
Computational Di�erentiationand Multidisciplinary Design�Christian Bischofy and Andreas GriewankzPreprint MCS-P420-0294to appear in Proceedings of the Symposium on Inverse Problems and Optimal Design in Industry, J.McLaughlin and H. Engl, Eds, Teubner Verlag, Stuttgart, GermanyAbstractMultidisciplinary Design Optimization (MDO) by means of formal sensitivity anal-ysis requires that each single-discipline analysis code supply not only the output func-tions for the (usually constrained) optimization process and other discipline analysisinputs, but also the derivatives of all of these output functions with respect to its inputvariables. Computational di�erentiation techniques and automatic ai�erentiation toolsenable MDO by providing accurate and e�cient derivatives of computer programs withlittle human e�ort. We discuss the principles behind automatic di�erentiation and givea brief overview of automatic di�erentiation tools and how they can be employed judi-ciously, for example, for sparse Jacobians and to exploit parallelism. We show how, andunder what circumstances, automatic di�erentiation applied to iterative solvers deliversthe mathematically desired derivatives. We then show how derivatives that can now befeasibly obtained by computational di�erentiation techniques can lead to improved so-lution schemes for nonlinear coupled systems and multidisciplinary design optimization.1 IntroductionComputational di�erentiation (CD) provides a new foundation for sensitivity analysis andsubsequent design optimization of complex systems by reliably computing derivatives of largecomputer codes. The goal is to free the computational scientist from worrying about theaccurate and e�cient computation of derivatives, even for complicated \functions," therebyenabling him to concentrate on the more important issues of system modeling and algorithmdesign.Almost as soon as the �rst programmable systems became available, scientists observedthat the mechanical application of the chain rule to obtain derivatives can be automaticallyand reliably performed by computers. The basic forward, or bottom-up, mode of automaticdi�erentiation (AD) was apparently �rst proposed by R. E. Wengert [41]. The mathematicallymore interesting reverse, or top-down, mode was �rst published by G. M. Ostrowskii [36].This observation gives rise to automatic di�erentiation (AD), which can compute derivativesof a function de�ned by a computer code in a black-box fashion, without any knowledge ofthe application beyond what are considered \dependent" and \independent" variables withrespect to di�erentiation.While these original results have been repeatedly rediscovered and extended, the fullpotential of automatic di�erentiation as a general-purpose computational tool has not yet�This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Con-tract W-31-109-Eng-38, and by the National Aerospace Agency under Purchase Order L25935D.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne,IL 60439, U.S.A., bischof@mcs.anl.gov.zInstitute of Scienti�c Computing, Technical University Dresden, Mommsenstr. 13, 01062 Dresden, Ger-many, griewank@math.tu-dresden.de. 1



been realized. Historically, this is due both to a lack of general-purpose tools and a lackof scienti�c communication and cooperation. It was not until 1991 that the �rst meetingfocusing on Computational Di�erentiation was held [24]. Since then, much has changed asautomatic di�erentiation tools have acquired a level of maturity that enables them to deliverthe promises of the theory.As researchers have gained experience with automatic di�erentiation tools, it also hasbecome apparent that the process of generating suitable derivative codes is not necessarilyautomatic. For example, the user of an AD tool can capitalize, in a high-level fashion, on thestructure of his program to decrease the computational cost of computing derivatives, leadingto an \automated," or \computer-supported" approach to generating derivative code.Moreover, there is the issue of AD versus \do-what-I-mean," where one has to relateknowledge about the algorithms underlying the program in question with automatic di�eren-tiation to ensure that the derivatives computed are the ones that are mathematically desired.Computational di�erentiation is the term we chose to denote all these closely related e�orts.This paper is structured as follows. In the next section we review automatic di�erentiationand comment on the mathematical and computer science challenges that remain. In Section 3we give examples that show how judicious use of AD tools can have a signi�cant e�ect onthe speed with which one computes derivatives. We then explore, in Section 4, whether,and under what circumstances, AD techniques, when applied to iterative solvers, deliver thedesired derivatives. Section 5 illustrates how computational di�erentiation techniques can beemployed to arrive at faster and more robust procedures for multidisciplinary design analysisand optimization. Lastly, we give a brief outlook on the �eld.2 Automatic Di�erentiationBecause accurate and e�cient derivative values are so crucial for the speed and robustnessof numerical methods, many developers have expended great e�orts to derive, by hand, codefor the derivatives of particular modeling functions. Obviously there would be little pointin discussing the importance of AD if there were other approaches for obtaining derivativesaccurately and cheaply. We have already mentioned that divided di�erences are of uncertainquality in terms of accuracy and are also quite costly if there are many independent variables.Fully symbolic di�erentiation, as provided, for example, by the \di�" operator in MAPLE, isgenerally not a realistic alternative, because with the possible exception of some right-handsides in ordinary di�erential equations, the problem functions in the applications mentionedabove are evaluated by computational procedures of some length. Consequently, the directrepresentation and di�erentiation of the dependent variables in terms of the independentvariables are generally very resource demanding or impossible, while they pose no di�cultiesfor automatic di�erentiation (see, for example, [9, 28]).In this section, we give an overview of the classical approaches to automatic di�erentiation,as well as some of the more recent research questions relating to the computational complexityfor computing derivatives. We also give a brief overview automatic di�erentiation tools, inparticular the ADIFOR Fortran77 tool.2.1 The Forward and Reverse Mode of Automatic Di�erentiationIn contrast to fully symbolic packages, automatic di�erentiation applies the chain rule tonumbers rather than algebraic expressions. These real numbers are, of course, rounded aftereach application of the chain rule, so that the complexity of representing and manipulating2



