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2 J.M. RESTREPO, G. K. LEAFthe context of projection techniques, their convergence properties are as good asor better than Fourier methods, and they permit the analysis of extremely localfunctional behavior without the need for windowing and with little or no bias fromglobal behavior; and (5) the manner in which the space is broken down into a familyof multiply-enclosed subspaces enables spatial or temporal function multiresolutionanalysis.This study is devoted to the numerical calculation of connection coe�cients in-volving periodized Daubechies wavelets. Connection coe�cients are matrix struc-tures that result from the evaluation of inner products
j;k � Z '(d0)j;k0'(d1)j;k1 :::'(dn)j;kndx;where di is the number of di�erentiation with respect to x of the scaling function' = '(x). Inner products arise naturally in the context of the Galerkin solution ofdi�erential equations. The name for these inner products was coined by Latto etal. [6], who developed the computational method presented herein. It replaces aquadrature problem by a linear algebra problem. Since the method is simple, fast,and general, it was considered worthy of implementing numerically. The methodis evaluated by consider how wavelet-Galerkin methods approximate several of themost often-used di�erential operators. We also treat the general implementationof matrices arising in the wavelet Galerkin solution of spatially-periodic problems.Finally, information is provided on how to obtain a connection coe�cients numericalcode.The value of wavelets hinges on their ability to perform multiresolution analysis.A multiresolution analysis is a nested sequenceV0 � V1 � ::: � L2(R)satisfying the following properties:(1) Tj2Z Vj = 0.(2) closL2 (Sj2Z Vj) = L2(R).(3) f(x) 2 Vj , f(2x) 2 Vj+1.(4) There is a function ' 2 V0 such thatf'0;k(x) = '(x� k)gk2Z forms a Rieszbasis for V0:The term ' is called the mother scaling function since, from (3), there exists fhkg 2l2 such that '(x) =p2Xk2Z hk'(2x� k):This relation, called the scaling relation, will also hold for '(2x) and, by induction,for '(2jx). In accordance with the notation in (4), we denote the translates anddilations of ' by 'j;k(x) = 2 j2'(2jx � k):The set f'j;kgk2Z forms a Riesz basis for Vj . We de�ne Wj to be the orthogonalcomplement of Vj with respect to Vj+1. Just as Vj is spanned by dilations and



WAVELET INNER PRODUCT COMPUTATION 3translations of the mother scaling function, so are theWj 's spanned by translationsand dilations of the mother wavelet. The mother wavelet is de�ned by (x) =p2Xk (�1)k�1h�k+1+2M'1;k(x);with M a particular integer. Daubechies [2] constructed compactly supportedwavelets and scaling functions using a �nite set of nonzero fhkgN�1k=0 scaling param-eters with N = 2M and PN�1k=0 hk =p2. M is the order of the wavelet function.With these scaling parameters, the recursion formulas generate the desired orthog-onal wavelets and scaling functions with supp(') = [0;N � 1]. Henceforth, thesewill be the wavelets we shall use, which we refer to as Daubechies wavelets of genusN . Values for ' are calculated using the scaling relation as indicated in the follow-ing procedure. First, the values it takes are determined at integer points. Then atthe dyadic rationals at level 1 (the dyadic rationals at level j are D j = f k2j gk2Z );using that information, we calculate the values at D j+1 and so on, until ' is de�nedat the dyadic rationals at all levels. Since the dyadics are dense in the reals, wesimply extend ' continuously to R. This procedure creates a function that is con-tinuous but not di�erentiable for N = 4, di�erentiable but not twice di�erentiablefor N = 6, and with increasing regularity for increasing N [2]. The nature of thescaling relation guarantees that ' will be discontinuous in some derivative [7]. Thisprocedure is easily accomplished computationally.Another pleasing feature of these wavelets is their compact support. WhereasFourier methods return global results, with compactly supported wavelets one caneasily analyze short-lived events or pulses. Wavelet projection methods avoid dis-tortion that might result from a local analysis with a windowed Fourier transform.As we shall see in the next section, compact support also makes the periodizationof these wavelets an elegant process.In addition to items (1){(4) mentioned above, wavelets have a number of otherinteresting properties. These will be given without proof. For further details, seeDaubechies [2] or Chui [1].(5) f'j;kgj�0;k2Z is an orthonormal basis for L2(R).(6) Vj+1 = VjLWj(7) L2(R) = closL2(V0L1j=0Wj):(8) f'0;k;  j;kgj�0;k2Z is an orthonormal basis for L2(R).(9) R1�1 '(x)dx = 1.(10) Pk2Z '0;K = 1.(11) R1�1  (x)xkdx = 0 : k = 0; :::;M � 1.(12) fxkgM�1k=0 2 VN .Item (6) is really the heart of multiresolution analysis and provides wavelet-basedanalysis with a distinctly di�erent resolving quality in contrast to spectral methods:to go to a higher resolution of spatial scale, one simply adds on the next wavelet level(the nextWj) as implied by item (6). At some given level (say, with a representationin Vj), the multiresolution property guarantees all spatial scale information at allcoarser levels. In contrast, with Fourier methods, information about one frequencygives no information about other frequencies.



