
AIAA 94–4261
PARALLEL CALCULATION OF SENSITIVITY DERIVATIVES FOR

AIRCRAFT DESIGN USING AUTOMATIC DIFFERENTIATION

C. H. Bischof
MCS Division, Argonne National Laboratory

Argonne, Illinois 60439

L. L. Green, K. J. Haigler
MDOB/FMAD, NASA Langley Research Center

Hampton, Virginia 23681–0001

T. L. Knauff, Jr.
MCS Division, Argonne National Laboratory

Argonne, Illinois 60439

Presented at the
5th AIAA/NASA/USAF/ISSMO Symposium on

Multidisciplinary Analysis and Optimization Conference

Panama City, Florida
September 7–9, 1994

PARALLEL CALCULATION OF SENSITIVITY DERIVATIVES FOR AIRCRAFT
DESIGN USING AUTOMATIC DIFFERENTIATION

C. H. Bischof * , L. L. Green, †, K. J. Haigler, ‡, and T. L. Knauff, Jr. ¶

*, ¶ MCS Division, Argonne National Laboratory
Argonne, Illinois 60439

†, ‡ MDOB/FMAD, NASA Langley Research Center
Hampton, Virginia 23681–0001

Abstract

Sensitivity derivative (SD) calcula-
tion via automatic differentiation (AD)
typical of that required for the aerody-
namic design of a transport-type aircraft
is considered. Two ways of computing SD
via code generated by the ADIFOR auto-
matic differentiation tool are compared
for efficiency and applicability to prob-
lems involving large numbers of design
variables. A vector implementation on
a Cray Y-MP computer is compared with
a coarse-grained parallel implementation
on an IBM SP1 computer, employing a For-
tran M wrapper. The SD are computed
for a swept transport wing in turbulent,
transonic flow; the number of geometric
design variables varies from 1 to 60 with
coupling between a wing grid generation
program and a state-of-the-art, 3–D com-
putational fluid dynamics program, both
augmented for derivative computation via
AD. For a small number of design vari-
ables, the Cray Y-MP implementation is
much faster. As the number of design
variables grows, however, the IBM SP1 be-
comes an attractive alternative in terms
of compute speed, job turnaround time,
and total memory available for solutions
with large numbers of design variables.
The coarse-grained parallel implementa-

* Computer Scientist
† Research Scientist, Senior Member AIAA
‡ Aerospace Technologist
¶ Student

Copyright 1994 by the American Institute of
Aeronautics and Astronautics, Inc. No copyright
is asserted in the United States under Title 17,
U.S. Code. The U.S. Government has a royalty-free
license to exercise all rights under the copyright
claimed herein for Governmental purposes. All
other rights are reserved by the copyright owner.

tion also can be moved easily to a network
of workstations.

Nomenclature

Symbols

CD Wing drag coefficient

CL Wing lift coefficient

CM Wing pitching moment
coefficient

F Function viewed as a
mapping

Fj Objective functions

G Generic geometric variable

J Jacobian

S Seed matrix

SDij Sensitivity derivative
matrix

X Generic grid coordinate

X i Design variables

cmax Airfoil section maximum
camber

e_i i-th canonical unit vector

f, g, h Generic functions

r, s, t, u Generic variables

t/c Airfoil section
thickness-to-chord ratio

xcmax Airfoil section location of
maximum camber

x, y, z grid coordinates

1

Acronyms

AD Automatic differentiation

.AD AD generated code

ADIFOR AD of Fortran

CFD Computational fluid
dynamics

DD Divided differences

MDO Multidisciplinary design
optimization

MIMD Multiple instruction
multiple data

MW Megawords of computer
memory

NDV Number of design
variables

NP Number of processors

SD Sensitivity derivative(s)

TLNS3D 3-D Navier-Stokes CFD
program

WINGDES Linear aerodyamics
program

WTCO Wing grid-generation
program

Introduction

The realistic multidisciplinary de-
sign optimization (MDO) of advanced air-
craft using state-of-the-art computers is
a challenging problem from both a physi-
cal modeling and a computer science point
of view. To produce an efficient air-
craft design, many trade-offs are nec-
essary among the various physical design
variables. Similarly, to produce an ef-
ficient design scheme, many trade-offs
are necessary among the various MDO im-
plementation options. In this paper,
we examine the effects of vectorization
and coarse-grained parallelization on a
sensitivity derivative (SD) calculation
using a representative sample taken from
a transonic transport design problem.

A typical MDO problem involves the
minimization or maximization of one or
more objective functions F j by chang-
ing many design variables X i , subject

to a number of constraints. The de-
sign variables are usually inputs to one
or more computer programs that must be
executed to simulate the complex phenom-
enon characterized by the objective func-
tions. Many MDO schemes require the re-
peated calculation of a matrix of terms,
called SD’s,

SDij =
dFj

dXi
;

which describe how the objective func-
tions change with respect to the design
variables.

For realistic design problems, the
requirements for the MDO scheme may
change as the design proceeds. Dur-
ing the conceptual design, for example,
low-fidelity physics modeling and low-
accuracy SD calculations may be accept-
able or desirable, so that the effects
of a large number of design variables
can be examined over a broad domain.
Later, as the design approaches an opti-
mum point, fewer variables may be per-
mitted to change, but the calculations
may require extremely high degrees of
accuracy. In addition, as the design
proceeds, new design variables or ob-
jective functions may be identified and
others eliminated. Thus, the SD calcu-
lation scheme should embody a high degree
of flexibility and predictable levels of
accuracy. Furthermore, the SD calcula-
tion scheme must be efficient, because
this operation represents a large por-
tion of the total optimization time.
Several recent research efforts 1–5 have
demonstrated the potential for using au-
tomatic differentiation (AD) to compute
the SD required for MDO from a variety
of codes. The AD approach meets the
requirements for versatility, accuracy,
and speed in an MDO scheme.

