83

Automatic, Self-adaptive Control of Unfold-Fold
Transformations

James M. Boyle * #

*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL 60439, U.S.A.

e-mail: boyle@mes.anl.gov

I describe an automated approach to partial evaluation based transformations for el-
ementary simplifications and unfolding and folding. The approach emphasizes program
algebra and relies on canonical forms and distributive laws to expose instances to which
the elementary simplifications apply. This approach to partial evaluation has been applied
to a number of practical examples of moderate complexity, including eliminating a data
structure from a partial-differential-equation solver.

Keyword Codes: D.1.2; D.1.1; F.4.2
Keywords: Automatic Programming; Applicative (Functional) Programming; Grammars
and Other Rewriting Systems

1. WHY SELF-ADAPTIVE UNFOLDING?

Program transformations for unfolding and folding were introduced in the classic paper
of Burstall and Darlington [7]. These transformations are very powerful; they are capable
of proving theorems about function definitions by mathematical induction. Use of unfold-
fold in automatic program transformation is difficult, however. The unfold transformation,
in particular, is challenging, because it replaces the application of a named function by
an application of the definition of that function. Obviously, if the named function is
recursive, such replacement could go on forever.

After to the appearance of the Burstall and Darlington paper, some work was done
on control of unfold-fold transformations. Feather [8] implemented a strategy in which
unfolding took place until a user-specified pattern was found. The user of Feather’s
system prevented infinite unfolding by providing an explicit limit on the number of times
unfolding took place. Feather’s approach has not been widely used, however, in part
because it is difficult to predict the required target pattern and the limit on unfolding;
in practice, their determination required extensive experimentation. A somewhat similar
approach is to use “metaprogramming” to control unfolding. This approach also suffers

*This work was supported in part by the Office of Scientific Computing, U.S. Department of Energy, under
Contract W-31-109-Eng-38, and in part by the BM/C3 directorate, Ballistic Missile Defense Organization,
U.S. Department of Defense

84

from a lack of self-adaptability, limiting its general usefulness. Both of these approaches
may be described as “programmer guided,” and both depend to a certain extent on the
programs being transformed. Neither of these approaches is fully satisfactory in the sense
of making control of unfolding fully automatic.

In this paper, I present an approach to controlling the automatic application of unfold-
fold transformations when they are used for partial evaluation of functional programs.
Partial evaluation is the simplification of a program based on known input data or on
known data incorporated in the definitions of functions of the program. My approach is
based on a strategy that adapts itself to whatever program is being transtormed with-
out any programmer direction, performing as much—or as little—unfolding and partial
evaluation as required, and leaving the parts of the program that do not evaluate in their
original form. In this approach, transformations are applied until the program has been
evaluated as much as possible based on the available data.

2. MOTIVATION

The desire to solve this important problem in program transformation is not my sole
motivation for developing the self-adaptive strategy for unfolding. For many years, my
colleagues and I have been interested in two related problems: automatically transforming
functional specifications into highly efficient programs, and trying to understand how
programs in conventional languages such as Fortran and C come to be written as they
are.

We have discovered that, for all nontrivial specifications, to obtain programs as efficient
as typical Fortran or C programs some partial evaluation of the specification is necessary.
This statement is almost self-evident for higher-order functions. No amount of cleverness
in implementing a higher-order function will produce a program that is as efficient as
one that employs the equivalent “tailored” first-order function (the first-order function
in which the function argument presented to the higher-order function is incorporated
literally). Partial evaluation, using unfold-fold transformations, can derive tailored first-
order functions from higher-order ones used in the specification.

Partial evaluation is useful, however, beyond just the tailoring of higher-order functions.
It enables one to produce efficient programs from specifications that are parameterized in
some way.

3. AN EXAMPLE SPECIFICATION

A specification that benefits greatly from partial evaluation is one that is parameterized
by the dimensionality (not just the dimension) of the problem. Because target languages
such as C and Fortran do not permit arrays to have a variable number of dimensions,
partial evaluation is required to convert such a specification into a program for a specific
dimensionality. An example of such a specification is that for solving Poisson’s equation
in n dimensions. The partial differential equation to be solved is

Vi = f

Poisson’s equation has a unique solution at every point within a region provided that the

89

value of f is known throughout the region and the value of ® is known on the boundary
of the region.

Poisson’s equation can be solved by discretizing the problem on a grid and iterating
toward a solution. Using a so-called 5-point method (stencil) in two dimensions, the new
value of ® can be computed at any point according to the equation

O (x,y)" " = i(‘b(l‘ —1Ly)" (v, y+1)" +P(x+ 1,y)" + (x,y — 1)) — b* fx,y)"

(Here, superscript n and n 4 1 represent the iteration number.)

As an example of a specification to which partial evaluation can be usefully applied,
consider the dimension-independent portion of the functional specification for the compu-
tation of the new value of ® shown in Figure 1. Dimension-independence is achieved by

fun grid_at_t_plus_1 (grid, boundary) =

mapgrid (
lambda grid, point @ phi_at_t_plus_1 (grid, point, boundary) end,
grid
)
end

fun phi_at_t_plus_1 (grid, point, boundary) =
quotient (
sum (phi_s_of (neighbor_points_of (grid, point))),
cardinality (set_of_neighbors ())
)
end
fun cardinality (1) =
reduce (plus, O, map (lambda element @ 1 end, 1))
end
fun neighbor_points_of (grid, point) =
map (
lambda direction @ neighbor_of (grid, point, direction) end,
set_of _neighbors ()
)
end
fun neighbor_of (grid, point, direction) =
element_of (grid, offset (point, direction))
end
fun phi_s_of (neighbors) =
map (lambda neighbor @ phi_of (neighbor) end, neighbors)
end

Figure 1: Top-level specification for a grid update.

employing the concept of the set of neighbors of a point on the grid. A new approximate
value at a point on the grid is specified in terms of values at the set of neighbor points of
the point, regardless of the dimensionality of the problem. The computation represented

86

by the preceding equation is specified in function phi_at_t_plus_1 as a sum-reduction of
the @ values of the set of neighbors, divided by the cardinality of the set. (To obtain a
complete Poisson solver, one would add a specification for mapping the computation of
new values of ® over the grid, a specification of the treatment of boundary conditions,
and a specification for a function that repeats the computation of the grid for a specified
number of time steps or until the computation converges. A specification for the function
mapgrid in terms of a map over an array is also required.)

