
PARALLEL ALGORITHMS FOR THE SPECTRAL TRANSFORMMETHODIAN T. FOSTER� AND PATRICK H. WORLEYyAbstract. The spectral transform method is a standard numerical technique for solving partialdi�erential equations on a sphere and is widely used in atmospheric circulation models. Recent re-search has identi�ed several promising algorithms for implementing this method on massively parallelcomputers; however, no detailed comparison of the di�erent algorithms has previously been attempted.In this paper, we describe these di�erent parallel algorithms and report on computational experimentsthat we have conducted to evaluate their e�ciency on parallel computers. The experiments used atestbed code that solves the nonlinear shallow water equations on a sphere; considerable care wastaken to ensure that the experiments provide a fair comparison of the di�erent algorithms and thatthe results are relevant to global models. We focus on hypercube- and mesh-connected multicomputerswith cut-through routing, such as the Intel iPSC/860, DELTA, and Paragon, and the nCUBE/2, butalso indicate how the results extend to other parallel computer architectures. The results of this studyare relevant not only to the spectral transform method but also to multidimensional FFTs and otherparallel transforms.Key words. Spectral transform method, parallel algorithms, performance analysis1. Introduction. The spectral transform method is widely used for uid dynam-ics problems in spherical geometry, in such areas as climate modeling, weather modeling,astrophysics, and reactor design. In this paper, we examine the problem of implement-ing the spectral transform method on massively parallel computers. Such computerscomprise 102{104 processors, each with local memory and able to access other proces-sors' memory via an interconnection network. When designing algorithms for thesecomputers, important considerations include minimizing nonlocal memory accesses, or-ganizing interprocessor communication to make e�cient use of the network, maskingcommunication latency, and minimizing load imbalances.The spectral transform method as used in climatemodels comprises a Fourier trans-form phase, in which fast Fourier transforms (FFTs) are applied to each latitude of alatitude/longitude grid, and a Legendre transform phase, in which Gaussian quadra-ture is used to approximate the Legendre transform (LT) applied to each longitude(now wavenumber) of the same grid [4]. E�cient parallel FFT and LT algorithms havebeen the topic of intensive research (e.g., see [16, 25, 28, 29]). The spectral transformis nevertheless deserving of special study, �rst because the matrices involved are typ-ically much smaller than usual for Fourier and Legendre transforms (e.g., 64{1024 ineach dimension, rather than tens of thousands), second because the two phases interactin interesting ways on certain architectures, and third because the importance of thespectral transform makes even small performance improvements valuable.Parallel spectral transform algorithms have been investigated previously by severalresearchers. We and colleagues at Argonne and Oak Ridge national laboratories have� Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.y Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012, Oak Ridge, TN 37831-6367.1



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 2developed a parallel transform approach based on parallel FFT and quadrature algo-rithms [14, 32, 35]; this work has been incorporated in a parallel implementation [7, 8]of the National Center for Atmospheric Research (NCAR)'s Community Climate Model(CCM2) [19]. Other researchers have examined a transpose approach, in which commu-nication requirements are encapsulated in a matrix transpose operation. This approachis used, for example, in the European Center for Medium-RangeWeather Forecasts spec-tral weather model [6] and in Loft and Sato's data parallel implementation of CCM2 [23].It has also been explored by Kauranne and Barros [22], Pelz and Stern [26], and G�artel,Joppich, and Sch�uller [17].In addition to the transform and transpose approaches, a variety of hybrid algo-rithms are possible that combine aspects of both. A comprehensive comparison of thesealgorithms has not previously been attempted. (Both [15] and [22] provide a qualita-tive analysis of some algorithms, but not detailed quantitative results or performancemodels.) Hence, it is di�cult to evaluate the performance tradeo�s that arise whenchoosing a parallel algorithm for a particular application.In this paper, we describe analytic and empirical studies that we have conductedto determine1. whether there is a best algorithm (on a given platform, for a given problemsize, etc.);2. the sensitivity of the choice of optimal algorithm to problem size, number ofprocessors, and platform speci�cs; and3. the bene�ts of optimizing for a given platform or problem size.In the analytic studies, we develop models that characterize the performance ofthe various spectral transform algorithms by relating communication requirements andload imbalances to problem size, processor count, and other parameters.The empirical studies utilize a parallel shallow water equation solver designed specif-ically for these experiments [36]. Considerable care has been taken to ensure that exper-iments are as fair as possible, that is, that one algorithm is not unduly favored throughchoice of data structures, greater optimization, etc. In addition, the code structuremimics