Other methods for computing the SD
include divided differences (DD), hand
coding of derivatives from analytic re-
lationships, and symbolic manipulators.
Each of these methods, however, has one
or more severe drawbacks with respect to
the stated requirements for flexibility,
accuracy, and speed. Moreover, these
methods become unwieldy as the complex-
ity and resolution of the physical simu-
lation or the number of design variables

2

increases. However, as demonstrated in
this paper, the use of AD provides the
basis for a scalable SD technology suit-
able for today’s parallel computers.

The SD calculation relevant to the
aerodynamic design of a transport-type
aircraft is considered in this paper.
An important consideration that must be
made early in the design process is the
number and type of design variables and
constraints that will be allowed, because
this determines the domain in which the
design can occur. For example, an ex-
tremely simple wing can be described by
just a few parameters: the thickness
and chord specified at the root and tip
sections, the span, and the leading-edge
sweep angle. Similarly, a fuselage with
circular cross sections can be described
by the three coefficients of an elliptic
or parabolic radius distribution along
the fuselage axis. Such simple wings
and fuselages may be useful in prelimi-
nary design studies, but they lack much of
the detail of commercially available con-
figurations. A more realistic wing-body
configuration can easily require about
200 design variables: 8 variables at
each of 15 wing sections, plus 3 or 4
variables at each of 20 fuselage cross
sections. Additional geometric design
variables (perhaps a total of 1000) can be
required to describe the location, shape,
three-axis orientation, and the size of
the nacelles, pylons, tails, canards, and
winglets. Note that the effects of any
of these aircraft components on the aero-
dynamic properties, such as the lift and
drag, are realized within a computational
fluid dynamics (CFD) code by the flow so-
lution dependence upon the grid (x,y,z)
coordinates, and thus any of these com-
ponents may be treated in the same way
within the CFD code itself. However, as
the increase in the number of design vari-
ables and constraints allows for a more
refined geometric configuration, the op-
timization problem also becomes more dif-
ficult and the storage and compute time
requirements increase. Although thou-
sands of variables may ultimately be used
in future design problems, current prac-
tice (except for some inverse methods)
usually restricts the design space to
just a few; this work employs a design
domain of up to 60 variables and exam-

ines the storage and compute time issues
relevant to the SD calculation via AD on
vector and parallel computers.

AD and Derivative Strip-Mining

Automatic differentiation 6–8 is a
chain-rule-based technique for evaluat-
ing the derivatives of functions defined
by computer programs. Automatic dif-
ferentiation techniques rely on the fact
that every function, regardless of how
complicated, is executed on a computer
as a (potentially long) sequence of el-
ementary operations such as addition,
multiplication, and elementary functions
(e.g., sine and cosine). By applying
the chain rule

df[g(t); h(t)]

dt
=

@f(s; r)

@s
� dg(t)

dt
+

@f(s; r)

@r
� dh(t)

dt

repeatedly to the composition of those
elementary operations, the derivative in-
formation of the function f can be com-
puted exactly (to machine precision) in
a completely mechanical fashion. 7–9

The ADIFOR (Automatic DIfferentiation
of FORtran) 9–12 tool has been developed
jointly by the Mathematics and Computer
Sciences Division at Argonne National
Laboratory and the Center for Research
on Parallel Computation at Rice Univer-
sity. To apply ADIFOR to a given For-
tran 77 code, the user need only specify
those variables that correspond to inde-
pendent and dependent variables with re-
spect to differentiation; ADIFOR then de-
termines which variables require associ-
ated derivative computations, formulates
the derivative expressions, and generates
new Fortran 77 code for the computation
of both the original simulation and the
associated derivatives. For the remain-
der of this paper, an ADIFOR-generated
code version will be designated with a
.AD suffix.

The ADIFOR program provides a flexible
interface that allows for the computation
of arbitrary linear combinations of the
columns of the Jacobian matrix. That
is, if a Fortran code is considered as
a mapping F: x ! y, with associated
Jacobian

J =
dF

dx
;

3

ADIFOR generates code that allows one to
compute J �S, where the so-called seed
matrix S is initialized at run time. The
user is hence able to choose, at run
time, to either compute all sensitivities
(i.e., the full Jacobian matrix J), any
subset of columns of J, an arbitrary
Jacobian-vector product, or a compressed
Jacobian to exploit sparsity. 13

Automatic differentiation is a power-
ful technique for obtaining accurate and
efficient sensitivities of design codes,
but can be demanding in terms of re-
sources. If we are interested in the
computation of number-of-design-variable
(NDV) sensitivities, then the ADIFOR-
generated code replaces each statement
involving derivative-related variables
with possibly some assignment statements
and a loop of length NDV. Hence, as a
rule of thumb, the ADIFOR-generated code
for the computation of NDV sensitivities
can require up to NDV times the memory of
the original simulation. The increase
in run time is more difficult to pre-
dict, because ADIFOR need not augment ev-
ery statement in the original code; how-
ever, experience has shown that the run
time of the derivative code can be ex-
pected generally to increase by a factor
of somewhat less than NDV.