For the two-dimensional case, some of the dimension-dependent functions for the com-
putation of the new value of ® are shown in Figure 2.

fun set_of_neighbors () =
cons (west(), cons (north(), cons (east(), cons (south(), nil))))
end
fun west () = pair (minus (1), 0) end
fun north () = pair (0, 1) end

fun offset (point, direction) =
pair (
plus (first (point), first (direction)),
plus (second (point), second (direction))

end

Figure 2: Some dimension-dependent functions for a grid update.

A number of the dimension-dependent functions are constant; in particular, the function
set_of_neighbors is a constant. It is an example of “implicit data” for the problem—
constant data that is part of the functional specification rather than being input data.
The problem to be solved by automatic partial evaluation is to use such implicit, constant
data to derive from the combined dimension-independent and dimension-dependent parts
of the specification one that is specialized and optimized to solve the two-dimensional
version of the problem.

4. APPROACH

For me, partial evaluation of specifications of the type given in the preceding section
is an algebraic process. (Literally, such partial evaluation uses the lambda calculus, but
the approach is an algebraic one nonetheless.) The key to performing algebraic manip-
ulations of this type automatically is to define a set of intermediate goals to guide the
manipulation, and to find a way to use these goals to control the automatic application
of transformations. Of course, the control should be self-adaptive so that the transforma-
tions will automatically partially evaluate any specification without any modification to
the control strategy or the way it is expressed.

Five important observations describe the selt-adaptive approach to performing algebraic
manipulations automatically:

First, to solve a problem in a general and self-adaptive way, one manipulates the text

87

through a sequence of canonical forms. These canonical forms capture the notion of
“goal” formally: each provides a termination condition for the algebraic manipulations
that achieve it. Moreover, formulating the strategy in terms of canonical forms enables it
to adapt itself to perform the manipulations required to partially evaluate any program
specification. For a particular program, all, and only, those manipulations needed to
achieve the canonical form will be performed. In particular, if some program is already
in the required canonical form, the strategy will perform no manipulations on it.

Second, a sequence of goals and steps is required. As discussed later, some goals in
the sequence may be inverses of one another; obviously, such goals cannot all be achieved
simultaneously.

Third, most algebraic manipulations have a central, pivotal step; it is in this step that
the problem, in a suitably simple form, is solved. Steps prior to the pivotal step are
directed toward making that step possible, and steps following it typically return the
solved problem to a more usual and desirable form.

Fourth, in some derivations, if the pivotal step is omitted, the remaining steps are the
identity manipulation. They manipulate the program into a simple form and then restore
it to its original form.

Fifth, each step of the problem can be automated by a fixed-point computation that
produces the required canonical form. Usually, it is easy to see informally that each of
these manipulations terminates.

5. A PROGRAM-ALGEBRAIC APPROACH TO PARTIAL EVALUATION

The discussion and observations in the preceding section provide the keys to solving
the problem of automatic self-adaptive control of partial evaluation. Before considering
the solution in detail, however, I briefly describe some general properties of the program
transformation system I use to implement partial evaluation.

5.1. Program Transformations for Program Algebra

The transformations that implement partial evaluation are applied by the TAMPR
program transformation system [1,2,4]. TAMPR transformations are rewrite rules, each
of which consists of at least a syntactic pattern and a syntactic replacement. Optionally, a
transformation rule may have one or more applicability conditions, which in the TAMPR
system are themselves evaluated by rewriting. A transformation applies to a fragment of a
program if the syntactic pattern of the transformation matches the program fragment and
if the applicability conditions (if any) of the transformation hold. When a transformation
applies to a fragment of program, TAMPR replaces the fragment by one constructed from
the replacement of the applicable transformation and the program fragments matched by
the pattern. TAMPR transformations are discussed further in [4,6].

The usual mode for applying a set of program transformations using the TAMPR
system is to apply them ezhaustively. That is, TAMPR applies the transformations to
every matching fragment in the program, including any that might be created as the result
of applying transformations in the set to other fragments. Thus, TAMPR computes the
fixed point (if it exists) of a set of transformations applied to a program text, producing
a new text in a (new) canonical form. A slightly different view of the use of a canonical
form to guide transformation is discussed in [11]. T point out that the use of canonical

88

forms has always been fundamental to using TAMPR, and it has been discussed in [2-4].

One wishes, of course, to write transformation rules that preserve correctness. A fertile
source for such rules is algebraic identities—identities in a program algebra. For partial
evaluation of the type discussed here, the program algebra is the A-calculus. In many
areas of program transformation (see, for example, the papers in [12]), distributive laws
play a significant role. Partial evaluation is no exception. Thus, besides the familiar laws
from A-calculus (a- and f-conversion), I use less-familiar distribution laws for lambda
expressions as the basis for transformations.

5.2. The Central Step of Partial Evaluation

The first requirement for designing a set of transformations is to identify the central
step that they must perform. The central step in partial evaluation is the application
of elementary simplifications. Arguably, the entire partial evaluation is a simplification;
however, I reserve this term for the application of elementary simplification laws for the
types (whether primitive or user-defined) used in a specification. Typical elementary sim-
plifications include car(cons(x,y)) = x, cons(car(1l),cdr(1)) = 1, and plus(0,x) = x.
These laws are just some of the axioms (and, in a few cases, theorems) of the fundamental
data types.

