Computational Differentiation
and Multidisciplinary Design*

Christian Bischoft and Andreas Griewank?
Preprint MCS-P420-029)

to appear in Proceedings of the Symposium on Inverse Problems and Optimal Design in Industry, J.
McLaughlin and H. Fngl, Eds, Teubner Verlag, Stuttgart, Germany

Abstract

Multidisciplinary Design Optimization (MDO) by means of formal sensitivity anal-
ysis requires that each single-discipline analysis code supply not only the output func-
tions for the (usually constrained) optimization process and other discipline analysis
inputs, but also the derivatives of all of these output functions with respect to its input
variables. Computational differentiation techniques and automatic aifferentiation tools
enable MDO by providing accurate and efficient derivatives of computer programs with
little human effort. We discuss the principles behind automatic differentiation and give
a brief overview of automatic differentiation tools and how they can be employed judi-
ciously, for example, for sparse Jacobians and to exploit parallelism. We show how, and
under what circumstances, automatic differentiation applied to iterative solvers delivers
the mathematically desired derivatives. We then show how derivatives that can now be
feasibly obtained by computational differentiation techniques can lead to improved so-
lution schemes for nonlinear coupled systems and multidisciplinary design optimization.

1 Introduction

Computational differentiation (CD) provides a new foundation for sensitivity analysis and
subsequent design optimization of complex systems by reliably computing derivatives of large
computer codes. The goal is to free the computational scientist from worrying about the
accurate and efficient computation of derivatives, even for complicated “functions,” thereby
enabling him to concentrate on the more important issues of system modeling and algorithm
design.

Almost as soon as the first programmable systems became available, scientists observed
that the mechanical application of the chain rule to obtain derivatives can be automatically
and reliably performed by computers. The basic forward, or bottom-up, mode of automatic
differentiation (AD) was apparently first proposed by R. E. Wengert [41]. The mathematically
more interesting reverse, or {op-down, mode was first published by G. M. Ostrowskii [36].
This observation gives rise to eutomatic differentiation (AD), which can compute derivatives
of a function defined by a computer code in a black-box fashion, without any knowledge of
the application beyond what are considered “dependent” and “independent” variables with
respect to differentiation.

While these original results have been repeatedly rediscovered and extended, the full
potential of automatic differentiation as a general-purpose computational tool has not yet

*This work was supported by the Office of Scientific Computing, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38, and by the National Aerospace Agency under Purchase Order L.25935D.

tMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne,
IL 60439, U.S.A., bischof@mcs.anl.gov.

HInstitute of Scientific Computing, Technical University Dresden, Mommsenstr. 13, 01062 Dresden, Ger-
many, griewank@math.tu-dresden.de.

been realized. Historically, this is due both to a lack of general-purpose tools and a lack
of scientific communication and cooperation. It was not until 1991 that the first meeting
focusing on Computational Differentiation was held [24]. Since then, much has changed as
automatic differentiation tools have acquired a level of maturity that enables them to deliver
the promises of the theory.

As researchers have gained experience with automatic differentiation tools, it also has
become apparent that the process of generating suitable derivative codes is not necessarily
automatic. For example, the user of an AD tool can capitalize, in a high-level fashion, on the
structure of his program to decrease the computational cost of computing derivatives, leading
to an “automated,” or “computer-supported” approach to generating derivative code.

Moreover, there is the issue of AD versus “do-what-I-mean,” where one has to relate
knowledge about the algorithms underlying the program in question with automatic differen-
tiation to ensure that the derivatives computed are the ones that are mathematically desired.
Computational differentiation is the term we chose to denote all these closely related efforts.

This paper is structured as follows. In the next section we review automatic differentiation
and comment on the mathematical and computer science challenges that remain. In Section 3
we give examples that show how judicious use of AD tools can have a significant effect on
the speed with which one computes derivatives. We then explore, in Section 4, whether,
and under what circumstances, AD techniques, when applied to iterative solvers, deliver the
desired derivatives. Section 5 illustrates how computational differentiation techniques can be
employed to arrive at faster and more robust procedures for multidisciplinary design analysis
and optimization. Lastly, we give a brief outlook on the field.

2 Automatic Differentiation

Because accurate and efficient derivative values are so crucial for the speed and robustness
of numerical methods, many developers have expended great efforts to derive, by hand, code
for the derivatives of particular modeling functions. Obviously there would be little point
in discussing the importance of AD if there were other approaches for obtaining derivatives
accurately and cheaply. We have already mentioned that divided differences are of uncertain
quality in terms of accuracy and are also quite costly if there are many independent variables.
Fully symbolic differentiation, as provided, for example, by the “diff” operator in MAPLE, 1s
generally not a realistic alternative, because with the possible exception of some right-hand
sides in ordinary differential equations, the problem functions in the applications mentioned
above are evaluated by computational procedures of some length. Consequently, the direct
representation and differentiation of the dependent variables in terms of the independent
variables are generally very resource demanding or impossible, while they pose no difficulties
for automatic differentiation (see, for example, [9, 28]).

In this section, we give an overview of the classical approaches to automatic differentiation,
as well as some of the more recent research questions relating to the computational complexity
for computing derivatives. We also give a brief overview automatic differentiation tools, in
particular the ADIFOR, Fortran77 tool.