4 J.M. RESTREPO, G. K. LEAF[2]. Periodized WaveletsThe wavelets developed above are de�ned on the whole real line. For manyapplications, however, wavelets de�ned on a periodic domain are needed. Inter-estingly, the wavelets de�ned above can be periodized with a Poisson summationtechnique to give periodic wavelets [2] that possess many of the same properties oftheir nonperiodic kin. Moreover, for large enough j, the periodization of 'j;k and j;k is identical to their nonperiodic forms except for wrapping around the edgesof the domain; and for large enough j, this too can be reduced to the nonperiodiccase for most calculations. As would be expected, many of the above-mentionedproperties are preserved in the periodic case as a result of the construction by the\scaling" property of the nonperiodic functions and their compact support.The wavelets are periodized as follows:~'j;k(x) �Xl2Z 'j;k(x � l) and ~ j;k(x) =Xl2Z  j;k(x � l):By construction ~' and ~ are periodic and are well de�ned on [0; 1] since ' and  have compact support. Note that 'j;k = 'j;k0 if k � k0mod(2j). Thus we shallrestrict our attention to 0 � k < 2j . The same holds for the  's. In what follows,the properties of the periodic wavelets will be investigated in detail.Periodized wavelet bases are not generated in quite the same way as the nonperi-odic versions. In the nonperiodic case, bases are generated by repeated translationand dilation of the mother functions; but this approach is not possible in the pe-riodic case because periodization does not commute with dilation. Therefore, thewavelet must be �rst dilated, then periodized. Although proof can be shown for thegeneral case, we shall instead show that the elements in Vj for j � 0 are all constantfunctions. If dilation commuted with periodization, this would not be true.Proposition. For j � 0, 'j;k = 2�j2 :Proof. Since 'j;k = 2 j2'(2jx� k);then ~'j;k =Xl2Z 2 j2'(2j(x � l)� k)= 2 j2 2�j�1Xb=0 Xl2Z '(2jx� (l + b2�j )� k):Letting y = 2jx and summing over l, we obtain~'j;k = 2 j2 2�j�1Xb=0 1 = 2�j2 :� The most important property to be carried over to the periodized case is, ofcourse, that the new functions form an orthonormal basis for L2[0; 1].



WAVELET INNER PRODUCT COMPUTATION 5Proposition. f'j;k : j � 0; 0 � k < 2jg forms an orthonormal basis for L2[0; 1].De�nition:. hf; gi = R f(x)g(x)dx, the standard L2 inner product.Proof. We begin by showing that h ~'j;k; ~'j0; k0i = 0:h ~'j;k; ~'j0; k0i = 2 j+j02 Z 10 Xl;l02Z '(2j(x� l) � k)'(2j0 (x� l0) � k0)dx:Let y = x� l0, so thath ~'j;k; ~'j0; k0i = 2 j+j02 Z 10 Xl;l02Z '(2j(x � l)� k)'(2j0(x � l0)� k0)dx= 2 j+j02 Xr2Z Z 1�1 '(2jy + 2jr � k)'(2j0y � k0)dx=Xr2Z h'j;k+2jr; 'j0;k0i = �jj0�kk0 ;with l� l0 = r. Thus ~'j;k and ~'j0;k0 are orthonormal. Next we show that they forma basis for L2[0; 1].Choose an arbitraryf 2 L2[0; 1]. Now consider~f (x) = f(x)x 2 [0; 1] = 0x =2 [0; 1]:~f 2 L2(R) and f'j;kg form an orthonormal basis for L2(R); so we have ~f =P0�jk2Z h ~f ; 'j;ki which, when periodized, becomesf(x) =Xl2Z ~f (x � l) =Xl2Z X0�jk2Z h ~f ; 'j;ki =X0�jk2Zh ~f ; ~'j;ki:This �nal result is actually a �nite sum since, for k � 2j and k � 1�N , supp('j;k)\supp( ~f ) = ;. Thus f has a representation in the periodized wavelets.� The proof that f ~'j;k; ~ j0;k : j0 � j � 0; 0 � k < 2jg also form an orthonormalbasis is nearly identical. Since '(x) = PN�1k=0 hk'(2x � k), we can periodize bothsides to get ~'(x) =Xl2Z '(x � l) =Xl Xk hk'(2(x � l)� k)=Xk Xl hk'(2(x � l)� k)=Xk hk ~'1;k(x):