v1 = x2 � x3v2 = v1x1 == = x1x2x3v3 = v1x4 == = x2x3x4y1 = c1v2 + d1v3 == = c1x1x2x3 + d1x2x3x4y2 = c2v2 + d2v3 == = c2x1x2x3 + d2x2x3x4y3 = c3v2 + d3v3 == = c3x1x2x3 + d3x2x3x4Figure 1: Example program with 4 independents and 3 dependentsrv1 = x2rx3 + x3rx2 == (0; x3; x2; 0)rv2 = x1rv1 + v1rx1 == (v1; x1x3; x1x2; 0)rv3 = x4rv1 + v1rx4 == (0; x4x3; x4x2; v1)ry1 = c1rv2 + d1rv3 == (c1v1; c1x1x3 + d1x4x3; c1x1x2 + d1x4x2; d1v1)ry2 = c2rv2 + d2rv3 == (c2v1; c2x1x3 + d2x4x3; c2x1x2 + d2x4x2; d2v1)ry3 = c3rv2 + d3rv3 == (c3v1; c3x1x3 + d3x4x3; c3x1x2 + d3x4x2; d3v1)Figure 2: Forward mode evaluation of the 4� 3 Jacobianeach partial derivative does not grow at all. It has been shown that automatic di�erentiationis backward stable in the sense that the derivative values obtained correspond to the exactresults for slightly perturbed independent variables and intermediates [26].As an example let us consider the following simple program with four independent vari-ables x1; x2; x3; x4 and three dependent variables y1; y2; y3, where the ci and di are distinctconstants.To calculate the Jacobian @y=@x one could associate with each scalar variable a gradient ofderivatives with respect to the three independent variables. Starting from the Cartesian basisvectors rxi = ei 2 R3, one can calculate derivatives according to the usual interpretationof the chain rule, as shown in Figure 2. The 4-vector rv1 = (0; x3; x2; 0) has only twononzero components and can be composed without performing any arithmetic operations.Consequently the calculation of the gradients rv2 and rv3 costs 4 multiplications. Sinceboth of these vectors have three nonzero components each the calculation of the gradientsryi representing the three rows of the Jacobian @y=@x costs 18 more multiplications and 6additions. The total count is thus 22 multiplications and 6 additions.The calculation performed above represents the so-called forward mode of automatic dif-ferentiation, with an operations count corresponding to a sparse implementation of this basicprocedure. To see how a few operations can be saved by the so-called reverse mode, let us�rst consider a graphical representation of the dependence between the xj and the yi.In the graph displayed in Figure 3 the nodes represent the independent, intermediate, anddependent variables and the edges represent the elementary partial derivatives between them.In other words, an edge connects vi and vj exactly when vi occurs on the righthand side ofthe statement that de�nes vj on the left. In that case the edge is annotated with the partialderivative of vj with respect to vi, evaluated at the current argument. Since all operations3
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1Figure 3: Computational graph with 3 intermediate nodesin our example involve two nonconstant arguments, there are two edges arriving at eachnode; but in the general situation there are often univariate functions such as exponentialsand trigonometric intrinsics, which generate nodes with a single incoming arc. In thosesituations the calculation of the elementary partials themselves may be nontrivial, though itscost is always bounded by a small multiple of the cost for evaluating the elementary functionsthemselves. This is true for any realistic measure of computational cost and may account formemory accesses.Clearly the collection of elementary partials in the computational graph uniquely deter-mines the overall Jacobian. The sparse forward procedure of Figure 2 for calculating theJacobian combines the elementary partials to arrive at the overall Jacobian by applying thechain rule in one particular way. Contrary to what one might expect, there are several otherways in which the Jacobian can be accumulated from the elementary partials. The results arethe same up to round-o�, but the computational e�ort in terms of the number of arithmeticoperations may di�er.For example, rather than successively calculating the gradients of intermediates and de-pendents with respect to the independents, as is done in the forward mode, one can insteadcompute vectors of sensitivities of the dependents with respect to the intermediate and theindependents. More speci�cally, let us de�ne the adjoint vectors�vi = (@y=@vi) 2 R3and correspondingly �xi and �yi = ei. This time the derivative objects associated with thedependents are initialized to Cartesian basis vectors, and we proceed backwards as shown inFigure 4, using the so-called reverse mode of automatic di�erentiation.We note that the results are consistent in that the four columns4xi obtained in the reversemode form exactly the same matrix as the one formed by the three rows ryi computed earlierin the forward mode. This time, however, the whole procedure requires 18 rather than 224



