
NEW ADVANCES IN THE MODELING OFHIGH-TEMPERATURE SUPERCONDUCTORSLori Freitag Mark Jones Paul PlassmannMCS Division Computer Science Department MCS DivisionArgonne National Lab University of Tennessee Argonne National LabArgonne, IL 60439 Knoxville, TN 37996 Argonne, IL 60439ABSTRACTIn this paper, we present a new discrete formulationthat maintains discrete invariance and is suitable for useon nonorthogonal meshes. This formulation, unlike its pre-decessors, allows us to easily use adaptive mesh re�nementto concentrate grid points where error contributions arelarge (near vortex centers). In this way we reduce thetotal number of grid points required to accurately cap-ture vortex con�gurations and allow the possibility of solv-ing problems previously considered intractable. To solvethese large problems, we require the memory capabilitiesand computational power of state-of-the-art parallel com-puters. To use these machines, we have developed scal-able libraries for adaptive mesh re�nement and partitioningon two-dimensional triangular grids. This general-purposesoftware uses bisection of the longest side to re�ne trian-gles in which error contributions are large. These adaptivemeshes are both unstructured and dynamic, and we presenta new geometric partitioning algorithm that strives to mini-mize communication cost by ensuring good partition aspectratios. We present computational results showing the e�-ciency of these adaptive techniques for a superconductivityapplication.INTRODUCTIONThe recent discovery of high-temperature superconduc-tors has led to extensive research designed to obtain an un-derstanding of the magnetic properties of these materials.Practical applications of superconductors are limited pri-marily by the relatively small value of the critical currentdensity which causes the material to revert back to nor-mal conductivity. This critical current density is in turnlinked to the mixed, or vortex, state in which magneticux quanta (vortices) penetrate the sample so that normaland superconducting regions coexist. It is hoped that anunderstanding of the vortex state will lead to techniquesdesigned to increase the critical current density and henceallow these materials to be widely used in scienti�c andindustrial applications.To study the internal structures and lattice con�gura-tions of vortices in isotropic materials, we use the nondi-mensionalized Ginzburg-Landau model. The total free en-

ergy over the volume, 
, is given byF = Fcond( ) + Fkin( ;A) + Fd(A): (1)These three terms are generally known as the condensation,kinetic and �eld energy terms and are given by the formulaeFcond = Z
�j j2 + 12 j j4d
; (2)Fkin = Z
 j (r+ iA) j2d
; (3)Fd = Z
 �2jr �Aj2d
: (4)The variable  is the complex-valued order parameter andA is the vector potential. The physical quantities of interestare j j2, the local density of superconducting electron pairs,and B = r�A, the magnetic �eld induced by the motionof the electron pairs through the sample. The parameter �gives the ratio of the the characteristic length over whichj j2 varies (the correlation length �), to the characteristiclength over which B varies (the penetration depth �). Animportant property of the free energy functional, F , is thatits value is unchanged by a gauge transformation. That is,given ( ;A) and any scalar function, �, we �nd that thepair ( 0;A0) given by 0 =  ei�; A0 = A �r� (5)leaves the free energy invariant.In previous work, a �nite-di�erence discretization of thefree energy functional on a regular, orthogonal mesh wasused (Garner et al. 1992). With that approach, a highdensity of grid points is required to accurately model thevortex core. Such an approach is ine�cient because theconstant density of grid points means that many super-uous grid points are used away from the vortex centers.Instead, we would like to concentrate grid points near thevortex core (where the solution changes rapidly) and userelatively few grid points far from the vortex cores. In thisway, we reduce the total number of grid points requiredto accurately model the vortex state in high-temperaturesuperconductors.