These and other elementary simplifications are collected in a set of transformations that

I call 7

s> apply simplifications.

Of course, it is unlikely that a specification will contain explicit opportunities for the
application of elementary simplifications, for in most cases the specifier would apply them
as he writes. However, a good high-level specification—one written with proper attention
to data abstraction—often contains hidden instances to which elementary simplifications
apply. These instances are hidden either because the individual parts are in separate
functions or because the application of the elementary simplification depends on (possibly
implicit) constant data. Thus, for most specifications, some preliminary steps are needed
before applying 7,,. These steps employ algebraic manipulation to expose possibilities for

simplification.

5.3. Unfolding to Expose Simplifications

Because parts of the information needed to apply an elementary simplification may
be hidden in separate function definitions, function definitions must be unfolded (copied
in place of the applications of their function names) [7] in order to expose simplifica-
tions. Unfolding function definitions is facilitated if the “user-oriented” form in which the
specification is presented in Section 3 is transformed into curried form, in which formal
parameters of functions are represented by lambda abstractions, each having (at most)
one variable and in which, correspondingly, actual parameters are curried. For example,
the specification for the map function in curried form is shown in Figure 3. Definitions
in this form have the advantage that the expression to the right of the equal sign can be
substituted directly for instances of the function name to the left of the equal sign.

To see how unfolding helps to expose simplifications, consider computing the cardinality
of the set of neighbors of a point in the function phi_at_t_plus_1in the PDE specification
in Figure 1; initially, this computation is cardinality (set_of_neighbors()).

The text after the curried form of the definitions of cardinality, set_of_neighbors,
reduce, and map have been unfolded is shown in Figure 4. (Here the ellipses indicate

89

fun map =
lambda fn @
lambda list @
use nil
if (null (1list))
otherwise cons (fn (car (1list))) (map (fn) (cdr (1ist)))
end
end
end
end

Figure 3: Curried form of specification for map.

lambda 1 @

lambda fn @
lambda list @
use nil
if (null (list))
otherwise cons (fn (car (1list))) (map (fn) (cdr (1ist)))
end
end
end (lambda element @ 1 end) (1)

end (

lambda @
cons (west()) (cons (north()) (cons (east()) (cons (south()) (nil))))
end ()
)

Figure 4: Result of unfolding function definitions.

the unfolded text of the definition of reduce; in the remainder of the discussion of this
example, for simplicity, I ignore this text and the simplifications to which it gives rise.)

It is possible for the human eye to see in this form of the text that the accessor func-
tions car and cdr are applied to the cons function that is the value of set_of_neighbors,
and that the relevant elementary simplifications can be applied. However, the mechanical
eye—in the form of transformation rules expressing the elementary simplifications given
earlier—will not be able to see the elementary simplifications in this form of the text
because of the intervening lambda expressions and variable bindings. Thus, to enable au-
tomatic simplification, further manipulations (especially 3-conversion) must be performed
on the text to bring it into a form in which simplifiable instances such as that shown in
Figure 5 are explicit.

Before considering these manipulations in detail, I briefly describe the program trans-
formations that implement the manipulations and some of the general properties that
they must satisty.

90

car (cons (west()) (cons (north()) (cons (east()) (cons (south()) (nil)))))

Figure 5: An instance of a simplification.

5.4. Structure and Properties of Partial-Evaluation Transformations

My goal is to obtain a sequence of sets of transformations—a composition of functions—
that perform all possible simplifications enabled by any explicit and implicit data available
at partial-evaluation time. Of course, such a composition of functions may not exist, at
least for the full partial-evaluation problem. Nevertheless, it may also be that a substantial
part of the problem can be handled in this way; my goal is to handle as much of the
problem as possible.

This is an ambitious goal, given that unfolding is required for partial evaluation and
that the uncontrolled unfolding of the definition of a recursive function will not terminate.
The difficulty of controlling unfolding has led researchers in partial evaluation to try two
distinct approaches to partial evaluation: off-line and on-line.

Off-line partial evaluation uses techniques such as binding-time analysis [13,10] to pre-
dict, prior to performing any unfolding, what parts of a specification can be partially
evaluated. Unfortunately, binding-time analysis is often complicated. Moreover, as with
other forms of program analysis, compromises must be made to automate it. That is, prac-
tical automated binding-time analysis must err on the side of safety; it must make some
assumptions that lead to classifying data that in reality is available at partial-evaluation
time as not being available until run time [13]. In particular, it is not clear whether
automated binding-time analysis is able to recognize that data (such as the size of a set)
encoded in user-defined functions is available at partial-evaluation time, even though such
data may lead to simplifications. Thus, other approaches are worth considering.

On-line partial evaluation determines during partial evaluation which parts of the pro-
gram have the potential to be evaluated. The implementation of partial evaluation that I
discuss here is an example of on-line partial evaluation. The difficulty with on-line partial
evaluation is, of course, ensuring that it terminates.

5.5. Design Principles for Partial Evaluation Transformations

A more-or-less obvious approach to preventing on-line partial evaluation from running
away is to perform incremental partial evaluation. Whereas, in the preceding example,
off-line partial evaluation would try to predict that the map function must be unfolded to
a depth of five in order to evaluate the cardinality of the set of neighbors, incremental on-
line partial evaluation unfolds map once, performs simplification, and then asks whether
anything actually simplified. If not, partial evaluation (of this part of the specification)
is complete; if so, then further unfolding is attempted.

