
83Automatic, Self-adaptive Control of Unfold-FoldTransformationsJames M. Boyle � aaMathematics and Computer Science Division, Argonne National Laboratory, Argonne,IL 60439, U.S.A.e-mail: boyle@mcs.anl.govI describe an automated approach to partial evaluation based transformations for el-ementary simpli�cations and unfolding and folding. The approach emphasizes programalgebra and relies on canonical forms and distributive laws to expose instances to whichthe elementary simpli�cations apply. This approach to partial evaluation has been appliedto a number of practical examples of moderate complexity, including eliminating a datastructure from a partial-di�erential-equation solver.Keyword Codes: D.1.2; D.1.1; F.4.2Keywords: Automatic Programming; Applicative (Functional) Programming; Grammarsand Other Rewriting Systems1. WHY SELF-ADAPTIVE UNFOLDING?Program transformations for unfolding and folding were introduced in the classic paperof Burstall and Darlington [7]. These transformations are very powerful; they are capableof proving theorems about function de�nitions by mathematical induction. Use of unfold-fold in automatic program transformation is di�cult, however. The unfold transformation,in particular, is challenging, because it replaces the application of a named function byan application of the de�nition of that function. Obviously, if the named function isrecursive, such replacement could go on forever.After to the appearance of the Burstall and Darlington paper, some work was doneon control of unfold-fold transformations. Feather [8] implemented a strategy in whichunfolding took place until a user-speci�ed pattern was found. The user of Feather'ssystem prevented in�nite unfolding by providing an explicit limit on the number of timesunfolding took place. Feather's approach has not been widely used, however, in partbecause it is di�cult to predict the required target pattern and the limit on unfolding;in practice, their determination required extensive experimentation. A somewhat similarapproach is to use \metaprogramming" to control unfolding. This approach also su�ers�This work was supported in part by the O�ce of Scienti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38, and in part by the BM/C3 directorate, Ballistic Missile Defense Organization,U.S. Department of Defense

84from a lack of self-adaptability, limiting its general usefulness. Both of these approachesmay be described as \programmer guided," and both depend to a certain extent on theprograms being transformed. Neither of these approaches is fully satisfactory in the senseof making control of unfolding fully automatic.In this paper, I present an approach to controlling the automatic application of unfold-fold transformations when they are used for partial evaluation of functional programs.Partial evaluation is the simpli�cation of a program based on known input data or onknown data incorporated in the de�nitions of functions of the program. My approach isbased on a strategy that adapts itself to whatever program is being transformed with-out any programmer direction, performing as much|or as little|unfolding and partialevaluation as required, and leaving the parts of the program that do not evaluate in theiroriginal form. In this approach, transformations are applied until the program has beenevaluated as much as possible based on the available data.2. MOTIVATIONThe desire to solve this important problem in program transformation is not my solemotivation for developing the self-adaptive strategy for unfolding. For many years, mycolleagues and I have been interested in two related problems: automatically transformingfunctional speci�cations into highly e�cient programs, and trying to understand howprograms in conventional languages such as Fortran and C come to be written as theyare.We have discovered that, for all nontrivial speci�cations, to obtain programs as e�cientas typical Fortran or C programs some partial evaluation of the speci�cation is necessary.This statement is almost self-evident for higher-order functions. No amount of clevernessin implementing a higher-order function will produce a program that is as e�cient asone that employs the equivalent \tailored" �rst-order function (the �rst-order functionin which the function argument presented to the higher-order function is incorporatedliterally). Partial evaluation, using unfold-fold transformations, can derive tailored �rst-order functions from higher-order ones used in the speci�cation.Partial evaluation is useful, however, beyond just the tailoring of higher-order functions.It enables one to produce e�cient programs from speci�cations that are parameterized insome way.3. AN EXAMPLE SPECIFICATIONA speci�cation that bene�ts greatly from partial evaluation is one that is parameterizedby the dimensionality (not just the dimension) of the problem. Because target languagessuch as C and Fortran do not permit arrays to have a variable number of dimensions,partial evaluation is required to convert such a speci�cation into a program for a speci�cdimensionality. An example of such a speci�cation is that for solving Poisson's equationin n dimensions. The partial di�erential equation to be solved isr2~� = ~fPoisson's equation has a unique solution at every point within a region provided that the

85value of ~f is known throughout the region and the value of ~� is known on the boundaryof the region.Poisson's equation can be solved by discretizing the problem on a grid and iteratingtoward a solution. Using a so-called 5-point method (stencil) in two dimensions, the newvalue of ~� can be computed at any point according to the equation�(x; y)n+1 = 14(�(x� 1; y)n + �(x; y + 1)n + �(x+ 1; y)n + �(x; y � 1)n)� h2f(x; y)n(Here, superscript n and n+ 1 represent the iteration number.)As an example of a speci�cation to which partial evaluation can be usefully applied,consider the dimension-independent portion of the functional speci�cation for the compu-tation of the new value of � shown in Figure 1. Dimension-independence is achieved byfun grid_at_t_plus_1 (grid, boundary) =mapgrid (lambda grid, point @ phi_at_t_plus_1 (grid, point, boundary) end,grid)endfun phi_at_t_plus_1 (grid, point, boundary) =quotient (sum (phi_s_of (neighbor_points_of (grid, point))),cardinality (set_of_neighbors ()))endfun cardinality (l) =reduce (plus, 0, map (lambda element @ 1 end, l))endfun neighbor_points_of (grid, point) =map (lambda direction @ neighbor_of (grid, point, direction) end,set_of_neighbors ())endfun neighbor_of (grid, point, direction) =element_of (grid, offset (point, direction))endfun phi_s_of (neighbors) =map (lambda neighbor @ phi_of (neighbor) end, neighbors)end Figure 1: Top-level speci�cation for a grid update.employing the concept of the set of neighbors of a point on the grid. A new approximatevalue at a point on the grid is speci�ed in terms of values at the set of neighbor points ofthe point, regardless of the dimensionality of the problem. The computation represented

