
PARALLEL ALGORITHMS FOR ADAPTIVE MESHREFINEMENT�MARK T. JONES AND PAUL E. PLASSMANNyAbstract. Computational methods based on the use of adaptively constructed nonuniformmeshes reduce the amount of computation and storage necessary to perform many scienti�ccalculations. The adaptive construction of such nonuniform meshes is an important part of thesemethods. In this paper, we present a parallel algorithm for adaptive mesh re�nement that issuitable for implementation on distributed-memory parallel computers. Experimental resultsobtained on the Intel DELTA are presented to demonstrate that, for scienti�c computationsinvolving the �nite element method, the algorithm exhibits scalable performance and has a smallrun time in comparison with other aspects of the scienti�c computations examined. It is alsoshown that the algorithmhas a fast expected running time under the P-RAM computationmodel.1. Introduction. Adaptive mesh re�nement techniques have been shown tobe very successful in reducing the computational and storage requirements forsolving many partial di�erential equations [10]. Rather than use a uniform meshwith grid points evenly spaced on a domain, adaptive mesh re�nement techniquesplace more grid points in areas where the local error in the solution is large. Themesh is adaptively re�ned and/or unre�ned during the computation according tolocal error estimates on the domain. This technique is much more e�cient thanthe use of uniform meshes when the solution is changing much more rapidly insome areas than in others.The adaptive construction of these nonuniform meshes is a crucial part ofadaptive mesh solution methods and has been examined by many researchers, forexample, [3], [10], [11], [12], [13], [14], [15], [16], and [18]. Typically, one beginswith an initial mesh conforming to a particular geometry. This mesh is selectivelyre�ned, based on local error estimates, to construct a mesh that satis�es a certainerror tolerance. Most research has focused on meshes composed of simplicial ele-ments: line segments in one dimension, triangles in two dimensions, or tetrahedrain three dimensions. This paper focuses primarily on two-dimensional simplicialmeshes. However, the algorithms and analyses presented here are applicable toother dimensions and to nonsimplicial meshes.In this paper, we present a new parallel algorithm for the adaptive construc-tion of nonuniform meshes. This algorithm is well suited for implementation onmedium-grained distributed-memory parallel computers such as the Intel DELTA.The algorithm is based on the simplicial bisection algorithm given by Rivara [15].Our algorithm is scalable in that it has an expected run time that is a very slowlygrowing function of the triangles in the mesh.� This work was supported in part by the O�ce of Scienti�c Computing, U.S. Department ofEnergy, under Contract W-31-109-Eng-38.y The address of the �rst author is Computer Science Department, University of Tennessee,Knoxville, TN 37996. The address of the second author is Mathematics and Computer ScienceDivision, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439.1

To demonstrate the performance of this algorithm, we present experimentalresults obtained on the Intel DELTA. The results demonstrate that, for practicalscienti�c calculations, the algorithm exhibits scalable performance and a run timethat is much smaller than the other computations necessary for the entire solutionmethod.This paper is organized as follows. In x2 we review methods for adaptive meshre�nement. In x3 we present our algorithm and analyze its expected run time underthe P-RAM computation model. A medium-grained distributed-memory versionof the algorithm is detailed in x4. We discuss our experimental results from theIntel DELTA in x5. Finally, in x6 we summarize this research and discuss possiblefuture work.2. Adaptive Re�nement Methods. The �nite element method has provento be extremely e�ective in the computation of approximate solutions to partialdi�erential equations (PDEs). Our focus is on adaptive, or local, re�nement strate-gies for generating �nite element meshes. This approach can obtain much moreaccurate solutions to these problems than a uniform mesh with the same numberof elements.The computation of an approximate solution to a PDE consists of three maintasks: (1) the construction of the �nite element mesh, (2) the assembly of a sparselinear system, and (3) the solution of this linear system. Although we are notexplicitly discussing the last two tasks, they must be kept in mind. In particular,any method of local error estimation requires the approximate solution on a givenelement mesh.With a parallel implementation, we must remember that it is essential thatany adaptive mesh algorithm be integrated with parallel algorithms for the ma-trix assembly and the solution of the resulting linear system. In addition, withan adaptive strategy the assignment (or partitioning) of elements and vertices toprocessors must be updated with each modi�cation of the mesh to ensure thecontinued e�cient execution of the matrix assembly and linear system solution.k = 0Solve the PDE on TkEstimate the error on each trianglewhile the maximum error on a triangle is larger than the given tolerance doBased on error estimates, determine a set of triangles, Sk, to re�ne? Divide the triangles in Sk, and any othertriangles necessary to form Tk+1Solve the PDE on Tk+1Estimate the error on each trianglek = k + 1endwhile Fig. 1. A framework for the adaptive solution of PDEs2

Consider the general adaptive mesh algorithm [10] shown in Figure 1. Webegin by assuming that we have an initial element mesh given by the triangulationT0 consistent with the geometry of the problem domain. Our attention is focusedon the step in the algorithm where the current mesh Tk is adaptively re�ned (thestep denoted by the ? in Figure 1).Suppose that some arbitrary subset of triangles, Sk, of Tk is marked for re�ne-ment. We have developed and implemented parallel algorithms for constructinga new mesh Tk+1 that satis�es the required changes in the mesh. To keep ourpresentation clear and brief, we assume that the set Sk contains triangles markedonly for re�nement, not for unre�nement. However, our software is able to unre�netriangles that have been previously re�ned.The re�nement of the mesh must maintain several important properties, giventhat �nite element approximations are used. First, we require that each mesh Tkbe conforming (or compatible). That is, the intersection of any two triangles in Tkshould be a single vertex, a line segment connecting two vertices, or the empty set.A side of a triangle is called 1s+1-nonconforming if it has s > 0 vertices betweenany two endpoints. A triangle is called compatible if none of its sides are 1s+1 -nonconforming. Examples of conforming and nonconforming meshes are given inFigure 2. If the mesh is conforming, then only one basic type of �nite element isnecessary. Otherwise, several special element types are required, and/or a morecomplicated matrix assembly. Note, however, that the use of triangles does notrestrict one to linear �nite elements; one can use higher-order basis functions in atriangulation.Fig. 2. On the left, a conforming mesh; on the right, a nonconforming meshA second requirement is that the mesh Tk be graded (or smooth). That is,adjacent triangles should not di�er dramatically in area. A nonsmooth mesh couldresult in the �nite element approximation being very far from the continuous so-lution.A �nal requirement is that all angles in the mesh be bounded away from 0and �. The latter condition is necessary because the discretization error in a �niteelement approximation has been shown to grow as the maximum angle approaches� [1]. We would like to avoid small angles because the condition number of thematrices arising from mesh elements has been shown to grow as O(1�min), where�min is the smallest angle in the mesh [4].2.1. Related Work. A number of mesh re�nement algorithms have beenshown to maintain the mesh properties given above. In this section we brieyreview the three most widely used of these re�nement methods. To begin, we notethat there are two methods used to subdivide a triangle: bisection and regular3