�v3 = d1�y1 + d2�y2 + d3�y3 // (d1; d2; d3)�v2 = c1�y1 + c2�y2 + c3�y3 // (c1; c2; c3)�v1 = x1�v2 + x4�v3 // (x1c1 + x4d3; x1c2 + x4d2; x1c3 + x4d3)�x4 = v1�v3 // (v1d1; v1d2; v1d3)�x3 = x2�v1 // (x2x1c1 + x2x4d1; x2x1c2 + x2x4d2; x2x1c3 + x2x4d3)�x2 = x3�v1 // (x3x1c1 + x3x4d1; x3x1c2 + x3x4d2; x3x1c3 + x3x4d3)�x1 = v1�v2 // (v1c1; v1c2; v1c3)Figure 4: Reverse mode accumulation of the 4� 3 Jacobianmultiplications and 3 rather than 6 additions. Hence the reverse mode has a lower operationscount on this example.Unfortunately, apart from the computation of gradients, for which the reverse mode isoptimal [19], there is no reliable rule to determine a priori whether the forward or reversemode is better, and there are in fact even more variations on the chain rule. We also note thatalthough it seems as if the reverse mode requires storage that is proportional to the runtimeof the undi�erentiated code, Griewank [21] has shown that much more reasonable compro-mises between temporal and spatial complexity can be achieved by a recursive checkpointingapproach.2.2 Variations of Derivative AccumulationIn the \explicit" expressions on the right margins of the informal program listed above wehave deliberately used the intermediate values rather than their expansion, for example v1instead of x2x3. This way one can observe that for each pair (xj; yi) of an independentand a dependent variable, the corresponding entry in the Jacobian is a sum over all directedpaths connecting them in the computational graph (Figure 3). The additive term associatedwith each path is simply the product of all edge values involved, which we will call the pathproduct. In our simple example, x1 and x4 are connected by only one path to each of thethree dependents, whereas x2 and x3 impact the same dependents via the intermediates v2or v3.In general, the number of di�erent paths grows exponentially with the diameter of thegraph, that is, the length of the longest directed path in the graph. Therefore, it is in generalimpossible or at least very expensive to evaluate the additive terms for each path separatelyand then to add them to the appropriate Jacobian entry. In our example this approach wouldrequire 2 multiplications each for the 6 partials with respect to x1 and x4 and 3 multiplicationseach for the 6 partials with respect to x2 and x3, yielding a total of 30 multiplications and6 additions. Both the forward and reverse mode do better because they utilize the fact thatcertain subproducts like x3x1 or x1d1 occur repeatedly and can therefore be reused. Theforward mode is based on partial path products starting from the independents, and thereverse mode accumulates path products starting from the dependents. In graphs with pathsof length four or greater, one can also start forming partial path products in the middle, thatis, without involving either independents or dependents initially.To visualize some particular choices in the usually bewildering variety of accumulatingpath products, one can think of successively eliminating intermediate nodes by connectingall intermediate predecessor/successor pairs with the products of the corresponding edgevalues. If a direct edge already exists, its value is incremented by the product of the twoarcs running through the intermediate node. In the example above, one could �rst eliminate5



the node v1 by connecting the predecessors x2 and x3 with the successors v2 and v3 by fouredges with the values x3x1; x3x4; x2x1, and x2x4. This is essentially what the forward modedoes in calculating the gradients rv2 and rv3. Subsequently it eliminates the nodes v2 andv3 by multiplying the newly obtained edge values with the constant multipliers ci and di,respectively. The reverse mode �rst eliminates the node pair (v2; v3) and then v1.Because of the symmetric role of v2 and v3 in Figure 3, there exists only one signi�cantlydi�erent third elimination order, namely, v2; v1; v3. Starting from Figure 3, this is depictedin Figure 5, where vw denotes the value of the edge (v; w) and a+ = b is shorthand fora = a + b. The thick edges in the graphs on the righthand side are the ones being createdor updated in the current elimination step. The total count for this elimination ordering is23 multiplications and 6 additions, which means it is slightly worse than the forward modebut still a lot better than the explicit evaluation of all path products.The number of multiplications in each elimination step equals exactly the product of thenumber of predecessors and successors of the vertex being eliminated. For all neighbors thisso-called Markowitz degree is changed as some incoming or outgoing edges may merge andothers are created because of �ll-in. Thus we see that the problem of calculating the Jacobianof a particular vector function using the minimal number of arithmetic operations ([20])is closely related to the corresponding task in sparse Gaussian elimination. It is thereforenot surprising that the Jacobian accumulation problem can be shown to be NP-complete aswelll [29]. Just as in the sparse matrix case, the development of near-optimal heuristicsfor accumulating Jacobians by successively eliminating intermediates provides a rich �eld forfuture research.The classic greedy heuristic is the Markowitz rule, which requires that one always elimi-nates a vertex of minimal degree, thus minimizing the operations at the current stage. In thelong run this may not be the best strategy, as one can already see from the small examplegiven above. Here v1 has initially the smallest Markowitz degree, namely 4, whereas v2 andv3 both have the degree 6. Yet eliminating v1 �rst corresponds to the forward mode, whichuses more operations than the reverse mode, which eliminates v3 and v2 before v1. While thisexample is merely of academic interest, there are certain classes of discretized PDEs for whichthe Markowitz heuristic is a good one [26]. In general, however, these various accumulationstrategies may exhibit vastly di�ering computational complexity. These complexity issues arefurther explored in [22].The computational graphs from which the corresponding Jacobians can be obtained bysuccessively eliminating all intermediate vertices contains one node for each arithmetic oper-ation or intrinsic function call. Therefore, the graphs are usually so large that they cannotbe stored in core; and even when they can, the interpretive overhead of manipulating themas linked data structures may easily upset the gain in theoretical complexity. Consequently,if one wishes to employ this approach in an AD tool, one must develop a constructive theoryof decomposing the graph hierarchically and processing it in pieces. This approach is partic-ularly promising in codes where subroutines with �xed-dimensional inputs (for example �niteelement stencil evaluators) are called many thousands of times. Since in most applicationsJacobians are used only as a means of solving nonlinear systems iteratively, it may be prefer-able to directly attack the larger problem of computing Newton-steps or their approximations[20], [13].Like derivatives, many other numerically useful pieces of information about a compositefunction can be derived from the properties and mutual relations of its elementary con-stituents. For example, one may determine error bounds, Lipschitz constants, trust regionradii, and even parallel evaluation schedules. In this wider sense the term \automatic dif-6