It this process is to terminate, it must reach a fixed point. When the fixed point is
reached, the specification will be in a canonical form, in this case, “partially-evaluated-
as-far-as-possible” canonical form, or partially evaluated canonical form for short.

The fixed-point computation consists of applying a function 7. (partial evaluation) to
a specification until a form p is reached such that

T,.(p)=p

91

The equality here is syntactic identity of the specification before and after application of
7,., not equivalence. (Because the transformations I use are correctness-preserving, all of
the incrementally partially evaluated specifications are equivalent. Hence, the notion of
equivalence cannot be used to detect the fixed point.)

The requirement that the specification be left syntactically unchanged when no simpli-
fication takes place strongly constrains the way in which the function 7, is defined. This
and other constraints that the partial-evaluation function must satisfy lead directly to a

set of principles for its design.

5.5.1. Identity Constraint for 7

The most important constraint on 7 _ is that if it is to have a fixed point, the function
must, of course, transform every specification into a form to which it no longer applies. In
particular, if the transformations implementing 7 . are applied to a specification already
in partially evaluated canonical form, they must leave the specification alone.

The requirement is expressed in the following constraint.

Constraint 1 The function T, must be the identify function when applied to a specifi-
cation already in partially evaluated canonical form.

This constraint has important consequences. For most languages, if 7 _ is to be the
identity on the whole of a partially evaluated specification, then 7 _ must be the identity
on any subexpression that is already partially evaluated. This property holds provided
that the language in which specifications are written and transformed is monotonic (as is
the language I use).

A partial-evaluation function that is the identity on already-partially-evaluated subex-
pressions gives one wide latitude in selecting subexpressions on which to attempt partial
evaluation. That is, one can use a “shotgun” approach, attempting partial evaluation on
all subexpressions, without regard to whether they are known to lead to simplifications.
The function 7, applied to subexpressions that do not undergo simplification, will leave
them in (actually, it will restore them to) their original form. This property, which I shall
show can be obtained by making certain steps of the partial evaluation invertible, permits
this algebraic approach to partial evaluation to dispense with the binding-time analysis
required in off-line partial evaluation.

5.5.2. Additional Constraints on 7

Having considered what 7, must not do, one can obtain additional design constraints
by considering what it must do.

As discussed earlier, applying elementary simplifications is at the heart of partial evalu-
ation. The elementary simplifications must canonicalize a specification. (This constraint
may limit the choice of elementary simplifications to some extent, but by using sequences
of canonical forms one can overcome much of this limitation.) Thus, there is a constraint:

Constraint 2 The function T, at the heart of T, must simplify specifications to a canon-
ical form.

Now, as discussed earlier, 7 does not consist solely of the simplifications 7, because

algebraic manipulations must be performed to expose simplifications. Thus, there is a
further constraint.

92

Constraint 3 The simplifications T,, must be preceded by a function that exposes sim-
plifications.

Thus, 7, is the composition of at least two functions, 7_, (the function that exposes
simplifications) followed by 7, (the simplifications themselves).

But, if 7, has exactly this form, then the requirement that 7, = 7 when no simplifi-
cation occurs would mean that 7_, is the identity function, which it is not, because it at
least performs unfolding. This observation leads to another constraint.

Constraint 4 The function T,. must restore a specification in partially evaluated canon-
ical form to its original form after exposure of simplifications.

Thus, 7,. must be a composition of three functions 7., o 7,, o 7., where (omitting
simplification), 7., 0 7., = Z. Here 7., can be thought of as “restoring” the program to
a desired form after simplification. Clearly, these two equations require that 7., = 7!
when no simplification occurs.

As discussed in later sections, however, when simplification actually does occur, 7, will
“see” constructs not in the range of 7_,. Thus, the result of applying just 7_;! may not
be a satisfactory representation of the specification after simplification. In such cases, 7,
should restore the parts of the program that do simplify to some reasonable form.

Evidently, 7,, must be 7_;! and more. One can think of 7, as being the direct sum of
two functions, one of which applies to parts of the program that do not simplify and the
other of which applies to parts that do simplify. For want of a better notation, I use 7,.~"
(a “primed-inverse” function) to denote the part of 7., that applies to simplified text.
Thus, 7,, = (T.;' & 7..7"). Here, 7.,7" is the identity if no simplification has occurred,
but in the presence of simplification it may “clean up” some leftover clutter, such as
unneeded lambda bindings.

As a result of these observations, ’];6 has the form ’];6 = (’]’6;1 fas ’]’6;_1) o7, 07T,

5.6. Exposing Simplifications

As discussed in Section 5.3, instances to which elementary simplifications apply do not
magically appear in the text of a specification; they must be exposed. In this section,
I consider in more detail the manipulations needed to expose simplifications. After un-
folding of several function definitions, the text of the cardinality example has the form
given in Section 5.3.

Examination of the unfolded form reveals that [G-conversion is needed. Before (-
conversion can be performed, however, the (curried) actual arguments that had been
arguments to a named function application before unfolding must be distributed inward
to become actual arguments of their respective lambda expressions. Furthermore, be-
cause actual arguments that are lambda abstractions ((lambda element @ 1 end) in this
example) may receive their own actual arguments after j-conversion, at least they must
be [-converted simultaneously with argument distribution. Distribution of arguments
accompanied by f-conversion of lambda abstractions converts the preceding form of the
text to that shown in Figure 6.