2.1 The Forward and Reverse Mode of Automatic Differentiation

In contrast to fully symbolic packages, automatic differentiation applies the chain rule to
numbers rather than algebraic expressions. These real numbers are, of course, rounded after
each application of the chain rule, so that the complexity of representing and manipulating

V1 = T2 %23

V2 = U121 // = T1X2X3
U3 = V1&4 // = T2X3%4
Y1 = c1va + dyvs /] =cazzzs+ dizozszs
Y2 = Cava + davs /] = camizaxs + dozomazs
Y3 = c3va + d3vs /] = cazizaxs + dszowazs

Figure 1: Example program with 4 independents and 3 dependents

V’U1 = $2V$3 —|— $3V$2 // (0 T3, T2,)
VUQ = $1V’U1 —|— ’U1V$1 // (’01, r1x3,r1T2, 0)
V’Ug = $4V’U1 —|— ’U1V$4 // (0 T4X3,T4T2, ’01)
(
(
(

Vyi =c1Vos + diVus /] (c1vi,cizies + dizass, crv102 + d1 24z, d1v1)
Vy2 = a2V + d2Vos /] (cov1,comias + dowasa, cox12 + dotaza, dovr)
Vys = caVua + daVos /] (cavi,carias + dazasa, cari2 + d3taza, dsvr)

Figure 2: Forward mode evaluation of the 4 x 3 Jacobian

each partial derivative does not grow at all. It has been shown that automatic differentiation
is backward stable in the sense that the derivative values obtained correspond to the exact
results for slightly perturbed independent variables and intermediates [26].

As an example let us consider the following simple program with four independent vari-
ables 1, ®9, x3, x4 and three dependent variables yi, yo, y3, where the ¢; and d; are distinct
constants.

To calculate the Jacobian dy/Jx one could associate with each scalar variable a gradient of
derivatives with respect to the three independent variables. Starting from the Cartesian basis
vectors Vz; = ¢; € R3, one can calculate derivatives according to the usual interpretation
of the chain rule, as shown in Figure 2. The 4-vector Vo; = (0,23, 22,0) has only two
nonzero components and can be composed without performing any arithmetic operations.
Consequently the calculation of the gradients Vv and Vs costs 4 multiplications. Since
both of these vectors have three nonzero components each the calculation of the gradients
Vy; representing the three rows of the Jacobian Jy/0z costs 18 more multiplications and 6
additions. The total count is thus 22 multiplications and 6 additions.

The calculation performed above represents the so-called forward mode of automatic dif-
ferentiation, with an operations count corresponding to a sparse implementation of this basic
procedure. To see how a few operations can be saved by the so-called reverse mode, let us
first consider a graphical representation of the dependence between the z; and the y;.

In the graph displayed in Figure 3 the nodes represent the independent, intermediate, and
dependent variables and the edges represent the elementary partial derivatives between them.
In other words, an edge connects v; and v; exactly when v; occurs on the righthand side of
the statement that defines v; on the left. In that case the edge is annotated with the partial
derivative of v; with respect to v;, evaluated at the current argument. Since all operations

Figure 3: Computational graph with 3 intermediate nodes

in our example involve two nonconstant arguments, there are two edges arriving at each
node; but in the general situation there are often univariate functions such as exponentials
and trigonometric intrinsics, which generate nodes with a single incoming arc. In those
situations the calculation of the elementary partials themselves may be nontrivial, though its
cost 1s always bounded by a small multiple of the cost for evaluating the elementary functions
themselves. This is true for any realistic measure of computational cost and may account for
Memory accesses.

Clearly the collection of elementary partials in the computational graph uniquely deter-
mines the overall Jacobian. The sparse forward procedure of Figure 2 for calculating the
Jacobian combines the elementary partials to arrive at the overall Jacobian by applying the
chain rule in one particular way. Contrary to what one might expect, there are several other
ways in which the Jacobian can be accumulated from the elementary partials. The results are
the same up to round-off, but the computational effort in terms of the number of arithmetic
operations may differ.

For example, rather than successively calculating the gradients of intermediates and de-
pendents with respect to the independents, as is done in the forward mode, one can instead
compute vectors of sensitivities of the dependents with respect to the intermediate and the
independents. More specifically, let us define the adjoint vectors

v, = (9y/ov)eR?

and correspondingly #; and y; = e;. This time the derivative objects associated with the
dependents are initialized to Cartesian basis vectors, and we proceed backwards as shown in
Figure 4, using the so-called reverse mode of automatic differentiation.

We note that the results are consistent in that the four columns Ax; obtained in the reverse
mode form exactly the same matrix as the one formed by the three rows Vy; computed earlier
in the forward mode. This time, however, the whole procedure requires 18 rather than 22

s =diyy +doye +days [/ (di,d2,ds)

U =c1y1 + c2y2 +caya [/ (c1,c2,c3)

U1 = T102 + 403 /] (x1c1 + 2ads, z1c2 + vada, 103 + T4d3)

Ty = V103 /] (vidi,vid2, vids)

T3 = x201 /] (z2z1c1 + woxady, zoz1co + T28ado, Tog103 + T2Tad3)
To = T3l1 // (753751C1+753754d1,753751c2+753754d2,753751c3+753754d3)
Tr1 = U102 // (’01C1,’U1C2,’U1C3)

Figure 4: Reverse mode accumulation of the 4 x 3 Jacobian

multiplications and 3 rather than 6 additions. Hence the reverse mode has a lower operations
count on this example.

Unfortunately, apart from the computation of gradients, for which the reverse mode is
optimal [19], there is no reliable rule to determine a priori whether the forward or reverse
mode is better, and there are in fact even more variations on the chain rule. We also note that
although it seems as if the reverse mode requires storage that is proportional to the runtime
of the undifferentiated code, Griewank [21] has shown that much more reasonable compro-
mises between temporal and spatial complexity can be achieved by a recursive checkpointing
approach.

2.2 Variations of Derivative Accumulation

In the “explicit” expressions on the right margins of the informal program listed above we
have deliberately used the intermediate values rather than their expansion, for example v
instead of xoz3. This way one can observe that for each pair (z;, y;) of an independent
and a dependent variable, the corresponding entry in the Jacobian is a sum over all directed
paths connecting them in the computational graph (Figure 3). The additive term associated
with each path 1s simply the product of all edge values involved, which we will call the path
product. In our simple example, #1 and x4 are connected by only one path to each of the
three dependents, whereas x5 and x3 impact the same dependents via the intermediates vq
or vs.