re�nement. In bisection, a vertex of the triangle is connected to the midpoint ofthe opposite side of the triangle, as in Figure 3, forming two triangles of equal area.In regular re�nement, the midpoints of the sides of the triangle are connected, asin Figure 3, to form four similar triangles.Fig. 3. On the left, a triangle divided with bisection; on the right, a triangle divided by usingregular re�nementThe regular re�nement algorithm of Bank, Sherman, and Weiser [3] has beenused very successfully in the software package PLTMG [2]. Triangles are dividedby using regular re�nement and temporary bisections of selected triangles to makethe mesh conforming. The bisected triangles are merged before the mesh is re�nedagain. By merging the bisected triangles at each level, the method guaranteesthat each triangle in Tk+1 either is similar to a triangle in T0 or is a bisection of atriangle similar to a triangle in T0. Clearly, the angles in Tk+1 are bounded awayfrom 0 and �.The mesh re�nement algorithm 5.6 of Rivara [15] uses bisections of trianglesacross the largest edge (dividing the largest angle) and selective divisions acrosssmaller edges. This approach has been shown to yield triangulations, Tk, whosesmallest angle is bounded by at worst one-half the smallest angle in T0 [17]. Adetailed discussion of this algorithm is given in the following subsection.The newest-node algorithm of Sewell is also based on bisection, but withoutthe restriction on bisecting the longest edge [10]. In this algorithm, a triangleis always bisected by using its newest node. The propagation inherent in thebisection and regular re�nement algorithms is avoided by re�ning triangles only inpairs. However, because of the pair restriction, it is possible that a triangle maynever be able to be re�ned. In the experiments run by Mitchell [10], this di�cultydid not arise.Mitchell compared these three methods in a series of numerical experimentsand found that it was di�cult to choose a consistently superior algorithm [10].In addition, he found that all three methods were superior to using uniform re-�nement except on smooth problems. Given the similar performance of the threemethods, we choose to discuss the bisection algorithm in detail in this paper forthree reasons: (1) it is simpler from an implementation standpoint than the regularre�nement algorithm; (2) it manifests the propagation inherent in both the bisec-tion and regular re�nement algorithms and, therefore, demonstrates the ability ofour algorithm to handle such propagations; and (3) it does not have the potentialfor having \unre�nable" nodes as in the newest-node algorithm. We note, how-ever, that our algorithms are applicable to all three algorithms. In addition, only4

a simple modi�cation to our parallel implementation is required to implement thenewest-node algorithm.We note that Williams [19] has developed a voxel database approach to theparallel mesh re�nement problem. Our approach, which we present in the followingsection, di�ers from his approach in that we have explicit parallel runtime bounds.In addition, we have designed our approach to yield data structures that are moresuitable to the assembly of the sparse linear systems that arise from these meshesas well as the solution of these sparse linear systems by sophisticated iterative anddirect sparse factorization methods.i = 0Qi = Sk f Q always denotes triangles not yet re�nedgRi = ; f R always denotes children of re�ned trianglesgwhile (Qi [Ri) 6= ; doBisect each triangle in Qi across its longest edgeBisect each triangle in Ri across a nonconforming edgeAll incompatible triangles embedded in [ij=0Qj are placed in Ri+1All other incompatible triangles are placed in Qi+1i = i+ 1endwhile Fig. 4. The bisection algorithm2.2. The Bisection Algorithm. In Figure 4 we present the bisection algo-rithm. This algorithm is slightly altered, for ease of presentation, from Algorithm5.6 as presented by Rivara in [15]. However, this modi�ed algorithm yields thesame �nal mesh as the original algorithm presented by Rivara.Fig. 5. The process of the bisection algorithm is shown from left to right. In the initialmesh, the shaded triangles are re�ned; subsequently the shaded triangles are re�ned because theyare not compatible.To illustrate the bisection algorithm, we give an example of the propagationin Figure 5. Note that the re�nement could propagate through unmarked trianglesnot adjacent to marked triangles before �nishing. Rivara, however, has shown thatthis loop will terminate in a �nite number of iterations. We denote this numberof iterations by LP . In general, LP depends on the characteristics of the meshbeing re�ned. Rivara also has shown that each triangle in Tk embeds 1, 2, 3, or 4triangles of the resulting compatible mesh, Tk+1. We show the possible 2, 3, or 4resulting triangles in Figure 6. We formalize the following useful result from [15].Theorem 2.1. During the execution of the bisection algorithm, no side of atriangle may be divided more than once. 5