6 J.M. RESTREPO, G. K. LEAFThus we have an orthonormal basis that still has a scaling relation. This meansthat in comparison with the nonperiodic case, we have a chain of spaces ~V0 � ~V1 �::: � L2[0; 1] with the following properties:(13) Sj�0 ~Vj = L2[0; 1] with ~Vj = spanf ~'j;kg2j�1k=0 .(14) Tj2Z ~Vj = fconstant functionsg:(15) f(x) 2 ~Vj , f(2x) 2 ~Vj+1:(16) By de�ning ~Wj = spanf ~ j;kg2j�1k=0 we see that ~Wj is the orthogonal com-plement of ~Vj in ~Vj+1. So then clos(V0L1j=0Wj) = L2[0; 1].Clearly di�erences exist between the properties of the periodic case and the nonpe-riodic case. While they are both multiresolution spaces, the basis functions in thenonperiodic case are all formed by translations and dilations of the mother scalingfunction, ', while in the periodic case it is often impossible to derive ~'j+1 from ~'j(for example, consider ~'1 and ~'0; the latter is a constant function and thus unableto represent the former). It turns out, however, that there is no relation between~'j+1 and ~'j for very small j only. For j suitably large, the periodic case actuallylooks exactly the same as the nonperiodic case. This result is formalized as follows.Proposition. For j � log2(N�1), ~'j;0 = 'j;0, where ~' is extended to R by settingit to 0 away from the unit interval.Proof. supp('j;0) = [0; 2�j(N �1)], so for j � log2(N �1); supp('j;0) = [0; �]; � �1. Thus ~'j;0(x) =Pl2Z 'j;0(x � l) = 'j;0:� Thus, for large enough j, the periodization will a�ect the functions only by\wrapping them around" the edges of the domain. This is also a strong argumentfor using the scaling functions as trial-and-test functions when using periodizedwavelets. By choosing j well, calculations can be performed as in the nonperiodiccase; if desired, a multiresolution can then be performed easily. Calculations willnot be so simple if ~V0Ljk=1 ~Wk is used as a test space, because, for low k, the basisfor ~Wk is not equivalent to the basis for Wk.[3]. Approximation ResultsA function f 2 L2[0; 1] may be projected into the wavelet basis and expressedas f = Pk akj ~'j;k, where akj = hf; ~'j;ki: Since the calculation of ajk is usuallyhard to evaluate analytically, numerical methods must be employed. In [8], amethod was developed by using Taylor series expansions to approximate f . Themethod requires use of the moment equations to make O(hn) approximations forf 2 Cn: Unfortunately, in applications such as signal processing or any area whereonly a �nite number of samples of f are provided, this method fails or requiresinterpolation. As an alternative, a function f given as samples on D j \ [0; 1] maybe approximated by a function ~f 2 ~Vj .De�ne the samples of f as f�! 2 R, with the k-th component of f�! = f(k�12j ):Construct ~'j;k��! from ~'j;k as shown previously. This yields, for j > log2(N � 2), alinearly independent spanning set for R2j. Further, since supp( ~'j;0) = [0; 2�j(N �



WAVELET INNER PRODUCT COMPUTATION 71), ~'j;k��! takes only N � 2 values on D j , and ~'j;k��! is just the k-th forward cyclicpermutation of the elements of ~'j;0��!. The problem is thus reduced to �nding theunique representation of f�! in terms of f ~'j;k��!g0�k<2j , which is simply the solutionof A v�! = f�!;where A is the very sparse transformation matrix from the standard basis to the~'�! basis. De�ne ~f (x) =Pk v�!(k) ~'j;k(x): By construction, ~f jDj = f .In summary, this method involves solving the inverse problem with a sparsematrix, and results in a function ~f with ~f jDj = f: In essence, ~f will be equal to fat all the sampled values.We next show the manner in which the periodized wavelets may be used in thecontext of functional approximation. Since the wavelets form an orthonormal basis,the orthogonal projection operators onto Vj and Wj are de�ned respectively asPj(f) = 2j�1Xk=0 hf; ~'j;ki ~'j;k ; Qj(f) = 2j�1Xk=0 hf; ~ j;ki ~ j;k :As we have already seen, periodized wavelets provide a basis for L2[0; 1] so we havekf �Pjfk2 ! 0, as j !1. This is a property of any orthonormal basis of L2, butthis particular periodized basis has some additional properties.Theorem. If f is a continuous function on the torus, then kf � Pjfk1 ! 0 asj !1.Proof. We begin the proof by showing that our projection operator is bounded. Pjis an integral operator of the form Pjf(x) = R 10 P2j�1k=0 ~'j;k(y) ~'j;k(x)f(y)dy. Thus,kPjk1 � supx2[0;1] Z 10 j 2j�1Xk=0 ~'j;k(y) ~'j;k(x)jdy� supx2[0;1]2 j2 j 2j�1Xk=0 ~'(2jx� k)j2 j2 k ~'k12 j2 [2�j(N � 1)]� supx2[0;1]j 2j�1Xk=0 ~'(2jx� k)jk ~'k1(N � 1):Now, jP2j�1k=0 ~'(2jx � k)j < (N � 1)k ~'k1 since for j � log2(N � 1) there are atmost (N � 1) k's such that for a given x, fxg \ supp( ~'j;k) 6= ;. Hence, we havekPjk1 � k ~'k21(N � 1)2:If we take f 2 Sj2N Vj , then 9J such that 8j � J;Qjf = 0. Thus, Pjf = f forj � J . Sj2N Vj is dense in L2[0; 1] which is dense in C(T), continuous functionsof period 1 on the unit interval, Finally, by the boundedness of Pj , the theoremfollows.�



8 J.M. RESTREPO, G. K. LEAFTheorem. (Daubechies) If f 2 L1[0; 1], then kf � Pjfk1 ! 0 as j !1 [2].Proof. Since L1[0; 1] � (C[0; 1])?, we havekPjfk1 = supfjhPjf; gij; g continuous ; kgk1 � 1g= supfjhf; Pjgij; g continuous, kgk1 � 1g� kfk1kPjgk1:kPjk1 is bounded by the previous theorem. Since Sj2N Vj is dense in L2[0; 1],which is also dense in L1[0; 1], the uniform bound on Pj is su�cient to prove ourresult.� These two results are strong, in contrast to the convergence properties of Fourierfunctional approximations. In fact it has been shown that the continuous functionswhose Fourier series do not uniformly converge are dense in C(T) [9]. In this sense,wavelets provide a much more general basis than Fourier bases and hence havepotentially broader applications. These results suggest that wavelets should do abetter job at pointwise approximation, especially for continuous functions.To measure the error to which a truncated projection will approximate a desiredfunction, we shall estimate its convergence. The natural choice of norms with whichto measure convergence is the Sobolev norms. The sth Sobolev norm of a functionf is de�ned as kfkHs = (Z (1 + �2)sf̂2(�)d�) 12 ;where Hs consists of those functions whose s Sobolev norm exists and is �nite.Daubechies [2] states that the norm for Hs is equivalent tokfkHs[0;1] = ( Xj�00�k<2j(1 + 22js)hf;  ̂j;ki2) 12 :Using this result, we easily �nd a bound for kf � Ppfk2 . For f 2 Hs[0; 1],kf � Ppfk2 = k Xj�p0�k<2jhf;  ̂j;kik2= [Xj;k hf;  ̂j;ki2] 12 = [Xj;k 22js22js hf;  ̂j;ki2] 12� [Xj;k 22js22ps hf;  ̂j;ki2] 12= 2�ps[Xj;k 22jshf;  ̂j;ki2] 12 � 2�pskfkHs[0;1]:



WAVELET INNER PRODUCT COMPUTATION 9The same technique may be used to �nd error bounds in the H l norm for l � p:kf � PpfkHl[0;1] = ( Xj�p0�k<2j(1 + 22jl)hf;  ̂j;ki2) 12= (Xj;k (1 + 22jl) (1 + 22j(s�l))(1 + 22j(s�l)) hf;  ̂j;ki2) 12� (1 + 22p(s�l))� 12 (Xj;k (1 + 22sjhf;  ̂j;ki2) 12� 2�p(s�l)kfkHs[0;1]:These bounds are similar to those on Fourier series [10].[4]. Methods for Computing Connection CoefficientsIn wavelet applications, one often must represent operators in terms of wavelets[11]. An example of such an application is the Galerkin solution of di�erentialequations. The formulation of solutions will require integrations of the form
d1;d2;:::;dnk1;k2;:::;kn =< ~'(d0)j;k0 ~'(d1)j;k1 ::: ~'(dn)j;kn >= Z 10 ~'(d0)j;k0 ~'(d1)j;k1 ::: ~'(dn)j;kndx;where ~'(d) = dd ~'dxd . This expression is an n-term connection coe�cient. Since ~'cannot be represented in closed form for N > 2 and, by construction, has limitedregularity, analytic calculation of the integral is impossible, and numerical quadra-ture is often inaccurate as a result of the wildly oscillating nature of the resultingkernels. An alternative approach developed by Latto, Resniko�, and Tenenbaum[6] circumvents some of the di�culty by exploiting the scaling relation and the mo-ment condition to reduce the calculation to an eigenvector problem. Their methodis designed for nonperiodic compactly supported wavelets. However, by invokingan extension of the earlier result regarding the equivalence of periodized and non-periodized wavelets in Section 2, one may infer that for j � log2((N � 1)n), theperiodized case yields the same result as the nonperiodized case. For illustrationand for completeness in what follows we adopt closely the general procedure givenin detail in [6] to the 2-tuple case. Several tabulated connection coe�cients usingperiodized wavelets are included in the appendix of this study.First, integration by parts is performed repeatedly on the above integral to obtain
d1;d2k1;k2 = (�1)d1
0;d2+d1k1;k2 ;where the periodicity of the wavelets has been invoked. By changing variables, wefurther reduce the equation to
0;dk1;k2 = 
0;d0;k2�k1 � �dk2�k1 ;where d = d1 + d2;From these relations it is clear that any 2-tuple can be represented by a �dk.



10 J.M. RESTREPO, G. K. LEAFTo construct the eigenvector problem, �x d, then solve for f�dkg0�k<2j by creat-ing a system of 2j homogeneous relations in �dk and enough inhomogeneous equa-tions to reduce the dimension of the associated eigenspace to 1. Although we areusing the connection-coe�cient method for the nonperiodized case, we are comput-ing them for the periodic case (by equivalence), which is where the bounds on kcome into play.4.1 Connection Coe�cients Algorithm. To generate the homogeneous equa-tions �x d; j 2 N, such that ~'(d)j is well de�ned. To simplify notation, denote~'(d)j;k � �dk. In [6] it is suggested, without proof, that this method also holds forthe �rst d for which �d is discontinuous. For low-order di�erential equations, how-ever, N = 6 or N = 8 wavelets should provide su�cient regularity. Since for every0 � k < 2j ,�dk = Z �0(x)�dk(x)dx = Z (N�1Xm=0 hm�m(2x))(N�1Xl=0 hl�dl+2k(2x))2dd(2x)= 2dXm Xl hmhl Z �m(2x)�dl+2k(2x)d(2x)= 2dXm Xl hmhl Z �0(�)�dl+2k�m(�)d�; thus,�dk = 2d N�1Xm=0N�1Xl=0 hmhl�dl+2k�m:In the above discussion, the integration is over the real line.This linear homogeneous system can be represented asA�d�! = 2�d�d�!;where �d�! = f�dkg0�k<2j : It is worth noting here that if one needs to compute an n-tuple connection coe�cient for j < log2((N�1)n), then the periodic scaling relationcan be used to resolve each 'j;k into the sum of 'j0;k's with j0 � log2((N � 1)n):Thus, the reduction to the nonperiodic case is a universally applicable method.To generate the inhomogeneous equations, we must �rst assume d �M �1. Themoment condition then guarantees thatxd =Xl2Z ~Mdl ;where ~Mdl = hxd; '0;li: Setting x = 2j� and de�ning Mdl = hxd;�li, we have~Mdl = 2dj2 j2 h�d;�li = 2dj2 j2Mkl :This gives the relation �d =Xl2Z Mdl �l(�);