In general, the number of different paths grows exponentially with the diameter of the
graph, that 1s, the length of the longest directed path in the graph. Therefore, 1t is in general
impossible or at least very expensive to evaluate the additive terms for each path separately
and then to add them to the appropriate Jacobian entry. In our example this approach would
require 2 multiplications each for the 6 partials with respect to z; and x4 and 3 multiplications
each for the 6 partials with respect to xo and z3, yielding a total of 30 multiplications and
6 additions. Both the forward and reverse mode do better because they utilize the fact that
certain subproducts like xsx; or xi1d; occur repeatedly and can therefore be reused. The
forward mode is based on partial path products starting from the independents;, and the
reverse mode accumulates path products starting from the dependents. In graphs with paths
of length four or greater, one can also start forming partial path products in the middle, that
1s, without involving either independents or dependents initially.

To visualize some particular choices in the usually bewildering variety of accumulating
path products, one can think of successively eliminating intermediate nodes by connecting
all intermediate predecessor/successor pairs with the products of the corresponding edge
values. If a direct edge already exists, its value i1s incremented by the product of the two
arcs running through the intermediate node. In the example above, one could first eliminate

the node v; by connecting the predecessors x5 and 3 with the successors vy and vs by four
edges with the values z3x1, #3524, 221, and xox4. This is essentially what the forward mode
does in calculating the gradients Vvy, and Vus. Subsequently it eliminates the nodes vs and
vz by multiplying the newly obtained edge values with the constant multipliers ¢; and d;,
respectively. The reverse mode first eliminates the node pair (vs, vs) and then v;.

Because of the symmetric role of vy and vz in Figure 3, there exists only one significantly
different third elimination order, namely, vs, v1, vs. Starting from Figure 3, this is depicted
in Figure 5, where vw denotes the value of the edge (v, w) and a+ = b is shorthand for
a = a+0b. The thick edges in the graphs on the righthand side are the ones being created
or updated in the current elimination step. The total count for this elimination ordering is
23 multiplications and 6 additions, which means it is slightly worse than the forward mode
but still a lot better than the explicit evaluation of all path products.

The number of multiplications in each elimination step equals exactly the product of the
number of predecessors and successors of the vertex being eliminated. For all neighbors this
so-called Markowitz degree is changed as some incoming or outgoing edges may merge and
others are created because of fill-in. Thus we see that the problem of calculating the Jacobian
of a particular vector function using the minimal number of arithmetic operations ([20])
is closely related to the corresponding task in sparse Gaussian elimination. It is therefore
not surprising that the Jacobian accumulation problem can be shown to be NP-complete as
welll [29]. Just as in the sparse matrix case, the development of near-optimal heuristics
for accumulating Jacobians by successively eliminating intermediates provides a rich field for
future research.

The classic greedy heuristic is the Markowitz rule, which requires that one always elimi-
nates a vertex of minimal degree, thus minimizing the operations at the current stage. In the
long run this may not be the best strategy, as one can already see from the small example
given above. Here vy has initially the smallest Markowitz degree, namely 4, whereas v, and
vz both have the degree 6. Yet eliminating vy first corresponds to the forward mode, which
uses more operations than the reverse mode, which eliminates vs and vy before v1. While this
example is merely of academic interest, there are certain classes of discretized PDEs for which
the Markowitz heuristic is a good one [26]. In general, however, these various accumulation
strategies may exhibit vastly differing computational complexity. These complexity issues are
further explored in [22].

The computational graphs from which the corresponding Jacobians can be obtained by
successively eliminating all intermediate vertices contains one node for each arithmetic oper-
ation or intrinsic function call. Therefore, the graphs are usually so large that they cannot
be stored in core; and even when they can, the interpretive overhead of manipulating them
as linked data structures may easily upset the gain in theoretical complexity. Consequently,
if one wishes to employ this approach in an AD tool, one must develop a constructive theory
of decomposing the graph hierarchically and processing it in pieces. This approach 1s partic-
ularly promising in codes where subroutines with fixed-dimensional inputs (for example finite
element stencil evaluators) are called many thousands of times. Since in most applications
Jacobians are used only as a means of solving nonlinear systems iteratively, it may be prefer-
able to directly attack the larger problem of computing Newton-steps or their approximations
[20], [13].

Like derivatives, many other numerically useful pieces of information about a composite
function can be derived from the properties and mutual relations of its elementary con-
stituents. For example, one may determine error bounds, Lipschitz constants, trust region
radii, and even parallel evaluation schedules. In this wider sense the term “automatic dif-

Eliminate node vs

zlyl = vidy
xly2 = v1ds
xlyd = v1ds
vlyl = x1dy
vly2 = x1ds
vlyd = x1ds

Eliminate node vy

2yl = xsvlyl
x2y2 = x3vly?
x2y3 = x3vly3
3yl = zavlyl
x3y2 = xavly?2
x3yd = zavly3
x2v3 = 324

x3vd = Toly

Eliminate node v3

2yl 4= c122v3
x2y2 4= cox203
r2y3 4= c3x2v3
3yl 4= c123v3
x3y2 4= cox3v3
x3y3 4= c3z3v3

x4yl = viC1
xdy?2 = v1Ca
xdyd = viC3

Figure 5: Another possibility for accumulation of the 4 x 3 Jacobian

ferentiation” is unduly restrictive, as it does not indicate the ability to build much more
general models of nonlinear functions near a given argument. Unfortunately, no convincing
alternative terminology has yet emerged.

2.3 Automatic Differentiation Tools

There have been various implementations of automatic differentiation, and an extensive survey
can be found in [31]. In particular, we mention GRESS [30] and PADRE-2 [34] for Fortran
Programs, and ADOL-C [25] for C and C++ programs. ADOL-C employs the operator
overloading capabilities of the C++ language to transparently augment the original code
with computations for derivative of arbitrary order. Operator overloading also allows for a
flexible and easily customizable system. These issues are further explored in [12].

GRESS, PADRE-2, and ADOL-C implement both the forward and reverse mode. The
reverse mode requires that one saves or recomputes all intermediate values that nonlinearly
impact the final result, and to this end these tools generate, a trace of the computation.
The interpretation overhead of this trace and its potentially very large size can be a serious
computational bottleneck [39].