that of general circulation models, maximizing the applicability of results tothese models.The contributions of this paper are as follows. First, the analytic models provide aqualitative characterization of the performance of numerous parallel algorithms for thespectral transform, including both parallel algorithms developed previously and newalgorithms developed in the course of this work. Second, the empirical results providea detailed understanding of the performance characteristics of these algorithms on thetarget platforms. Third, we identify robust algorithm combinations for various problemsize and machine characteristic regimes.The rest of this paper is as follows. Sections 2, 3, and 4 provide backgroundinformation on the shallow water equations solved by our testbed code, the spectraltransform method, and parallel computation. Sections 5 and 6 describe the parallelalgorithms that we examine in the Fourier and Legendre phases of the transform. Inx7, we use these models to make qualitative comparisons between the algorithms and



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 3to identify performance tradeo�s on di�erent parallel computer architectures. Section 8describes empirical studies conducted on a range of scalable parallel computers, andrelates the results to algorithm and machine characteristics. Section 9 describes issuesnot addressed in this study, and directions for future work. Section 10 presents ourconclusions.2. The Shallow Water Equations. The nonlinear shallow water equations ona rotating sphere constitute a two-dimensional atmospheric-like uid prediction modelthat exhibits many of the features of more complete models [34]. These equations arefrequently used to investigate and compare numerical methods because they presentmany of the di�culties found in simulating the horizontal dynamics in three-dimensionalglobal atmospheric models [5].The algorithms used to solve the shallow water equations via the spectral transformmethod are similar to those employed in the NCAR Community Climate Model tohandle the horizontal dynamics component of the primitive equations [19]. Hence, amodel that solves the shallow water equations on multiple (independent) levels duringeach timestep of the simulation provides a framework in which the performance ofCCM2's horizontal dynamics can be studied in isolation from the other aspects of the fullmodel. While this framework is not a completely reliable predictor of the performanceof the parallel algorithms in the full model, it allows us to determine accurately therelative merits of the di�erent parallel approaches.For completeness, we now describe the shallow water equations in the form that wesolve using the spectral transform method. The shallow water equations on a sphereconsist of equations for the conservation of momentum and the conservation of mass.Let i, j, and k denote unit vectors in spherical geometry, V denote the horizontalvelocity, V = iu+ jv, � denote the geopotential, and f denote the Coriolis term. Thenthe horizontal momentum and mass continuity equations can be written as [33]DVDt = �fk�V �r�(1) D�Dt = ��r �V;where the substantial derivative is given byDDt( ) � @@t( ) +V � r( ) :(2) The spectral transform method does not solve these equations directly; rather, ituses a streamfunction-vorticity formulation in order to work with scalar �elds. De�nethe vorticity � and the horizontal divergence � by� = f + k � (r�V)� = r �V :To avoid the singularity in velocity at the poles, let � represent latitude, and also rede�nethe horizontal velocity components as(U ; V ) = V cos � :



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 4Then, after some manipulation, the equations can be written in the form@�@t = � 1a(1� �2) @@�(U�)� 1a @@�(V �)(3) @�@t = + 1a(1� �2) @@�(V �)� 1a @@�(U�)�r2 � + U2 + V 22(1 � �2)!(4) @�@t = � 1a(1� �2) @@�(U�) � 1a @@�(V �)� ��� :(5)Here a is the radius of the sphere; the independent variables � and � denote longitudeand sin �, respectively; and � is now a perturbation from a constant average geopotential��. Finally, U and V can be represented in terms of � and � through two auxiliaryequations expressed in terms of a scalar streamfunction  and a velocity potential �:U = 1a @�@� � 1� �2a @ @�(6) V = 1a @ @� + 1� �2a @�@� ;(7)where � = r2 + f(8) � = r2�:(9) In the spectral transform method, we solve Equations (3){(5) for �, �, and �, anduse Equations (6){(9) to calculate U and V .3. The Spectral Transform Method. In the spectral transform method, �eldsare transformed at each timestep between the physical domain, where the physical forcesare calculated, and the spectral domain, where the horizontal terms of the di�erentialequation are evaluated. In the three-dimensional atmospheric models that we wish toemulate, all coupling between vertical levels is also calculated in the physical domain.The spectral representation of a �eld variable � on a given vertical layer abovethe surface of a sphere is de�ned by a truncated expansion in terms of the sphericalharmonic functions fPmn (�)eim�g:�(�; �) = MXm=�M N(m)Xn=jmj �mn Pmn (�)eim�;where �mn = Z 1�1 � 12� Z 2�0 �(�; �)e�im�d��Pmn (�)d�� Z 1�1 �m(�)Pmn (�)d� :