WAVELET INNER PRODUCT COMPUTATION 11which, when di�erentiated d times, yieldsd! =Xl2Z Mdl �dl (�):Multiplying by �00 and integrating, we obtainXl2Z Mdl Z �00(�)�dl (�)d� = d!Z 'j;0(�)d� = d!2�j2 :Thus PlMdl �dl = d!2�j2 : The sum over l is actually over jlj � N � 2 since the''s are compactly supported. Thus, by changing the indices of summation bym = l + 1 + (N � 2); the inhomogeneous equations are2N�3Xm=1 �dmMdm�1�(N�2);withMdl = 2�j(2d+1)2 ~Mdl :The linear system formed by the 2j homogeneous equations and the above inhomo-geneous equations has eigenspace dimension equal to 1. Thus, all that remains tospecify the system is to calculate ~Mdl :~Mkl = Z xd'(x � l)dx = Z (y + n)k'(y)dy= Z kXj=0�kj�yjnk�j'(y)dy= kXj=0�kj�nk�j ~M j0 :Since ~M0l = 1 is a previously stated property of the ', the above relation is usedto evaluate recursively ~Mdl for all l.The linear system is now complete and �xes the values of �dk. Note that while thescaling relation, which is used to generate the homogeneous relations, exists for pe-riodized wavelets, currently nothing is analogous to the moment condition that maybe used to generate the necessary inhomogeneous equations. One possible approachis to use the scaling equation linked with the fact that ~Vj = fconstant functionsgfor j � 0 to �nd additional inhomogeneous relations. Problems arise with relatingR ~'j+1;0dx to R '̂j;0dx; however, since dilation does not commute with periodiza-tion. While this method could probably be worked out, the periodic case can alwaysbe reduced to an equivalent nonperiodic case for which the method is already wellde�ned. Thus, to compute an n-term connection coe�cient for periodized wavelets,one need only resolve the terms into ~Vj , for some j � log2(N � 1)n and apply theabove method. This approach takes full advantage of the equivalence of periodicand nonperiodic scaling functions and circumvents the need for a connection coef-�cient method particular to periodized wavelets.



12 J.M. RESTREPO, G. K. LEAF4.2 Periodization of Inner Product Matrices.The two most common situations that arise in the wavelet Galerkin solutionof di�erential equations involve 2-tuples and 3-tuples. Periodic conditions requirewraparound of the � entries in 
 in the upper right-hand corner and the lowerleft-hand corner, assuming that the matrix row index increases from top to bottomcorresponding to the dyadic points in [0; 1). The wraparound will produce at mostN(N +1) additional entries in the matrix, where [0;N ] is the support of the scalingfunctions. In this section we present explicit schemes that enable the constructionof these matrices. The 2-tuple case is easily generated, since 
 is a circulant matrixof the form 
 = circ(�0;�1 : : :�N ; : : : ; 0; 0; : : :��N ;��N+1; : : :��1)and 
 = �
T , depending on whether the operator is symmetric or skew-symmetric(see Section 4.3).The 3-tuple is somewhat more involved. The �j00;k00 have the structure illustratedschematically in Figure 1a. We call this structure the \index pad." Let K = 2p�1,where the superscript p corresponds to the resolution of the scaling functions. Atypical situation in a Galerkin discretization when 3-tuples are involved would bethe calculation of sk = KXl=0 al!k;lwhere!k;l = KXj=0 hj
k;j;l;where al and hj are the wavelet coe�cients of the projection of real quantitiesA(x; �) and H(x; �) into V p, and 
 is the inner product < ~�d1k ~�d2j ~�d3l >. For a givenk there is an index pad in (j; l) over which these indices range when forming !k;land sk. Moreover, associated with each index (j; l) in the pad there is a �j00;k00 ,where j00 = j � k and l00 = l � k, which gives the value of 
k;j;l. It is easier tothink of the index pad as having a rectangular structure in which the entries lyingoutside of the hexagon of the true index pad are zero.
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j=k+N

j=k (j"=0)

l=k (l"=0)

j=k-N

l=k-N

l=k+N

l=j+N

l=j-N

Figure 1a. Structure of �j00;k00 index pad for 3-tuples in the (j; l)plane. The index pad corresponds to N = 4 in the region where nowraparound arises.First consider the case in which there is no wraparound, that is, for N � k < k0,where k0 = K � (N � 1), the largest index k for which the support of the scalingfunction lies entirely in [0; 1]. Associated with each (j00; l00) in the index pad, thereis a connection coe�cient �j00;l00 . As k is varied, the pad centered at k, moves alongthe line l = j in the (j; l) plane. This is the \regular case" and is shown in Figure9a.Next, consider the case k � k0. Let k = k0 + �, 0 � � � N � 1. The situation isillustrated in Figure 1b. The index pad is beyond (j; l) = (K;K). For convenienceidentify the following subregions.A :k �N � j � Kk �N � l � KB :j = K + 1 + q; 0 � q � �l = K � t; 0 � t � N � 1C :j = K � t; 0 � t � N � 1l = K + 1 + q; 0 � q � �D :j = K + 1 + q; 0 � q � �l = K + 1 + q; 0 � q � �:
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l=K