86by the preceding equation is speci�ed in function phi_at_t_plus_1 as a sum-reduction ofthe � values of the set of neighbors, divided by the cardinality of the set. (To obtain acomplete Poisson solver, one would add a speci�cation for mapping the computation ofnew values of � over the grid, a speci�cation of the treatment of boundary conditions,and a speci�cation for a function that repeats the computation of the grid for a speci�ednumber of time steps or until the computation converges. A speci�cation for the functionmapgrid in terms of a map over an array is also required.)For the two-dimensional case, some of the dimension-dependent functions for the com-putation of the new value of � are shown in Figure 2.fun set_of_neighbors () =cons (west(), cons (north(), cons (east(), cons (south(), nil))))endfun west () = pair (minus (1), 0) endfun north () = pair (0, 1) end...fun offset (point, direction) =pair (plus (first (point), first (direction)),plus (second (point), second (direction)))end Figure 2: Some dimension-dependent functions for a grid update.A number of the dimension-dependent functions are constant; in particular, the functionset_of_neighbors is a constant. It is an example of \implicit data" for the problem|constant data that is part of the functional speci�cation rather than being input data.The problem to be solved by automatic partial evaluation is to use such implicit, constantdata to derive from the combined dimension-independent and dimension-dependent partsof the speci�cation one that is specialized and optimized to solve the two-dimensionalversion of the problem.4. APPROACHFor me, partial evaluation of speci�cations of the type given in the preceding sectionis an algebraic process. (Literally, such partial evaluation uses the lambda calculus, butthe approach is an algebraic one nonetheless.) The key to performing algebraic manip-ulations of this type automatically is to de�ne a set of intermediate goals to guide themanipulation, and to �nd a way to use these goals to control the automatic applicationof transformations. Of course, the control should be self-adaptive so that the transforma-tions will automatically partially evaluate any speci�cation without any modi�cation tothe control strategy or the way it is expressed.Five important observations describe the self-adaptive approach to performing algebraicmanipulations automatically:First, to solve a problem in a general and self-adaptive way, one manipulates the text

87through a sequence of canonical forms. These canonical forms capture the notion of\goal" formally: each provides a termination condition for the algebraic manipulationsthat achieve it. Moreover, formulating the strategy in terms of canonical forms enables itto adapt itself to perform the manipulations required to partially evaluate any programspeci�cation. For a particular program, all, and only, those manipulations needed toachieve the canonical form will be performed. In particular, if some program is alreadyin the required canonical form, the strategy will perform no manipulations on it.Second, a sequence of goals and steps is required. As discussed later, some goals inthe sequence may be inverses of one another; obviously, such goals cannot all be achievedsimultaneously.Third, most algebraic manipulations have a central, pivotal step; it is in this step thatthe problem, in a suitably simple form, is solved. Steps prior to the pivotal step aredirected toward making that step possible, and steps following it typically return thesolved problem to a more usual and desirable form.Fourth, in some derivations, if the pivotal step is omitted, the remaining steps are theidentity manipulation. They manipulate the program into a simple form and then restoreit to its original form.Fifth, each step of the problem can be automated by a �xed-point computation thatproduces the required canonical form. Usually, it is easy to see informally that each ofthese manipulations terminates.5. A PROGRAM-ALGEBRAIC APPROACH TO PARTIAL EVALUATIONThe discussion and observations in the preceding section provide the keys to solvingthe problem of automatic self-adaptive control of partial evaluation. Before consideringthe solution in detail, however, I briey describe some general properties of the programtransformation system I use to implement partial evaluation.5.1. Program Transformations for Program AlgebraThe transformations that implement partial evaluation are applied by the TAMPRprogram transformation system [1,2,4]. TAMPR transformations are rewrite rules, eachof which consists of at least a syntactic pattern and a syntactic replacement. Optionally, atransformation rule may have one or more applicability conditions, which in the TAMPRsystem are themselves evaluated by rewriting. A transformation applies to a fragment of aprogram if the syntactic pattern of the transformation matches the program fragment andif the applicability conditions (if any) of the transformation hold. When a transformationapplies to a fragment of program, TAMPR replaces the fragment by one constructed fromthe replacement of the applicable transformation and the program fragments matched bythe pattern. TAMPR transformations are discussed further in [4,6].The usual mode for applying a set of program transformations using the TAMPRsystem is to apply them exhaustively. That is, TAMPR applies the transformations toevery matching fragment in the program, including any that might be created as the resultof applying transformations in the set to other fragments. Thus, TAMPR computes the�xed point (if it exists) of a set of transformations applied to a program text, producinga new text in a (new) canonical form. A slightly di�erent view of the use of a canonicalform to guide transformation is discussed in [11]. I point out that the use of canonical