Toward this purpose, we have developed the algo-rithms and software necessary to adaptively re�ne trian-gular meshes on parallel computers (Freitag, Jones, andPlassmann 1994). Triangular elements to be re�ned are de-termined by a user-de�ned indicator function (in this caseproximity to the vortex core). Currently, the software usestriangle bisection to re�ne elements and employs a modi�-cation of Rivara's technique (Rivara 1984) to remove non-conforming points in the re�ned mesh. Though this ap-proach is e�cient in its use of mesh points, the resultingdiscretized problem is both unstructured and dynamic. Inorder to achieve good load balancing and performance onparallel computers, this dynamic mesh must be partitioned(an assignment of unknowns and elements to processors)after each modi�cation. We have developed a new geomet-ric partitioning algorithm that strives to minimize both la-tency and transmission communication costs on distributedmemory architectures.A more subtle problem that arises from a nonorthogonaldiscretization using triangular elements is that the stan-dard �nite-di�erence and �nite-element discretizations failto maintain a discrete version of gauge invariance. There-fore, we have developed a new discretization scheme forthe Ginzburg-Landau free-energy functional that maintainsgauge invariance and is suitable for use on nonorthogonalmeshes.The remainder of the paper is organized as follows.First, we describe the new discrete formulation and presentan asymptotic analysis showing the validity of this new for-mulation. Then, we discuss the parallel algorithms used foradaptive mesh re�nement and partitioning and appropriatere�nement and interpolation rules for the superconductivityproblem. Next, We present computational results obtainedon the Intel DELTA located at Caltech. In the �nal sec-tion, we summarize the results of this paper and o�er someremarks about future research.DISCRETE FORMULATION FORNONORTHOGONAL MESHESTo accurately model the vortex core singularities in hightemperature superconductors, we would like to adaptivelyre�ne the mesh to concentrate grid points where error con-tributions are large. Adaptive re�nement on orthogonalmeshes requires constraints be placed at nonconformingnodes. These constraints unnecessarily increase the workrequired to solve the system and complicate implementa-tion. Thus, we choose to use triangular meshes. The ques-tion now arises as to whether standard discretization tech-niques maintain the important property of discrete gaugeinvariance on nonorthogonal meshes. To answer this ques-tion, let us �rst de�ne the requirements for a gauge invari-ant discretization.De�nition 1 Let � and �A be the discrete representationsof  and A. In addition, let �F be a discrete formulation ofthe free-energy functional given in Equation (1), and let ��

be any scalars de�ned on the same grid points as � . Con-sider the transformation � 0 = � ei��. We de�ne discretegauge invariance to be the property of the discretizationscheme that allows for a corresponding transformation of�A to some �A0 such that �F( � 0; �A0) = �F ( � ; �A).Note that we do not specify the transformation of �A inthis de�nition since that depends on a discrete represen-tation of the gradient of ��. We require only that such atransformation exist.It is easily shown that standard �nite-di�erence and�nite-element discretization techniques do not maintain dis-crete gauge invariance as de�ned above. Consider the prob-lem in two dimensions: let  = a + ib, A = [Ax; Ay], andthe area of the domain be A
. Standard �nite-di�erencediscretization minimizes F over the �eld variables a; b;Ax;and Ay where all of the unknowns are associated with dis-crete grid points. This approach can satisfy the discretegauge invariance de�nition only when the mesh is orthogo-nal. When the mesh is not orthogonal (here we consider tri-angular meshes), �nite-di�erence discretizations are inap-propriate. More appropriate in this case are �nite-elementtechniques, and we consider polynomial interpolation func-tions on triangular meshes. Substituting the discrete vari-ables into the kinetic term shows immediately that this dis-cretization is not gauge invariant for functions of � that arenot polynomial.Rather than assign all of the �eld variables to gridpoints, a more natural scheme for discretizing this func-tional is to assign the values for � at mesh vertices and thevalues for �A on edges between vertices. In this way, we canadjust the discrete gauge transformation at the vertices in� along each edge or link in �A. Speci�cally, the relativephase shift ��� between two neighboring vertices can besubtracted from the vector potential value on the edge (anatural discretization of subtracting the gradient of � fromA in the continuous case). This correspondence of discretevariables works however, only if �F is invariant under thistransformation. We now present a new discrete formulationthat ensures this property.The unknowns of the new formulation are a; b; and thephase �, where � = Z A �Tdsis associated with the links between the grid points. Letthe vertices of a typical triangle in the mesh be v1; v2;and v3 and the links opposite each vertex be l1; l2; andl3, as illustrated in Figure 1. Let the area of the trianglebe A4 and the area of the domain be A