Because of memory and computational
time limitations, a single run of the
sensitivity-enhanced version of a simu-
lation code may compute fewer than the
number of sensitivities desired overall.
These limitations greatly slow down the
design/sensitivity analysis cycle time
with a “human in the loop”, because both
the designer and a complete set of design
information must be available at the same
time to permit intelligent processing of
the data and to allow the cycle to pro-
ceed. To alleviate this problem, paral-
lel processing is employed to quickly and
temporarily increase the resources avail-
able for sensitivity analysis. That is,
even though the simulation code is a se-
rial code, coarse-grained parallelism is
used in the computation of derivatives.

To illustrate, assume that we wish to
compute the Jacobian

dF

dXi=1;17

of a function depending on 17 parame-
ters. The ADIFOR-generated code al-
lows us to compute any subset of the
entries of this gradient through proper
choice of the seed matrix. Hence, we
can decrease turnaround time by spawning
several copies of the ADIFOR-generated
derivative code to run simultaneously on
multiple processors, as shown in Figure
1. Here, e_i denotes the i-th canonical
unit vector. Hence, the first repli-
cation of the ADIFOR-generated code will
compute the first six entries of the gra-
dient, the second one will compute the
next six, and the third one will compute
the remaining five.

This strip-mining approach is simple;
it can be compared to running several
simulations in parallel for DD approxi-
mations of derivatives, decreasing wall-
clock time with minimal human effort. It
can easily be mapped onto any collection
of compute nodes, from a MIMD-type par-
allel computer to a heterogeneous work-
station network.

To implement this approach, we em-
ployed the Fortran M system. 14,15 Fortran
M is a small set of extensions to For-
tran primarily geared toward coordination
of relatively large-grained parallel ap-
plications. Loosely speaking, Fortran M
can be considered an object-oriented ver-
sion of Fortran, because Fortran M tasks
exchange information by sending and re-
ceiving data across channels. Fortran M
provides constructs for creating tasks
and channels, for sending messages on
channels, for mapping tasks and data to
processors, and so on. Fortran M was
chosen for two reasons. First, only min-
imal modifications were required to the
original serial Fortran 77 code gener-
ated by ADIFOR because Fortran 77 is a
subset of Fortran M. Secondly, Fortran
M supports parallel execution on hetero-
geneous workstation networks, the most
ubiquitous parallel-computing resource.

Given a serial code for the compu-
tation of sensitivities, a Fortran M
master process was created which (given
the number of parallel nodes NP and the
number of sensitivities NDV to compute)
spawns ceiling‡(NDV/NP) clones of the se-

‡ The ceiling function is an integer division
that rounds up instead of down.

4

rial derivative code and communicates to
each node the particular subset of sen-
sitivities it must compute. Each slave
process then reads the appropriate subset
of the total seed matrix from the disk,
computes its share of the sensitivities,
and sends the result back to the master.
This computational harness is simple and
adaptable to any other ADIFOR-generated
derivative code with minimal modifica-
tions.

Description of Computer Codes

The WTCO Wing Grid-Generation Code

The WTCO code is a batch-mode, al-
gebraic, transfinite interpolation wing
grid-generation program. The code can
generate grids around wings of at least
two airfoil sections that are described
by ordinates or NACA four-digit airfoils.
In this case, the usual NACA four-digit
airfoil family has been expanded by al-
lowing the maximum camber (cmax), the
location of maximum camber (xcmax), and
the thickness ratio (t/c) to be speci-
fied as real number inputs, rather than
deduced from an integer designation. A
true NACA 2412 has a cmax = 0.02, xcmax
= 0.4, and t/c = 0.12; the WTCO program
has been modified to allow for small per-
turbations to this shape, such as cmax
= 0.02002, xcmax = 0.4004, and t/c =
0.12012. These modifications were nec-
essary to perform the DD runs used to
verify the SD calculations by AD. 3 The
user specifies spacing constants at sev-
eral points on the grid boundaries, the
type of boundary surface, the interior
interpolation, and the amount of smooth-
ing required. The WTCO code was chosen
for use in this study for the following
reasons. The code has been used reli-
ably with the flow solver on many previ-
ous occasions, is noniterative and does
not include coding that is extraneous to
the grid generation (such as graphic rep-
resentation). The source code necessary
for AD application was readily available.
In addition, the SD calculations for up
to four geometric design variables had
previously been calculated and verified. 3

The grid coordinates were differentiated

using ADIFOR with respect to four section
parameters: maximum camber, location of
maximum camber, thickness to chord ra-
tio, and the section twist angle. The
total number of design variables can be
changed by changing the number of input
sections that describe the wing; in this
study, up to 15 sections with a total of
60 design variables were used.

The TLNS3D Aerodynamic Analysis Code

The TLNS3D code16 is a high-fidelity
aerodynamic computer program that solves
the time-dependent three—dimensional
(3–D) thin-layer Navier-Stokes equations
with a finite-volume formulation. The
code employs grid sequencing, multi-
grid, and local time stepping to accel-
erate convergence and efficiently obtain
steady-state high Reynolds number tur-
bulent flow solutions. When temporally
converged to a steady-state solution, the
method is globally second-order accurate.
The TLNS3D code is a central-difference
code that employs second-order central
differences for all spatial derivatives
and employs a blending of scalar second-
difference and fourth-difference artifi-
cial dissipation to maintain numerical
stability. The solution is advanced ex-
plicitly in time with a five-stage Runge-
Kutta time-marching algorithm. The code
includes the Baldwin-Lomax (B-L) turbu-
lence model. This code has been used
successfully in a number of applications
across the flight-speed range from low
subsonic to hypersonic and for a number
of flight vehicle types.