88forms has always been fundamental to using TAMPR, and it has been discussed in [2{4].One wishes, of course, to write transformation rules that preserve correctness. A fertilesource for such rules is algebraic identities|identities in a program algebra. For partialevaluation of the type discussed here, the program algebra is the �-calculus. In manyareas of program transformation (see, for example, the papers in [12]), distributive lawsplay a signi�cant role. Partial evaluation is no exception. Thus, besides the familiar lawsfrom �-calculus (�- and �-conversion), I use less-familiar distribution laws for lambdaexpressions as the basis for transformations.5.2. The Central Step of Partial EvaluationThe �rst requirement for designing a set of transformations is to identify the centralstep that they must perform. The central step in partial evaluation is the applicationof elementary simpli�cations. Arguably, the entire partial evaluation is a simpli�cation;however, I reserve this term for the application of elementary simpli�cation laws for thetypes (whether primitive or user-de�ned) used in a speci�cation. Typical elementary sim-pli�cations include car(cons(x,y)) = x, cons(car(l),cdr(l)) = l, and plus(0,x) = x.These laws are just some of the axioms (and, in a few cases, theorems) of the fundamentaldata types.These and other elementary simpli�cations are collected in a set of transformations thatI call Tas, apply simpli�cations.Of course, it is unlikely that a speci�cation will contain explicit opportunities for theapplication of elementary simpli�cations, for in most cases the speci�er would apply themas he writes. However, a good high-level speci�cation|one written with proper attentionto data abstraction|often contains hidden instances to which elementary simpli�cationsapply. These instances are hidden either because the individual parts are in separatefunctions or because the application of the elementary simpli�cation depends on (possiblyimplicit) constant data. Thus, for most speci�cations, some preliminary steps are neededbefore applying Tas. These steps employ algebraic manipulation to expose possibilities forsimpli�cation.5.3. Unfolding to Expose Simpli�cationsBecause parts of the information needed to apply an elementary simpli�cation maybe hidden in separate function de�nitions, function de�nitions must be unfolded (copiedin place of the applications of their function names) [7] in order to expose simpli�ca-tions. Unfolding function de�nitions is facilitated if the \user-oriented" form in which thespeci�cation is presented in Section 3 is transformed into curried form, in which formalparameters of functions are represented by lambda abstractions, each having (at most)one variable and in which, correspondingly, actual parameters are curried. For example,the speci�cation for the map function in curried form is shown in Figure 3. De�nitionsin this form have the advantage that the expression to the right of the equal sign can besubstituted directly for instances of the function name to the left of the equal sign.To see how unfolding helps to expose simpli�cations, consider computing the cardinalityof the set of neighbors of a point in the function phi_at_t_plus_1 in the PDE speci�cationin Figure 1; initially, this computation is cardinality (set_of_neighbors()).The text after the curried form of the de�nitions of cardinality, set_of_neighbors,reduce, and map have been unfolded is shown in Figure 4. (Here the ellipses indicate

89fun map =lambda fn @lambda list @use nilif (null (list))otherwise cons (fn (car (list))) (map (fn) (cdr (list)))endendendend Figure 3: Curried form of speci�cation for map.lambda l @...lambda fn @lambda list @use nilif (null (list))otherwise cons (fn (car (list))) (map (fn) (cdr (list)))endendend (lambda element @ 1 end) (l)...end (lambda @cons (west()) (cons (north()) (cons (east()) (cons (south()) (nil))))end ()) Figure 4: Result of unfolding function de�nitions.the unfolded text of the de�nition of reduce; in the remainder of the discussion of thisexample, for simplicity, I ignore this text and the simpli�cations to which it gives rise.)It is possible for the human eye to see in this form of the text that the accessor func-tions car and cdr are applied to the cons function that is the value of set_of_neighbors,and that the relevant elementary simpli�cations can be applied. However, the mechanicaleye|in the form of transformation rules expressing the elementary simpli�cations givenearlier|will not be able to see the elementary simpli�cations in this form of the textbecause of the intervening lambda expressions and variable bindings. Thus, to enable au-tomatic simpli�cation, further manipulations (especially �-conversion) must be performedon the text to bring it into a form in which simpli�able instances such as that shown inFigure 5 are explicit.Before considering these manipulations in detail, I briey describe the program trans-formations that implement the manipulations and some of the general properties thatthey must satisfy.

90 car (cons (west()) (cons (north()) (cons (east()) (cons (south()) (nil)))))Figure 5: An instance of a simpli�cation.5.4. Structure and Properties of Partial-Evaluation TransformationsMy goal is to obtain a sequence of sets of transformations|a composition of functions|that perform all possible simpli�cations enabled by any explicit and implicit data availableat partial-evaluation time. Of course, such a composition of functions may not exist, atleast for the full partial-evaluation problem. Nevertheless, it may also be that a substantialpart of the problem can be handled in this way; my goal is to handle as much of theproblem as possible.This is an ambitious goal, given that unfolding is required for partial evaluation andthat the uncontrolled unfolding of the de�nition of a recursive function will not terminate.The di�culty of controlling unfolding has led researchers in partial evaluation to try twodistinct approaches to partial evaluation: o�-line and on-line.O�-line partial evaluation uses techniques such as binding-time analysis [13,10] to pre-dict, prior to performing any unfolding, what parts of a speci�cation can be partiallyevaluated. Unfortunately, binding-time analysis is often complicated. Moreover, as withother forms of program analysis, compromisesmust be made to automate it. That is, prac-tical automated binding-time analysis must err on the side of safety; it must make someassumptions that lead to classifying data that in reality is available at partial-evaluationtime as not being available until run time [13]. In particular, it is not clear whetherautomated binding-time analysis is able to recognize that data (such as the size of a set)encoded in user-de�ned functions is available at partial-evaluation time, even though suchdata may lead to simpli�cations. Thus, other approaches are worth considering.On-line partial evaluation determines during partial evaluation which parts of the pro-gram have the potential to be evaluated. The implementation of partial evaluation that Idiscuss here is an example of on-line partial evaluation. The di�culty with on-line partialevaluation is, of course, ensuring that it terminates.5.5. Design Principles for Partial Evaluation TransformationsA more-or-less obvious approach to preventing on-line partial evaluation from runningaway is to perform incremental partial evaluation. Whereas, in the preceding example,o�-line partial evaluation would try to predict that the map function must be unfolded toa depth of �ve in order to evaluate the cardinality of the set of neighbors, incremental on-line partial evaluation unfolds map once, performs simpli�cation, and then asks whetheranything actually simpli�ed. If not, partial evaluation (of this part of the speci�cation)is complete; if so, then further unfolding is attempted.If this process is to terminate, it must reach a �xed point. When the �xed point isreached, the speci�cation will be in a canonical form, in this case, \partially-evaluated-as-far-as-possible" canonical form, or partially evaluated canonical form for short.The �xed-point computation consists of applying a function Tpe (partial evaluation) toa speci�cation until a form p is reached such thatTpe(p) = p