Fig. 6. The possible divisions of a single triangle in the bisection algorithmProof: Vertices may be created only when a triangle, as member of Qi, bisectsits longest edge|and then only if a vertex does not already exist in that location.Once a triangle is in Qi, its children are excluded from Qm for steps m > i andthus may not create vertices.Therefore, if a triangle ta containing the edge e creates a vertex on e at stepi, no further vertices will be created by that triangle or its children. Given thecreation of the vertex, a triangle tb adjacent to ta and sharing e would not createanother vertex on e when it is a member of someQj, j � i. In addition, the childrenof tb cannot create any vertices. Thus, at most one vertex may be inserted on anedge during re�nement. 23. Parallel Adaptive Re�nement. In this section, we present a parallelalgorithm for adaptive re�nement that correctly implements the bisection method.We illustrate the key aspect of this algorithm: the synchronization necessary for thecorrect parallel execution of the bisection algorithm. Finally, we give an analysisof the algorithm under the P-RAM computation model.First, we need the following de�nitions. Let V = fvi j i = 1; : : : ; ng be theset of vertices in the mesh and T = fta j a = 1; : : : ; mg be the set of polygons.We assume that the �nal mesh consists only of triangles (i.e., a conforming mesh).However, intermediate meshes can be nonconforming, hence we allow for thesenonconforming elements in our de�nition. Let G = (V;E) be the graph associatedwith the mesh, with edges E = f(vi; vj) j vi; vj 2 tag. Let D = (T;F) be the dualgraph associated with the mesh, where F = f(ta; tb) j (vi; vj) 2 ta; tbg.The re�nement algorithm will be formulated within the context of the dualgraph. To begin the P-RAM analysis, we assume that at any given time we haveas many processors as we have triangles and that triangle ta is assigned to theprocessor pa. For the analysis that follows, the speci�c P-RAM computationalvariant does not make a di�erence; one may assume that the CREW P-RAMmodel is used. Some synchronization must be managed during the execution ofthe algorithm to maintain the correct neighbor information in both the graph Gand the dual graph D as they are modi�ed. Thus, each processor pa must keeptrack of the current neighbors of ta in D. We note that the correct neighborinformation for G can be constructed in a straightforward way from D.To illustrate the synchronization required for the correct execution of the par-allel algorithm, we note the two ways that neighbor information can be corrupted.6

V

P

P
1

2

U

W

U

U

1

W

P2

1
P

W
1

2

2Fig. 7. On the left, two processors creating a vertex at the same location; on the right, apossible corruption of neighbor informationFirst, two di�erent processors must not create vertices at the same location whenbisecting their triangles. If two vertices are created at the same location, then apostprocessing step must be included to merge these vertices. We eliminate theneed for postprocessing by proper synchronization. In Figure 7 we see an exampleof two processors, P1 and P2, creating two vertices at the same location. Second,we must ensure that outdated neighbor information is not propagated. For exam-ple, in the same �gure we see that triangle U1 may believe that triangle W is itsneighbor, rather than triangleW1, if triangles U and W are re�ned simultaneously.The key observation is that both of these synchronization problems can beavoided if only triangles from an independent set in D are re�ned simultaneously.An independent set, I, is a subset of triangles of T such that no two triangles fromI are adjacent in D. Once these triangles are re�ned and neighboring trianglesare noti�ed, another independent set can be chosen for re�nement based on thecorrectly updated neighbor information. In the following subsection, we considertwo possible approaches for computing these independent sets in parallel.3.1. Two Methods for Computing Independent Sets in Parallel. Forthe purpose of the running time analysis for the re�nement algorithm, we reviewtwo approaches for computing the independent sets. Both of these approachesrequire that the graph be of bounded degree|which is true for the problem weconsider. The �rst approach uses an assignment of random numbers to the verticesof a graph to obtain a sequence of independent sets that is a slowly growing functionof the size of the graph. The second approach is to compute a graph coloring anduse this coloring to generate the independent sets. The advantage of the coloringapproach is that we can guarantee that the number of colors, and thus the numberof independent sets, is independent of the size of the graph for a bounded degreegraph. However, the computation of this coloring requires the use of the �rstrandom number approach; therefore, the coloring is useful only if it is used enoughtimes to justify the initial expense.First we consider the use of independent random numbers to generate theindependent sets. Suppose we wish to compute the sequence of independent setsfor the set of triangles T 0, a subset of T , in the corresponding subgraphD0 = D(T 0).For each triangle ta in D0 we assign a distinct, independent random number �(ta).We choose an independent set I from T 0 according to the following rule: ta 2 I if foreach of its neighbors tb inD, we have that either (a) tb =2 T 0 or (b) �(ta) > �(tb). We7

then update the set of triangles under consideration by deleting the independentset: T 0 T 0 n I. We are now free to generate the next independent set in thesequence using the same rule. This process continues until T 0 is the empty set.The expected number of independent sets is given by the following lemma.Lemma 3.1. Let D0 be a bounded degree, undirected graph with n vertices.Suppose each vertex t in D0 is assigned a unique independent random number �(t).Consider the sequence of independent sets generated by the above rule. The expectednumber of these independent sets is bounded by EO(log n=log log n).Proof: This bound is a consequence of Corollary 3.5 in [7]. 2We now consider a second approach for obtaining the sequence of independentsets. First, note that any valid coloring of the graph D = (T;F) can be used togenerate the required independent sets. Recall that the function � : T ! f1; : : : ; sgis an s-coloring of D, if �(ta) 6= �(tb) for all edges (ta; tb) 2 F . Thus, a sequenceof s independent sets can be generated from an s-coloring of D by assigning alltriangles of the same color to one of the sets.To e�ciently compute this coloring, we use the parallel greedy heuristic pre-sented in [7]. An outline of this heuristic is presented in Figure 8. The indepen-dent sets required for this heuristic can be generated by using the random numbermethod described above. The greedy step in the heuristic is the color assignment;the smallest consistent color for t is the smallest color not assigned to a neighborof t. T 0 TWhile T 0 6= ; doChoose an independent set I from T 0Color I in parallel by choosing the smallestconsistent color �(t) for each t 2 IT 0 T 0 n IenddoFig. 8. Outline of a parallel greedy coloring heuristicThe advantage of using a coloring to generate the independent sets is that fora bounded degree graph the maximum number of colors is independent of the sizeof the graph. We include this well-known result as the following lemma.Lemma 3.2. Consider a bounded degree graph, D, of maximum degree �.The parallel greedy coloring heuristic computes an s-coloring of D with s � �+1.Proof: Every vertex t is colored in the greedy heuristic by assigning it the smallestconsistent color. Since, at worst, every neighbor of t is a di�erent color, themaximumcolor assigned t required is the degree of t plus one. Thus, the maximumcolor assigned by the greedy heuristic to any vertex in D is � + 1. 2In sum, we have available two methods for generating the sequence of indepen-dent sets required for the parallel re�nement algorithm. For the following P-RAMrunning time analysis, it turns out that the best running time bound is obtained8