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 5Here i = p�1, � = sin �, � is latitude, � is longitude, m is the wavenumber or Fouriermode, and Pmn (�) is the associated Legendre function. The spherical harmonic functionsare the eigensolutions of the Laplacian operator in spherical coordinates and constitutea complete and orthogonal expansion basis for square integrable functions on the sphere.Additional properties of these functions can be found in [24].In the truncated expansion,M is the highest Fourier mode and N(m) is the highestdegree of the associated Legendre function in the north-south representation. Since thephysical quantities are real, ��mn is the complex conjugate of �mn . This fact is used toreduce both computational complexity and storage requirements by calculating onlyspectral coe�cients for nonnegative modes.In each vertical layer of the physical domain, �elds are approximated on an I � Jlongitude-latitude grid, where the I longitude grid lines are evenly spaced and the Jlatitude grid lines are placed at the Gaussian quadrature points f�jg in [�1; 1]. Trans-forming from physical coordinates to spectral coordinates involves �rst performing aFourier transform for each line of constant latitude, generating the values f�m(�j)g onanM�J wavenumber-latitude grid that we will refer to as the Fourier grid. This is fol-lowed by integration over latitude for each line of constant wavenumber, approximatedusing J -point Gaussian quadrature, to obtain the spectral coe�cients,�mn = J�1Xj=0 �m(�j)Pmn (�j)wj :Here wj is the Gaussian quadrature weight corresponding to the Gaussian latitude �j.The point values are recovered from the spectral coe�cients by computing�m(�) = N(m)Xn=jmj �mn Pmn (�)for each m, followed by inverse Fourier transforms to calculate �(�; �). When thespectral transform method is applied in a three-dimensional atmospheric model, theprincipal data structures are as shown in Fig. 1. P denotes the physical grid, F theFourier grid, and S the spectral grid.In the shallow water equation code [20], each timestep begins by calculating thenonlinear terms U�, V �, U�, V �, and �+ (U2 + V 2)=(2(1� �2)) on the physical grid.Next, the nonlinear terms and the state variables �, �, and � are Fourier transformed.The forward Legendre transforms of these �elds are then combined with the calculationof the tendencies used in advancing �, �, and � in time (essentially evaluating theright-hand sides of Equations (3){(5)) and the �rst step of the time update. Thisapproach decreases the cost, when compared with calculating transforms individuallyand then calculating the tendencies, and generates spectral coe�cients for only three�elds instead of eight. Next, the time updates of �, �, and � on the spectral grid arecompleted. Finally, the inverse Legendre transforms of �, �, and � are combined withthe calculation of the �elds U and V (solving Equations (6){(9)), followed by inverseFourier transforms of these �ve �elds.
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nFig. 1. Principal Data Structures in Spectral TransformWithout signi�cant loss of generality, we assume a triangular spectral truncationin this paper: N(m) =M and the (m;n) indices of the spectral coe�cients for a singlevertical layer form a triangular grid. For a triangular truncation, exact, unaliasedtransforms of quadratic terms are obtained if I � 3M + 1 and if I = 2J [33]. In thiswork we also use a fast Fourier transform (FFT) algorithm that requires I to be a powerof two. As is commonly done, for a given M we choose I to be the minimum power oftwo satisfying I � 3M + 1, and set J = I=2. With these assumptions, the value of Mcan be used to characterize the horizontal resolution of the grids, and the term \TM"is used to denote a particular discretization. For example, for T85 we have M = 85,I = 256, and J = 128, and the number of spectral coe�cients (Nspec) calculated per�eld for a single vertical layer isNspec = MXm=0 MXn=m 1 = 12(M + 1)(M + 2) = 3741:The number of vertical levels is determined primarily by the physical processes that arebeing modeled and is chosen independent of M in current meteorological models. Theterm \TMLK" will be used to denote a model with a TM horizontal grid resolutionand K vertical levels.In subsequent discussion, we denote the index set of the physical grid by a triple(I;J ;K), with I corresponding to longitude, J to latitude, and K to the vertical. Wedenote the index set of the Fourier grid by the triple (M;J ;K), withM correspondingto wavenumbers. We denote the index set of the spectral grid by the triple (M;N ;K),with N corresponding to polynomial degree. (Note that in a triangular truncation,the index set N is dependent on the wavenumber.) We assume that computation isperformed on a two-dimensional logical grid of P = PX �PY processors. We denote anindividual processor by an index pair (x; y).Di�erent phases of a parallel spectral transform algorithm may employ di�erentdecompositions of the computational grids onto the processor grid. We describe theseby a triple, for example, of the form (Ia;Jb;Kc), where a, b, and c are X, meaning thatindices in the subscripted dimension are partitioned over processors in the X plane ofthe processor grid; Y , meaning that indices are partitioned over processors in the Yplane; or null, meaning that indices are not partitioned. Analogous notations are usedto represent the decompositions of the Fourier and spectral grids. Our decompositionsnever decompose over more than two dimensions. We assume that the physical spacegrid is always decomposed as (IX ;JY ;K) and that the physical domains of all �elds