The wing lift, drag, and pitching
moment coefficients (C L , C D, and C M) are
differentiated with respect to the grid
coordinates with ADIFOR. Coupling between
WTCO.AD and TLNS3D.AD is accomplished by
passing as files both the grid and the
grid SD matrix with respect to the above
geometric parameters. An application
of the chain rule within TLNS3D.AD is
used to calculate an aerodynamic SD with
respect to a geometric design variable
(for example, the wing lift coefficient)
as

dCL
dG

=
dCL
dX

� dX
dG

In this equation, G is a generic geo-
metric variable, dCL

dX is a new code seg-

5

ment produced by an ADIFOR application to
TLNS3D, and dX

dG is the grid SD array that
is input to TLNS3D.AD and used to ini-
tialize the seed matrix. As discussed in
Refs. 1 and 2, both the function and its
derivatives are computed in an iterative
fashion with the multigrid algorithm, al-
though other additional current research
is under way to develop a more efficient
paradigm for AD application to iterative
algorithms.

Note that the TLNS3D.AD cases were not
run to convergence; such runs may require
several hundred to perhaps 1000 fine-grid
multigrid iterations. Instead, the code
was run only 50 coarse-grid cycles and
50 fine–grid cycles for the timing stud-
ies shown. Previous results 2 for such
cases have indicated that both the func-
tion (i.e., the C L, C D, and C M) and the
derivatives converge monotonically and
that errors in the forces and moments with
such short multigrid runs are usually be-
tween 10% and 50%. The runs are, there-
fore, representative of those that will
be made during the conceptual or prelim-
inary design phases. Even runs as short
as 10 cycles on the fine grid can be used
to obtain meaningful timing comparisons,
if care is taken to exclude nonscalable
times such as the input/output required
at the beginning and end of the program.

The TLNS3D.AD results in Ref. 3
used a 2–section input (root and tip) in
WTCO.AD, whereas those reported here used
up to a 15–section input in WTCO.AD (root,
tip, and linearly interpolated interme-
diate sections). Although the 15–sec-
tion input described the same physical
wing as the 2-section input, numerical
differences in the grid and in the grid
sensitivity matrix that were passed into
TLNS3D.AD precluded direct comparison be-
tween derivatives of the wing lift, drag,
and pitching moments with respect to root
and tip geometric variables. The impli-
cation of this effect for a realistic
design problem is that the maximum reso-
lution expected in a simulation should
be built into the design effort from
the start and used throughout the design
process, so that consistent results can
be obtained from the simulation codes at
different points during the design ef-
fort.

The WINGDES Wing Design Code

Sensitivity derivatives were also
computed for WINGDES, 17 a low-fidelity
(linear) vortex lattice aerodynamic
method that calculates pressure, lift,
and drag for wings in subsonic and super-
sonic aerodynamic flows. In addition,
for a given planform, WINGDES contains an
inner design loop that optimizes the wing
camber distribution. The WINGDES method
also employs nonlinear corrections to the
lift and drag to account for attainable
leading—edge thrust. Unger and Hall 5

report on their experiences in applying
ADIFOR to the WINGDES code, which was
provided to the authors for use in this
parallelization study.

Description of Computer Techniques

Cray Y-MP Vector Processor

The original sequential TLNS3D code
is an efficient, highly vectorized code.
The initial version of TLNS3D.AD, how-
ever, was not nearly as efficient on the
Cray Y-MP computer. The Cray compiler
Flowtrace and Loopmark options were used
to identify the time consuming subrou-
tines and functions of the AD-generated
code, as well as “do loops” that did
not vectorize as well as the correspond-
ing ones in the original code. The
derivative code was then manually post-
processed, and additional compiler op-
tions were used to restore much of the
code vectorization. 2

Table 1 shows the timing for the
fully vectorized (sequential) TLNS3D.AD
code for NDV ranging from 1 to 60 using
a single processor of the NASA Langley
Research Center Cray Y-MP. Note that
the time per design variable increases
sharply from four to six design vari-
ables and then slowly decreases as the
number of design variables increases be-
yond six. This limitation is due to the
Cray compiler, which will unroll the in-
nermost loops automatically only up to
a length of 5. In the original TLNS3D
code, the innermost loops are those that
involve the flux and residual computa-
tions; such loops are rich in opera-

6

tions and vectorize efficiently. How-
ever, in TLNS3D.AD, the innermost loops
are those generated by ADIFOR of length
NDV to calculate the gradient objects; in
TLNS3D.AD, such loops offer little oppor-
tunity for efficient vectorization, in
particular for small NDV. However, as
the time-per-design variable indicates
in Table 1, extremely good vectorization
was achieved with the 48– and 60–design-
variable cases.

Another issue with SD calculation on
the Cray Y-MP is the amount of memory
required by TLNS3D.AD. With the current
queues and memory configuration of the
Cray Y-MP, only about 48 design vari-
ables on the 97 �25�17 grid can be con-
sidered as a routine job submission; for
the next finest grid (193 �49�33), this
number would drop to about six design
variables. Although memory exists on the
Cray Y-MP to accommodate up to perhaps
80 design variables on the 97 �25�17 grid
and 10 design variables on the 193x49x33
grid, use of this much computer memory re-
quires special permission and a dedicated
user mode. Even the 48–design-variable
case shown in Table 1, submitted to the
125MW 3–hr queue, required more than a
day of elapsed wall-clock time to obtain
the SD results because of heavy machine
use. Results from such a job can be
run for only about 50 fine-grid cycles
in this queue. If the job were run to
convergence, it could require at least
18 hours of Cray Y-MP execution time in
addition to the time required in the in-
put queue. The 60 design variable case
actually fared better in the input and
executes queues, because it could only
be run in a dedicated user mode (usually
overnight, or over a weekend). This case
required special permission, but executed
reasonably quickly, once permission was
granted to submit the job.