by maintaining a coloring of the dual graph comprising the triangles to be re-�ned. However, in practice, the overhead associated with maintaining the coloringis not advantageous. Hence, the �rst approach is used in the practical algorithmpresented in x4.3.2. A P-RAMAdaptive Re�nementAlgorithm. In Figure 9 we presenta P-RAM algorithm that avoids the synchronization problems discussed above, bysimultaneously re�ning triangles from independent sets in D. Note that the inde-pendent sets used for re�nement are also used to update the coloring. This updateis required because the dual graph is modi�ed after the bisection of a triangle. Inthe remainder of this section, we show that this algorithm avoids the two possiblesynchronization problems and has a fast run time.i = 0Based on local error estimates, a set of triangles, Q0, is marked for re�nementEach triangle, tj, in Q0 is assigned a random number, �(tj)The subgraph D(Q0) is colored by the parallel greedy coloring heuristicR0 = ;While (Qi [Ri) 6= ; doWi = QiWhile (Qi [Ri) 6= ; do finner loopgChoose an independent set in D, I, from (Qi [Ri)Simultaneously bisect each of the triangles in Iembedded in Qi across its longest edgeSimultaneously bisect each of the triangles in Iembedded in Ri across a nonconforming edgeEach new triangle, tj, is assigned the smallest consistentcolor, �(tj), and a new processorEach processor owning a bisected triangle updates thisinformation on processors owning adjacent trianglesQi = Qi n (I \Qi)Ri = Ri n (I \Ri)EndwhileRi+1 = All incompatible triangles embedded in [ij=0WjQi+1 = All other incompatible trianglesi = i+ 1Endwhile Fig. 9. Parallel algorithm for re�nementWe assume that the initial dual graph, D, is of bounded degree. In fact,because the triangulation of a surface is of primary interest, we assume that eachtriangle edge is shared by at most two triangles in the initial triangulation. In thiscase we have that maximumdegree of the initial conforming mesh is three. The factthat D has bounded degree not only is useful in the following runtime proof, but9

also is useful in practice. Design of data structures and software is simpli�ed if themaximum number of neighbors in the graph is bounded by a small constant. Wenow show that degree of any intermediate, nonconforming dual graph is boundedby at most twice the initial maximum degree.Lemma 3.3. The dual graph, D, is of bounded degree at all times duringthe execution of the algorithm. In fact, the degree of a vertex in D never exceedssix. As a result, the maximum number of colors required at all times during theexecution of the algorithm to color D is seven or less.Proof: From Theorem 2.1 each triangle edge is divided at most once. Therefore,a triangle can at most double the number of its neighbors. By Lemma 3.2, if themaximum degree of the dual is six, at most seven colors will be required duringthe execution of the re�nement algorithm. 2Because the degree of the dual graph remains bounded, we note that the workassigned to each processor during one pass through the inner loop of this algorithmcan be done in constant time under the P-RAM computational model. We nowshow that the two possible corruption problems discussed above cannot occur.Lemma 3.4. Neighbor information in the dual graph is correctly updatedduring the execution of the re�nement algorithm.Proof: The proof is by induction. We assume that the initial neighbor informationis correct and that the neighbor information is correct following step i� 1. If ta isbeing re�ned at step i, by the properties of the independent set none of its neighborsin D are being re�ned. The triangles, ta1 and ta2, resulting from bisection of tahave correct information about their neighbors. The former neighbors of ta can,therefore, be noti�ed of the re�nement of ta and be given the correct informationabout their new neighbors. Thus, following step i of the re�nement algorithm themodi�ed neighborhood information for D is correct. 2Lemma 3.5. No two vertices will be created at the same position during theexecution of the re�nement algorithm.Proof: Again, the proof is by induction. We assume that all vertices are uniqueinitially and following step i� 1. For a vertex to be created at the same positionat step i by two di�erent processors, one of two situations must occur: (1) twoprocessors must simultaneously re�ne the same edge, or (2) a processor must re�nea previously re�ned edge because it has not been noti�ed that a vertex has beencreated on that edge. The �rst condition is prevented by the de�nition of theindependent set|no adjacent triangles are re�ned simultaneously. The secondcondition is prevented by the correct noti�cation of neighbor information in Densured by Lemma 3.4. 2Finally, we give a bound on the expected running time of the re�nement algo-rithm.Theorem 3.6. Recall that LP is the number of loop iterations in the serialbisection algorithm in Figure 4. The algorithm given in Figure 9 terminates in a�nite number of steps and has an expected run time under the P-RAM computa-tional model of EO(logjQ0jlog logjQ0j) +O(LP). 10

Proof: First, we consider the expected running time to compute the initial coloringof D(Q0). By Lemma 3.1 this time is EO(logjQ0jlog logjQ0j).Next, we consider the running time for the inner loop of the re�nement algo-rithm at step i. De�ne the graph, Di = (Si; Fi), where Si is the set of trianglesQi [Ri to be re�ned at this step. The set Fi is the subset of edges (ta; tb) from Fwith ta; tb 2 Si. By Lemma 3.3, we know thatDi is always a bounded degree graph.Also by Lemma 3.3 the number colors required, and thus number if independentsets, is bounded by a constant. Hence the work assigned to any processor in theinner loop (the bisection of its triangle, updating the coloring, and the neighbornoti�cation) takes time bounded by a constant independent of the mesh size.Finally, we must show that it takes LP iterations of the outer loop to form aconforming mesh. Clearly, every triangle that becomes incompatible at step i isre�ned at step i + 1, just as in the sequential algorithm in Figure 4. Thus, thenumber of iterations of the outer loop in each algorithm is identical, LP .Hence, the total expected running time for the entire algorithm is bounded byEO(logjQ0jlog logjQ0j) +O(LP). 2We close this section with several notes about this running time analysis.First, since typically in this context the initial mesh to be re�ned was obtainedfrom a previous level of re�nement, the initial coloring step would not be required.Instead, a coloring of the mesh could be maintained between levels of re�nement.Using this information, the P-RAM running time of the algorithm would be O(LP).Fig. 10. On the left, the shaded triangle is marked for re�nement; on the right, the resultingconforming mesh after re�nement. Note that the re�nement has propagated through every trianglein the mesh but one.Finally, we close the analysis with some comments about LP , the length ofpropagation. We point out that it is easy to construct a worst case example wherejQ0j = O(1) and LP = O(jT j). For example, in Figure 10 we give an example thatcan be generalized to illustrate this worst case behavior. However, another way oflooking at this example is to assume that this particular mesh was generated fromprevious re�nements starting from a single triangle. In this case, the average lengthof propagation, LP , over all levels of re�nement, is actually constant. Furthermore,as we note with the experimental results presented in x5, the average number ofindependent sets required to obtain a conforming mesh appears to bounded by asmall constant and independent of the size of the mesh. Thus, we believe that thispossible worst case behavior of LP is not the ominous problem that it appears itcould be in a practical implementation.11