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 7are decomposed (and mapped to processors) in the same way, so that computationsin vertical columns can proceed without communication. (These computations are notconsidered here but are an important and complex part of a climate model that aredi�cult to parallelize e�ciently.) Unless otherwise noted, we also assume that all �eldsuse the same Fourier and spectral domain decompositions.4. Parallel Algorithms and Architectures. Scalable parallel computers gen-erally comprise a number of independent computers and an interconnection network.Each computer has its own processor and memory, can execute a sequential program,and can send and receive messages to and from other computers. In the absence ofconcurrent computation and communication, the run time for a parallel program onsuch a system can be characterized on a per-processor basis asT = Tcomp+ Tcomm ;(10)where Tcomm is the time spent (actively) communicating or waiting for messages toarrive and Tcomp is the time spent computing (i.e., not communicating).In all of the algorithms described in this paper, each send request is closely precededor followed by a receive request for a message of approximately the same size. Incurrent multiprocessors, the cost of such a send/receive pair can often be modeled withreasonable accuracy as Tcomm = ts +Ntw;(11)where ts is the time to initiate the communication requests, N is the size of the messagesin words, and tw is the time to transfer a single word of data into the network andtransfer another word out of the network. By choosing ts and tw to reect intrinsicsystem performance characteristics and de�ning Tcomm to be the sum of the cost ofthese send/receive pairs, (10) becomes a lower bound on the execution time of the formT = Tcomp+Xi (ts +Nitw) :(12)Costs omitted in this lower bound|for example, idle time waiting for messages toarrive or bu�er copying associated with message passing|are generally proportional tothe number of messages or to the message lengths in each of our algorithmic phases:physical domain computations, FFT, LT, and spectral domain computations. (This isdue to the nature of our algorithms and does not hold in general.) Hence, by �tting(12) for a given phase to empirical data, system- and algorithm-dependent values forts and tw can often be derived for which (12) is valid for a large range of problem sizesand numbers of processors.Whether as a lower bound or as an empirically-�tted performance model, (12) isoften su�cient to make accurate qualitative comparisons between parallel algorithms,and will be used in the algorithm analysis to follow. There are also two generalizations ofthis model that are important for some of the multiprocessor platforms included in thisstudy, incorporating the impact of computation/communication overlap and networkbandwidth limitations, respectively. In the following, we use an example to illustratethe simple model; we then introduce the generalizations.



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 84.1. Parallel Algorithm Example. We use the fast Fourier transform (FFT) toillustrate the use of (12). The Fourier transform, y = fykg, of a sequence of D valuesx = fxjg is given by yk = D�1Xj=0 xje2�ijk=D ;where s = p�1. The FFT exploits symmetry to perform this computation in log2Dsteps, each involving �(D) operations. Assume that x is partitioned over Q processorsby blocks, and let D = 2d and Q = 2q for some integer d and q, d � q. The �rstd � q stages of the FFT can then proceed without communication, while each of thelast q stages involves a pairwise exchange of 2d�q data or intermediate results withanother processor [16, 18, 25, 28, 29]. Each processor engages in log2Q communicationoperations, each involving the transfer of D=Q data, and communication costs areTcomm = log2Q  ts + DQtw! :(13)The parallel and sequential algorithms perform exactly the same computation. As thiscomputation is partitioned evenly among the Q processors, our performance modelpredicts that the time taken by the parallel code isT = TseqQ + Tcomm;(14)where Tseq is the time taken by the sequential code on a single processor.4.2. Computation/Communication Overlap. Some computers allow the ef-fective cost of interprocessor communication to be reduced by overlapping computationwith some of the operations performed to send or receive a message or with the timespent waiting for a message to arrive. A simple lower bound on the execution timewhen exploiting overlap is T = maxfTcomp ; Tcommg;hence, overlap at most halves the nonoverlap performance and does not change asymp-totic behavior. We do not model explicitly the e�ect of overlap, but note when it canbe used to reduce communication cost.4.3. Network Bandwidth Limitations. Equation (12) assumes that the cost ofsending a message is independent of the number of processors that are communicatingat the same time. However, some interconnection network/algorithm combinationsmay result in multiple processors attempting to send messages over the same wiresimultaneously. The impact of this behavior on performance can often be modeled withreasonable accuracy by assuming that the processors share available bandwidth, thatis, by scaling the data volume term of our communication cost model by S, the numberof processors sending concurrently:Tcomm bandwidth limited = ts + SNtw:(15)