It might seem that the next step should be to g-convert the remaining lambda expres-
sions; doing so, however, would not produce a form of the text in which simplifications are

93

lambda 1 @

lambda fn @
lambda list @
use nil if (null (list))
otherwise
cons (lambda element @ 1 end (car (1list))) (
map (lambda element @ 1 end) (cdr (list))
)
end
end (1)
end (lambda element @ 1 end)

end (

lambda @
cons (west()) (cons (north()) (cons (east()) (cons (south()) (nil))))
end ()
)

Figure 6: Result of distributing arguments and J-converting lambda abstractions.

fully exposed. For example, g-converting car (list) would give the result shown in Fig-
ure 7. This form would not simplify, because the intervening (0-ary) lambda expression

car (
lambda @
cons (west ()) (
cons (north ()) (cons (east ()) (cons (south ()) (nil)))
)
end ()

Figure 7: Result of g-converting car (list).

prevents the elementary simplification car (cons (x) (y)) = x from applying.
Therefore, before performing [3-conversion, it is useful to apply a distribution law for
lambda expressions:

In this law f is either a named function or a lambda abstraction, and a-conversion must
be performed to avoid clashes of lambda variable names. This law states that a function
applied to an argument that is a lambda expression has the same value as the lambda
expression with its body replaced by the function applied to the body of the original
lambda expression.

This law is used to distribute lambda expressions out of arguments of named functions

94

and lambda expressions. For the example text, the result is shown in Figure 8; it is now
ready for (3-conversion.

lambda @
lambda 1 @

lambda fn @
lambda list @
use nil if (null (list))
otherwise
lambda element @
cons (1) (map (lambda element @ 1 end) (cdr (1list)))
end (car (list))
end
end (1)
end (lambda element @ 1 end)

end (
cons (west()) (cons (north()) (cons (east()) (cons (south()) (nil))))
)
end ()

Figure 8: Result of distributing lambda expressions out of arguments.

The [-conversion begins with the outermost lambda expression and moves inward.
During (-conversion, a lambda expression may be encountered whose actual argument
can be simplified by 7,,. Simplifying the argument before substituting it for the lambda
variable is at least as efficient (and usually more efficient) than substituting the argument
and then simplifying all of the substituted instances, because the actual arguments of
lambda expressions must themselves be simplified in order for inverse 3-conversion to
work correctly. In this example, after substituting the expression cons (west ()) (...)
for the variable 1, and then substituting this value of 1 for the variable 1ist, the argument
of the expression lambda element @ has the form shown in Figure 5. This form simplifies
to west (). (As it happens, there are no instances of the lambda variable element, but
this situation is unusual.)

The form of the example after 3-conversion with simplification has taken place is shown
in Figure 9. (The lambda expressions are retained after S-conversion in order to retain in-
formation needed when inverse #-conversion is performed; invertibility is discussed further
in the following sections.)

Two additional simplifications need to be performed: conditional expressions whose
outcome is known as the result of other simplifications must themselves be simplified, and
lambda expressions whose lambda variable is used at most once should be #-converted
and deleted. After these steps, the text of the example has the form shown in Figure 10.
This text is the partially evaluated form of cardinality (set_of_neighbors ()) (ignoring
the effect of simplifying reduce) after one application of 7, (one step of the iteration to
the fixed point). Four further applications will produce a four-element list of ones.

95

lambda @
lambda 1 @

lambda fn @

lambda list @

use nil if (nil)
otherwise

lambda element @
cons (1) (
map (lambda element @ 1 end) (
cons (north ()) (
cons (east ()) (cons (south ()) (nil))

)
end (west ())
end
end (
cons (west ()) (
cons (north ()) (cons (east ()) (cons (south ()) (nil)))

)
end (lambda element @ 1 end)

end (
cons (west()) (cons (north()) (cons (east()) (cons (south()) (nil))))

)
end ()

Figure 9: Result of g-converting with simplification.

5.7. Making a-Conversion Invertible

Because distribution laws apply to lambda expressions, changing the scopes in which
their variables are defined, care must be taken to perform a-conversion (lambda-variable
renaming) where necessary. The program transformations implementing 7, do this by
first establishing the invariant that each lambda variable has a unique name. They then
maintain this invariant whenever an expression is duplicated, by renaming the variables
of all lambda expressions contained in the expression.

In order for a-conversion to be invertible, a record of the original names of the vari-
ables must be maintained. The transformations do this by “stretching” the syntax and
semantics of the bound-variable part of a lambda expression slightly, replacing the lambda
variable by an aka-list (also-known-as-list). The aka-list contains three names: the orig-
inal variable name, a generated name for this variable that is unique in the definition of
the function in which it appears, and a generated name that is unique to this instance
(copy) of the lambda expression. When it is necessary to determine whether two frag-

96

cons (1) (
map (lambda element @ 1 end) (
cons (north ()) (cons (east ()) (cons (south ()) (nil)))
)

Figure 10: Final result of one step of unfolding and simplification.

ments of text that have undergone a-conversion are equal (modulo a-conversion), they

are a !

-converted to the form that uses the generated name that is unique to the funec-
tion definition. If the two original fragments were equal modulo a-conversion, the two
resulting forms will be syntactically identical provided both a-converted instances were

derived from the same definition, a condition that the transformations for 7 fulfill.

5.8. Outline of Steps in 7_, and 7,
The examples in the preceding section show that several steps must be carried out in
order to expose elementary simplifications and to apply the simplifications to them:

1. Definitions of functions must be unfolded—substituted for applications of their
names. [name this step 7., distribute function definitions invertibly, because
the unfolding can be viewed as distributing the function definitions to instances of
their names.

2. Actual arguments supplied to these definitions must be distributed inward until they
reach their corresponding curried lambda expressions; at the same time, lambda
expressions whose actual arguments are (or become) lambda-abstractions must be
B-converted. I name this step 7,.3..:» distribute arguments in and 3-convert lambda
abstractions invertibly.

3. Obscuring clutter must be removed by distributing lambda expressions out of ar-
guments of other lambda expressions and named function applications. I name this
step 7, distribute lambdas out of applications invertibly.

loaz?