. We give thediscretization of each of the three terms in Equation (1)that ensures that a discrete form of gauge invariance ispreserved.The condensation energy density in Equation (2) is eval-uated at the vertices of the triangle and averaged to obtain
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3lFigure 1: A typical triangular element in the mesha value for the entire element:�Fcond = A43A
 3Xi=1 ��(a(vi)2 + b(vi)2)+12(a(vi)2 + b(vi)2)2i : (6)For the �eld energy density, we use Green's theorem toobtainFd = Z4 �2jr �Aj2d4 = I@4 �2jA �Tj2ds;where T is the unit tangent vector such that n�T alwayspoints into the domain. Then the discrete representationusing the �eld variable � is�Fd = 1A4A
  � 3Xi=1 �(li)!2 : (7)The kinetic energy density 3 is calculated at each vertexin the triangle, and the average of these values is used torepresent the energy of the element. To maintain gaugeinvariance, we use a link variable formulation similar tothat used in the standard �nite-di�erence discretization.First, we rotate the element so that all values of the orderparameter are in the same gauge basis. That is, ̂(v2) =  (v2)e�i�(l3);  ̂(v3) =  (v3)e�i(�(l3)+�(l1)); ̂(v1) =  (v1)e�i(�(l3)+�(l1)+�(l2)):In this case the gauge invariant di�erences along each linkare given byK1 =  ̂(v3)�  ̂(v2); K2 =  ̂(v1) �  ̂(v3);K3 =  ̂(v2)�  (v1):The contribution to the kinetic term at the vertex v1 is thenK(v1) = K22 l23 +K23 l22 + 2l2 � l3K2K�3 :The cross term 2l2 � l3K2K�3 is not required for orthogonalmeshes but is incorporated here to adjust for the nonorthog-onality of the triangle sides. Similar terms for the other two

vertices are summed to give the kinetic energy for the ele-ment, �Fkin = 112 A4A
 3Xi=1 K(vi): (8)We assume 
 is far from the boundary of the sample, andwe use pseudo-periodic boundary conditions to maintaina �xed magnetic ux of 2��, where � is the number ofvortices. For a two-dimensional domain of size Lx � Lythese boundary conditions are given by (Lx; y) =  (0; y)e 2�vyLy ,  (x; Ly) =  (x; 0)�(Lx; y) = �(x;0)� 2��Ly h, �(x;Ly) = �(0; y).
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relative asym free energy difference = -2.012135e-11Figure 2: Asymptotic results for the condensation, ki-netic terms and �nal free-energy valueWe use asymptotic analysis on a sample containing twovortices with � = 5 to show the validity of the new discrete



model. The results obtained on uniform, orthogonal meshesusing �nite di�erences are compared with those obtained onuniform triangular meshes using the new discrete formula-tion. As the element area O(h2) approaches zero, we see inFigure 2 that condensation, kinetic, and total free-energyterms converge linearly to the same result. The methodsapproach the solution from di�erent directions: �nite di�er-ences from below for the condensation and total free-energyterms, the new formulation from above and vice versa forthe kinetic term. The kinetic energy is highest around thevortex core, which, for the new element technique, may belocated anywhere in the element, not just at grid points,as is the case in �nite di�erences. In this case the gradi-ent term in Fkin is not well approximated, and the kineticenergy term is always underestimated.PARALLEL MESH REFINEMENTAND PARTITIONINGThe discretization presented in the preceding section issuitable for use on nonorthogonal meshes. In particular, weuse adaptive re�nement to concentrate grid points where er-rors are large (in this case, close to the vortex core). As anadaptive mesh tracks vortex development and movement,maintaining mesh quality is a primary concern. As the min-imum angle of the mesh decreases, the condition number ofthe linear system grows, making solution more di�cult. Asthe maximum �nal angle of the mesh approaches �, theinterpolation error in the approximate solution increases.Two basic approaches to re�nement guarantee mesh qual-ity: regular re�nement and bisection (see Mitchell 1989for a comprehensive review). Regular re�nement dividesa triangle marked for re�nement into four similar trianglesby connecting the midpoints of the three sides. Bisectionof the longest side, however, divides this triangle by con-necting the midside of the longest side