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 9The value S depends on properties of both the parallel algorithm and the underlyingcommunication network. For example, the FFT described above can be organized toexecute without competition for bandwidth on a hypercube [21]. In contrast, on a 1-Dmesh of Q processors, each processor generates messages that must traverse 1, 2, ...,2q�1 hops distant in the q steps of the algorithm [14, 18]. The total number of hopstraversed by these messages is QPq�1i=0 2i = Q(Q � 1). This represents the number ofwires to which a processor requires exclusive access during the FFT. Because a 1-Dbidirectional mesh provides only 2(Q� 1) wires, the algorithm cannot possibly proceedin less than Q/2 steps, rather than log2Q steps as supposed previously. Hence, thefollowing model is a lower bound on communication costs:T�t mesh 1d = (log2Q)ts + D2 tw :(16)5. Parallel Fourier Transform Algorithms. We now present the parallel spec-tral transform algorithms that we evaluate in this paper. By assumption, the physicaland spectral domains for each �eld (�, �, �, U , and V ) are decomposed and mappedonto processors in the same fashion. Thus, the calculation of the nonlinear termsand the completion of the time update of �, �, and � can proceed independently oneach processor, and the computations will be load balanced if the decompositions areequipartitions of the index sets. These calculations have �(N) complexity, comparedwith �(N log2N) for the Fourier transform and �(N2) for the Legendre transform.Since any load imbalances will also reect load imbalances in the Fourier or Legendretransforms, the e�ect of load imbalances on performance can be compared qualita-tively by considering the transforms only. Hence, we discuss only parallel Fourier andLegendre transform algorithms.For each algorithm that we consider, we develop performance models based on(12). We also consider the impact of bandwidth limitations in mesh architectures.On a hypercube we assume that the two-dimensional logical processor mesh of sizePX � PY = 2q � 2r = 2p is mapped into a hypercube of dimension p in such a waythat each processor row and column is mapped to a subcube of dimension q and r,respectively [21]. Hence, performance analysis reduces to the problem of determiningthe cost of an FFT or LT in a hypercube. On a 2-D mesh computer, we assume thatthe PX � PY logical processor mesh is mapped to an equivalent physical mesh. Thus,each FFT and LT algorithm executes in a 1-D processor array. Although this meansthat at most one half of the available wires are used in each communication phase,experiments suggest that this mapping is close to optimal when PX � PY . Increasingthe connectivity for one phase (e.g., FFT) of the spectral transform in order to improveperformance generally decreases the performance of the other phase (e.g., LT) to adegree that o�sets the earlier gain. Moreover, as will be shown later, PX � PY isgenerally optimal, so this assumption will not unduly a�ect the qualitative analysis.We �rst consider parallel algorithms for the �rst phase of the spectral transform,in which real FFTs are performed on each row of the physical grid. The test case usedin these experiments involves one forward FFT for each of 8 �elds, J latitudes, and Kvertical levels, and one inverse FFT for each of 5 �elds, J latitudes, and K levels, per



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 10Table 1Communication Characteristics of Parallel FFT AlgorithmsAlgorithm Messages Data VolumeDistributed 2 log2 PX 26J2KP log2 PXOverlapped Distributed 4 log2 PX 26J2KP log2 PX�(Q) transpose 2(PX � 1) 26J2KP PX � 1PX�(logQ) transpose 2 log2 PX 13J2KP log2 PXtimestep. As I = 2J , we must perform 13JK FFTs per timestep, each on a vector oflength 2J . As noted in x3, we assume that the physical grid is initially decomposedas (IX;JY ;K). We also assume that the I index set is partitioned over the PX rowprocessors in PX equal-sized blocks and that PY divides J evenly. We will relax thelatter assumption when considering load imbalances.An unordered real FFT is used in all experiments. This is cheaper than an orderedFFT, especially for the parallel FFT of x4, which would require additional communica-tion to e�ect the ordering. It also provides some load balancing during the LT phase,as will be described in x6.5.1. Distributed FFT. Our �rst FFT algorithm assumes (IX ;JY ;K) and (MX ;JY ;K)decompositions of the physical and Fourier grids, respectively. Hence, both its inputand output are decomposed across PX processors, and we can use the algorithm pre-sented in x4. There is no load imbalance if PY divides J evenly, there is no redundantwork, and communication cost is given by (13).Each row of PX processors is responsible for transforming 1=PY of the physical grid,that is, computing 8KJ=PY forward FFTs and 5KJ=PY inverse FFTs. The forwardand inverse FFTs are each computed as a block, so the number of messages is thatrequired for two single transforms. As each FFT is applied to a vector of length I, thetwo block FFTs transform 8KIJ=PY = 16KJ2=PY and 5KIJ=PY = 10KJ2=PY dataper processor row, respectively. Substituting the data volume values for D and PX forQ and using P = PXPY , we obtain from (13) the communication cost expression inTable 1.Computation/Communication Overlap. To exploit overlap, the single-block FFTcan be divided into two, allowing one block's communication to be overlapped withthe other's computation [32]. Only the �rst swap involving the �rst block is not over-lapped with computation. This process requires twice as many messages, as indicatedin Table 1, but has been shown to be cost e�ective on some multiprocessors.