Parallel Experiments on IBM SP1

For the WINGDES.AD code, sensitivi-
ties were computed of pressure, lift,
and drag with respect to 7 wing planform
variables, 14 wing thickness variables,
and 21 wing camber variables (i.e., 42
design variables overall). For the

TLNS3D.AD code, sensitivities were com-
puted of lift, drag, and pitching mo-
ments with respect to the twist, maximum
camber, location of maximum camber, and
thickness for essentially every wing sec-
tion on a 97 �25�17 grid. The goal was
to compute sensitivities for a configura-
tion specified by 15 wing sections (i.e.,
60 sensitivities overall). A more de-
tailed specification of the wing would be
useless, because it could not be resolved
further on the chosen grid.

Both codes were run in single preci-
sion on the IBM SP1 parallel computer
at Argonne National Laboratory. For the
purpose of this experiment, this arrange-
ment can be viewed as a collection of IBM
RS/6000 workstations. Each machine has
a clock speed of 62.5 MHz, 128–MB main
memory, and a 32–K data and 32–K instruc-
tion cache. All nodes are connected over
a high-speed switch. 18

Serially, one simulation of WINGDES
without the computation of any sensitiv-
ities took 11.1 seconds. As shown in Ta-
ble 2, the serial ADIFOR-generated code
took 158.2 seconds to compute all 42 sen-
sitivities. As discussed previously, we
used strip-mining for the derivative com-
putations. For each parallel run, the
average time taken by each slave process
and the standard deviation of these times
is shown. In comparison, the time taken
by the master process was negligible. By
using 8 processors, the time for comput-
ing 42 sensitivity derivatives was re-
duced from 158 to 42 seconds with mini-
mal effort. Since the standard deviation
times are small relative to the average
process times, it is reasonable to ex-
pect that all the parallel processes can
be completed in about the average time
required for one process.

The TLNS3D.AD code posed a different
kind of problem. With a 97 �25�17 grid,
only 12 sensitivities could be computed
serially on a node before memory limi-
tations were encountered. However, by
cloning several of these processes, the
60 sensitivities for the 15–wing-section
configuration were computed in the times
shown in Table 3. The times shown do
not include the time for running WTCO.AD,
which was executed serially to create the
grid sensitivities data and save it on

7

disk. The TLNS3D.AD code was run for 50
cycles on both the fine and the coarse
grids. If only one processor were avail-
able, then the memory limitation would
require the 60-sensitivity job to be run
as 5 jobs of 12 sensitivities each (us-
ing different portions of the seed ma-
trix) for an estimated run time of 9.5
hours. By employing 15 processors, the
same set of sensitivities can be obtained
in about one hour, which represents a dra-
matic increase in turnaround time. Note
that it is not possible to obtain perfect
speedup, as each slave process not only
has to compute its set of derivatives,
but also has to re-execute the simula-
tion run itself. Tables 2 and 3 also
show that the standard deviation of pro-
cessor times is low (i.e., all parallel
processes essentially finish in the same
amount of time).

Comparison of Cray Y-MP and IBM SP1

For instructional purposes we have
compared the behavior of the Cray Y-
MP and the IBM SP1 in computing various
numbers of sensitivities. Table 4 shows
the time per iteration for coarse and
fine grids as well as the time required
per sensitivity on the fine grid using
one node of the SP1. These times were
obtained from runs of 50 cycles on the
coarse grid and 10 cycles on the fine
grid. Only the standard compiler op-
tions were used to produce the SP1 code
for which the results are shown; (i.e.,
no hand optimization of the SP1 code was
performed). This is significant because
the Cray can vectorize loops with long
vectors very efficiently. (See the en-
tries for 48 or 60 design variables in
Table 1.) Such loops do not execute
speedily on the RS/6000 architecture be-
cause of frequent cache misses. 19 Hence,
the run times obtained should not be taken
as an indication of the best performance
that can be obtained with a code like
TLNS3D on the IBM platform.

Figure 2 shows the run time ratio of
IBM to Cray time per cycle on the coarse
and fine grids for up to twelve design
variables. For example, the Cray time
for 12 design variables is 45.95 sec-
onds on the fine grid (from Table 1),

whereas the IBM time is 128.2 seconds
(from Table 4) for twelve design vari-
ables; the ratio of IBM to Cray times,
shown in Figure 2 is about 2.8 for twelve
design variables on the fine grid. In
order to interpret Figure 2 correctly,
recall that ADIFOR maps an assignment
statement from the original TLNS3D code
into a sequence of scalar assignments,
plus a loop of length NDV. For NDV less
than six, the Cray compiler will unroll
the short innermost derivative loops and
vectorize the second-layer long loops;
thus, for one to five design variables
the Cray vastly outperforms the IBM. The
Cray runs with good vector speed because
the innermost derivative loops are un-
rolled. The superscalar processor on
the IBM is kept moderately busy with
small loops and otherwise is slowed down
through cache misses induced by the large
second-layer loops. On the other hand,
as the number of design variables grows
from 6 to 12 the superscalar chip on the
IBM runs more efficiently, whereas the
Cray has only relatively short loops to
vectorize. The performance of the Cray
drops with respect to that of the SP1.
Also note that the performance ratios on
the fine and the coarse grids are almost
identical, as could be expected from a
multigrid algorithm.