4. Lambda expressions whose arguments are not lambda abstractions must be j-
converted; this step is combined with a part of 7, that I call 7_;,, simplify func-
tion applications. I name this combined step 7, .,;.;, simplify and -convert non—
lambda-abstractions invertibly. (Here, the “invertibly” refers only to the part of the
transformation set that performs 3-conversion, not the part that performs simplifi-
cation.)

the simplification of conditional expressions must be
simplify conditional expressions.

5. The remaining portion of 7__,

applied. I name this step 7,

sce?

6. A lambda expression that, after simplification, is unnecessary (in the sense that there
is no, or only one, reference to its lambda variable) must be removed. Because the

97

actual argument of a lambda expression that is removed may be a lambda abstrac-
tion, and because the corresponding lambda variable may appear as the function
name in an application, argument distribution must be performed as part of this
step. (This step must be performed after the inverse transformations corresponding
to 7., have been performed.) I name this step 7, 4040, 3-convert unneeded lambda
applications and distribute arguments.

Oh, yes, and by the way, as the names indicate, most of these functions must be invertible!
So far, then, the steps exclusive of (6) can be represented as the composition of functions

7. o

sce sabenlai

© Titoai © Taaivetai © Tdfdz’

5.9. Making the Steps Invertible

Throughout the preceding discussion, I have tacitly assumed that the manipulations
necessary to expose simplifications can be inverted to recover the original forms of the
expressions and subexpressions when no simplification takes place. This assumption is
cavalier, because if the manipulations are done straightforwardly, they are not invertible.
For example, a function of two arguments may be applied to two arguments that are
identical; after F-conversion, it will not be possible to determine to which formal argument
an instance of the actual argument corresponds.

Fortunately, however, two circumstances make the inverse transformations realizable:

1. The grammar for the subject language transformed by TAMPR provides each subex-
pression (variable, function application, etc.) of an expression with a <type info>
field. This field is always present; either it is empty (consists of no terminal sym-
bols) or it contains one or more non-empty <type info> fields, each introduced by
a colon (“:7).

2. The “forward” transformations that compose 7_, are under my control—I can design
them to record enough information to make the inverse transformations unambigu-
ous.

Circumstance (2) means that, for example, the part of 7, that performs 3-conver-

sion can be designed to record a pointer to the lambda variable in the <type info> field

abenlai

of each substitution of the actual argument of a lambda variable, as shown in Figure 11
for pair(x,x). In this way, the -conversion preserves enough information to permit

lambda first @
lambda second @
cons (x : (-> first)) (x : (-> second))
end (x)
end (x)

Figure 11: Recording lambda-variable pointers.

(#-conversion to be inverted.
Similarly, for the other steps in 7_, to be invertible, the following information must be
recorded:

98

o For %fc}m the function name corresponding to an unfolded definition, because two
functions could have the same definition.

o For 7.} .., the position at which an argument was located before arguments were
distributed inward, to prevent arguments from distributing outward beyond the
point at which they were originally located.

e For 7., the position at which a lambda expression was located before lambda
expressions were distributed out of applications, because a lambda expression might
not be written with minimal scope in a specification.

Some of this information is recorded in the form of a “tag” and an “anchor.” The tag is
a portable marker that moves with the information being distributed, and the anchor is a
stationary marker that remains behind to mark the place to which the moved information
must be returned. Space does not permit me to discuss tags and markers in more detail.

Two components must be added to 7., to initialize the information that must be
recorded to enable inversion of 7_,. They are 7., .., initialize distribute arguments in-

ward invertibly, and 7; initialize distribute lambdas out of applications invertibly.

idloai?

Circumstance (1), that every subexpression has a <type info> field, enables the trans-
formations for the elementary simplifications to be written conveniently in a way that
ignores the information recorded in the <type info> field. For example, the transfor-
mation for the elementary simplification car (cons (x) (y)) = x is shown in Figure 12.

This transformation states that the content of the <type info> fields for car and cons

.8d.
car (cons (<basic entity>"1" <type info>"1") (<entity>) <type info>)
<type info>

<basic entity>"1" <type info>"1"

Figure 12: Transformation for an elementary simplification.

are immaterial, while that of the first argument of cons (<basic entity>"1") is to be
preserved in the result of applying the transformation. (See [4] for a brief discussion of
how one writes TAMPR transformations.)

5.10. Complete Functional form of 7,
Based on the preceding discussion, the complete expression of 7 as a composition of
the functions just discussed is

7;)6 = %culaada
o (Tik @ Tyl) o Tigki 0 (Tiohvwi @ Toniisai) © Tiditi © (T ® Tyok)

df di df di idart datbclai datbclai idloat dloat dloat

(T L BTt)oT, o, 0 Tyoni © Tgowi 0 T, 0T,

benlat cnlai sce sabenlai 7 idloat datbclai idart

o Tdfdz’

99

abentai Without the elementary sim-
that #-converts non-lambda-abstractions

Here, T,20,.. is the inverse of 7, ., where 7, . is 7,
plifications; that is, 7,_,;,; is the part of 7,
invertibly. Initialization for the tagging of instances of lambda variables and function

abenlai

definitions is not required, because they already have the names that act as tags and
anchors.

5.11. General Requirements for “Primed-Inverse” Transformations

It remains only to outline the general requirements for the “primed-inverse” transfor-
mations 7;1}32'17 %;;blclam 7;1;0_(112'7 and ’]z;;llm These transformations are the components of
the inverse transformations that handle portions of the text that have been simplified.