Recently, a “source transformation” approach to automatic differentiation has been ex-
plored in the ADIFOR [3] and ODYSSEE [37] projects. Both tools transform Fortran code,
applying the rules of automatic differentiation and generating new Fortran code that, when
executed, computes derivatives without the overhead associated with “tape interpretation”
schemes. ODYSEE generates reverse mode; ADIFOR uses a hybrid forward/reverse mode
strategy.

ADIFOR (Automatic Differentiation in Fortran) [3, 7] provides automatic differentiation
for programs written in Fortran 77. Given a Fortran subroutine (or collection of subroutines)
describing a “function,” and an indication of which variables in parameter lists or common
blocks correspond to “independent” and “dependent” variables with respect to differentiation,
ADIFOR produces portable Fortran 77 code that allows the computation of the derivatives
of the dependent variables with respect to the independent ones.

ADIFOR accepts almost all of Fortran 77, in particular arbitrary calling sequences, nested
subroutines, common blocks, and equivalences. The ADIFOR-generated code tries to preserve
vectorization and parallelism in the original code and employs a consistent subroutine-naming
scheme that allows for code tuning, the exploitation of domain-specific knowledge, and the
exploitation of vendor-supplied libraries.

ADIFOR employs a hybrid forward /reverse mode approach to generating derivatives. For
each assignment statement, it generates code for computing the partial derivatives of the result
with respect to the variables on the right-hand side using the reverse mode approach, and
then employs the forward mode to propagate overall derivatives. For example, the statement

y=x(1) *x(2) *x(3) * x(4) * x(5)

gets transformed into the code shown in Figure 6. Note that none of the common subexpres-
sions (¢) * #(j) is recomputed in the reverse mode section.

ADIFOR-generated code can be used in various ways [6]: Instead of simply producing code
to compute the Jacobian J, ADIFOR, produces code to compute J*5, where the “seed matrix”
S is initialized by the user. So if S is the identity, ADIFOR, computes the full Jacobian, and if
S 1s just a vector, ADIFOR computes the product of the Jacobian by a vector. The running
time and storage requirements of the ADIFOR-generated code are roughly proportional to
the number of columns of S, which equals the gp variable in the sample code above.

r$1 = x(1) * x(2)
r$2 = 181 * x(3)
183 = 182 * x(4) Reverse Mode for computing
r$4 = x(5) * x(4)
r$5 = 184 * x(3)
r$1bar = r$5 * x(2) aiy 1 =1.....5
r$2bar = r$5 * x(1) dx(i)’ 7 7
r$3bar = r$4 * r$1
r$4bar = x(5) * r$2
do gi = 1, g¥p$
g3y(g%i$) = r¥1bar * ghx(ghi$, 1
(8515) + r$2bar * g($x(gi,) 2) Forward Mode:
+ r$3bar * g$x(g8i$, 3) Assembling Vy from Vx (i),
+ r§4bar * g$x(g%i$, 4) i=1.....5.
+ 1$3 * g¥x(g$i$, 5) Y
enddo
y =183 * x(5) } Computing function value

Figure 6: Sample of ADIFOR-generated code

3 Exploiting Program Structure and Parallelism

In this section we show how we can exploit high-level program structures and parallelism to
speed derivative computations.

3.1 Computing Large, Sparse Jacobians

In the approximation of large, sparse Jacobians bu divided differences, one usually exploits the
sparsity structure of these matrices by simultaneously perturbing several “unrelated” input
parameters [11, 10]. This structure can also be exploited by a suitable choice of the “seed
matrix.”

The idea is best understood with an example. Assume that we have a function

1
J2
F= f3 reR*—yeR
Ja
Is

whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are not

shown):
O

O &

J = A &
A 0O
A 0O

So columns 1 and 2, as well as columns 3 and 4 are structurally orthogonal, and in divided-
difference approximations one could exploit that by perturbing both z; and x5 in one function

nz = 2582 nz = 2582

a) uncompressed b) compressed

Figure 7: Sparsity structure of 190 x 190 blunt body problem Jacobian

evaluation, and both z3 and x4 in the other. We can exploit this fact by setting

OO ==
_ -0 O

For a more realistic example, the 190 x 190 Jacobian of the blunt body shock-tracking
problem described in [38] has only 2582 nonzero entries; its structure is shown in Figure 7a.
Because of its sparsity structure, it can be condensed into the “compressed Jacobian” shown
in Figure 7b, which has only 28 columns.

The computation of Jacobian*vector products and compressed Jacobians requires much
less time and storage than the generation of the full Jacobian matrix. For example, on the
blunt-body problem we observe the performance shown in Table 1 on Sun Microsystems
SPARC 2 and IBM RS/6000-550 workstations. The first line gives the run time of a sparse
divided-difference approximation, based on the same coloring scheme as the “compressed Ja-
cobian” approach in the second line. The third line shows the running time obtained if one
treats this Jacobian as a dense one and ignores sparsity; this means that all derivative opera-
tions now are performed with vectors of length 190 instead of 28. As expected, performance
suffers, although much less so on the IBM. This is due to the superscalar architecture of
this chip and, we suspect, to efficient microcode implementations of multiplications by zero.
A comprehensive study of this methodology applied to a collection of optimization model
problems can be found in [2].

The compressed Jacobian does not tell the whole story, though. When we keep track of
how many operations really have to be performed, avoiding additions and multiplications with
zeros, we observe the behavior shown in Table 2. Here we denote the number of additions,
multiplications, and the median number of nonzeros in derivative objects for the compressed
Jacobian approach and a “sparse” implementation, which avoids operations with zeros. Thus,
there 1is still ample scope for exploiting the temporal sparsity behavior of derivative propaga-
tion. This is not surprising since most of the time, the seed matrix is very sparse (e.g., the

10

SPARC-2 | RS/6000
Sparse DD 0.20 0.130
Compressed ADIFOR 0.13 0.025
Dense ADIFOR 0.85 0.056

Table 1: Performance of ADIFOR-generated derivative code (seconds)

Adds Mults Median

V length

Compressed | 134,428 | 185,948 28.0
Sparse 5537 31,633 4.0

Table 2: Dense versus sparse derivative propagation

identity), and derivative objects fill in slowly as the computation proceeds. This effect is most
noticeable in the computation of gradients of so-called partially separable functions [6, 8], a
rather common class of functions first described by Griewank and Toint [27]. For example,
on the 2-D Ginsburg-Landau Superconductivity problem [1], the sparse gradient computation
on a 400 x 400 grid requires only 7 percent of the floating-point operations required for the
dense version.