As the number of design variables con-
tinues to grow, the Cray vector perfor-
mance improves, as evidenced by the entry
in Table 1 for 48 and 60 design vari-
ables. Several possible scenarios ex-
ist for computing 60 sensitivities on the
SP1. The single processor memory lim-
its a job execution to a maximum of 12
design variables for the 97 �25�17 grid.
Thus, we contrast the execution of 5 dif-
ferent jobs of 12 design variables each
run sequentially on a single SP1 proces-
sor to the use of multiple SP1 processors
to accommodate more design variables in
groups of 12 per processor in parallel.
In the first case, the Cray performance
continually improves relative to the SP1
until all the memory of the Cray is used
up. In the second case, the IBM time re-
mains e ssent i al l y const ant as more pro-
cessors are used in parallel to compute
blocks of 12 design variables each, but
the Cray time increases with NDV in non-
linear way. It is this second scenario

8

which is the more interesting of the two
from a computational standpoint. From
Table 1, it can be seen that the Cray
takes 76.92 seconds per fine grid iter-
ation for NDV = 48. The SP1 is assumed
to take the same amount of time (128.2
seconds per fine grid iteration, from Ta-
ble 4) if NDV is 12 or more, since the
average standard deviation for multiple
processors (Table 3) is low compared to
the compute time for the job and only a
small portion of the total machine is re-
quired. Hence, comparing the derivative
strip-mining with four processors on the
SP1 with the Cray, the runtime ratio of
the SP1 to the Cray would be 128.2/76.92
= 1.67 for NDV=48. Similarly, for NDV
= 60, the Cray time is 72.17 seconds,
the SP1 time is again assumed to be 128.2
seconds, and the run time ratio is 1.78.
These ratios indicate that the SP1 is a
viable alternative to the Cray even for
moderately large numbers of design vari-
ables.

The Cray times do not include that
spent in the input queue, which can be
a significant portion of the total job
time, particularly as time and memory re-
quirements (i.e., the number of design
variables and/or the spatial resolution
of the problem) increase. At present,
no such delays are encountered using the
SP1; however, such delays may become a
reality as the parallel machine usage
increases in the future. At present,
the parallel scenario (either SP1, or a
network of workstations) provides an at-
tractive alternative to computing sensi-
tivities on the Cray for many cases that
can be accommodated by both and provides
total machine resources in excess of the
Cray Y-MP for larger problems.

Related and Future Work

Work is in progress to improve fun-
damental Fortran 77 technology such as
ADIFOR and to provide automatic dif-
ferentiation (AD) functionality for C
programs, resulting in more efficient
derivative tools for black-box differ-
entiation. Techniques are also un-
der development to exploit algorithmic
structures (for example, iterative so-
lution procedures common to many pro-

grams) in the application of AD tools.
Exploitation of such structure is ben-
eficial both to increase the numeri-
cal robustness of the derivative code
and to speed up derivative computation 20 .
This approach is closely related to the
incremental iterative form for comput-
ing CFD sensitivities 21-23 and applicable
to computing the sensitivity of optimal
solutions. 24,25

Further parallelism can be exposed
by exploiting the associativity of the
derivative chain rule. Consider the
simulation illustrated in Figure 3 con-
sisting of three codes, denoted by f,
g, and h, which may represent different
disciplines. Code g cannot start be-
fore f has finished, and h depends on g’s
output. To get the desired sensitivi-
ties du

dr , the serial code for computing
this derivative could be strip-mined as
we have done here. Spawning processes
to separately compute df

dr ;
dg
ds ;and dh

dt and then
multiplying these matrices to obtain the
desired sensitivities is an even better
technique because the job will execute
in less time and utilize the machine re-
sources more effectively. The evalua-
tion of f will be completed before the
process that is computing df

dr has finished;
thus, another process to compute dg

ds can
follow the first completed process. As
a result, the individual sensitivity ma-
trices df

dr ;
dg
ds ; and dh

dt will be computed in a
staggered fashion, in parallel, as shown
in Figure 4. Note that in order to break
the serial dependence in the derivative
computation, we have to evaluate f and
g twice, once in the code that computes
the derivatives df

dr and dg
ds , and once in the

“function evaluation” chain, to generate
the input needed for the next derivative
process. We also note that the strip-
mining technique can be applied to each
of these processes as well.

In this paper, Fortran M was applied
after the ADIFOR processing, but tools
like ADIFOR m ust be provided for codes
that are written in parallel languages
such as Fortran M or High Performance
Fortran. This avenue is particularly
critical for high-fidelity codes because
an AD tool is unlikely to generate sen-
sitivities with less memory or time than
the original simulation. No work has yet

9

been attempted in applying AD to a simu-
lation code that employs explicit message
passing calls to achieve fine-grained
parallelization because the present AD-
IFOR tool does not have the capability
to imbed the necessary message passing
constructs which would allow for a fine-
grained parallelization of the derivative
calculations. This capability may be in-
corporated within future versions of the
ADIFOR tool.

Conclusions

This work demonstrates the potential
of using coarse-grained parallel com-
puting techniques to reduce the execu-
tion time required in the computation of
many design sensitivities for multidis-
ciplinary problems via automatic differ-
entiation. The blending of the automatic
differentiation and the use of a strip-
mining parallel computation technique,
under the coordination of a Fortran M
master process, provides a fast, effi-
cient, and easily implemented means to
compute a large number of sensitivities
as may be required for typical aircraft
design problems. Significant speed ups
were achieved for both a vortex lattice
code (WINGDES) and a thin-layer Navier-
Stokes code (TLNS3D) for transonic flow.