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 11Table 2FFT Performance Models Specialized for 1-D Mesh (where they di�er)Algorithm Revised Data VolumeDistributed 13J2KP PX�(Q) transpose 133 J2KP (PX + 1)�(logQ) transpose 132 J2KP PXBandwidth Limitations. Both the one- and two-block algorithms can be mapped toa hypercube without competition for bandwidth [16]. As noted in x4.3, they will su�erfrom bandwidth limitations on a 1-D mesh. Applying (16) to the shallow water code,we obtain the expression in Table 2.Algorithm Limitations. The basic operation in the standard power-of-two FFT isa \buttery" transform involving two complex values. This corresponds to four realvalues in the real FFT, and at least four longitudes must be assigned to each processorto avoid redundant computation. Thus, if I = 2d, we are restricted to PX � 2d�2. Thedistributed FFT algorithm used in this study also requires that PX be a power of two.Load Balance. As will be discussed in x6, the choice of Legendre algorithm deter-mines whether the J index set is partitioned over the PY column processors in PY or2PY equal-sized blocks. Two blocks are assigned per processor column in the lattercase. If PY does not divide J (or J=2) evenly, load is somewhat unbalanced, with theprocessor row with maximum load computing 13KdJ=PY e (or 26KdJ=(2PY )e) FFTs.This imbalance increases both data volume and computation cost proportionally. SeeTable 5.5.2. Transpose FFT. An alternative algorithm reorganizes the physical grid from(IX ;JY ;K) to (I;JY ;KX) prior to the forward FFT so that each latitude row is storedwithin a single processor [1, 3, 6, 23, 26]. This eliminates the need for communicationduring the FFT, but requires communication within the transpose used for the reorga-nization. After the transform, the Fourier grid is decomposed as (M;JY ;KX). Theinverse FFT proceeds similarly, requiring a transpose after the transform to reorganizefrom (I;JY ;KX) to (IX ;JY ;K).The transpose requires that each processor exchange information with the otherPX processors in the same row of the processor grid. The two primary implementationapproaches require �(PX) and �(logPX) communication steps, respectively.�(Q) Transpose. The �rst algorithm proceeds in Q � 1 steps on Q processors:at each step, each processor sends 1=Q of its data to another processor [12, 21, 28].



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 12Communication cost is as follows.Tlinear transpose = (Q� 1) ts + DQ2 tw!(17)Substituting appropriate values for D and Q and counting both the forward and inverseFFTs, we obtain the expression in Table 1.Note that for this algorithm to be e�cient, and for (17) to hold, some care must betaken with the order of the data communication. For example, signi�cant contentioncan result if all processors send to processor i in the ith step. The schedules used inour experiments send at most one message to each processor during a given step.�(logQ) Transpose. The transpose can be performed in (log2Q) communicationsteps at the cost of increased communication volume [13, 27]. We �rst partition proces-sors into two sets. Each processor sends to the corresponding processor in the other seta single message containing all the data that it possesses that is destined for processorsin the other set. This partitioning and communication process is repeated logQ timesuntil each set contains a single processor. Each message has size D=(2Q), so the totalcommunication volume is (log2Q)=2 times greater than in the �(P ) algorithm, andcommunication costs are Tlog transpose = log2Q  ts + D2Qtw! :(18)When applied to the FFTs in the shallow water code, communication costs are as inTable 1.Computation/Communication Overlap. Overlap can be introduced in the transposealgorithms by breaking up a one-block transform comprising F vectors into B blocks ofsize F=B. After the �rst block is completely transposed, the transpose of a block can(potentially) be overlapped with the transform of the block preceding it.This algorithm has not proven to be e�cient in practice. Large B minimizes F=B,the size of the block whose transpose is not overlapped, but the number of messagesgrows by a factor of B, and not all message startup costs can be overlapped. Also, thetransform must be divided into the same number of stages as the transpose algorithmto allow for interleaving. This restriction may diminish the computational rate.Bandwidth Limitations. Neither transpose algorithm su�ers from signi�cant band-width limitations on hypercubes [12, 16, 21], but both do so on mesh architectures.In the �(Q) transpose, a total of (Q3 � Q)=3 hops are traversed on 2(Q � 1) wires,requiring that the data volume be scaled by Q(Q+ 1)=6 instead of Q� 1. The scalingfactor for the �(logQ) transpose is the same as that used for the distributed FFT. SeeTable 2.Algorithm Limitations. Both transpose algorithms decompose the vertical dimen-sion and thus require that PX � K if whole processor rows are not to be idle duringthe FFT. As K can be signi�cantly smaller than I, this restriction is limiting for the