4. Distributed-Memory Implementation. For use on a practical parallelcomputer, we must modify the P-RAM algorithm analyzed in the preceding section.Rather than assigning a single triangle or vertex to each processor, we assign a set ofvertices and triangles to each processor. The vertices V are partitioned into disjointsubsets Vj, where processor j owns the subset Vj , and we have that V = Spj=1 Vj.We choose to partition the vertices rather than the triangles because we have foundthat it makes the �nite element evaluation, mesh re�nement, and sparse matrixassembly and solution (if necessary) more straightforward and e�cient. Based onthe partitioning of V , we determine a partitioning of T = Spj=1 Tj into disjointsubsets where processor j owns the subset Tj. In practice, one can assume that atleast one vertex of triangle in Tj is in the set Vj.For communication purposes, each processor, j, stores the set of triangles�Tj = Tj [adjD(Tj) [T (Vj), where adjD(Tj) is the set of triangles adjacent to atriangle in Tj in the dual graph D, and T (Vj) is the set of triangles containing avertex in Vj . In addition, processor j stores the set of vertices �Vj = V (�Tj), whereV (�Tj) is the set of vertices contained by all triangles in �Tj.Given the sets �Vj and �Tj, processor j has all the information necessary toevaluate all �nite elements that have vertices in Vj , assemble complete rows and/orcolumns of a sparse matrix associated with each vertex in Vj , and perform theparallel re�nement algorithm (yet to be speci�ed) on the triangles in Tj. Weillustrate these sets for some processor j in Figure 11. In this �gure we havepartitioned the vertices by the geometric cuts represented by the orthogonal dashedlines. The vertices in the interior of the four dashed lines have been assigned toprocessor j|the set Vj|and are shown as �lled vertices. The set �Vj is the set ofun�lled and �lled vertices, Tj is the set of shaded triangles, and �Tj is the set ofunshaded and shaded triangles.
Fig. 11. An illustration of the sets �Vj and �Tj maintained on processor j. The set of verticesassigned to processor j, Vj , is shown as the set of �lled vertices. The set of shaded triangles isthe set Tj . The union of the set of shaded and unshaded triangles is �Tj ; the union of the set of�lled and un�lled vertices is �Vj .In Figure 12 we present a practical version of the P-RAM algorithm given inFigure 9. The algorithm ensures that vertices are not created at the same locationand that the sets �Vj and �Tj on each processor j are correct. Note that, in thismodi�ed algorithm, if a triangle or vertex is created on processor j, processorj is its owner. The inner and outer loops in the P-RAM algorithm have been12

combined into a single loop for greater e�ciency; the separate loops allowed fora clearer presentation of the runtime bounds, but that is not necessary in thissection.Based on local error estimates an initial set of triangles, Q,is marked for re�nementEach triangle, ta 2 Q, is assigned a random number, �(ta)R = ;W = ;While (Q [R) 6= ; doChoose an independent set in D, I = Spj=1 Ij, from thetriangles in (Q [R), where Ij = I \ TjW = W [IEach processor, j, bisects the triangles in Ijembedded in Q across its longest edgeEach processor, j, bisects the triangles in Ijembedded in R across a nonconforming edgeFor each new triangle, tb, a new random number, �(tb), is chosenEach new triangle, tb, created on processor j is added to TjEach new vertex, vk, created on processor j is added to VjFor each triangle, ta 2 Ij noti�cation of bisection is sent to each processorl for which ((adjD(ta) \ Tl) 6= ;) or ((V (ta) \ Vl) 6= ;)Each processor receives noti�cation and updates its sets �Vj and �TjR = (R n (I \R))[Any incompatible triangles embedded in WQ = (Q n (I \Q))[All incompatible triangles not in REndwhile Fig. 12. A practical parallel algorithm for re�nementFor this algorithm, independent sets are chosen according to a slightly di�erentrule from the rule used in the P-RAM algorithm. The triangle ta is in Ij if, for eachof its neighbors tb in D, one of the following hold: (a) tb =2 (Q[R), (b) ta; tb 2 Tj,or (c) �(ta) > �(tb). This modi�cation allows two triangles on the same processorto be re�ned on the same step. The computation of the independent sets requiresno communication because each processor has all the necessary information in �Tjfor this computation. Communication of the random numbers is not necessary ifthe seed given the pseudo-random number generator used to determine �(ta) isbased solely on a. Thus, the only communication necessary in the algorithm is thenoti�cation of bisections and the global reduction required to determine whether(Q [R) 6= ;. For further e�ciency, the noti�cation messages can be packed sothat each processor receives at most one message from another processor duringeach time through the while loop.Because the modi�ed algorithm in Figure 12 uses essentially the same syn-chronization scheme presented in x3, collisions are avoided, and neighbors in D on13