Eliminate node v2x1y1 = v1d1x1y2 = v1d2x1y3 = v1d3v1y1 = x1d1v1y2 = x1d2v1y3 = x1d3Eliminate node v1x2y1 = x3v1y1x2y2 = x3v1y2x2y3 = x3v1y3x3y1 = x2v1y1x3y2 = x2v1y2x3y3 = x2v1y3x2v3 = x3x4x3v3 = x2x4Eliminate node v3x2y1 += c1x2v3x2y2 += c2x2v3x2y3 += c3x2v3x3y1 += c1x3v3x3y2 += c2x3v3x3y3 += c3x3v3x4y1 = v1c1x4y2 = v1c2x4y3 = v1c3

x1y1

x1y2
v1y1

v1y2

v1y3

x1y3

x

x

x

v

v

y

y

y
3

2

1

3

1

1

3

4

x
2

.

x

x

x

y

y

y
3

2

1

1

3

4

x
2

x

x

x

v

y

y

y
3

2

1

3

1

3

4

x
2

x2y1

x2v3

x2y4

x3y1

x3y3

x3v3

x2y3

x3y2

Figure 5: Another possibility for accumulation of the 4� 3 Jacobian7



ferentiation" is unduly restrictive, as it does not indicate the ability to build much moregeneral models of nonlinear functions near a given argument. Unfortunately, no convincingalternative terminology has yet emerged.2.3 Automatic Di�erentiation ToolsThere have been various implementations of automatic di�erentiation, and an extensive surveycan be found in [31]. In particular, we mention GRESS [30] and PADRE-2 [34] for FortranPrograms, and ADOL-C [25] for C and C++ programs. ADOL-C employs the operatoroverloading capabilities of the C++ language to transparently augment the original codewith computations for derivative of arbitrary order. Operator overloading also allows for aexible and easily customizable system. These issues are further explored in [12].GRESS, PADRE-2, and ADOL-C implement both the forward and reverse mode. Thereverse mode requires that one saves or recomputes all intermediate values that nonlinearlyimpact the �nal result, and to this end these tools generate, a trace of the computation.The interpretation overhead of this trace and its potentially very large size can be a seriouscomputational bottleneck [39].Recently, a \source transformation" approach to automatic di�erentiation has been ex-plored in the ADIFOR [3] and ODYSSEE [37] projects. Both tools transform Fortran code,applying the rules of automatic di�erentiation and generating new Fortran code that, whenexecuted, computes derivatives without the overhead associated with \tape interpretation"schemes. ODYSEE generates reverse mode; ADIFOR uses a hybrid forward/reverse modestrategy.ADIFOR (Automatic Di�erentiation in Fortran) [3, 7] provides automatic di�erentiationfor programs written in Fortran 77. Given a Fortran subroutine (or collection of subroutines)describing a \function," and an indication of which variables in parameter lists or commonblocks correspond to \independent" and \dependent" variables with respect to di�erentiation,ADIFOR produces portable Fortran 77 code that allows the computation of the derivativesof the dependent variables with respect to the independent ones.ADIFOR accepts almost all of Fortran 77, in particular arbitrary calling sequences, nestedsubroutines, commonblocks, and equivalences. The ADIFOR-generated code tries to preservevectorization and parallelism in the original code and employs a consistent subroutine-namingscheme that allows for code tuning, the exploitation of domain-speci�c knowledge, and theexploitation of vendor-supplied libraries.ADIFOR employs a hybrid forward/reverse mode approach to generating derivatives. Foreach assignment statement, it generates code for computing the partial derivatives of the resultwith respect to the variables on the right-hand side using the reverse mode approach, andthen employs the forward mode to propagate overall derivatives. For example, the statementy = x(1) � x(2) � x(3) � x(4) � x(5)gets transformed into the code shown in Figure 6. Note that none of the common subexpres-sions x(i) � x(j) is recomputed in the reverse mode section.ADIFOR-generated code can be used in various ways [6]: Instead of simply producing codeto compute the Jacobian J , ADIFOR produces code to compute J�S, where the \seed matrix"S is initialized by the user. So if S is the identity, ADIFOR computes the full Jacobian, and ifS is just a vector, ADIFOR computes the product of the Jacobian by a vector. The runningtime and storage requirements of the ADIFOR-generated code are roughly proportional tothe number of columns of S, which equals the g$p$ variable in the sample code above.8