The dependency information collected and utilized in the sparse propagation of derivative
objects also determines the sparsity pattern of the Jacobian, Hessian, and higher-derivative
tensors. A sparse derivative implementation of forward differentiation is currently under
development.

3.2 Stripmining Derivative Computations

We can compute any subset of the entries of this gradient through proper choice of the
“seed matrix.” Hence, we can compute several sets of sensitivities one after the other, or we
can decrease turnaround time by spawning several copies of the derivative code, as shown,
for example, in Figure 8. Here e; denotes the i-th canonical unit vector. Hence, the first
incarnation of the derivative code will compute the first six entries of the gradient, the second
one the next six, and the third one the remaining five.

This “stripmining” approach is simple, much like running several simulations in parallel
for divided-difference approximations of derivatives, but has the advantage of decreasing wall
clock time with minimal human effort. It can also easily be mapped on any collection of
compute nodes, be it a MIMD parallel computer or a heterogeneous workstation network. We
implemented this approach with the Fortran M system [16, 15], and the resulting “parallel
wrapper” can easily be adapted to other codes.

The TLNS3D code [40] is a high-fidelity aerodynamic computer code that solves the time-
dependent, 3-D, thin-layer Navier-Stokes equations with a finite-volume formulation. The
code employs grid sequencing, multigrid, and local time stepping to accelerate convergence
and efficiently obtain steady-state high Reynolds number turbulent flow solutions. Experi-

ences with ADIFOR on TLNS3D are described in [4, 18].

Let us assume, for example, that we wish to compute a 17-element gradient ¢ =

11

_— I

dF/dx* S

dF/dx* S dF/dx* S

v v

@
2P =

Figure 8: An Example of parallel sensitivity computation

Processors | Average Time | Std. Deviation
1 34,160 (est.) 0

5 6,832 53.1

15 3,757 11.5

Table 3: Results of parallel sensitivity computation for TLNS3D

We were interested in computing the sensitivities of lift, drag, and pitching moment with
respect to 60 shape design parameters on a 97x25x17 grid on a workstation platform. Be-
cause of memory limitations, we could only fit the code for the computation of up to 12
sensitivities on an IBM RS6000 workstation with 128 MBytes of memory. On the IBM SP1
parallel computer, which for the purposes of this exercise can be regarded as a network of
workstations, we observed the performance shown in Table 3. If we had only one processor
at our disposal, the memory limitation would limit us to running the 12-sensitivities job five
times, requiring an estimated 34,160 seconds, or 9.5 hours. Employing 15 processors, the
same set of sensitivities can now be obtained in just about one hour, a dramatic increase in
turnaround time. Details are reported in [5].

4 Differentiation of Iterative Processes

Until recently it was not clear under what conditions automatic differentiation could be
expected to yield useful derivative values if the evaluation program is not just a straight-line
code but contains branches dependent on argument values. This situation occurs frequently in
programs that employ iterative or adaptive numerical procedures, for example to approximate
the solutions of nonlinear algebraic systems or differential equations. One can easily construct
examples where branching makes the relation between independent and dependent variables
nonsmooth so that the demand for derivative values is unrealistic in the strictly mathematical
sense. Nevertheless, one can show under reasonable assumption that on piecewise smooth
problems automatic differentiation yields one-sided derivatives, which may be quite useful
and informative [32],[14]. More important, Gilbert has shown recently that in the case of

contractive fixed-point iterations, the corresponding derivative values also converge to their
correct values [17]. We have confirmed the validity of this result on a transsonic fluid dynamics
code [4], where the previously used semi-analytic approximation to the derivative of the lift
coefficient with respect to the Mach number turned out to be off by 50%. We have extended
Gilbert’s result to a wider class of iterative schemes, including Broyden’s method, and other
quasi-Newton schemes.

Our basic assumption is that a parameter dependent nonlinear system

F(v,z) = 0 with F :IR" xR’ —R"
is, for fixed #, solved for v(z) by an iteration of the form
Vg4+1 = Vg — PkF(Uk, l‘) s (1)

where P is some n X n matrix, which we will consider as preconditioner. Total derivatives
with respect to « € IRP will be denoted by primes, and partial derivatives (with v kept
constant) by the subscript x.
Simply differentiating (1), one finds that the derivatives of the iterates satisfy the recur-
rence
Vg1 = U — P [Fy(vp, 2)v) + Fp(vp, x)] — P Fog, 2) . (2)

Now the question arises under what assumptions this recurrence ensures convergence of the
v}, to the implicit derivative v’(x) defined by the linear system

Fy(v(z),2)v'(w) = —Fo(v(z),2) (3)

where v(z) is the implicit function defined by F(v(x),z) = 0. In addition to the usual
local regularity assumptions on the Jacobian F,, we imposed the condition that the basic
iteration is contractive in that I — Py F, has a spectral norm bounded below 1 and furthermore
that P] F'(vg,x) converges to zero. This last condition is always met if the matrices P}
are uniformly bounded, as can be expected in the case for Newton’s method, where P =
F, (v, 2)~1 is continuously differentiable in x provided F' is sufficiently smooth. Yet this
example also shows that P/ really should not matter at all since it is multiplied by the residual
F(vg,), which tends to zero as the iteration progresses. Moreover, in some cases P| may
not even exist or grow unbounded because of nonsmooth adjustments of the preconditioner
Py from step to step. Then the convergence of the v (x) may be slowed down or prevented
altogether. Therefore, it makes sense to deactivate the preconditioner Py, that is, to suppress
its dependence on « by simply setting P; = 0. The resulting simplified derivative recurrence

Uy = U — Pr [Fu(ve,) 0, + Fo(vg,)] (4)

is in general cheaper to perform and corresponds to the so-called incremental iterative schemes
proposed in the context of CFD sensitivity analysis [35, 33].