separate processors are not simultaneously bisected. Thus, we have the followingtheorem.Theorem 4.1. All changes made by other processors to the triangles/verticesin the sets �Tj and �Vj on each processor j are received so that these sets are keptupdated throughout the algorithm in Figure 12.Proof: The sets Tj and Vj are updated correctly because only processor j canbisect triangles in this set or create new vertices in this set. Any changes totriangles or vertices in �Tj and �Vj attributable to changes in triangles or vertices inadjD(Tj) and V (Tj) are directly communicated in the algorithm.The remaining portion of �Tj, attributable to T (Vj), is accounted for because,if tk 2 T (Vj) is bisected on another processor, then V (tk)\Vj 6= ;, and noti�cationof this bisection will be sent and received.Finally, to show that the vertex neighbor information is correct, we note thatthe neighbor information is correct on the subgraph of D induced by �Tj. Thus,the neighbor information contained in the subgraph of G induced by �Vj must alsobe correct because �Vj = V (�Tj). 25. Experimental Results. In this section computational results are pre-sented that demonstrate that the parallel re�nement algorithm is scalable andthat its execution time is negligible compared with that of other computationsrequired to solve a PDE.The parallel re�nement algorithm is implemented as a subroutine library thatcan be called by an application program. Chameleon [5] is used to achieve porta-bility across several architectures, including the Intel DELTA, which is the focusof this section. Note that in addition to the re�nement algorithm, the subrou-tine library also includes a similarly constructed, parallel unre�nement algorithm.Because the unre�nement algorithm is necessary in many applications, includingone of those used here, and its performance is similar to the re�nement algorithm,results from it are included here as well. Results are presented for the parallelre�nement algorithm for two di�erent two-dimensional PDEs: Poisson's equationand the equations for linear elasticity. These problems are solved on two di�erentgeometries.5.1. Test Problems. Our �rst set of test problems models Poisson's equa-tion r2� (x) = f(x); x in S;(5.1) � (x) = 0; x 2 @S;where S is a square domain and a linear �nite element approximation is used. Thefunction f(x) is a Gaussian charge distribution centered at a point (Sx; Sy) insidethe domain. The mesh is selectively re�ned according to the energy norm [10] untilthe estimate of the local error on each triangle is less than a speci�ed tolerance.Further, the point (Sx; Sy) is moved several times, and a new solution/mesh is14

found from the old solution/mesh. This movement requires signi�cant mesh re-�nement around the new charge position and de�nement around the old positionwhile the remainder of the mesh remains relatively constant. The parallel con-jugate gradient method preconditioned by an incomplete factorization is used tosolve the sparse linear systems that arise [6].The second problem considered is the linear elasticity equations for the planestress problem, given (without inclusion of a load) as@2u@x2 + @2u@y2 = 1 + �2 (@2u@y2 + @2v@x@y) ;(5.2) @2v@x2 + @2v@y2 = 1 + �2 (@2v@x2 + @2u@x@y) ;where u and v are the x and y displacements, respectively. These equations aresolved on a rectangular region with a central hole. One side of the region is con-strained to have zero displacement, and a constant traction is applied to the op-posite side. Again, linear �nite elements are used to approximate these equations.The mesh is selectively re�ned according to the energy norm until the local errorestimate for each triangle is less than a speci�ed tolerance. The linear systems aresolved by using the same code used for the Poisson problem.In each problem set, the initial coarse mesh has approximately 200 nodesexcept when running on 128 and 256 nodes; in these cases the initial coarse meshesare approximately 2 and 4 times larger, respectively. For each of these problems,by carefully choosing the maximum tolerance for the local error estimator, one candetermine the maximum number of vertices in the solution meshes. The followingtwo problem sets have been constructed such that the �nal solution mesh for eachsuccessive problem has roughly twice as many vertices/triangles as in the previousproblem. Information about the two problem sequences is given in Tables 1 and 2.Table 1A sequence of test problems based on the Poisson problemMaximum Number Maximum Number Ratio of Area ofof Vertices in the of Triangles in the Largest Triangle toName Adaptive Mesh Adaptive Mesh Smallest TrianglePOISSON1 2,673 5,268 256POISSON2 5,176 10,260 512POISSON3 10,238 20,330 512POISSON4 20,296 40,412 1,024POISSON5 40,292 80,294 1,024POISSON6 80,116 159,872 2,048POISSON7 159,758 318,948 2,048POISSON8 318,796 636,882 4,096POISSON9 636,738 1,272,344 4,09615

Table 2A sequence of test problems based on the linear elasticity equations for the plane stress problemMaximum Number Maximum Number Ratio of Area ofof Vertices in the of Triangles in the Largest Triangle toName Adaptive Mesh Adaptive Mesh Smallest TriangleELASTIC1 1,460 2,767 156ELASTIC2 2,798 5,382 419ELASTIC3 5,535 10,768 512ELASTIC4 10,736 21,043 1,677ELASTIC5 21,325 42,041 2,048ELASTIC6 41,930 82,985 4,096ELASTIC7 83,308 165,387 6,443ELASTIC8 165,182 328,594 16,384ELASTIC9 329,087 655,691 12,886Tables 3 and 4 give the number of re�nement steps required for each problemduring the solution process. A re�nement step consists of �nding an approximatesolution to the PDE on the current mesh, Tk, by solving the sparse linear sys-tem arising from the �nite element model, computing estimates for the local errorat each triangle, and then re�ning Tk according to these estimates to obtain theconforming mesh, Tk+1. One observes that, not unexpectedly, it takes more meshre�nement steps to construct the larger meshes. In addition, the number of iter-ations through the loop in the algorithm in Figure 12 is given. The number ofiterations should be at least LP and perhaps a slowly growing function of the meshsize because we use the random number rule to generate the independent sets.One notes that the number of loop iterations needed is a slowly growing functionof the number of processors and problem size. This result indicates that one can,in general, achieve scalable performance, as may be expected from Theorem 3.6.For the POISSON problem set, the charge location was moved twice; thismovement meant that at two solution steps the mesh was not only re�ned aroundthe charge, but also unre�ned around the old charge position. However, therewere still more re�nement operations/steps than unre�nement operations. Nounre�nement was necessary in the ELASTIC problem set; the load function wasunchanged.A good partitioning of the vertices for each of these problems is necessaryfor the new algorithm to perform e�ciently. Many good partitioning methodsare available; a geometric partitioning algorithm [8] was chosen for this work.Figure 13 shows the average number of partitions that are adjacent to a givenpartition. This information gives some sense of the number of processors eachprocessor shares triangles with and must, therefore, exchange information with.Figure 14 shows the percentage of the total triangle edges that have endpoints ontwo di�erent processors. This data gives some sense of the number of triangles each16

