node of the IBMSP1 parallel computer. The number of independent variables equals three times the numberof nodes in the model. The columns labeled f(x) show the run time (in seconds) of thesimulation; the columns labeled df(x(i))f(x) show the average time required for the derivativeswith respect to one independent variable, when the ADIFOR-generated code is used togenerate derivatives with respect to 48 independent variables at a time.5



# Elements SPARCstation 10 SP1 Node(#independents) f(x) df(x(i))f(x) f(x) df(x(i))f(x)4 (48) 2.0 0.20 0.27 0.177 (96) 4.5 0.21 0.51 0.2116 (243) 30.9 0.20 4.72 0.1532 (432) 77.9 0.19 13.26 0.14We see that AD is more than 5 and 7 times faster than divided-di�erences approximationson the SPARCstation 10 and the SP1 node, respectively. No handcoded analytic derivativesof TLS3D are available for comparison.4 CONCLUSIONSWe found that automatic di�erentiation can provide accurate and e�cient derivative codesfor the complex �nite-element codes ISOQUAD and TLS3D. In particular, we found ADI-FOR generated codes that calculated derivatives in approximately 13% of the time requiredby divided di�erences for the two-dimensional model ISOQUAD, and between 14% and21% of the time required by divided di�erences for the three-dimensional model, TLS3D.A more detailed account of these results will be given in a forthcoming paper.As a result of our investiations, we believe that automatic di�erentiation can facilitatemodel changes by providing a mechanism for generating accurate and e�cient derivativecodes for models with very little human e�ort. Automatic di�erentiation technology willgreatly accelerate the transfer of general techniques developed for using water resource com-puter models, such as optimal design, sensitivity analysis, and inverse modeling problemsto �eld problems. Automatic di�erentiation can also accelerate the rate at which algorithmand model development and testing can occur by providing exact sensitivity informationthat may not otherwise be available.ACKNOWLEDGMENTSBischof's work was supported by the O�ce of Scienti�c Computing, U.S. Department of En-ergy, under Contract W-31-109-Eng-38, and by the National Aerospace Agency under Pur-chase Order L25935D. Primary support for Whi�en was in the form of a fellowship awardedby the Department of Energy Computational Science Graduate Fellowship Program. Shoe-maker was funded in part by a grant from NSF (ASC 8915326) and the IBM Corporation.Carle was supported by the National Aerospace Agency under Cooperative Agreement No.NCCW-0027 and the National Science Foundation through NSF Cooperative AgreementNo. CCR-9120008. Ross was supported by the O�ce of Scienti�c Computing, U.S. Depart-ment of Energy, under Contract W-31-109-Eng-38, and the National Science Foundationthrough NSF Cooperative Agreement No. CCR-8809615. TLS3D code and assistance wasprovided by Dr. Nam-Sic Park and Dr. James A. Liggett. The groundwater remediationoptimal control model was modi�ed from Fortran code provided by L. Chang.6



References[1] Ahlfeld, D. P., J. M. Mulvey, G. F. Pinder, and E. F. Wood, Contaminated Ground-water Remediation Design Using Simulation, Optimization, and Sensitivity Theory 1.Model Development, Water Resour. Res., 24(3), 431{441, 1988a.[2] Ahlfeld, D. P., J. M. Mulvey, G. F. Pinder, and E. F. Wood, Contaminated Ground-water Remediation Design Using Simulation, Optimization, and Sensitivity Theory 2.Analysis of a Field Site, Water Resour. Res., 24(3), 443{452, 1988b.[3] Averick B., J. Mor�e, C. Bischof, A. Carle, and A. Griewank, Computing large sparseJacobian matrices using automatic di�erentiation. Preprint MCS{P348{0193, Mathe-matics and Computer Science Division, Argonne National Laboratory, 1993. Acceptedfor publication in SIAM Journal of Scienti�c Computing.[4] Bischof, C. , A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR: Generatingderivative codes from Fortran programs. Scienti�c Programming, 1(1):11{29, 1992.[5] Bischof, C., L. Green, K. Haigler, and T. Knau�, Parallel calculation of sensitivityderivatives for aircraft design using automatic di�erentiation, Preprint MCS-P419-0294, Mathematics and Computer Science Division, Argonne National Laboratory,1994.[6] Bischof, C., and P. Hovland, Using ADIFOR to compute dense and sparse Jacobians.ADIFOR Working Note #2, ANL/MCS{TM{158, Mathematics and Computer ScienceDivision, Argonne National Laboratory, Argonne, Ill., 1991.[7] Chang, L.-C., C. A. Shoemaker, and P. L.-F. Liu, Application of a constrained optimalcontrol algorithm to groundwater remediation,Water Resour. Res., 28(12), 3157{3173,1992.[8] Gorelick, S. M., C. I. Voss, P. E. Grill, W. Murray, M. A. Saunders, and M. H. Wright,Aquifer reclamation design: The use of contaminant transport simulation combinedwith nonlinear programming, Water Resour. Res., 20(4), 415{427, 1984.[9] Griewank, A., On automatic di�erentiation. In Mathematical Programming: RecentDevelopments and Applications, pages 83{108, Amsterdam, 1989. Kluwer AcademicPublishers.[10] Juedes, D., A taxonomy of automatic di�erentiation tools. In Andreas Griewank andGeorge Corliss, editors, Proceedings of the Workshop on Automatic Di�erentiation ofAlgorithms: Theory, Implementation, and Application, 315{329, SIAM, Philadelphia,1991.[11] Leitmann, G., The Calculus of Variations and Optimal Control, Vol. 20 ofMathematicalConcepts and Methods in Science and Engineering, Plenum Press, New York, 1981.[12] Park, N. -S., and J. A. Liggett, Application of Taylor-least squares �nite element tothree-dimensional advection-di�usion equation, Int. J. Numer. Methods Fluids, 13,759{773, 1991 7



[13] Pinder, G. F., and Frind, Application of Galerkin's procedure to aquifer analysis,WaterResour. Res., 8(1), 108{120, 1972.[14] Pinder, G. F., and W. G. Gray, Finite Element Simulation in Surface and SubsurfaceHydrology, Academic Press, Orlando, Florida, 1977.[15] Rostaing, N., S. Dalmas, and A. Galligo, Automatic di�erentiation in Odyssee. Tellus,45a(5):558{568, October 1993.[16] Whi�en, G. J., and C. A. Shoemaker, Nonlinear weighted feedback control of ground-water Remediation under uncertainty, Water Resour. Res., 29(9), 3277{3289, 1993.

8