We could show for a large variety of Newton-like methods that it still yields convergence
of the ¥}, to v'(x) at the same linear rate as the v}, which is determined by the spectral radius
of I — P, F,. The only drawback 1s that the preconditioner P, must be identified, which might
not be so easy in a complex code. Moreover, multigrid schemes and other iterative solvers
almost certainly do not satisfy our assumptions, and even if they did, this fact would be very
hard to ascertain.

13

10

° .
.
o ‘.'..'O.“ ‘.
. ..
SiooooOooqoé.?9?0?9000600;50050000 |
.o e . ©00%0,
. . OOOO
XXXXXXX O o
. §X*%%Xx§% * x X ° 00 B
—~ ()}%***x*%% « **X§X§ *X*x%*** o
o) * XXX gy, KKRHx
S ot X
o ><><>< K %
- X * %
SE o« lar — a2l X% x %
s lag = 2L/ N2 x
< P)
A0F o [|[F(al, @ p) |
+ Lower bound for || P[|]
-15 L L L L
10 20 30 40 50
Iterations

Figure 9: Fully differentiated Broyden’s method for Jacobian calculation

Nevertheless, we have found so far that, for all practical solvers, derivatives of the iterates
seem to converge to the correct implicit derivatives with or without deactivation of precon-
ditioners. However, the derivatives tend to lag behind the iterates themselves, and whenever
possible one should gauge their convergence by evaluating the derivatives’ residual

Fl(og,z) = [Fy(vg,z)v} + Fu(vg, 7))

which must vanish by the implicit function theorem when vy = v(x) and v}, = v'(2). A typical
situation 1s depicted in Fig. 9 for a parameter estimation problem with three parameters z
and a 40-dimensional state vector v. Details are reported in [23].

In Figure 9 it is particularly noteworthy that the P/ appear to grow unbounded but
that the derivative residuals F’(vg, #) and errors v, — v/(z) converge to zero a bit later but
essentially at the same rate as the iterates vy, themselves. This seems to be a typical situation.

5 New Approaches in Multidisciplinary Analysis and
Design

The task of performing sensitivity analysis on the supersonic or transsonic flow over an elastic
wing, for example, combines most of the difficulties that one may encounter in computational
differentiation for the purposes of multidisciplinary design analysis and optimization.

1. The two disciplines aerodynamics and structures are mutually dependent, though the
coupling 1s usually assumed to be sufficiently weak that block Gauss-Seydel solvers
converge.

2. Both disciplines use their own grids, which usually do not coincide and must in any case
be adapted as the calculation proceeds. This requires grid generation and interpolation
procedures.

14

3. The nonlinear systems describing the equilibrium situation are so large and irregular
that they cannot be solved directly, but one must employ instead iterative solvers,
usually of the multigrid type.

4. The turbulence effects that occur even in subsonic situations must be approximated by
algebraic functions, which are typically quite complex and not everywhere differentiable.

Before we discuss how computational differentiation can be made to cope with this kind of
situation, let us note that other approaches are even less likely to succeed. Parts of some
aerodynamic codes have been differentiated by hand, but since the turbulence models were
generally considered too messy for hand manipulation, the results tended to be of very low
accuracy. Also, since the outputs of realistic codes are strictly speaking not even continuous
functions of the inputs, taking difference quotients is quite dangerous. As we have mentioned
before 1t also has an unnecessarily high computational complexity.

5.1 Solving Coupled Systems

Symbolically we may write the structural and aerodynamic equilibrium conditions as the
coupled algebraic system of equations:

Fu,v,z)
E(u,v,w,z) = G(u,v,w,z) | =0 (5)
H(v,w,x)

where the vectors v and x of linking and design variables may be assumed to have much
smaller numbers of components than the vectors u and w representing displacements and
flow velocities, respectively. Often the former represent functions in two spatial variables and
the latter are discretizations of functions in three spatial variables. Therefore, the overall
Jacobian will look roughly like

IE(u, v, w,x) by Py 00 By

7@(11 o w,2) = G, G, G, Gg (6)
P 0o H, H, H,

[X X X X X X x 0 0 0 0 x1
X X X X X x x 0 0 0 0 x
X X X X X x x 0 0 0 0 x
X X X X X x x 0 0 0 0 x
X X X X X x x 0 0 0 0 x

= X X X X X X X X X X x X (7)

X X X X X X X X x X X X
0 0 0 0 0 X X X x x xX X
0 0 0 0 0 X X X x x xX X
0 0 0 0 0 X X X x x xX X

Lo 0 0 0 0 x x X X %X x x /]

We may assume that each discipline has some iterative method for solving the internal system
F(u,v,2) =0 and H(v,w,z) = 0 for fixed v and #, which amounts to evaluating the implicit
functions u = u(v, z) and w = w(v,). If these methods can be differentiated, then, by the
results described in Section 4, one obtains simultaneously approximations to

du Ju B _
| = - 0

15

and

ow Ow

—, —| = =-H;YH, H,. 9

B 2 1) 0
Note that the inner disciplinary Jacobians F, and H, need not be formed explicitly even

though their inverses appear in the explicit expression for g—“ and 2¥.