j=K

l=k

j=k

Figure 1b. Structure of �j00;k00 index pad for 3-tuples in the (j; l)plane corresponding to N = 4 for k = k0 + 2Consider a given k, the corresponding index pad is subdivided into the foursubsets A;B;C;D de�ned above. When index pairs (j; l) lie in subregions B;C; orD, periodization comes into play since the corresponding basis functions have beenperiodically extended. We now consider the consequences of this periodization onthe sk in detail. Note that sk will be the sum of three partial sums, summed oversubsets of the index pad. Next we observe that the range of l is k�N � l � K+1+�.We divide this range into two parts: k �N � l � K and K + 1 � l � K + 1 + �.For the range k�N � l � K, the index l is not a�ected by the periodization sincel � K. The index j, on the other hand, produces a pair (j; l) that ranges over theset A and B. Let !k;l = !rk;l + !pk;l. Then!rk;l = KXj=k�N hj�j00;l00 , the regular part,!pk;l =K+1+�Xj=K+1 hj�K�1�j00;l00 , the periodic adjustment, and thuss(1)k = KXl=0 al!k;l;where, throughout this section, we set j00 = j � k and l00 = l � k.Next we deal with the range K + 1 � l � K + 1 + �. In this case the pair(j; l) 2 C [D. When (j; l) 2 C,!k;l = KXj=k�N hj�j00;l00 :



WAVELET INNER PRODUCT COMPUTATION 15Now the index l is a�ected by periodization, so thats(2)k = K+1+�Xl=K+1 al�K�1!k;l:When (j; l) 2 D, both indices are a�ected by periodization, thus!k;l = K+1+�Xj=K+1 hj�K�1�j00;l00 :Then, s(3)k = K+1+�Xl=K+1 al�K�1!k;l:So, for k = k0 + �, 0 � � � N � 1, combining, we havesk = s(1)k + s(2)k + s(3)k :We now consider the case when the index pad encounters the left boundary,j = 0, l = 0, which occurs for 0 � k � N � 1. Schematically, the situation isportrayed in Figure 1c. Denote the following subregionsA :0 � j; l � k +NB :0 � l � N � 1� � � 1 � j � �1C :0 � j � N � 1� � � 1 � l � �1D :� � � 1 � j � �1� � � 1 � l � �1;where 0 � � � N � 1.
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l=k

j=k

l=0

j=0

Figure 1c. Structure of �j00;k00 index pad for 3-tuples in the (j; l)plane corresponding to N = 4 for k = N � 3; � = 2Again we divide the entire l range ���1 � l � k+N into two parts: 0 � l � k+N and ���1 � l � �1. Consider the range 0 � l � k+N for which the index pair(j; l) ranges over B and A. When (j; l) 2 B, the index j is a�ected by periodizationso that !k;l has a regular part and a periodic part. Let !k;l = !rk;l + !pk;l. Then!rk;l = k+NXj=0 hj�j00;l00 , the regular part, and!pk;l = �1Xj=���1hK+1+j�j00;l00 ; thuss(1)k = k+NXl=0 al!k;l:Next we deal with the range �� � 1 � l � �1. In this case (j; l) 2 C [ D. For(j; l) 2 C, we have !k;l =N�1Xj=0 hj�j00;l00 :Then s(2)k = �1Xl=���1 aK+1+l!k;l:



WAVELET INNER PRODUCT COMPUTATION 17When (j; l) 2 D we have !k;l = �1Xj=���1 hK+1+j�j00;l00and s3k = �1Xl=���1 aK+1+l!k;l:Combining, for k = N � � � 1, 0 � � � N � 1, we havesk = s(1)k + s(2)k + s(3)k :The periodization is then complete. The result is the vector fskg. This proceduregeneralizes to the n-tuple case in a straightforward manner.4.3 Useful Connection Coe�cient Relations.We list a number of identities and relations that are useful in the manipulation ofconnection coe�cients. Many of these relations appear in [6] and [12]. Except forthe operator inversion relationship, most of the inner product relations can easilybe derived by invoking integration by parts, translation, and change of variables.
d1;d2l;m = 
d2;d1m;l(17) �d1;d2l = ��d1�1;d2+1l(18) �1;d2;d3 = ��0;d2+1;d3 � �0;d2;d3+1(19) �d1;d2;d3l;m = �d2;d1;d3�l;m�l(20) �d1;d2;d3l;m = �d3;d2;d1l�m;�m(21) �d1;d2;d3l;m = (�1)d1 d1Xi=0�d1i ��0;d2+i;d3+d3+d1�il;m :(22)Another relation that is very useful in checking the construction and accuracy of3-tuple matrices is the check-sum procedure: the column sum of a 3-tuple matrixmust equal a corresponding 2-tuple vector component for component. For example,PKl=0
1;0;0l;m = 
1;0m .Lastly, we mention an e�cient procedure for the inversion of a �rst order op-erator, which exploits the symmetric or skew-symmetric nature of the matrix,
 = �
T , so that the matrix may be diagonalized, 
 = �D
�T . A concreteexample of operator inversion appears in [12].[5] Approximation of Differential OperatorsThe spectrum f�jg of the continuous di�erential operator L with periodic bound-ary conditions on 0 and 1 is discrete. A discrete approximation L of the operatormay be found by projecting the operator onto the space spanned by the periodizedscaling functions. The discrete and continuous operators can be compared by look-ing at their spectra. By the Galerkin procedure outlined in Section 4.1 one can form