There are two basic requirements: ensure that the inverse transformations preserve cor-
rectness, and restore simplified portions of the text to a “reasonable” form. For example,
where no simplification takes place, Tdﬁi can simply distribute a lambda expression into
arguments of function applications until its anchor is encountered, at which point it has
been been returned to its original position. Where simplification has taken place, how-
—1

. must ensure that

ever, the anchor for a lambda expression may have been deleted, so 7,

distribution of a lambda expression into arguments stops when the lambda expression has
—1

loa: 18 to preserve correctness, distribution of the lambda

the proper scope. That is, if 7,
expression into arguments must stop before it is distributed inward so far as to leave some
of the instances of its lambda variable outside its scope.

For the four primed-inverse transformations, the requirements are as follows:

e 7,-! must ensure that the correct number of arguments is associated with a subex-
pression that is a candidate for inverse 3-conversion. (Because the actual argument
corresponding to a lambda variable may be either an unapplied function or an ap-
plied function, it is not obvious from the substituted form of the variable whether
its arguments were part of the substitution.)

) ’Td;()_ali must ensure that inward distribution of a lambda expression stops with large
enough scope (to preserve correctness); on the other hand, it should distribute a
lambda expression into function applications as far as possible without replicating
it in different arguments (to restore a simplified portion of the text to a reasonable
form).

o ’Td;;bldai must ensure that an argument is not distributed out of lambda expressions
that bind variables referenced in that argument. (Simplification may have deleted
the argument anchor that would have stopped such distribution if simplification had
not taken place.)

° ’]'d}gil must ensure prior to folding that a possibly simplified instance of an un-
folded function definition still matches the original function definition. (Because
the unfolded instance is tagged to the original function name, in the absence of
simplification it could be folded without checking.)

Note that the two initialization transformations do not have a primed-inverse compo-
nent; their inverses simply delete all tags and anchors that remain in the text.

100

6. CANONICAL FORMS AND TRANSFORMATIONS FOR 7,

Each function in the composition representing 7, is itsell implemented by a fixed
point computation that results in a canonical form. Most of these canonical forms are
straightforward (although their implementation may not be):

e The initialization transformations 7, ,, and 7.;,;. simply produce a canonical form
that is unchanged from the input form except that all suitable locations have tags
and anchors.

e The 7}, transformations produce a form in which all function applications for which
definitions are available have been unfolded, except that no function definition is
unfolded into itself.

o The 7,,.1..; transformations produce a form in which each lambda expression has at
most one argument and in which lambda expressions whose arguments are lambda
abstractions (unapplied functions) have been -converted.

o The 7.

sabenlar
sions have been f-converted; in addition, this form is fully simplified.

transformations produce a form in which all remaining lambda expres-

e An inverse transformation, of course, produces a canonical form that is the output
form of the transformation whose application precedes its corresponding forward
transformation in the composition defining 7, , modulo the comments about the
“primed-inverse” transformations given in the Section 5.11. For example, (7, .10 ®
%;;blclai) produces the canonical form that is the result of 7;,,.., modulo the effect

of simplification.

7. FOLDING

There are specifications, including ones of practical importance, for which the incre-
mental partial evaluation strategy does not terminate in the absence of folding. Therefore,
it is necessary to perform folding of function definitions during partial evaluation. 1 am
currently implementing transformations that perform folding.

A typical use of such transformations is to create specialized versions of functions that
have one or more arguments that are constant across recursive applications. Many higher-
order functions, such as map, reduce, etc., have this property, because their function
argument is passed down unchanged in the recursion. For such functions, the folding
transformations create a definition of a first-order function that is tailored to a particular
application by incorporating the particular function argument provided. Provided each
function argument to each application of a higher-order function in a specification can
be traced to some user-defined or primitive function (as is usually the case), the result
of this folding is to reduce a higher-order functional specification to a first-order one.
As discussed in Section 2, the resulting first-order functional specification can then be
implemented without the overhead associated with a full implementation of higher-order
functions.

A somewhat simplified description of folding is that it involves locating a specific ap-
plication of a self-recursive function, comparing the actual arguments of that application

101

to those that the function will pass in its self-recursive application, and, if any of these
arguments are self-denoting (for example, if they are constants or lambda abstractions),
creating a new self-recursive function that incorporates these constant arguments explic-
itly. The transformations add the definition of the new function to the definitions already
in the specification, and they create an equivalence that expresses which applications of
the original function can be replaced by applications of the new function.

In practice, folding must be somewhat more general than just described. For example,
non-termination may result from simplifications that take place in a function definition
because there are correlations among the actual arguments supplied in a specific appli-
cation. Hence, the folding transformations must also detect this case and create a new
function based on the simplified form and a corresponding equivalence expressing the
required correlation among the arguments.

An interesting aspect of the development of the folding transformations is that they
incorporate the forward and inverse halves of 7 _ as “subroutines.” For example, in order
to determine whether a particular argument is constant across the recursive application of
a function, the parameters to the original application and the recursive application must
be compared in the fully simplified form of the text that exists after applying 7... Space
does not permit me to discuss folding in further detail here.

8. RESULTS AND FUTURE WORK

I have implemented the algebraic approach to partial evaluation as a set of TAMPR
program transformations. (The examples discussed in the preceding sections are the ac-
tual output of these transformations.) TAMPR completes the partial evaluation of (a
complete version of) the example specification given in Section 3 in 49 minutes on a Sun
SPARC-2 workstation with a 40-MHz processor; this partial evaluation requires 63,362
rewrites. Of course, the implementation is slow because TAMPR is interpreting the
rewrite-rule transformations. Because the specification for TAMPR is expressed in the
functional language it processes, TAMPR could, in principle, partially evaluate itself on
the data represented by the partial evaluation transformations. This process would pro-
duce a faster, hard-coded implementation of these particular transformations. In practice,
however, it is unlikely that, with existing hardware and memory, the partial evaluation
would complete before the end of the millennium.