91The equality here is syntactic identity of the speci�cation before and after application ofTpe, not equivalence. (Because the transformations I use are correctness-preserving, all ofthe incrementally partially evaluated speci�cations are equivalent. Hence, the notion ofequivalence cannot be used to detect the �xed point.)The requirement that the speci�cation be left syntactically unchanged when no simpli-�cation takes place strongly constrains the way in which the function Tpe is de�ned. Thisand other constraints that the partial-evaluation function must satisfy lead directly to aset of principles for its design.5.5.1. Identity Constraint for TpeThe most important constraint on Tpe is that if it is to have a �xed point, the functionmust, of course, transform every speci�cation into a form to which it no longer applies. Inparticular, if the transformations implementing Tpe are applied to a speci�cation alreadyin partially evaluated canonical form, they must leave the speci�cation alone.The requirement is expressed in the following constraint.Constraint 1 The function Tpe must be the identify function when applied to a speci�-cation already in partially evaluated canonical form.This constraint has important consequences. For most languages, if Tpe is to be theidentity on the whole of a partially evaluated speci�cation, then Tpe must be the identityon any subexpression that is already partially evaluated. This property holds providedthat the language in which speci�cations are written and transformed is monotonic (as isthe language I use).A partial-evaluation function that is the identity on already-partially-evaluated subex-pressions gives one wide latitude in selecting subexpressions on which to attempt partialevaluation. That is, one can use a \shotgun" approach, attempting partial evaluation onall subexpressions, without regard to whether they are known to lead to simpli�cations.The function Tpe, applied to subexpressions that do not undergo simpli�cation, will leavethem in (actually, it will restore them to) their original form. This property, which I shallshow can be obtained by making certain steps of the partial evaluation invertible, permitsthis algebraic approach to partial evaluation to dispense with the binding-time analysisrequired in o�-line partial evaluation.5.5.2. Additional Constraints on TpeHaving considered what Tpe must not do, one can obtain additional design constraintsby considering what it must do.As discussed earlier, applying elementary simpli�cations is at the heart of partial evalu-ation. The elementary simpli�cations must canonicalize a speci�cation. (This constraintmay limit the choice of elementary simpli�cations to some extent, but by using sequencesof canonical forms one can overcome much of this limitation.) Thus, there is a constraint:Constraint 2 The function Tas at the heart of Tpe must simplify speci�cations to a canon-ical form.Now, as discussed earlier, Tpe does not consist solely of the simpli�cations Tas, becausealgebraic manipulations must be performed to expose simpli�cations. Thus, there is afurther constraint.

92Constraint 3 The simpli�cations Tas must be preceded by a function that exposes sim-pli�cations.Thus, Tpe is the composition of at least two functions, Tes (the function that exposessimpli�cations) followed by Tas (the simpli�cations themselves).But, if Tpe has exactly this form, then the requirement that Tpe = I when no simpli�-cation occurs would mean that Tes is the identity function, which it is not, because it atleast performs unfolding. This observation leads to another constraint.Constraint 4 The function Tpe must restore a speci�cation in partially evaluated canon-ical form to its original form after exposure of simpli�cations.Thus, Tpe must be a composition of three functions Trs � Tas � Tes where (omittingsimpli�cation), Trs � Tes = I. Here Trs can be thought of as \restoring" the program toa desired form after simpli�cation. Clearly, these two equations require that Trs = T �1eswhen no simpli�cation occurs.As discussed in later sections, however, when simpli�cation actually does occur, Trs will\see" constructs not in the range of Tes. Thus, the result of applying just T �1es may notbe a satisfactory representation of the speci�cation after simpli�cation. In such cases, Trsshould restore the parts of the program that do simplify to some reasonable form.Evidently, Trs must be T �1es and more. One can think of Trs as being the direct sum oftwo functions, one of which applies to parts of the program that do not simplify and theother of which applies to parts that do simplify. For want of a better notation, I use T 0�1es(a \primed-inverse" function) to denote the part of Trs that applies to simpli�ed text.Thus, Trs = (T �1es � T 0�1es). Here, T 0�1es is the identity if no simpli�cation has occurred,but in the presence of simpli�cation it may \clean up" some leftover clutter, such asunneeded lambda bindings.As a result of these observations, Tpe has the form Tpe = (T �1es � T 0�1es) � Tas � Tes.5.6. Exposing Simpli�cationsAs discussed in Section 5.3, instances to which elementary simpli�cations apply do notmagically appear in the text of a speci�cation; they must be exposed. In this section,I consider in more detail the manipulations needed to expose simpli�cations. After un-folding of several function de�nitions, the text of the cardinality example has the formgiven in Section 5.3.Examination of the unfolded form reveals that �-conversion is needed. Before �-conversion can be performed, however, the (curried) actual arguments that had beenarguments to a named function application before unfolding must be distributed inwardto become actual arguments of their respective lambda expressions. Furthermore, be-cause actual arguments that are lambda abstractions ((lambda element @ 1 end) in thisexample) may receive their own actual arguments after �-conversion, at least they mustbe �-converted simultaneously with argument distribution. Distribution of argumentsaccompanied by �-conversion of lambda abstractions converts the preceding form of thetext to that shown in Figure 6.It might seem that the next step should be to �-convert the remaining lambda expres-sions; doing so, however, would not produce a form of the text in which simpli�cations are