18 J.M. RESTREPO, G. K. LEAFTable 1. Residual and condition number for the least-squarescalculation of �'s used in 
0;1, as a function of p and NN p Residual Condition Number4 4 -2.1926904736347D-15 1374 5 -8.4099394115356D-15 3874 6 -8.3266726846887D-15 10964 7 -2.6922908347160D-14 31004 8 -2.1510571102112D-16 87706 4 4.3905851176973D-15 1896 5 4.3905851176973D-15 5316 6 2.2332830029725D-14 15036 7 3.2980562725271D-14 42526 8 -1.6563139748627D-14 120298 4 -1.6766260279716D-11 2298 5 -3.3533817109376D-11 6428 6 6.7080697513231D-11 18168 7 1.3417001243474D-10 51388 8 2.6830899981444D-10 14532the matrix 
, an approximate representation of L, in the subspace of periodizedscaling functions of resolution p and of genusN . In this section we examine the use-fulness and properties of wavelet projection techniques for di�erential operators. Acomparison of the spectrum of the di�erential operator L and its approximation us-ing the connection coe�cients algorithm reveals information important within thecontext of solving ordinary and partial di�erential equations using wavelet-Galerkintechniques.The projection of the di�erential operator with periodic boundary conditionsleads to a 2-tuple 
. Eigenvalues of this matrix may be found by noting [13] thatthe circulant matrix 
, has eigenvalues �j given by the expression�j = KXk=0ake i2�kjK ;where ak is an entry in the �rst row in the circulant matrix, namely, an element ofthe set �0;�1 : : :�N ; 0; : : : ; 0;��N ;��N+1; : : :��1, and j = 1; 2; � � � ;K + 1.The �'s were obtained by the procedure outlined in the preceding section. Theoverdetermined system was solved using a QR algorithm from LAPACK [14] calleddgess. For 
0;1, the residual and the condition number as a function of the resolu-tion p and the genus N appears in Table 1.Some of the eigenvalues of 
0;1 are given in Table 2 and 3. Regarding these tables,one can make three general observations. First, the imaginary part of the eigen-values grows only as O(2p), just as the Fourier-basis computation would, and this



WAVELET INNER PRODUCT COMPUTATION 19Table 2. Imaginary part of eigenvalues divided by 2� for increasingresolution 2p calculated using N = 6 periodized Daubechies wavelets.p = 4 p = 6 p = 80.0D0 0.0D0 0.0D00.99997222310553 0.99999999300555 0.999999999996891.9967784015701 1.9999991102504 1.99999999977952.0423307943545 2.9999849535965 2.99999999625902.9532542889943 3.9998888924219 3.99999997201943.4758292699748 4.9994799193486 4.99999986674573.7208826878105 5.9981781285634 5.99999952321074.0025895152829 6.9947814463569 6.9999985996877Table 3. Imaginary part of eigenvaluesof ddx as a function of N for p = 6.N = 4 N = 6 N = 80.99999690699928 0.99999999300555 0.999999999984071.9999013641150 1.9999991102504 1.99999999164562.9992552692402 2.9999849535965 2.9999996834005is in contrast to spectral approximations based on Chebychev or Legendre bases.Second, we observe that the real parts of the eigenvalues are comparable to thesize of machine precision zero, since the real part of each eigenvalue is proportionalto the �0, again in sharp contrast to Chebychev and Legendre bases investigatedby Trefethen et al. [15]. Third, little evidence of contamination due to round-o�error was seen even for high resolution (in our experiments, we tried values of pas high as 11), in sharp contrast to the experience of Trefethen et al. with theabove-mentioned bases functions. The spectrum of the skew-symmetric operatorddx is purely imaginary and equal to 2�k, where k 2Z. Periodicity will lead to theeigenvalue 0 having multiplicity 2. Table 2 shows the magnitude of the imaginarypart of the �rst few eigenvalues, divided by 2�, as a function of p. It is clear fromthe table that approximations to the eigenvalue improve as p is increased and thenumber of reasonably correct eigenvalues grows as well with p. Parenthetically, weremark that with p = 6 we can go as far k = 11 for which �11 := 10:8 while retainingat least one digit of accuracy. In the case p = 8 we can go as far as k = 36 forwhich �36 := 35:8.We examined the dependence of the eigenvalue convergence on both the resolu-tion p and the genus N . We did this by examining the imaginary part of severaleigenvalues. We found that the rate of convergence was almost exactly 2�p, whilethe dependence of the rate of convergence on N was essentially quadratic. Table 2and Table 3 illustrate the above-mentioned rates of convergence.Qualitatively, we �nd the same type of behavior in higher odd-ordered di�erentialoperators. Table 4 shows the approximation to the spectrum of the operator d3dx3