Comparisons were also made between
the coarse-grained parallel implementa-
tion and a traditional vector supercom-
puter implementation of the derivative
computation for up to 60 design vari-
ables. For up to 5 design variables,
the vector supercomputer implementation
is much faster, but for 6 or more de-
sign variables, the coarse-grained par-
allel implementation is nearly as fast in
execution time, and can be much faster in
elapsed job turn around time. The mem-
ory and queue limitations on the vector
computer implementation also may also se-
verely restrict the size or length of the
calculation which can be done, relative
to the parallel computer implementation.

Acknowledgments

The authors thank Jean-Francois
Barthelemy and Eric Unger for making
the WINGDES code available to us. We

express sincere thanks to Alan Carle for
his essential contributions to the ADI-
FOR project, Bill Gropp for his untiring
help in SP1 matters, and Ian Foster,
Paul Hovland, Steve Tuecke, and Bob Ol-
son for helping us getting started with
Fortran M. We express thanks to Veer
Vatsa, Perry Newman, and Tom Zang for
their contributions in support of this
project. Christian H. Bischof and Tim-
othy L. Knauff, Jr. were supported by
the Office of Scientific Computing, U.S.
Department of Energy, under Contract W-
31-109-Eng-38, and by the National Aero-
nautics and Space Administration under
Purchase Order L25935D. The authors also
gratefully acknowledge the use of the
Argonne High-Performance Computing Re-
search Facility. The HPCRF is funded
principally by the U.S. Department of
Energy, Office of Scientific Computing.

References

1. Bischof, C.; Corliss, G.; Green, L.;
Griewank, A.; Haigler, K.; and New-
man, P.: “Automatic Differentiation
of Advanced CFD Codes for Multidisci-
plinary Design.” Computing Systems in
Engineering 3(6), 1993, pp. 625–637.
Also presented at the Symposium on
High-Performance Computing for Flight
Vehicles, Arlington, VA, Dec. 7–9,
1992.

2. Green, L.; Newman, P.; and Haigler,
K.: “Sensitivity Derivatives for Ad-
vanced CFD Algorithm and Viscous Mod-
elling Parameters via Automatic Dif-
ferentiation.” AIAA 93–3321, 1993.

3. Green, L.; Bischof, C.; Carle, A.;
Griewank, A.; Haigler, K.; and New-
man, P.: “Automatic Differentiation
of Advanced CFD Codes with Respect to
Wing Geometry Parameters for MDO.” Ab-
stracts from the Second U.S. National
Congress on Computational Mechanics,
Washington, D.C., August 16–18, 1993,
p. 136.

4. Barthelemy, J. F.; and Hall, L.:
“Automatic Differentiation as a Tool
in Engineering Design.” In Fourth
AIAA/USAF/NASA/OAI Symposium on Mul-
tidisciplinary Analysis and Optimiza-
tion, A Collection of Technical Pa-
pers, Cleveland, OH, AIAA 92–4743–CP,
1992, pp. 424–432.

10

5. Unger, E. R.; Hall, L. E.: “The
Use of Automatic Differentiation in
an Aircraft Design Problem.” AIAA
94–4260, 1994.

6. Griewank, A.; and Corliss, G. F.,
eds.: Automatic Differentiation of
Algorithms: Theory, Implementation,
and Application, SIAM, Philadelphia,
PA, 1991.

7. Griewank, A.: “On Automatic Dif-
ferentiation.” Mathematical Program-
ming: Recent Developments and Ap-
plications, Iri, M.; and Tanabe,
K., eds., Kluwer Academic Publishers,
Boston, MA, 1989, pp. 83–108.

8. Rall, L. B.: “Automatic Differ-
entiation: Techniques and Applica-
tions.” Lecture Notes in Computer Sci-
ence, 120, Springer— Verlag, Berlin,
1981.

9. Bischof, C. H.; Carle, A.; Corliss,
G. F.; Griewank, A.; and Hovland,
P.: “ADIFOR: Generating Derivative
Codes from Fortran Programs.” Scien-
tific Programming, 1(1), 1992, pp.
1–29.

10. Bischof, C. H.; and Hovland, P.: “Us-
ing ADIFOR to Compute Dense and Sparse
Jacobians. ADIFOR Working Note #2.”
ANL-MCS-TM-158, Mathematics and Com-
puter Science Division, Argonne Na-
tional Laboratory, 1991.

11. Bischof, C. H.; Corliss, G. F.; and
Griewank, A.: “ADIFOR Exception Han-
dling. ADIFOR Working Note #3.” ANL-
MCS-TM-159, Mathematics and Computer
Science Division, Argonne National
Laboratory, 1991.

12. Bischof, C. H.; Carle, A.; Corliss,
G. F.; Griewank, A.; and Hovland, P.:
“Getting Started With ADIFOR. ADI-
FOR Working Note #9.” ANL-MCS-TM-164,
Mathematics and Computer Science Di-
vision, Argonne National Laboratory,
1992.

13. Averick, B.; More, J.; Bischof, C.;
Carle, A.; and Griewank, A.: “Com-
puting Large Sparse Jacobian Matri-
ces using Automatic Differentiation.”
ANL-MCS-P348–0193, Mathematics and
Computer Science Division, Argonne
National Laboratory, 1993. Also to
appear in SIAM J. Scientific Comput-
ing.