to the opposite ver-tex. The two techniques are illustrated in Figure 3, wherethe shaded triangles are those currently marked for re�ne-ment. Mitchell compared these techniques and found thatthe number of grid points needed to obtain a given errorbound on the �nal solution is essentially the same for sev-eral test problems. Since this is the case, we choose toimplement the simpler method, bisection, in our paralleladaptive mesh re�nement software.Adaptive mesh re�nement on distributed memory archi-tectures requires careful implementation to maintain datacoherence across the processors. For instance, as verticesare dynamically added and deleted, all processors mustagree to a unique global list of vertices, to a list of threeunique vertices associated with any triangle, and to trian-gle ownership if vertices of a triangle are distributed acrossprocessors. That is, two processors cannot simultaneouslyre�ne the same triangle, nor may neighboring triangles bere�ned simultaneously, since extraneous copies of verticesmay be created across processors. We avoid these prob-lems by re�ning independent sets of triangles in parallel.These independent sets are chosen in the dual graph of thetriangular mesh (the dual graph is the graph whose ver-

Figure 3: Regular re�nement (top row) and bisectionof the longest side (bottom row)tices correspond to the triangles and for which two verticesare adjacent if their triangles share a common edge in themesh). Triangles that are not adjacent in the dual graphare independent of each other and may be updated in par-allel (see Freitag, Jones, and Plassman 1994) for a com-plete description of the parallel algorithm). Our algorithmterminates in a �nite number of steps and has a parallelexecution time of O(logMk)�LP where Mk is the numberof triangles marked for re�nement and LP is the number oflevels of propagation.As grid points are adaptively added and deleted in themesh, we must determine good partitionings for distributedmemory architectures. We de�ne a good partition to beone in which the grid points are evenly distributed to theprocessors in such a way that interprocessor communica-tion costs are minimized. We may minimize the latencyand transmission communication costs by minimizing thenumber of partition neighbors and number links crossingthe partition boundary, respectively. For uniform meshesa good partitioning of grid points may be determined apriori by the geometric domain. For unstructured adaptivemeshes, however, the partitioning cannot be predeterminedbecause it changes with each new re�nement of the mesh.Several interesting techniques are used to determine thepartitioning of an unstructured mesh. Spectral methods(see Pothen, Simon, and Liou 1990, for example) have theadvantage of global access to information about the graphto �nd good separators at the cost of eigenvalue/eigenvectorcomputation. Although the eigenvectors generally do notneed to be found to much accuracy, spectral methods fail toutilize the geometric information known about the verticesof the mesh, which may signi�cantly decrease executiontime. Geometric information is used in bisection partition-ing algorithms such as the orthogonal recursive bisection(ORB) algorithm of (Berger and Bokhari 1987). This al-gorithm makes an initial cut to divide the grid points inhalf. Orthogonal cuts are then made recursively in thenew subdomains until the grid points are evenly distributedamong the processors. Although this algorithm obtains



good load balancing, it ignores the communication min-imization problem. Long, thin partitions may be createdthat have a high ratio of links crossing the partition bound-aries to total number of links in the partition. This leadsto high ratios of communication to computation.To address this problem, we have developed a modi�ca-tion of ORB which we call the unbalanced recursive bisec-tion (URB) algorithm. Instead of dividing the unknownsin half, we choose the cut that minimizes partition aspectratio and divides the unknowns into nkP and n(P�k)P sizegroups where n is the total number of unknowns, P is thenumber of processors, and k = 1; 2; :::;P � 1. This algo-rithm leads to an even distribution of grid points with morebalanced partition aspect ratios. This minimizes the com-munication costs in two ways. First, partitions with goodaspect ratios (close to one) tend to have fewer partitionneighbors and hence fewer messages to send. Second, thepercentage of mesh links crossing the partition boundaryto the total number of links in the nearly square partitionsis small compared with the long, thin partitions generatedby the ORB algorithm. Thus, the ratios of computation tocommunication are increased compared with the ORB al-gorithm, while execution time is signi�cantly