These transformations implementing partial evaluation represent an engineering ap-
proach to partial evaluation in contrast to a theoretical one. At present, I have proved
neither the necessity nor the sufficiency of the properties that guided the design of the
transformations, nor have I proved that the transformations I have written actually pos-
sess these properties. From one point of view, this is simply the statement:* “I’ve got a
nice program, but I don’t know whether it solves the given problem; at least, for some
test examples, it does.”

From another point of view, however, the present implementation is a major advance
that provides the basis for a theoretical investigation of the adequacy, completeness, and
termination of this strategy for controlling unfolding. Having such a basis is important. [

'T am indebted to an anonymous referee for this plainspoken paraphrase of my original obfuscatory
wording of this statement.

102

started this investigation from a more theoretical viewpoint, but I quickly discovered that
the requisite algebraic manipulations, even for very simple examples, were too complicated
to carry out by hand. Moreover, my concept of how to implement the strategy, and to
some extent the strategy itself, changed several times during the implementation, as a
result of being able to see the effects of various transformations. Hence, an ab initio
theoretical study would have been rendered moot by these changes.

The most significant item of future theoretical work is to prove that the strategy termi-
nates for all possible partial evaluations (or to characterize those cases for which it does
terminate). As remarked earlier, there are cases—including ones of practical importance—
for which iterated unfolding alone does not terminate; hence, folding is necessary. Beyond
the issue of termination, one might investigate completeness—whether the strategy in fact
pushes partial evaluation as far as possible given the available data.

Finally, an easier, although still nontrivial, problem is to prove that the transformations
are correctness-preserving. Certainly, they are intended to be correctness-preserving, and
if they were proved to be, then a least no incorrect program could be produced. The
program might not be evaluated as far as possible, or the partial evaluation might not
terminate, but at least any program obtained would be guaranteed to be correct.

In summary, I have described an automated approach to partial evaluation based on
program algebra. The approach is centered on elementary simplifications and relies on
canonical forms and distributive laws to expose instances to which these simplifications
can be applied. This approach to partial evaluation has been successfully implemented as
a set of completely automatic program transformations. This implementation has been
applied to a number of practical examples of moderate complexity, including the PDE
example presented in this paper.

The approach I have described here is an example of partial evaluation that is

e implemented,

e automated,

e able to partially evaluate specifications containing implicit data,
e able to partially evaluate specifications of practical interest, and

e able to produce programs that look like the those written by “real programmers.”

Acknowledgments

I am indebted to Terence Harmer of The Queen’s University, Belfast, for discussions
about partial evaluation of realistic specifications and to Victor Winter of the University
of New Mexico for discussions about the role of fixed point theory in the semantics of
TAMPR program transformations.

REFERENCES

1. James M. Boyle, A Transformational Component for Programming Language Gram-
mar, Report ANL-7690, Argonne National Laboratory, Argonne, lllinois, July 1970.

10.

11.

12.

13.

103

James M. Boyle and M. N. Muralidharan, Program reusability through program trans-
formation, IEEE Transactions on Software Engineering, Vol. SE-10, No. 5, Sept. 1984,
pp- H74-588.

James M. Boyle, Kenneth W. Dritz, Monagur M. Muralidharan, and Roy Taylor,
Deriwving Sequential and Parallel Programs from Pure LISP Specifications by Program
Transformation , Program Specification and Transformation, Proceedings of the IFIP
TC2/WG2.1 Working Conference on Program Specification and Transformation, Pa-
cific Grove, Calif., 13-16 May 1991, L.G.L.T. Meertens, ed., North-Holland, Amster-
dam, 1987.

James M. Boyle, Abstract programming and program transformations—An approach
to reusing programs. Software Reusability, Volume I, Ted J. Biggerstaff and Alan J.
Perlis, eds., ACM Press (Addison-Wesley Publishing Company), New York, 1989, pp.
361-413.

James M. Boyle and Terence J. Harmer, Functional Specifications for Mathematical
Computations, Constructing Programs from Specifications, Proceedings of the IFIP
TC2/WG2.1 Working Conference on Constructing Programs from Specifications, Pa-
cific Grove, Calif., 13-16 May 1991, B. Moller, ed., North-Holland, Amsterdam, 1991,
pp. 205-224.

James M. Boyle and Terence J. Harmer, A practical functional program for the CRAY
X-MP, Journal of Functional Programming, Vol. 2, No. 1, Jan. 1992, pp. 81-126.

R. M. Burstall and J. Darlington, A transformation system for developing recursive
programs, Journal of the ACM, Vol. 24, No. 1, 1977, pp. 44-67.

Martin S. Feather, A system for assisting program transformation, ACM Transactions
on Programming Languages and Systems, Vol. 4, No. 1, 1982, pp. 1-20.

Daniel P. Friedman and Matthias Felleisen, The Little LISPer, Science Research As-
sociates, Inc., Chicago, 1986.

Carsten K. Gomard and Neil D. Jones, A partial evaluator for the untyped lambda-
calculus, Journal of Functional Programming, Vol. 1, No. 1, Jan. 1991, pp. 21-69.

C. A. R. Hoare, He Jifeng, and A. Sampaio, Normal form approach to compiler design,
Acta Informatica, Vol. 30, 1993, pp. 701-739.

B. Moller, ed., Constructing Programs from Specifications, Proceedings of the IFIP
TC2/WG2.1 Working Conference on Constructing Programs from Specifications, Pa-
cific Grove, Calif., 13-16 May 1991, North-Holland, Amsterdam, 1991.

Hanne Riis Nielson and Flemming Nielson, Using transformation in the implemen-
tation of higher-order functions, Journal of Functional Programming, Vol. 1, No. 4,

Oct. 1991, pp. 459-494.