14. Foster, I. T.; and Mani Chandy, K.:
“Fortran M: A Language for Modular

Parallel Programming.” ANL-MCS-P327-
0992, Mathematics and Computer Sci-
ence Division, Argonne National Lab-
oratory, 1992.

15. Foster, I.; Olson, R.; and Tuecke,
S.: “Programming in Fortran M.” ANL-
93/26, (Rev. 1), Mathematics and
Computer Science Division, Argonne
National Laboratory, October 1993.

16. Vatsa, V. N.; and Wedan, B. W.: “De-
velopment of a Multigrid Code for
3–D Navier-Stokes Equations and Its
Applications to a Grid-Refinement
Study.” Computers & Fluids, 18(4),
1990, pp. 391–403.

17. Carlson, H.; Wackley, K.; and Barger,
R.: “Numerical Methods and a Com-
puter Program for Subsonic and Super-
sonic Aerodynamics Design and Analy-
sis of Wings with Attainable Thrust
Considerations.” Technical Report
NASA CR-3808, Kentron International
Inc., 1985.

18. Gropp, W.: “Early Experiences with
the IBM SP/1 and the High-Performance
Switch.” ANL—MCS–93/41, Mathematics
and Computer Science Division, Ar-
gonne National Laboratory, 1993.

19. Bell, R.: “IBM RISC System/6000 NIC
Tuning Guide for Fortran and C,” Doc-
ument GG24-3611-01, 1991.

20. Griewank, A.; Bischof, C.; Corliss,
G.; Carle, A.; and Williamson, K.:
“Derivative Convergence of Itera-
tive Equation Solvers. ANL-MCS-
P333-1192, Mathematics and Computer
Science Division, Argonne National
Laboratory, 1992.

21. Korivi, V. M.; Taylor, A. C. III; New-
man, P. A.; Hou, G. J.-W.; and Jones,
H. E.: “An Approximately-Factored
Incremental Strategy for Calculat-
ing Consistent Discrete Aerodynamic
Sensitivity Derivatives.” In Fourth
AIAA/USAF/NASA/OAI Symposium on Mul-
tidisciplinary Analysis and Optimiza-
tion, A Collection of Technical Pa-
pers, Cleveland, OH, pp. 465–478.
AIAA 92–4746–CP, 1992.

22. Newman, P. A.; Hou, G. J.-W.; Jones,
H. E.; Taylor, A. C. III ; and
Korivi, V. M.: “Observations on
Computational Methodologies for Use
in Large-Scale Gradient-Based Mul-
tidisciplinary Design.” In Fourth
AIAA/USAF/NASA/OAI Symposium on Mul-

11

tidisciplinary Analysis and Optimiza-
tion, A Collection of Technical Pa-
pers, Cleveland, OH, pp. 531–542.
AIAA 92–4753–CP, 1992.

23. Korivi, V. M.; Taylor, A. C. III; Hou,
G. J.-W.; Newman, P. A.; and Jones,
H. E.: “Sensitivitity Derivatives
for Three-Dimensional Supersonic Eu-
ler Code Using Incremental Iterative
Strategy.” In 11th AIAA Computational
Fluid Dynamics Conference, A Collec-
tion of Technical Papers, Part 2, Or-
lando, FL, 1993, pp. 1053–1054. Ex-
panded version accepted for publica-
tion in AIAA J.

24. Sobieszczanski-Sobieski, J.;
Barthelemy, J.-F.; and Riley, K.
M.: “Sensitivity of Optimum Solu-
tions to Problem Parameters.” AIAA
J., 20(9), 1982, pp. 1291–1299.

25. Barthelemy, J.-F.; and
Sobieszczanski-Sobieski, J.: “Op-
timum Sensitivity Derivatives of
Objective Functions in Nonlinear
Programming.” AIAA J., 21(6), 1983,
pp. 913–915.

Table 1. Cray Y-MP Single Processor
Timing (seconds) for TLNS3D.AD Code with
Two–Level Multigrid on 97 �25�17 Viscous
Grid

NDV
Time/Iter.
(coarse

grid)

Time/Iter.
(fine grid)

Time/NDV
(fine grid)

01 0.51 05.08 5.08

02 0.70 07.19 3.59

04 1.09 11.85 2.96

06 3.63 40.68 6.78

08 3.74 44.59 5.57

10 3.89 43.76 4.38

12 4.02 45.95 3.83

48 6.62 76.92 1.60

60 6.19 72.17 1.20

Table 2. IBM SP1 Multiprocessor
Timing (seconds) for WINGDES.AD Code

Number of
processors

Average time
Standard
deviation

1 158.2 0.00

2 92.0 2.19

4 58.4 1.83

8 41.8 1.09

Table 3. IBM SP1 Multiprocessor
Timing (seconds) for TLNS3D.AD Code with
Two–Level Multigrid on 97 �25�17 Viscous
Grid (NDV=60)

Number of
processors

Average time
Standard
deviation

01
34,160

(estimated)
0.00

05 6,832 53.1

15 3,757 11.5

Table 4. IBM SP1 Single-Processor
Timing (seconds) for TLNS3D.AD Code with
Two–Level Multigrid on 97 �25�17 Viscous
Grid

NDV
Time/iter.
(coarse

grid)

Time/iter.
(fine grid)

Time/NDV
(fine grid)

01 4.34 51.5 51.5

02 5.00 58.7 29.4

04 6.08 66.9 16.7

06 7.54 82.1 13.7

08 8.74 97.4 12.2

10 9.76 108.5 10.8

12 10.76 128.2 10.7

12