20 J.M. RESTREPO, G. K. LEAFTable 4. Spectrum approximation of d3dx3with N = 6. Imaginary part of eigenvalues.p = 4 p = 6 p = 80.0D0 0.0D0 0.0D039.411980740054 39.478149261094 39.478416554374308.17967443293 315.7932221828 315.82720643905956.10277711077 1065.3407907411 1065.91498062901670.0988161963 2522.3667673633 2526.60155271331877.4681030848 4914.9287548852 4934.72041149012625.9035313813 8457.8432634425 8527.04558713512641.9768303508 13342.439258378 13540.237953821with periodic boundary conditions. We found the rates of convergence very similarto those of the �rst derivative, with the proviso that the basis functions had to bechosen with su�cient smoothness.Finally we consider approximation to even-ordered di�erential operators. Forexample, Table 5 shows the approximation of the spectrum of d2dx2 for periodicboundary conditions for the same values of p. This case corresponds to the eigen-values of 
0;2. Each eigenvalue has a complex conjugate, for which the imaginarypart is no greater than machine precision zero. Again, we found the same rates ofconvergence as in the odd-ordered cases.The condition number (cn) of the vector calculation was found to have the fol-lowing correspondence: for p = 5 it was cn = 52778, p = 6 it was cn = 298557,p = 7 it was cn = 1688892. In general it was found that the condition number grewas the size of p, N , and on the order of the derivatives was increased. The sourceof the high condition number is the ill-posed nature of the over-determined matrix.The high condition number is especially troublesome in the calculation of the 3-tuples. There are few options available to improve the ill-conditioned nature of thematrix. One option could have been to use Chebychev polynomials in connectionwith the moment conditions. However, the ill-posedness is in the linear homoge-neous equations, its exact nature being that several of the rows will have nearly thesame entries for some values of p, N , and the order of the derivatives. Hence, littleor no improvement would result in the use of the Chebichev polynomials as a wayto mix the moment conditions.Using the eigenvalue data corresponding to the three di�erential operators, wehave also been able to assess numerically the size of the largest eigenvalues. This isa useful estimate, for example, in the determination of time stability in numericalschemes for the solution of di�erential equations. The estimate is that the largesteigenvalue is comparable in size to Fourier spectral approximations; that is, thelargest eigenvalue �=(2�)n = O(2pn), for dndxn , where n = 1; 2; 3. It was also possibleto con�rm that the eigenvalues of the discretized matrix of odd-ordered di�erentialoperators have real parts of magnitude no greater than machine precision zero. Thesame can be said of the imaginary part of discretizations of even-ordered operators.



WAVELET INNER PRODUCT COMPUTATION 21Table 5. Real part of eigenvalues for d2dx2 dividedby 4�2 for increasing resolution p. N = 6p = 4 p = 6 p = 81.1518884962509D-14 2.7645323910020D-13 0.0D01.0033162940157 1.0000135268157 1.00000005298144.1847329915128 4.0008582644240 4.000003389020710.666776606377 9.0096362703930 9.000038568310422.726823972803 16.053060704248 16.00021642906241.582358732169 25.197220008678 25.000824274322[6]. SummaryThe primary aim of this study has been to complement the report by Latto,Resniko�, and Tannenbaum [6] in which they a simple and useful technique ispresented for the calculation of inner products involving Daubechies wavelets. Fur-thermore, it is hoped that this study will be a helpful guide to a numerical codewhich implements their scheme which we have constructed and are making publicly-available.The periodization of matrices involving inner products of two and three waveletsand their derivatives was presented in detail. The three wavelet matrix is notstriaghtforward to implement, especially in periodized problems. In this studywe have provided several useful algorithms to implement such matrices and havelisted several properties of the inner products that are useful in checking the actualimplementation of the wavelet-Galerkin solution of di�erential equations.Lastly, we have shown numerically that common di�erential operators may bewell approximated using wavelets. In light of other studies that compare severalspectral approximations to the above operators [15], the wavelet aproximationscompare favorably. Information on the approximation of di�erential operators isalso useful in the solution of partial di�erential equations using wavelet-Galerkintechniques, for example, in making choices for time integrators in the solution ofevolution equations, and in estimating the size of the time stepping in order toachieve time-stability in a calculation. It was found that the eigenvalues, whichapproximate commonly-used di�erential operators, where fairly close in value andmagnitude to those calculated by means of discrete Fourier projection techniques.AppendixTables of Connection Coe�cients.Connection coe�cients: 2-tuples for p=0, N=6. Computed in double precisionon a Sun Sparc1 workstation using LAPACK solver routines.



22 J.M. RESTREPO, G. K. LEAF�0;1�4 =� 3:4246575342471D� 04�0;1�3 =� 1:4611872146119D� 02�0;1�2 =+ 0:14520547945205�0;1�1 =� 0:74520547945205�0;10 =� 3:2049276679778D� 15�0;11 =+ 0:74520547945206�0;12 =� 0:14520547945205�0;13 =+ 1:4611872146119D� 02�0;14 =+ 3:4246575342476D� 04residual = 1.9680979936043D-16for the least-squares solution of the overdetermined system.�1;1�4 =+ 5:3571428571412D� 03�1;1�3 =+ 0:11428571428572�1;1�2 =� 0:87619047619048�1;1�1 =+ 3:3904761904762�1;10 =� 5:2678571428572�1;11 =+ 3:3904761904762�1;12 =� 0:87619047619048�1;13 =+ 0:11428571428571�1;14 =+ 5:3571428571430D� 03residual = 1.1362438767648D-16



WAVELET INNER PRODUCT COMPUTATION 23�2;0�4 =+ 5:3571428571412D� 03�2;0�3 =+ 0:11428571428572�2;0�2 =� 0:87619047619048�2;0�1 =+ 3:3904761904762�2;00 =� 5:2678571428572�2;01 =+ 3:3904761904762�2;02 =� 0:87619047619048�2;03 =+ 0:11428571428571�2;04 =+ 5:3571428571430D� 03residual = 1.1362438767648D-16A code for the computation of connection coe�cients is available from the Math-ematics and Computer Science Division, Argonne National Laboratory. The URL ishttp://www.mcs.anl.gov/people/restrepo/index.html.
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