r$1 = x(1) * x(2)r$2 = r$1 * x(3)r$3 = r$2 * x(4)r$4 = x(5) * x(4)r$5 = r$4 * x(3)r$1bar = r$5 * x(2)r$2bar = r$5 * x(1)r$3bar = r$4 * r$1r$4bar = x(5) * r$2 9>>>>>>>>>>=>>>>>>>>>>; Reverse Mode for computing@ y@ x(i); i = 1; : : : ; 5do g$i$ = 1, g$p$g$y(g$i$) = r$1bar * g$x(g$i$, 1)+ r$2bar * g$x(g$i$, 2)+ r$3bar * g$x(g$i$, 3)+ r$4bar * g$x(g$i$, 4)+ r$3 * g$x(g$i$, 5)enddo 9>>>>>>=>>>>>>; Forward Mode:Assembling ry from rx(i),i = 1; : : : ; 5.y = r$3 * x(5) 	 Computing function valueFigure 6: Sample of ADIFOR-generated code3 Exploiting Program Structure and ParallelismIn this section we show how we can exploit high-level program structures and parallelism tospeed derivative computations.3.1 Computing Large, Sparse JacobiansIn the approximation of large, sparse Jacobians bu divided di�erences, one usually exploits thesparsity structure of these matrices by simultaneously perturbing several \unrelated" inputparameters [11, 10]. This structure can also be exploited by a suitable choice of the \seedmatrix."The idea is best understood with an example. Assume that we have a functionF = 0BBBB@ f1f2f3f4f5 1CCCCA : x 2 R4 7! y 2 R5whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are notshown): J = 0BBBB@  34 34 24 2 1CCCCA :So columns 1 and 2, as well as columns 3 and 4 are structurally orthogonal, and in divided-di�erence approximations one could exploit that by perturbing both x1 and x2 in one function9



nz = 2582 nz = 2582a) uncompressed b) compressedFigure 7: Sparsity structure of 190� 190 blunt body problem Jacobianevaluation, and both x3 and x4 in the other. We can exploit this fact by settingS = 0BB@ 1 01 00 10 1 1CCA :For a more realistic example, the 190 � 190 Jacobian of the blunt body shock-trackingproblem described in [38] has only 2582 nonzero entries; its structure is shown in Figure 7a.Because of its sparsity structure, it can be condensed into the \compressed Jacobian" shownin Figure 7b, which has only 28 columns.The computation of Jacobian*vector products and compressed Jacobians requires muchless time and storage than the generation of the full Jacobian matrix. For example, on theblunt-body problem we observe the performance shown in Table 1 on Sun MicrosystemsSPARC 2 and IBM RS/6000-550 workstations. The �rst line gives the run time of a sparsedivided-di�erence approximation, based on the same coloring scheme as the \compressed Ja-cobian" approach in the second line. The third line shows the running time obtained if onetreats this Jacobian as a dense one and ignores sparsity; this means that all derivative opera-tions now are performed with vectors of length 190 instead of 28. As expected, performancesu�ers, although much less so on the IBM. This is due to the superscalar architecture ofthis chip and, we suspect, to e�cient microcode implementations of multiplications by zero.A comprehensive study of this methodology applied to a collection of optimization modelproblems can be found in [2].The compressed Jacobian does not tell the whole story, though. When we keep track ofhow many operations really have to be performed, avoiding additions and multiplications withzeros, we observe the behavior shown in Table 2. Here we denote the number of additions,multiplications, and the median number of nonzeros in derivative objects for the compressedJacobian approach and a \sparse" implementation, which avoids operations with zeros. Thus,there is still ample scope for exploiting the temporal sparsity behavior of derivative propaga-tion. This is not surprising since most of the time, the seed matrix is very sparse (e.g., the10