Table 3Number of re�nement steps and loop iterations for the sequence of Poisson test problemsNumber of Number of Average NumberName Processors Re�nement Steps of Loop IterationsPOISSON1 1 14 1.64POISSON2 2 14 2.14POISSON3 4 17 2.24POISSON4 8 18 2.17POISSON5 16 19 2.47POISSON6 32 20 2.40POISSON7 64 23 2.57POISSON8 128 24 2.46POISSON9 256 23 2.35Table 4Number of re�nement steps and loop iterations for the sequence of linear elasticity test prob-lems Number of Number of Average NumberName Processors Re�nement Steps of Loop IterationsELASTIC1 1 6 3.17ELASTIC2 2 8 3.13ELASTIC3 4 9 3.56ELASTIC4 8 9 4.22ELASTIC5 16 11 3.91ELASTIC6 32 11 4.45ELASTIC7 64 12 5.08ELASTIC8 128 12 5.00ELASTIC9 256 12 4.83processor has that must be coordinated with another processor. Note that thesevalues initially rise rapidly, as one would expect, until approximately 16 processorsare in use. For larger numbers of processors, these values increase very slowly.5.2. Experiments. The experiments were run on up to 256 nodes of theIntel DELTA. The DELTA parallel computer is a mesh-connected, 16 � 32 arrayof Intel i860 microprocessors.1 In all of the experiments, the reported times aregiven in seconds. The operations rates indicate the number of bisections and vertexdeletions (note that vertex deletions correspond to unre�nement and constitute asmall percentage of the total) per second.1 Note that because of constraints on the amount of time available to us on the DELTA, the512-processor case was not run. We believe, however, that the results convincingly demonstratethe e�ectiveness of the parallel re�nement algorithm.17

100 200

POISSON
ELASTIC

Number
of

Neighbors

4

6

2

Number of ProcessorsFig. 13. The average number of partitions each partition is adjacent to in the �nal mesh
POISSON
ELASTIC

100 200

5

3

1

Number of Processors

Percentage of

Cross-Edges Fig. 14. The percentage of cross-edges in the �nal meshTo demonstrate the scalability of the new algorithm and implementation, wedesigned the problems from each test set to have nearly equal numbers of verticesfrom the �nal mesh assigned to processors. This fact can be seen in Tables 1and 2, which show how many processors each problem was run on and the size ofthe �nal meshes. Each of the test problems is re�ned in localized regions of themesh; therefore, some processors have more re�nement work than others. Thisload imbalance is reected in Tables 5 and 6, which give the average numberof operations per processor per step and the average of the maximum numberof operations on a single processor per step. The average number of operationsfalls as the number of processors increases; this decrease results because morere�nement steps are taken to achieve the same number of vertices per processor inthe �nal mesh. The average maximum number of operations increases because, asthe mesh size increases, more re�nement is concentrated in the same size area inwhich a limited number of processors are working. Recall that the entire mesh isrepartitioned after each re�nement step. Thus, this concentration of new elementsis continuously redistributed to processors with fewer elements.However, even given these handicaps, the results demonstrate that the algo-rithm performs quite well. Figure 15 shows the average number of re�nementoperations per second per processor as a function of the number of processors. If18

Table 5The number of re�nement operations for the Poisson problem sequenceAverage Number of Average of theNumber of Operations per Maximum Number ofName Processors Processor Operations per ProcessorPOISSON1 1 201 201POISSON2 2 193 214POISSON3 4 160 205POISSON4 8 150 284POISSON5 16 142 416POISSON6 32 134 535POISSON7 64 116 500POISSON8 128 111 573POISSON9 256 116 691
POISSON
ELASTIC

100 200
Number of Processors

100

300

500

700

Number of
triangles

per secondFig. 15. The average number triangles re�ned per processor per secondre�nement were occurring uniformly on all processors, one could expect this rate tobe nearly constant; however, in the test problems, as in most practical problems,this is not the case. Figure 16 shows a more interesting rate, the maximumnumberof re�nement operations per second on an individual processor. One would expectthis rate to remain constant, or nearly so, if the algorithm is perfectly scalable.With the POISSON problem set, one sees very little degradation in the max-imum re�nement rate. One might expect some degradation resulting from theincreasing number of neighbors each processor must exchange information withas the number of processors increases. However, with the POSSION problem setthe increase in the number of neighbors is o�set by the rapidly increasing maxi-mum number of operations per processor (given in Table 5). With the ELASTICproblem set one observes this expected degradation because the maximum num-ber of operations per processor is increasing only moderately. Prior to reaching16 processors, the maximum rate of re�nement is rapidly changing because of the19

Table 6The number of re�nement operations for the linear elasticity problem sequenceAverage Number of Average of theNumber of Operations per Maximum Number ofName Processors Processor Operations per ProcessorELASTIC1 1 214 214ELASTIC2 2 164 166ELASTIC3 4 149 208ELASTIC4 8 147 272ELASTIC5 16 120 251ELASTIC6 32 119 296ELASTIC7 64 108 284ELASTIC8 128 107 326ELASTIC9 256 107 318
POISSON
ELASTIC

100 200
Number of Processors

100

300

500

700

Number of
triangles

per secondFig. 16. The maximum number of triangles re�ned per second on an individual processorincreasing communication requirements as the the number of processor neighborsand the percentage of cross-edges increases. After reaching 16 processors, thenumber of processor neighbors and the percentage of cross-edges stabilizes, andone sees approximately a 20% degradation in the rate of re�nement from 16 to 256processors.Results given in Figure 17 demonstrate that, for a reasonably complex set ofproblems, the time to solve the linear systems dominates the time to re�ne themesh for any number of processors. In fact, the total re�nement time is alwaysless than 4 percent of the total execution time. Note that a linear system is solvedafter each level of re�nement. So, for example, the total execution time shownfor 128 processors in Figure 17 includes the assembly and solution of 13 sparselinear systems. The time represented by the white region in the bar graph iscomposed almost entirely of the sum of the times required for the repartitioning ofthe mesh after each level of re�nement. This partitioning time includes the time20

1 2 4 8 16 32 64 128 256

100

200

300

400

Number of Processors

Time (sec)
Execution
Total

Matrix Solution Time

Refinement Time

Other (Partitioning, etc.)