less than forspectral techniques.COMPUTATIONAL RESULTSThe invariance of the free-energy functional means thata minimizer of F is unique only up to a gauge transforma-tion. This degeneracy signi�cantly complicates the com-putation of such a minimizer. We have found that an ef-fective approach to computing a minimizer u� = ( �;A�)of the discretized free-energy functional is a damped New-ton's method. Each step of Newton's method requires com-putation of the gradient vector, rF , and Hessian matrix,r2F for which we use the automated di�erentiation pack-age ADIFOR (Bischof et al. 1991). Because of the gaugesymmetries of the problem, the Hessian is highly singularat the solution, and we include a damping term to improvethe convergence of the method as described by (Garner etal. 1992) . The computational kernel of this technique isthe solution of the damped Newton system-a large, sparselinear system of equations. We do not explicitly invert thissystem, but use an iterative solver to obtain an approxi-mate (inexact) solution. The BlockSolve package devel-oped at Argonne National Laboratory by Mark Jones andPaul Plassmann (Jones and Plassmann 1992) is used forthis purpose.To adaptively re�ne the mesh around vortex core singu-larities, we use the following re�nement rule: A triangle,4k, is re�ned if min (j (vi)j2 �A4) < �T ;where the �T is a user-de�ned tolerance. Suppose that thetriangle we are re�ning, 4k, has its longest edge oppositev1 and has link directions as indicated in Figure 1. Thenew values of a and b are obtained by linear interpolation

at the new grid point which is halfway between v2 and v3.The new phase �new is chosen such that the magnetic uxdensity is equal in the two new triangles to the original uxdensity.To demonstrate the e�ciency and scalability of the re-�nement and partitioning algorithms for the superconduc-tivity problem, we allowed problem sizes to increase pro-portional to the number of processors used. Because ourcurrent implementation of the adaptive re�nement algo-rithms allows data to be associated with vertices only, wehave used a preliminary formulation of the �nite elementgiven previously. However, we feel that the computationalresults presented here would be quantitatively the same forthe revised element. The results of four typical runs areshown in Table 1 where P gives the number of processorsand E indicates the number of triangular elements in the�nal solution mesh. The number of vortices in each sampleare 32, 48, 64, and 72 for 16, 32, 64, and 128 processors,respectively. We indicate the amount of time required forre�nement and partitioning as a percentage of total solu-tion time. We see that these operations require less thanone percent of the execution time in all cases.Percent Percent Percent PercentP E Re�ne Partition Setup SolutionTime Time Time Time16 30484 .229 .193 30.0 69.532 48416 .091 .117 13.5 86.364 111660 .087 .167 10.8 88.8128 196494 .181 .452 13.3 86.0Table 1: Timing results for the superconductivity prob-lem on 16{128 processors of the Intel DELTAStatistics on the partitions generated by the new geo-metric partitioning algorithm, URB, are given in Table 2.The average aspect ratio for the partitions is less than twoin all cases, and the maximum aspect ratio is less than 3.6.These result in a partition quotient graph whose averagedegree is between �ve and six, which corresponds to anaverage of �ve to six messages sent per processor to trans-fer nearest neighbor information. Finally, to estimate theamount of data that must be transferred between proces-sors, we consider the percentage of edges that cross parti-tion boundaries to the total number of edges in the par-tition. This number is less than 15 percent in all cases.The �nal triangular mesh of a 32 vortex problem isshown in Figure 4. Vortex cores are indicated by the loca-tion of the heavily re�ned areas of the mesh. This problemwas run on 64 processors of the Intel DELTA and partitionsare indicated by the numbered boxes. We see that the par-titions tend to split the vortex cores to evenly distributegrid points and are nearly square in most cases. We �ndthat, as we re�ne the mesh around vortex cores, the factthat the kinetic term is approaching the asymptotic resultfrom below causes the vortex to drift toward regions con-taining larger mesh elements. We are currently working to



Avg. Max. Avg. Max. PercentP Graph Graph Aspect Aspect CrossDegree Degree Ratio Ratio Edges16 5.31 7.00 1.47 2.88 6.7232 5.40 8.00 1.89 3.55 8.3264 5.64 8.00 1.34 2.49 10.0128 5.71 9.00 1.81 3.55 13.7Table 2: Partition statistics for the superconductivityproblem on 16{128 processors of the Intel DELTAeliminate this problem and are temporarily using Gaussianwell pinning sites to �x vortex position.