SPARC-2 RS/6000Sparse DD 0.20 0.130Compressed ADIFOR 0.13 0.025Dense ADIFOR 0.85 0.056Table 1: Performance of ADIFOR-generated derivative code (seconds)Adds Mults Medianr lengthCompressed 134,428 185,948 28.0Sparse 5,537 31,633 4.0Table 2: Dense versus sparse derivative propagationidentity), and derivative objects �ll in slowly as the computation proceeds. This e�ect is mostnoticeable in the computation of gradients of so-called partially separable functions [6, 8], arather common class of functions �rst described by Griewank and Toint [27]. For example,on the 2-D Ginsburg-Landau Superconductivity problem [1], the sparse gradient computationon a 400� 400 grid requires only 7 percent of the oating-point operations required for thedense version.The dependency information collected and utilized in the sparse propagation of derivativeobjects also determines the sparsity pattern of the Jacobian, Hessian, and higher-derivativetensors. A sparse derivative implementation of forward di�erentiation is currently underdevelopment.3.2 Stripmining Derivative ComputationsLet us assume, for example, that we wish to compute a 17-element gradient g = dFdx(1:17) .We can compute any subset of the entries of this gradient through proper choice of the\seed matrix." Hence, we can compute several sets of sensitivities one after the other, or wecan decrease turnaround time by spawning several copies of the derivative code, as shown,for example, in Figure 8. Here ei denotes the i-th canonical unit vector. Hence, the �rstincarnation of the derivative code will compute the �rst six entries of the gradient, the secondone the next six, and the third one the remaining �ve.This \stripmining" approach is simple, much like running several simulations in parallelfor divided-di�erence approximations of derivatives, but has the advantage of decreasing wallclock time with minimal human e�ort. It can also easily be mapped on any collection ofcompute nodes, be it a MIMD parallel computer or a heterogeneous workstation network. Weimplemented this approach with the Fortran M system [16, 15], and the resulting \parallelwrapper" can easily be adapted to other codes.The TLNS3D code [40] is a high-�delity aerodynamic computer code that solves the time-dependent, 3-D, thin-layer Navier-Stokes equations with a �nite-volume formulation. Thecode employs grid sequencing, multigrid, and local time stepping to accelerate convergenceand e�ciently obtain steady-state high Reynolds number turbulent ow solutions. Experi-ences with ADIFOR on TLNS3D are described in [4, 18].11



dF/dx * S

S = [e_13, ..., e_17]S = [e_7, ..., e_12]S = [e_1, ..., e_6]

dF/dx * S dF/dx * S

g(1:6) g(7:12) g(13:17)Figure 8: An Example of parallel sensitivity computation# Processors Average Time Std. Deviation1 34,160 (est.) 05 6,832 53.115 3,757 11.5Table 3: Results of parallel sensitivity computation for TLNS3DWe were interested in computing the sensitivities of lift, drag, and pitching moment withrespect to 60 shape design parameters on a 97x25x17 grid on a workstation platform. Be-cause of memory limitations, we could only �t the code for the computation of up to 12sensitivities on an IBM RS6000 workstation with 128 MBytes of memory. On the IBM SP1parallel computer, which for the purposes of this exercise can be regarded as a network ofworkstations, we observed the performance shown in Table 3. If we had only one processorat our disposal, the memory limitation would limit us to running the 12-sensitivities job �vetimes, requiring an estimated 34,160 seconds, or 9.5 hours. Employing 15 processors, thesame set of sensitivities can now be obtained in just about one hour, a dramatic increase inturnaround time. Details are reported in [5].4 Di�erentiation of Iterative ProcessesUntil recently it was not clear under what conditions automatic di�erentiation could beexpected to yield useful derivative values if the evaluation program is not just a straight-linecode but contains branches dependent on argument values. This situation occurs frequently inprograms that employ iterative or adaptive numerical procedures, for example to approximatethe solutions of nonlinear algebraic systems or di�erential equations. One can easily constructexamples where branching makes the relation between independent and dependent variablesnonsmooth so that the demand for derivative values is unrealistic in the strictly mathematicalsense. Nevertheless, one can show under reasonable assumption that on piecewise smoothproblems automatic di�erentiation yields one-sided derivatives, which may be quite usefuland informative [32],[14]. More important, Gilbert has shown recently that in the case of12