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 13transpose algorithms. One approach to mitigating this problem is to decompose alsoover the �eld \dimension" (8 for the forward FFT and 5 for the inverse) [22]. Many ofthese �elds must be reunited for the LT phase, however, resulting in other performanceproblems. This generalization and the associated problems are discussed in x9. The�(logQ) transpose algorithm requires that PX be a power of two.Load Balance. If PY does not divide J or J=2 evenly, load is unbalanced as inthe distributed FFT algorithm. There is also load imbalance if PX does not divide Kevenly; some processor columns must compute FFTs for as many as dK=PXe verticallevels. See Table 5. An analogous load imbalance does not occur in the distributedFFT because I and PX are both required to be powers of two.6. Parallel Legendre Transform Algorithms. We next consider parallel algo-rithms for the second phase of the spectral transform, in which Legendre transforms(LT) are performed on each column of the Fourier grid. We de�ne a single forward trans-form to be the calculation of the set of spectral coe�cients f�mn jn = jmj; : : : ; N(m)gfor a given wavenumber m and �eld variable �, and an inverse transform to be thecalculation of the set of Fourier coe�cients f�m(�j) j 1 � j � Jg for a given wavenum-ber m and �eld variable �. Thus the number of spectral coe�cients output (input) foreach �eld in the forward (inverse) transform is a function of the wavenumber and ofthe spectral truncation used. Since we assume a triangular truncation, M �m spectralcoe�cients are generated for wavenumber m.At each timestep, the shallow water code performs one forward LT for each of three�elds,M wavenumbers, and K vertical levels, and one inverse LT for each of �ve �elds,M wavenumbers, and K vertical levels. Eight �elds of Fourier coe�cients are used toproduce the three �elds of spectral coe�cients, and these three spectral �elds are usedto produce the �ve �elds of Fourier coe�cients. As we assume that J � (3M + 1)=2and I = 2J , the total number of spectral coe�cients produced/consumed in thesetransforms is 3NspecK = (3=2)(M + 1)(M + 2)K � (2=9)(J + 1)(2J + 5)K.We describe four Legendre transform algorithms. The �rst two use distributedvector sum algorithms to complete the LT, while the third and fourth use the trans-pose algorithms of the preceding section. Each algorithm can be used with any FFTalgorithm, but load balance may vary. To simplify the exposition, we assume initiallyassume that the distribution of spectral coe�cients between the di�erent processorcolumns is uniform, that is, approximately (2=9)(J + 1)(2J + 5)K=PX spectral coe�-cients per processor column.6.1. Distributed LT. The �rst two LT algorithms assume either (MX ;JY ;K)/(MX;NY ;K)decompositions of Fourier and spectral space, respectively, or (M;JY ;KX)/(M;NY ;KX)decompositions. The simple forward LT is computed as�mn = J�1Xj=0 �m(�j)Pmn (�j)wj = PY �1Xy=0 0@Xj2Jy �m(�j)Pmn (�j)wj1A � PY �1Xy=0 Tmn (y) :(19)Each partial sum Tmn (y) can be evaluated within a processor (x; y) without interpro-cessor communication. The �nal calculation of the spectral coe�cient �mn requires the



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 14summation of PY partial sums distributed over PY processors. A \column-wise" dis-tributed vector sum algorithm can be used to perform this summation in a block fashionfor all spectral coe�cients, �elds, and vertical levels associated with a given processorcolumn. The same approach can also be used with the more complicated transformsproducing �mn from multiple �elds of Fourier coe�cients.The simple inverse LT is computed as�m(�j) = N(m)Xn=jmj �mn Pmn (�j):Each processor can calculate its associated Fourier grid values independently if the(distributed) vector of spectral coe�cients f�mn g is �rst replicated on all PY processorsin the given processor column. This requires a broadcast operation prior to the inverseLT. The same approach also works when more than one �eld of spectral coe�cients isneeded to evaluate the Fourier grid values.For ease of coding and interprocessor communication e�ciency, we have found ituseful to combine the distributed vector sum and broadcast in a single operation. Thus,at the end of the forward LT, all processors in a given column have the same spectral co-e�cients, and the decomposition of the spectral grid is (MX ;N ;K), a one-dimensionalrather than two-dimensional decomposition. A disadvantage of this approach is that asmall amount of computation that