Figure 4: Results of a sample containing 32 vorticespinned to a square lattice con�guration on 64 proces-sors of the Intel DELTACONCLUDING REMARKSIn this paper, we have presented an important advancein the numerical modeling of high-temperature supercon-ductors: a new formulation that allows the use of adap-tively re�ned meshes. Previous numerical models have beenlimited by the use of orthogonal meshes needed to main-tain gauge invariance in the discrete formulation of theGinzburg-Landau free-energy functional. We have devel-oped and presented a new discrete formulation that allowsthe use of nonorthogonal meshes. This formulation was val-idated by using asymptotic analysis to compare to standard�nite di�erence techniques on uniform triangular meshes fortwo-dimensional problems. More important, this new for-mulation is suitable for use on adaptively re�ned meshes.By concentrating grid points near the vortex core singular-ities, we obtain a more detailed look at vortex core struc-

ture, and we signi�cantly reduce the total number of gridpoints required to obtain an accurate representation of thelattice con�guration. This formulation will in turn allowus to study samples with very large numbers of vortices,as well as superconducting materials in the high-� regime.Some work remains to be done to eliminate the problemof vortex drift, and we are currently re�ning the discreteformulation to handle this situation.AcknowledgmentsThis work was supported by the O�ce of Scienti�cComputing, U.S. Department of Energy, under Con-tract W-31-109-Eng-38.ReferencesBerger, M. and S. Bokhari, 1987, A partitioning strat-egy for nonuniform problems on multiprocessors, IEEETransactions on Computers, C-36(5).Bischof, C., A. Carle, G. Corliss, A. Griewank, andP. Hovland, 1992, ADIFOR: Generating derivativecodes from Fortran programs, Scienti�c Programming,1(1):11{29.Freitag, L., M. Jones, and P. Plassmann., 1994, Paral-lel algorithms for unstructured mesh computation, InProceedings of the Applied Linear Algebra Conference,"Snowbird, Utah. SIAM.Garner, J., M. Spanbauer, R. Benedek, K. Strandburg,S. Wright, and P. Plassmann, 1992, Critical �elds ofJosephson-coupled superconducting multilayers Physi-cal Review B, 45:7973{7983.Jones, M. and P. Plassmann, 1992, BlockSolve v1.0:Scalable library software for the parallel solution ofsparse linear systems, ANL Report ANL-92/46, Math-ematics and Computer Science Division, Argonne Na-tional Laboratory, Argonne, Ill..Mitchell, W., 1989, A comparison of adaptive re�ne-ment techniques for elliptic problems. ACM Transac-tions of Mathematic Software, 15(4):326{347.Pothen, A., H. Simon, and K-P. Liou, 1990, Partition-ing sparse matrices with eigenvectors of graphs. SIAMJournal on Matrix Analysis, 11:430{452.Rivara., M., 1984, Mesh re�nement processes based onthe generalized bisection of simplices. SIAM Journalon Numerical Analysis, 21:604{613.