contractive �xed-point iterations, the corresponding derivative values also converge to theircorrect values [17]. We have con�rmed the validity of this result on a transsonic uid dynamicscode [4], where the previously used semi-analytic approximation to the derivative of the liftcoe�cient with respect to the Mach number turned out to be o� by 50%. We have extendedGilbert's result to a wider class of iterative schemes, including Broyden's method, and otherquasi-Newton schemes.Our basic assumption is that a parameter dependent nonlinear systemF (v; x) = 0 with F : IRn � IRp 7! IRnis, for �xed x, solved for v(x) by an iteration of the formvk+1 � vk � PkF (vk; x) ; (1)where Pk is some n � n matrix, which we will consider as preconditioner. Total derivativeswith respect to x 2 IRp will be denoted by primes, and partial derivatives (with v keptconstant) by the subscript x.Simply di�erentiating (1), one �nds that the derivatives of the iterates satisfy the recur-rence v0k+1 = v0k � Pk [Fv(vk; x)v0k + Fx(vk; x)]� P 0k F (vk; x) : (2)Now the question arises under what assumptions this recurrence ensures convergence of thev0k to the implicit derivative v0(x) de�ned by the linear systemFv(v(x); x) v0(x) = �Fx(v(x); x) ; (3)where v(x) is the implicit function de�ned by F (v(x); x) = 0. In addition to the usuallocal regularity assumptions on the Jacobian Fv, we imposed the condition that the basiciteration is contractive in that I�PkFv has a spectral norm bounded below 1 and furthermorethat P 0k F (vk; x) converges to zero. This last condition is always met if the matrices P 0kare uniformly bounded, as can be expected in the case for Newton's method, where Pk =Fv(vk; x)�1 is continuously di�erentiable in x provided F is su�ciently smooth. Yet thisexample also shows that P 0k really should not matter at all since it is multiplied by the residualF (vk; x), which tends to zero as the iteration progresses. Moreover, in some cases P 0k maynot even exist or grow unbounded because of nonsmooth adjustments of the preconditionerPk from step to step. Then the convergence of the v0k(x) may be slowed down or preventedaltogether. Therefore, it makes sense to deactivate the preconditioner Pk, that is, to suppressits dependence on x by simply setting P 0k = 0. The resulting simpli�ed derivative recurrence~v0k+1 = ~v0k � Pk [Fv(vk; x) ~v0k + Fx(vk; x) ] (4)is in general cheaper to perform and corresponds to the so-called incremental iterative schemesproposed in the context of CFD sensitivity analysis [35, 33].We could show for a large variety of Newton-like methods that it still yields convergenceof the ~v0k to v0(x) at the same linear rate as the v0k, which is determined by the spectral radiusof I�PkFv. The only drawback is that the preconditioner Pk must be identi�ed, which mightnot be so easy in a complex code. Moreover, multigrid schemes and other iterative solversalmost certainly do not satisfy our assumptions, and even if they did, this fact would be veryhard to ascertain. 13
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Figure 9: Fully di�erentiated Broyden's method for Jacobian calculationNevertheless, we have found so far that, for all practical solvers, derivatives of the iteratesseem to converge to the correct implicit derivatives with or without deactivation of precon-ditioners. However, the derivatives tend to lag behind the iterates themselves, and wheneverpossible one should gauge their convergence by evaluating the derivatives' residualF 0(vk; x) = [Fv(vk; x)v0k + Fx(vk; x)]which must vanish by the implicit function theorem when vk = v(x) and v0k = v0(x). A typicalsituation is depicted in Fig. 9 for a parameter estimation problem with three parameters xand a 40-dimensional state vector v. Details are reported in [23].In Figure 9 it is particularly noteworthy that the P 0k appear to grow unbounded butthat the derivative residuals F 0(vk; x) and errors v0k � v0(x) converge to zero a bit later butessentially at the same rate as the iterates vk themselves. This seems to be a typical situation.5 New Approaches in Multidisciplinary Analysis andDesignThe task of performing sensitivity analysis on the supersonic or transsonic ow over an elasticwing, for example, combines most of the di�culties that one may encounter in computationaldi�erentiation for the purposes of multidisciplinary design analysis and optimization.1. The two disciplines aerodynamics and structures are mutually dependent, though thecoupling is usually assumed to be su�ciently weak that block Gauss-Seydel solversconverge.2. Both disciplines use their own grids, which usually do not coincide and must in any casebe adapted as the calculation proceeds. This requires grid generation and interpolationprocedures. 14



3. The nonlinear systems describing the equilibrium situation are so large and irregularthat they cannot be solved directly, but one must employ instead iterative solvers,usually of the multigrid type.4. The turbulence e�ects that occur even in subsonic situations must be approximated byalgebraic functions, which are typically quite complex and not everywhere di�erentiable.Before we discuss how computational di�erentiation can be made to cope with this kind ofsituation, let us note that other approaches are even less likely to succeed. Parts of someaerodynamic codes have been di�erentiated by hand, but since the turbulence models weregenerally considered too messy for hand manipulation, the results tended to be of very lowaccuracy. Also, since the outputs of realistic codes are strictly speaking not even continuousfunctions of the inputs, taking di�erence quotients is quite dangerous. As we have mentionedbefore it also has an unnecessarily high computational complexity.5.1 Solving Coupled SystemsSymbolically we may write the structural and aerodynamic equilibrium conditions as thecoupled algebraic system of equations:E(u; v; w; x) = 24 F (u; v; x)G(u; v; w; x)H(v; w; x) 35 = 0 ; (5)where the vectors v and x of linking and design variables may be assumed to have muchsmaller numbers of components than the vectors u and w representing displacements andow velocities, respectively. Often the former represent functions in two spatial variables andthe latter are discretizations of functions in three spatial variables. Therefore, the overallJacobian will look roughly like@E(u; v; w; x)@(u; v; w; x) = 24 Fu Fv 0 FxGu Gv Gw Gx0 Hv Hw Hx 35 (6)= 2666666666664 � � � � � � � 0 0 0 0 �� � � � � � � 0 0 0 0 �� � � � � � � 0 0 0 0 �� � � � � � � 0 0 0 0 �� � � � � � � 0 0 0 0 �� � � � � � � � � � � �� � � � � � � � � � � �0 0 0 0 0 � � � � � � �0 0 0 0 0 � � � � � � �0 0 0 0 0 � � � � � � �0 0 0 0 0 � � � � � � � 3777777777775 : (7)We may assume that each discipline has some iterative method for solving the internal systemF (u; v; x) = 0 and H(v; w; x) = 0 for �xed v and x, which amounts to evaluating the implicitfunctions u = u(v; x) and w = w(v; x). If these methods can be di�erentiated, then, by theresults described in Section 4, one obtains simultaneously approximations to�@u@v ; @u@x� = �F�1u [Fv; Fx] (8)15