Fig. 17. A comparison of the re�nement times with the times required for all other aspectsof the problem solution for the linear elasticity problem sequenceto move vertices, triangles, and the data associated with them between processors.We note that the implementation of our partitioning heuristic is preliminary; webelieve that these times can be signi�cantly reduced.To examine the total running time in more detail, we consider one problem,ELASTIC9, run on 256 processors. In Figures 18 we show the time requiredto solve the linear system and the number of nonzeros in the assemblied matrixas a function of the re�nement level. Initially the matrix size is doubling afterevery level of re�nement, since most triangles are bisected at each re�nement step.However, for the last several re�nement levels only small areas of the mesh arebeing re�ned. As a result, the interpolated solution from the previous mesh is anexcellent initial guess to the solution on the re�ned mesh, and only a small numberof conjugate gradient iterations are required to obtain a solution that satis�es thespeci�ed tolerance for the relative residual.For the same problem, ELASTIC9 run on 256 processors, we show in Figure 19the time required to re�ne the mesh as a function of the re�nement level. Inthe �gure we show the number of vertices that have been added to the mesh atthat level of re�nement. Note that re�nement time continues to increase after thenumber of vertices reaches a maximum. This e�ect can be explained by noting thatthe areas of the computational domain on which re�nement is occurring becomecon�ned to fewer processors as the mesh is re�ned. Recall from Figure 16 that itis the maximum rate of re�nement on a processor that is constant. Thus, becausethe re�nement is occurring on a smaller number of processors, the average rate ofre�nement is worse at the higher levels of re�nement This behavior explains the21

1

30

50
Linear

System

Solution

Time

(sec)

10

20

60

40

3

4

5

2

SOLUTION TIME

Matrix

Nonzeros

(millions)

NONZEROS

3 5 7 9 11 13

1

6

Refinement LevelFig. 18. The time required to solve the linear systems and the number of nonzeros in theassembled linear system at each level of re�nement for problem ELASTIC9 run on 256 processorsof the Intel DELTA
REFINEMENT TIME
VERTICES ADDED

1

(sec)

3 5 7 9 11 13

Total

Time

0.5

1.0

1.5

2.0

2.5

3.0

40

80

60

20

(thousands)

Created

Vertices
Refinement

Refinement LevelFig. 19. The re�nement times and the number of vertices added at each level of re�nementfor problem ELASTIC9 run on 256 processors of the Intel DELTAdecrease in the average rate of re�nement as a function of the number of processorsas shown in Figure 15.6. Concluding Remarks. We have described a parallel algorithm for theadaptive re�nement of meshes. This algorithm was shown to run in provably fasttime under a P-RAM model of computation. In addition, we described an e�cientmethod of implementation for this algorithm on a practical, distributed-memoryparallel computer. We then gave results for two problems that demonstrate thescalable nature of this algorithm.The results given in this paper are for a two-dimensional triangular mesh.The use of independent sets for parallel synchronization, however, generalizes tothe three-dimensional case as well as other re�nement algorithms. The next logicalstep in this work is to develop theoretical results for three-dimensional tetrahedral-22

izations as well as a practical, parallel implementation for three dimensions. Inaddition, we note that the use of higher-order basis functions is straightforwardin this methodology; in fact, we include this functionality in the current parallelimplementation [9]. REFERENCES[1] I. Babu�ska and A. K. Aziz, On the angle condition in the �nite element method, SIAMJournal of Numerical Analysis, 13 (1976), pp. 214{226.[2] R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Di�erential Equa-tions. Users' Guide 6.0, SIAM Publications, Philadelphia, Penn., 1990.[3] R. E. Bank, A. H. Sherman, and A. Weiser,Re�nement algorithms and data structuresfor regular local mesh re�nement, in Scienti�c Computing, R. Stepleman et al., ed.,IMACS/North-Holland Publishing Company, Amsterdam, 1983, pp. 3{17.[4] I. Fried, Condition of �nite element matrices generated from nonuniform meshes, AIAAJournal, 10 (1972), pp. 219{221.[5] W. D. Gropp and B. F. Smith, Users Manual for Chameleon Parallel ProgrammingTools, ANL Report ANL-93/23, Argonne National Laboratory, Argonne, Ill., 1993.[6] M. T. Jones and P. E. Plassmann, BlockSolve v1.0: Scalable library software for theparallel solution of sparse linear systems, ANL Report ANL-92/46, Argonne NationalLaboratory, Argonne, Ill., 1992.[7] , A parallel graph coloring heuristic, SIAM Journal on Scienti�c Computing, 14 (1993),pp. 654{669.[8] , Parallel algorithms for the adaptive re�nement and partitioning of unstructuredmeshes, in Proceedings of the 1994 SHPCC, IEEE, 1994, pp. 726{733.[9] , Computational results for parallel unstructured mesh computations, InternationalJournal of Computing Systems in Engineering (to appear).[10] W. F. Mitchell, A comparison of adaptive re�nement techniques for elliptic problems,ACM Transactions on Mathematical Software, 15 (1989), pp. 326{347.[11] R. V. Nambiar, R. S. Valera, K. L. Lawrence, R. B. Morgan, and D. Amil, Analgorithm for adaptive re�nement of triangular element meshes, International Journalfor Numerical Methods in Engineering, 36 (1993), pp. 499{509.[12] W. C. Rheinboldt and C. K. Mesztenyi, On a data structure for adaptive �nite elementmesh re�nements, ACM Transactions on Mathematical Software, 6 (1980), pp. 166{187.[13] M.-C. Rivara, Algorithms for re�ning triangular grids suitable for adaptive and multigridtechniques, International Journal for Numerical Methods in Engineering, 20 (1984),pp. 745{756.[14] , Design and data structure of fully adaptive, multigrid, �nite-element software, ACMTransactions on Mathematical Software, 10 (1984), pp. 242{264.[15] , Mesh re�nement processes based on the generalized bisection of simplices, SIAMJournal of Numerical Analysis, 21 (1984), pp. 604{613.[16] , Selective re�nement/dere�nement algorithms for sequences of nested triangulations,International Journal for Numerical Methods in Engineering, 28 (1989), pp. 2889{2906.[17] I. G. Rosenberg and F. Stenger, A lower bound on the angles of triangles constructedby bisecting the longest side, Mathematics of Computation, 29 (1975), pp. 390{395.[18] E. G. Sewell, A �nite element program with automatic user-controlled mesh grading, inAdvances in Computer Methods for Partial Di�erential Equations III, R. Stepleman,ed., IMACS, New Brunswick, 1979, pp. 8{10.[19] R. Williams, A dynamic solution-adaptive unstructured parallel solver, Report CCSF-21-92, Caltech Concurrent Supercomputing Facilities, California Institute of Technology,Pasadena, Calif., 1992. 23