93lambda l @...lambda fn @lambda list @use nil if (null (list))otherwisecons (lambda element @ 1 end (car (list))) (map (lambda element @ 1 end) (cdr (list)))endend (l)end (lambda element @ 1 end)...end (lambda @cons (west()) (cons (north()) (cons (east()) (cons (south()) (nil))))end ())Figure 6: Result of distributing arguments and �-converting lambda abstractions.fully exposed. For example, �-converting car (list) would give the result shown in Fig-ure 7. This form would not simplify, because the intervening (0-ary) lambda expressioncar (lambda @cons (west ()) (cons (north ()) (cons (east ()) (cons (south ()) (nil))))end ()) Figure 7: Result of �-converting car (list).prevents the elementary simpli�cation car (cons (x) (y)) = x from applying.Therefore, before performing �-conversion, it is useful to apply a distribution law forlambda expressions:f (: : :) : : : (�x : e1(x) (e0)) : : : (: : :) � �x : f (: : :) : : : (e1(x)) : : : (: : :) (e0)In this law f is either a named function or a lambda abstraction, and �-conversion mustbe performed to avoid clashes of lambda variable names. This law states that a functionapplied to an argument that is a lambda expression has the same value as the lambdaexpression with its body replaced by the function applied to the body of the originallambda expression.This law is used to distribute lambda expressions out of arguments of named functions

94and lambda expressions. For the example text, the result is shown in Figure 8; it is nowready for �-conversion.lambda @lambda l @...lambda fn @lambda list @use nil if (null (list))otherwiselambda element @cons (1) (map (lambda element @ 1 end) (cdr (list)))end (car (list))endend (l)end (lambda element @ 1 end)...end (cons (west()) (cons (north()) (cons (east()) (cons (south()) (nil)))))end ()Figure 8: Result of distributing lambda expressions out of arguments.The �-conversion begins with the outermost lambda expression and moves inward.During �-conversion, a lambda expression may be encountered whose actual argumentcan be simpli�ed by Tas. Simplifying the argument before substituting it for the lambdavariable is at least as e�cient (and usually more e�cient) than substituting the argumentand then simplifying all of the substituted instances, because the actual arguments oflambda expressions must themselves be simpli�ed in order for inverse �-conversion towork correctly. In this example, after substituting the expression cons (west ()) (...)for the variable l, and then substituting this value of l for the variable list, the argumentof the expression lambda element @ has the form shown in Figure 5. This form simpli�esto west (). (As it happens, there are no instances of the lambda variable element, butthis situation is unusual.)The form of the example after �-conversion with simpli�cation has taken place is shownin Figure 9. (The lambda expressions are retained after �-conversion in order to retain in-formation needed when inverse �-conversion is performed; invertibility is discussed furtherin the following sections.)Two additional simpli�cations need to be performed: conditional expressions whoseoutcome is known as the result of other simpli�cations must themselves be simpli�ed, andlambda expressions whose lambda variable is used at most once should be �-convertedand deleted. After these steps, the text of the example has the form shown in Figure 10.This text is the partially evaluated form of cardinality (set_of_neighbors ()) (ignoringthe e�ect of simplifying reduce) after one application of Tpe (one step of the iteration tothe �xed point). Four further applications will produce a four-element list of ones.

95lambda @lambda l @...lambda fn @lambda list @use nil if (nil)otherwiselambda element @cons (1) (map (lambda element @ 1 end) (cons (north ()) (cons (east ()) (cons (south ()) (nil)))))end (west ())endend (cons (west ()) (cons (north ()) (cons (east ()) (cons (south ()) (nil)))))end (lambda element @ 1 end)...end (cons (west()) (cons (north()) (cons (east()) (cons (south()) (nil)))))end () Figure 9: Result of �-converting with simpli�cation.5.7. Making �-Conversion InvertibleBecause distribution laws apply to lambda expressions, changing the scopes in whichtheir variables are de�ned, care must be taken to perform �-conversion (lambda-variablerenaming) where necessary. The program transformations implementing Tpe do this by�rst establishing the invariant that each lambda variable has a unique name. They thenmaintain this invariant whenever an expression is duplicated, by renaming the variablesof all lambda expressions contained in the expression.In order for �-conversion to be invertible, a record of the original names of the vari-ables must be maintained. The transformations do this by \stretching" the syntax andsemantics of the bound-variable part of a lambda expression slightly, replacing the lambdavariable by an aka-list (also-known-as-list). The aka-list contains three names: the orig-inal variable name, a generated name for this variable that is unique in the de�nition ofthe function in which it appears, and a generated name that is unique to this instance(copy) of the lambda expression. When it is necessary to determine whether two frag-

96 ...cons (1) (map (lambda element @ 1 end) (cons (north ()) (cons (east ()) (cons (south ()) (nil)))))... Figure 10: Final result of one step of unfolding and simpli�cation.ments of text that have undergone �-conversion are equal (modulo �-conversion), theyare ��1-converted to the form that uses the generated name that is unique to the func-tion de�nition. If the two original fragments were equal modulo �-conversion, the tworesulting forms will be syntactically identical provided both �-converted instances werederived from the same de�nition, a condition that the transformations for Tpe ful�ll.5.8. Outline of Steps in Tes and TasThe examples in the preceding section show that several steps must be carried out inorder to expose elementary simpli�cations and to apply the simpli�cations to them:1. De�nitions of functions must be unfolded|substituted for applications of theirnames. I name this step Tdfdi, distribute function de�nitions invertibly, becausethe unfolding can be viewed as distributing the function de�nitions to instances oftheir names.2. Actual arguments supplied to these de�nitions must be distributed inward until theyreach their corresponding curried lambda expressions; at the same time, lambdaexpressions whose actual arguments are (or become) lambda-abstractions must be�-converted. I name this step Tdaibclai, distribute arguments in and �-convert lambdaabstractions invertibly.3. Obscuring clutter must be removed by distributing lambda expressions out of ar-guments of other lambda expressions and named function applications. I name thisstep Tdloai, distribute lambdas out of applications invertibly.4. Lambda expressions whose arguments are not lambda abstractions must be �-converted; this step is combined with a part of Tas that I call Tsfa, simplify func-tion applications. I name this combined step Tsabcnlai, simplify and �-convert non{lambda-abstractions invertibly. (Here, the \invertibly" refers only to the part of thetransformation set that performs �-conversion, not the part that performs simpli�-cation.)5. The remaining portion of Tas, the simpli�cation of conditional expressions must beapplied. I name this step Tsce, simplify conditional expressions.6. A lambda expression that, after simpli�cation, is unnecessary (in the sense that thereis no, or only one, reference to its lambda variable) must be removed. Because the