and �@w@v ; @w@x � = �H�1w [Hv;Hx]: (9)Note that the inner disciplinary Jacobians Fu and Hw need not be formed explicitly eventhough their inverses appear in the explicit expression for @u@v and @w@v .The total derivative with respect to v of the reduced functionĜ(v; x) � G(u(v; x); v; w(v; x); x)is given by @Ĝ@v = Gu@u@v + Gv + Gw @w@v = G0 "�@u@v�T ; I;� @u@w�T ; 0#T ; (10)where G0 is shorthand for [Gu; Gv; Gw; Gx]. Note that we need not compute G0 explicitly toevaluate the derivative (10), but rather we can use the \seed matrix" mechanism to computeit by a forward sweep of automatic di�erentiation at roughly nv times the cost of evaluatingG by itself, where nv represents the number of linking variables v. By using the resultingJacobian Ĝv for a Newton-like method to directly solve Ĝ(v; x) for �xed x, one can directlyapply an iterative method based on directional derivatives of Ĝ in the domain of v to solvethe nonlinear equations (5). In either case the fact that the cross terms Fv; Gu; Gw;Hvare implicitly evaluated through automatic di�erentiation (rather than simply neglected andassumed to be small) ensures local convergence to a stationary solution, where Fu, Hw, andthe overall Jacobian of E with respect to (u; v; w) are nonsingular.5.2 Design Sensitivities for Coupled SystemsNow suppose we have an objective function f(u; v; w; x) like the lift or the drag coe�cient,in which case x incorporates not only geometric and structural parameters but also the freestream boundary conditions. Then the question arises how one can obtain approximations tothe total gradient rxf = fu @u@x + fv @v@x + fw @w@x + fx : (11)The derivatives @u=@x and @w=@x can be obtained by di�erentiating the individual disciplinesolvers with respect to x in addition to v. Then one obtains the derivative of Ĝ with respectto x @Ĝ@x = Gu@u@x +Gx +Gw @w@x ; (12)where we have assumed v to be constant in the di�erentiation with respect to x. Assumingthat @Ĝ@v is small enough to be formed and factored explicitly, one may solve for the rootv = v(x) of Ĝ(v; x) = 0 by Newton's method, say, and then evaluate according to the implicitfunction theorem @v@x = � @Ĝ@v !�1 @Ĝ@x :Even if this is not possible and the iterates vk are generated instead by an iteration of theform vk+1 = vk � PkĜ(vk; x);16



one may use the simpli�ed derivative recurrencev0k+1 = v0k � Pk hĜvv0k + Ĝxiwith Ĝv and Ĝx as de�ned above. Provided both levels of the iteration satisfy our contractivityassumption, we can expect that the v0k will indeed converge to the correct value @v=@x, whichcan then be used in the expression (11) for the total gradient of the objective function.6 OutlookThe emergence of robust automatic di�erentiation tools, together with the increased inter-est of the scienti�c community in sensitivity analysis and design optimization has provideda fertile climate for the advancement of computational di�erentiation techniques. However,despite the ubiquitous nature of derivatives in numerical modelling, computational di�eren-tiation techniques as we understand them are still only known or accessible to relatively fewcomputational scientists.Together with our colleagues in the �eld, we are working on changing this situation bydeveloping robust, general, and portable tools that provide automatic di�erentiation tech-nology in a fashion that scales with the problem as well as the computing environment, tosupport the full scienti�c development cycle. We are also working on developing templatesto guide users in the development of codes embodying certain numerical paradigms to ensurethat application of automatic di�erentiation leads to the desired results.In the long run, we hope that computational di�erentiation techniques not only will pro-vide computational scientists with a convenient and e�cient means for computing the �rst-and second order derivatives, but will change the way scientists and algorithm developers viewtheir problems. We expect that the fact that derivatives will be obtainable at a signi�cantlyreduced cost and of arbitrary order will spawn new algorithmic approaches as well as newproblem-solving environments.References[1] Brett Averick, Richard G. Carter, and Jorge J. Mor�e. The MINPACK-2 test problemcollection (preliminary version). Technical Report ANL/MCS{TM{150, Mathematicsand Computer Science Division, Argonne National Laboratory, 1991.[2] Brett Averick, Jorge Mor�e, Christian Bischof, Alan Carle, and Andreas Griewank. Com-puting large sparse Jacobian matrices using automatic di�erentiation. Technical ReportMCS{P348{0193, Mathematics and Computer Science Division, Argonne National Lab-oratory, 1993.[3] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland.ADIFOR: Generating derivative codes from Fortran programs. Scienti�c Programming,1(1):11{29, 1992.[4] Christian Bischof, George Corliss, Larry Green, Andreas Griewank, Kara Haigler, andPerry Newman. Automatic di�erentiation of advanced CFD codes for multidisciplinarydesign. Journal on Computing Systems in Engineering, 3(6):625{638, 1992.17
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