The total derivative with respect to v of the reduced function

G(v,z) = Glu(v, 2), v, w(v, z), z)

u\" ou\" !
S -
where G’ is shorthand for [Gy, G, Gy, G]. Note that we need not compute G’ explicitly to
evaluate the derivative (10), but rather we can use the “seed matrix” mechanism to compute
it by a forward sweep of automatic differentiation at roughly n, times the cost of evaluating
G by itself, where n, represents the number of linking variables v. By using the resulting
Jacobian G, for a Newton-like method to directly solve G’(v, z) for fixed z, one can directly
apply an iterative method based on directional derivatives of G in the domain of v to solve
the nonlinear equations (5). In either case the fact that the cross terms F,, Gy, Gy, H,
are implicitly evaluated through automatic differentiation (rather than simply neglected and
assumed to be small) ensures local convergence to a stationary solution, where Fy,, H,, and
the overall Jacobian of B with respect to (u, v, w) are nonsingular.

is given by

G du ow

5.2 Design Sensitivities for Coupled Systems

Now suppose we have an objective function f(u,v,w,z) like the lift or the drag coefficient,
in which case z incorporates not only geometric and structural parameters but also the free
stream boundary conditions. Then the question arises how one can obtain approximations to
the total gradient

Veof = fu +fv +fw +fx. (11)

The derivatives du/Jdx and dw/dx can be obtained by dlfferentlatmg the individual discipline
solvers with respect to in addition to v. Then one obtains the derivative of G with respect
to x

G Ou Jw
=Gu—+ Gy + Gy , 12
£ Y ox E (12)
where we have assumed v to be constant in the differentiation with respect to z. Assuming
that % is small enough to be formed and factored explicitly, one may solve for the root

v =uv(z) of G’(v, z) = 0 by Newton’s method, say, and then evaluate according to the implicit
function theorem)

v G\ 9G

de — \ow)] oz

Even if this is not possible and the iterates vy are generated instead by an iteration of the
form
Ve 41 = Vp — PkG(Uk, l‘),

16

one may use the simplified derivative recurrence
/ / o ~
vk‘-l—l =V, — Pk |:G’ka + Gl‘:|

with G and G, as defined above. Provided both levels of the iteration satisfy our contractivity
assumption, we can expect that the v} will indeed converge to the correct value dv/dz, which
can then be used in the expression (11) for the total gradient of the objective function.

6 Outlook

The emergence of robust automatic differentiation tools, together with the increased inter-
est of the scientific community in sensitivity analysis and design optimization has provided
a fertile climate for the advancement of computational differentiation techniques. However,
despite the ubiquitous nature of derivatives in numerical modelling, computational differen-
tiation techniques as we understand them are still only known or accessible to relatively few
computational scientists.

Together with our colleagues in the field, we are working on changing this situation by
developing robust, general, and portable tools that provide automatic differentiation tech-
nology in a fashion that scales with the problem as well as the computing environment, to
support the full scientific development cycle. We are also working on developing templates
to guide users in the development of codes embodying certain numerical paradigms to ensure
that application of automatic differentiation leads to the desired results.

In the long run, we hope that computational differentiation techniques not only will pro-
vide computational scientists with a convenient and efficient means for computing the first-
and second order derivatives, but will change the way scientists and algorithm developers view
their problems. We expect that the fact that derivatives will be obtainable at a significantly
reduced cost and of arbitrary order will spawn new algorithmic approaches as well as new
problem-solving environments.

References

[1] Brett Averick, Richard G. Carter, and Jorge J. Moré. The MINPACK-2 test problem
collection (preliminary version). Technical Report ANL/MCS-TM-150, Mathematics
and Computer Science Division, Argonne National Laboratory, 1991.

[2] Brett Averick, Jorge Moré, Christian Bischof, Alan Carle, and Andreas Griewank. Com-
puting large sparse Jacobian matrices using automatic differentiation. Technical Report
MCS-P348-0193, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 1993.

[3] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland.
ADIFOR: Generating derivative codes from Fortran programs. Scientific Programming,

1(1):11-29, 1992.

[4] Christian Bischof, George Corliss, Larry Green, Andreas Griewank, Kara Haigler, and
Perry Newman. Automatic differentiation of advanced CFD codes for multidisciplinary
design. Journal on Computing Systems in Engineering, 3(6):625-638, 1992.

17

[5]

[9]

[10]

[11]

[12]

[13]

[17]

Christian Bischof, Larry Green, Kitty Haigler, and Tim Knauff. Parallel calculation
of sensitivity derivatives for aircraft design using automatic differentiation. Extended
Abstract, submitted to the 5th ATAA/NASA/USAF/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, 1994.

Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparse
Jacobians. ADIFOR Working Note #2, MCS-TM-158, Mathematics and Computer

Science Division, Argonne National Laboratory, 1991.

Christian H. Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hov-
land. Getting started with ADIFOR. ADIFOR Working Note #9, ANL-MCS-TM-164,

Mathematics and Computer Science Division, Argonne National Laboratory, 1992.

Christian H. Bischof and Moe El-Khadiri. Extending compile-time reverse mode and
exploiting partial separability in ADIFOR. ADIFOR Working Note #7, ANL-MCS—-
TM-163, Mathematics and Computer Science Division, Argonne National Laboratory,
1992.

Stephen L. Campbell, Edward Moore, and Yangchun Zhong. Utilization of automatic
differentiation in control algorithms. To appear in IEEE Trans. Automatic Control, 1993.

T. F. Coleman, B. S. Garbow, and J. J. Moré. Software for estimating sparse Jacobian

matrices. ACM Trans. Math. Software, 10:329 — 345, 1984.

T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph coloring
problems. SIAM Journal on Numerical Analysis, 20:187 — 209, 1984.

George Corliss and Andreas Griewank. Operator overloading as an enabling technol-
ogy for automatic differentiation. Technical Report MCS-P358-0493, Mathematics and
Computer Science Division, Argonne National Laboratory, 1993.

Lawrence C. W. Dixon. Use of automatic differentiation for calculating Hessians and
Newton steps. In Andreas Griewank and George F. Corliss, editors, Automatic Differen-
tiation of Algorithms: Theory, Implementation, and Application, pages 114 — 125. STAM,
Philadelphia, Penn., 1991.

Hans-C. Fischer. Differentiation arithmetic and applications in Pascal-XSC. Poster
presented at STAM Workshop on Automatic Differentiation of Algorithms, Breckenridge,
Colo., January 1991.