97actual argument of a lambda expression that is removed may be a lambda abstrac-tion, and because the corresponding lambda variable may appear as the functionname in an application, argument distribution must be performed as part of thisstep. (This step must be performed after the inverse transformations correspondingto Trs have been performed.) I name this step Tbculaada, �-convert unneeded lambdaapplications and distribute arguments.Oh, yes, and by the way, as the names indicate, most of these functions must be invertible!So far, then, the steps exclusive of (6) can be represented as the composition of functionsTsce � Tsabcnlai � Tdloai � Tdaibclai � Tdfdi5.9. Making the Steps InvertibleThroughout the preceding discussion, I have tacitly assumed that the manipulationsnecessary to expose simpli�cations can be inverted to recover the original forms of theexpressions and subexpressions when no simpli�cation takes place. This assumption iscavalier, because if the manipulations are done straightforwardly, they are not invertible.For example, a function of two arguments may be applied to two arguments that areidentical; after �-conversion, it will not be possible to determine to which formal argumentan instance of the actual argument corresponds.Fortunately, however, two circumstances make the inverse transformations realizable:1. The grammar for the subject language transformed by TAMPR provides each subex-pression (variable, function application, etc.) of an expression with a <type info>�eld. This �eld is always present; either it is empty (consists of no terminal sym-bols) or it contains one or more non-empty <type info> �elds, each introduced bya colon (\:").2. The \forward" transformations that compose Tes are under my control|I can designthem to record enough information to make the inverse transformations unambigu-ous.Circumstance (2) means that, for example, the part of Tsabcnlai that performs �-conver-sion can be designed to record a pointer to the lambda variable in the <type info> �eldof each substitution of the actual argument of a lambda variable, as shown in Figure 11for pair(x,x). In this way, the �-conversion preserves enough information to permitlambda first @lambda second @cons (x : (-> first)) (x : (-> second))end (x)end (x) Figure 11: Recording lambda-variable pointers.�-conversion to be inverted.Similarly, for the other steps in Tes to be invertible, the following information must berecorded:

98 � For T �1dfdi, the function name corresponding to an unfolded de�nition, because twofunctions could have the same de�nition.� For T �1daibclai, the position at which an argument was located before arguments weredistributed inward, to prevent arguments from distributing outward beyond thepoint at which they were originally located.� For T �1dloai, the position at which a lambda expression was located before lambdaexpressions were distributed out of applications, because a lambda expression mightnot be written with minimal scope in a speci�cation.Some of this information is recorded in the form of a \tag" and an \anchor." The tag isa portable marker that moves with the information being distributed, and the anchor is astationary marker that remains behind to mark the place to which the moved informationmust be returned. Space does not permit me to discuss tags and markers in more detail.Two components must be added to Tes to initialize the information that must berecorded to enable inversion of Tes. They are Tidaii, initialize distribute arguments in-ward invertibly, and Tidloai, initialize distribute lambdas out of applications invertibly.Circumstance (1), that every subexpression has a <type info> �eld, enables the trans-formations for the elementary simpli�cations to be written conveniently in a way thatignores the information recorded in the <type info> �eld. For example, the transfor-mation for the elementary simpli�cation car (cons (x) (y)) = x is shown in Figure 12.This transformation states that the content of the <type info> �elds for car and cons.sd.car (cons (<basic entity>"1" <type info>"1") (<entity>) <type info>)<type info>==><basic entity>"1" <type info>"1".sc. Figure 12: Transformation for an elementary simpli�cation.are immaterial, while that of the �rst argument of cons (<basic entity>"1") is to bepreserved in the result of applying the transformation. (See [4] for a brief discussion ofhow one writes TAMPR transformations.)5.10. Complete Functional form of TpeBased on the preceding discussion, the complete expression of Tpe as a composition ofthe functions just discussed isTpe = Tbculaada� (T �1dfdi � T 0�1dfdi) � T �1idaii � (T �1daibclai � T 0�1daibclai) � T �1idloai � (T �1dloai � T 0�1dloai)� (T �1bcnlai � T 0�1bcnlai) � Tsce � Tsabcnlai � Tdloai � Tidloai � Tdaibclai � Tidaii � Tdfdi