Tan Foster, Robert Olson, and Steven Tuecke. Programming in Fortran M. Techni-
cal Report ANL-93/26, Rev. 1, Mathematics and Computer Science Division, Argonne
National Laboratory, October 1993.

Tan T. Foster and K. Mani Chandy. Fortran M: A language for modular parallel program-
ming. Technical Report MCS-P327-0992, Mathematics and Computer Science Division,
Argonne National Laboratory, 1992.

Jean-Charles Gilbert. Automatic differentiation and iterative processes. Optimization

Methods and Software, 1(1):13-22, 1992.

18

[18]

[19]

[20]

[21]

[22]

[23]

[27]

[28]

[29]

[30]

[31]

Lawrence Green, Perry Newman, and Kara Haigler. Sensitivity derivatives for advanced
CFD algorithm and viscous modeling parameters via automatic differentiation. In Pro-
ceedings of the 11th AIAA Computational Fluid Dynamics Conference, AIAA Paper
98-3321. American Institute of Aeronautics and Astronautics, 1993.

Andreas Griewank. On automatic differentiation. In Mathematical Programming: Re-
cent Developments and Applications, pages 83-108, Amsterdam, 1989. Kluwer Academic
Publishers.

Andreas Griewank. Direct calculation of Newton steps without accumulating Jacobians.
In T. F. Coleman and Y. Li, editors, Large-Scale Numerical Optimization, pages 115-137,
Philadelphia, Pa., 1990. STAM.

Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity in
reverse automatic differentiation. Optimization Methods & Software, 1(1):35-54, 1992.

Andreas Griewank. Some bounds on the complexity of gradients, Jacobians, and Hes-
sians. Technical Report MCS-P355-0393, Mathematics and Computer Science Division,
Argonne National Laboratory, 1993.

Andreas Griewank, Christian Bischof, George Corliss, Alan Carle, and Karen Williamson.
Derivative convergence of iterative equation solvers. Technical Report MCS-P333-1192,
Mathematics and Computer Science Division, Argonne National Laboratory, 1992.

Andreas Griewank and George Corliss. Automatic Differentiation of Algorithms. STAM,
Philadelphia, Penn., 1991.

Andreas Griewank, David Juedes, and Jay Srinivasan. ADOL-C, a package for the
automatic differentiation of algorithms written in C/C++. Technical Report MCS-P180-
1190, Mathematics and Computer Science Division, Argonne National Laboratory, 1990.

Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices by the
Markowitz rule. In Andreas Griewank and George F. Corliss, editors, Automatic Dif-
ferentiation of Algorithms: Theory, Implementation, and Application, pages 126 — 135.
SIAM, Philadelphia, Penn., 1991.

Andreas Griewank and Philippe L. Toint. Partitioned variable metric updates for large
structured optimization problems. Numerische Mathematik, 39:119-137, 1982.

Uli HauBlermann. Automatische Differentiation zur Rekursiven Bestimmung von Par-
tiellen Ableitungen. STUD-102, Institut B fur Mechanik, Universitat Stuttgart, 1993.

Kieran Herley. On the NP-completeness of optimum accumulation by vertex elimination.
Unpublished manuscript, 1993.

Jim E. Horwedel. GRESS: A preprocessor for sensitivity studies on Fortran programs.
In Andreas Griewank and George F. Corliss, editors, Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application, pages 243 — 250. STAM, Philadelphia,
Penn., 1991.

David Juedes. A taxonomy of automatic differentiation tools. In Andreas Griewank and
George Corliss, editors, Proceedings of the Workshop on Automatic Differentiation of
Algorithms: Theory, Implementation, and Application, Philadelphia, 1991. STAM.

19

[32]

[33]

[34]

[40]

[41]

G. Kedem. Automatic differentiation of computer programs. ACM Trans. Math. Soft-
ware, 6(2):150 — 165, June 1980.

V. M. Korivi, A. C. Taylor, P. A. Newman, G. W. Hou, and H. E. Jones. An incremental
strategy for calculating consistent discrete CFD sensitivity derivatives. NASA Technical
Memorandum 104207, NASA Langley Research Center, February 1992.

Koichi Kubota. PADRE2, a FORTRAN precompiler yielding error estimates and second
derivatives. In Andreas Griewank and George F. Corliss, editors, Automatic Differenti-
ation of Algorithms: Theory, Implementation, and Application, pages 251 — 262. STAM,
Philadelphia, Penn., 1991.

P. A. Newman, G. J.-W. Hou, H. E. Jones, A. C. Taylor, and V. M. Korivi. Obser-
vations on computational methodologies for use in large-scale, gradient-based, multi-
disciplinary design incorporating advanced CFD codes. NASA Technical Memorandum
104206, NASA Langley Research Center, 1992.

G. M. Ostrovskii, Ju. M. Wolin, and W. W. Borisov. Uber die Berechnung von Ableitun-
gen. Wissenschaftliche Zeitschrift der Technischen Hochschule fir Chemie, Leuna-
Merseburg, 13(4):382 — 384, 1971.

Nicole Rostaing, Stephane Dalmas, and Andre Galligo. Automatic differentiation in

Odyssee. Tellus, 45a(5):558-568, October 1993.

G. R. Shubin, A. B. Stephens, H. M. Glaz, A. B. Wardlaw, and L. B. Hackerman. Steady
shock tracking, Newton’s method, and the supersonic blunt body problem. SIAM J. on
Sei. and Stat. Computing, 3(2):127-144, June 1982.

Edgar Soulie. User’s experience with Fortran compilers for least squares problems. In
Andreas Griewank and George F. Corliss, editors, Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application, pages 297-306. STAM, Philadelphia,
Penn., 1991.

V. N. Vatsa and B. W. Wedan. Development of a multigrid code for 3-D Navier-Stokes
equations and its application to a grid-refinement study. Computers & Fluids, 18(4):391—
403, 1990.

R. E. Wengert. A simple automatic derivative evaluation program. Comm. ACM,

7(8):463-464, 1964.

20