99Here, T �1bcnlai is the inverse of Tbcnlai, where Tbcnlai is Tsabcnlai without the elementary sim-pli�cations; that is, Tbcnlai is the part of Tsabcnlai that �-converts non{lambda-abstractionsinvertibly. Initialization for the tagging of instances of lambda variables and functionde�nitions is not required, because they already have the names that act as tags andanchors.5.11. General Requirements for \Primed-Inverse" TransformationsIt remains only to outline the general requirements for the \primed-inverse" transfor-mations T 0�1dfdi , T 0�1daibclai, T 0�1dloai, and T 0�1bcnlai. These transformations are the components ofthe inverse transformations that handle portions of the text that have been simpli�ed.There are two basic requirements: ensure that the inverse transformations preserve cor-rectness, and restore simpli�ed portions of the text to a \reasonable" form. For example,where no simpli�cation takes place, T �1dfdi can simply distribute a lambda expression intoarguments of function applications until its anchor is encountered, at which point it hasbeen been returned to its original position. Where simpli�cation has taken place, how-ever, the anchor for a lambda expression may have been deleted, so T 0�1dloai must ensure thatdistribution of a lambda expression into arguments stops when the lambda expression hasthe proper scope. That is, if T 0�1dloai is to preserve correctness, distribution of the lambdaexpression into arguments must stop before it is distributed inward so far as to leave someof the instances of its lambda variable outside its scope.For the four primed-inverse transformations, the requirements are as follows:� T 0�1bcnlai must ensure that the correct number of arguments is associated with a subex-pression that is a candidate for inverse �-conversion. (Because the actual argumentcorresponding to a lambda variable may be either an unapplied function or an ap-plied function, it is not obvious from the substituted form of the variable whetherits arguments were part of the substitution.)� T 0�1dloai must ensure that inward distribution of a lambda expression stops with largeenough scope (to preserve correctness); on the other hand, it should distribute alambda expression into function applications as far as possible without replicatingit in di�erent arguments (to restore a simpli�ed portion of the text to a reasonableform).� T 0�1daibclai must ensure that an argument is not distributed out of lambda expressionsthat bind variables referenced in that argument. (Simpli�cation may have deletedthe argument anchor that would have stopped such distribution if simpli�cation hadnot taken place.)� T 0�1dfdi must ensure prior to folding that a possibly simpli�ed instance of an un-folded function de�nition still matches the original function de�nition. (Becausethe unfolded instance is tagged to the original function name, in the absence ofsimpli�cation it could be folded without checking.)Note that the two initialization transformations do not have a primed-inverse compo-nent; their inverses simply delete all tags and anchors that remain in the text.

1006. CANONICAL FORMS AND TRANSFORMATIONS FOR TpeEach function in the composition representing Tpe is itself implemented by a �xedpoint computation that results in a canonical form. Most of these canonical forms arestraightforward (although their implementation may not be):� The initialization transformations Tidloai and Tidaii simply produce a canonical formthat is unchanged from the input form except that all suitable locations have tagsand anchors.� The Tdfdi transformations produce a form in which all function applications for whichde�nitions are available have been unfolded, except that no function de�nition isunfolded into itself.� The Tdaibclai transformations produce a form in which each lambda expression has atmost one argument and in which lambda expressions whose arguments are lambdaabstractions (unapplied functions) have been �-converted.� The Tsabcnlai transformations produce a form in which all remaining lambda expres-sions have been �-converted; in addition, this form is fully simpli�ed.� An inverse transformation, of course, produces a canonical form that is the outputform of the transformation whose application precedes its corresponding forwardtransformation in the composition de�ning Tpe, modulo the comments about the\primed-inverse" transformations given in the Section 5.11. For example, (T �1daibclai�T 0�1daibclai) produces the canonical form that is the result of Tidaii, modulo the e�ectof simpli�cation.7. FOLDINGThere are speci�cations, including ones of practical importance, for which the incre-mental partial evaluation strategy does not terminate in the absence of folding. Therefore,it is necessary to perform folding of function de�nitions during partial evaluation. I amcurrently implementing transformations that perform folding.A typical use of such transformations is to create specialized versions of functions thathave one or more arguments that are constant across recursive applications. Many higher-order functions, such as map, reduce, etc., have this property, because their functionargument is passed down unchanged in the recursion. For such functions, the foldingtransformations create a de�nition of a �rst-order function that is tailored to a particularapplication by incorporating the particular function argument provided. Provided eachfunction argument to each application of a higher-order function in a speci�cation canbe traced to some user-de�ned or primitive function (as is usually the case), the resultof this folding is to reduce a higher-order functional speci�cation to a �rst-order one.As discussed in Section 2, the resulting �rst-order functional speci�cation can then beimplemented without the overhead associated with a full implementation of higher-orderfunctions.A somewhat simpli�ed description of folding is that it involves locating a speci�c ap-plication of a self-recursive function, comparing the actual arguments of that application

101to those that the function will pass in its self-recursive application, and, if any of thesearguments are self-denoting (for example, if they are constants or lambda abstractions),creating a new self-recursive function that incorporates these constant arguments explic-itly. The transformations add the de�nition of the new function to the de�nitions alreadyin the speci�cation, and they create an equivalence that expresses which applications ofthe original function can be replaced by applications of the new function.In practice, folding must be somewhat more general than just described. For example,non-termination may result from simpli�cations that take place in a function de�nitionbecause there are correlations among the actual arguments supplied in a speci�c appli-cation. Hence, the folding transformations must also detect this case and create a newfunction based on the simpli�ed form and a corresponding equivalence expressing therequired correlation among the arguments.An interesting aspect of the development of the folding transformations is that theyincorporate the forward and inverse halves of Tpe as \subroutines." For example, in orderto determine whether a particular argument is constant across the recursive application ofa function, the parameters to the original application and the recursive application mustbe compared in the fully simpli�ed form of the text that exists after applying Tsce. Spacedoes not permit me to discuss folding in further detail here.8. RESULTS AND FUTURE WORKI have implemented the algebraic approach to partial evaluation as a set of TAMPRprogram transformations. (The examples discussed in the preceding sections are the ac-tual output of these transformations.) TAMPR completes the partial evaluation of (acomplete version of) the example speci�cation given in Section 3 in 49 minutes on a SunSPARC-2 workstation with a 40-MHz processor; this partial evaluation requires 63,362rewrites. Of course, the implementation is slow because TAMPR is interpreting therewrite-rule transformations. Because the speci�cation for TAMPR is expressed in thefunctional language it processes, TAMPR could, in principle, partially evaluate itself onthe data represented by the partial evaluation transformations. This process would pro-duce a faster, hard-coded implementation of these particular transformations. In practice,however, it is unlikely that, with existing hardware and memory, the partial evaluationwould complete before the end of the millennium.These transformations implementing partial evaluation represent an engineering ap-proach to partial evaluation in contrast to a theoretical one. At present, I have provedneither the necessity nor the su�ciency of the properties that guided the design of thetransformations, nor have I proved that the transformations I have written actually pos-sess these properties. From one point of view, this is simply the statement:1 \I've got anice program, but I don't know whether it solves the given problem; at least, for sometest examples, it does."From another point of view, however, the present implementation is a major advancethat provides the basis for a theoretical investigation of the adequacy, completeness, andtermination of this strategy for controlling unfolding. Having such a basis is important. I1I am indebted to an anonymous referee for this plainspoken paraphrase of my original obfuscatorywording of this statement.

102started this investigation from a more theoretical viewpoint, but I quickly discovered thatthe requisite algebraic manipulations, even for very simple examples, were too complicatedto carry out by hand. Moreover, my concept of how to implement the strategy, and tosome extent the strategy itself, changed several times during the implementation, as aresult of being able to see the e�ects of various transformations. Hence, an ab initiotheoretical study would have been rendered moot by these changes.The most signi�cant item of future theoretical work is to prove that the strategy termi-nates for all possible partial evaluations (or to characterize those cases for which it doesterminate). As remarked earlier, there are cases|including ones of practical importance|for which iterated unfolding alone does not terminate; hence, folding is necessary. Beyondthe issue of termination, one might investigate completeness|whether the strategy in factpushes partial evaluation as far as possible given the available data.Finally, an easier, although still nontrivial, problem is to prove that the transformationsare correctness-preserving. Certainly, they are intended to be correctness-preserving, andif they were proved to be, then a least no incorrect program could be produced. Theprogram might not be evaluated as far as possible, or the partial evaluation might notterminate, but at least any program obtained would be guaranteed to be correct.In summary, I have described an automated approach to partial evaluation based onprogram algebra. The approach is centered on elementary simpli�cations and relies oncanonical forms and distributive laws to expose instances to which these simpli�cationscan be applied. This approach to partial evaluation has been successfully implemented asa set of completely automatic program transformations. This implementation has beenapplied to a number of practical examples of moderate complexity, including the PDEexample presented in this paper.The approach I have described here is an example of partial evaluation that is� implemented,� automated,� able to partially evaluate speci�cations containing implicit data,� able to partially evaluate speci�cations of practical interest, and� able to produce programs that look like the those written by \real programmers."AcknowledgmentsI am indebted to Terence Harmer of The Queen's University, Belfast, for discussionsabout partial evaluation of realistic speci�cations and to Victor Winter of the Universityof New Mexico for discussions about the role of �xed point theory in the semantics ofTAMPR program transformations.REFERENCES1. James M. Boyle, A Transformational Component for Programming Language Gram-mar, Report ANL-7690, Argonne National Laboratory, Argonne, Illinois, July 1970.

1032. James M. Boyle and M. N. Muralidharan, Program reusability through program trans-formation, IEEE Transactions on Software Engineering, Vol. SE-10, No. 5, Sept. 1984,pp. 574{588.3. James M. Boyle, Kenneth W. Dritz, Monagur M. Muralidharan, and Roy Taylor,Deriving Sequential and Parallel Programs from Pure LISP Speci�cations by ProgramTransformation , Program Speci�cation and Transformation, Proceedings of the IFIPTC2/WG2.1 Working Conference on Program Speci�cation and Transformation, Pa-ci�c Grove, Calif., 13{16 May 1991, L.G.L.T. Meertens, ed., North-Holland, Amster-dam, 1987.4. James M. Boyle, Abstract programming and program transformations|An approachto reusing programs. Software Reusability, Volume I, Ted J. Biggersta� and Alan J.Perlis, eds., ACM Press (Addison-Wesley Publishing Company), New York, 1989, pp.361{413.5. James M. Boyle and Terence J. Harmer, Functional Speci�cations for MathematicalComputations, Constructing Programs from Speci�cations, Proceedings of the IFIPTC2/WG2.1 Working Conference on Constructing Programs from Speci�cations, Pa-ci�c Grove, Calif., 13{16 May 1991, B. M�oller, ed., North-Holland, Amsterdam, 1991,pp. 205{224.6. James M. Boyle and Terence J. Harmer, A practical functional program for the CRAYX-MP, Journal of Functional Programming, Vol. 2, No. 1, Jan. 1992, pp. 81{126.7. R. M. Burstall and J. Darlington, A transformation system for developing recursiveprograms, Journal of the ACM, Vol. 24, No. 1, 1977, pp. 44{67.8. Martin S. Feather, A system for assisting program transformation, ACM Transactionson Programming Languages and Systems, Vol. 4, No. 1, 1982, pp. 1{20.9. Daniel P. Friedman and Matthias Felleisen, The Little LISPer, Science Research As-sociates, Inc., Chicago, 1986.10. Carsten K. Gomard and Neil D. Jones, A partial evaluator for the untyped lambda-calculus, Journal of Functional Programming, Vol. 1, No. 1, Jan. 1991, pp. 21{69.11. C. A. R. Hoare, He Jifeng, and A. Sampaio, Normal form approach to compiler design,Acta Informatica, Vol. 30, 1993, pp. 701{739.12. B. M�oller, ed., Constructing Programs from Speci�cations, Proceedings of the IFIPTC2/WG2.1 Working Conference on Constructing Programs from Speci�cations, Pa-ci�c Grove, Calif., 13{16 May 1991, North-Holland, Amsterdam, 1991.13. Hanne Riis Nielson and Flemming Nielson, Using transformation in the implemen-tation of higher-order functions, Journal of Functional Programming, Vol. 1, No. 4,Oct. 1991, pp. 459{494.