modi�es the spectral coe�cients between the forwardand inverse LTs must be performed redundantly on the replicated coe�cients. But thecomplexity of this computation is of a lower order and has a smaller constant thanthat involved in the LT operations. In our experiments, the savings due to improvedcommunication e�ciency easily outweigh the cost of the redundant computation. Theredundant computation is ignored in subsequent analysis.Ring Sum. We now describe the �rst of two LT algorithms based on this structure(distributed vector sum and broadcast). These algorithms di�er only in the mechanismsused to sum the vectors of partial sums Tmn and to replicate the results. In the ring sumalgorithm, data ows around a logical ring of processors. A summation involving Qprocessors proceeds in Q�1 steps, with each processor receivingD=Q data from its leftneighbor and sending D=Q data to its right neighbor at each step. Upon completion,the vector of D spectral coe�cients is evenly distributed over the Q processors. Thisprocess is reversed (without the summations) to broadcast the result. Communicationcosts are Tring sum = 2(Q� 1) ts + DQtw! :(20)In the shallow water code, Q = PY and D � (4=9)(J + 1)(2J + 5)K=PX (because thespectral coe�cients are complex (two-word) values), giving the expression in Table 3.Buttery Sum. The buttery sum algorithm is a hybrid of two algorithms [31].For long vectors, we use a recursive halving algorithm [16] that utilizes a buttery



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 15Table 3Communication Characteristics of Parallel LT AlgorithmsAlgorithm Messages Data VolumeRing sum 2(PY � 1) 89 (J + 1)(2J + 5)KP (PY � 1)Buttery sum 2 log2 PY 89 (J + 1)(2J + 5)KP (PY � 1)�(Q) transpose 2(PY � 1) 523 (J + 1)JKP PY � 1PY�(logQ) transpose 2 log2 PY 263 (J + 1)JKP log2 PYTable 4LT Performance Models Specialized for 2-D Mesh (where they di�er)Algorithm Revised Data VolumeButtery sum 49 (J + 1)(2J + 5)KP PY log2 PY�(Q) transpose 269 (J + 1)JKP (PY + 1)�(logQ) transpose 133 (J + 1)JKP PYcommunication pattern like the distributed FFT. Each processor communicates (andsums) D=2 data in the �rst stage, half as much (D=4) in the second, and so on, so thateach processor communicates a total of D(Q� 1)=Q data in (log2Q) steps. The globalsum is then complete, and the vector of D spectral coe�cients is evenly distributedover the Q processors. This process is reversed (without the summations) to broadcastthe result. Total communication cost is as follows:Tbuttery sum = 2 log2Q ts + 2DQ� 1Q tw :(21)When the vector becomes small, the hybrid algorithm switches to an exchange algo-rithm in which each processor communicates all the remaining data at each subsequentstep. This eliminates some of the broadcast communication. The vector length at whichthe hybrid algorithm switches is a machine-dependent constant, and the communicationcost of the buttery sum is well characterized by (21). This approximation is used forthe expression in Table 3.Computation/Communication Overlap. The computation of the local sums fTmn (y)gcan be interleaved with stages of the distributed vector sum algorithms. Similarly, the



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 16broadcast can be delayed until the computation of the inverse LT, and the stages of thebroadcast interleaved with computation. This eliminates the redundant computationon the spectral grid, because the broadcast is delayed, and does not change the numberof messages or data volume.When the interleaving is organized so that the communication of one stage ofthe algorithm is overlapped with the computation of the next stage, the ring sum isable to perform �(J4=PY ) computation while communicating �(PY J3) data [35]. Thisoverlapping can be highly e�ective for small PY and/or large J , decreasing the cost ofcommunication signi�cantly.Overlap is less e�ective for the buttery sum. Interleaving only applies to therecursive halving phase of the algorithm, and the communication of a vector of lengthD=2i is overlapped with the computation of local sums for a vector of length D=2i+1,i.e., half the size, rather than the same size as in the ring sum. Due to time constraints,we have evaluated the overlap technique only in the ring sum algorithm.Bandwidth Limitations. A ring can be embedded in a hypercube or bidirectionalmesh, and ring sum does not su�er from bandwidth limitations on either interconnectiontopology.The exchange and recursive halving components of the buttery sum algorithmhave the same communication structure as the FFT and, thus, su�er from bandwidthlimitations on a mesh. But the recursive halving component su�ers less than the dis-tributed FFT. In the �rst step, D=2 data are exchanged with nearest neighbors withoutcompetition. In the second step, D=4 data are exchanged with processors 2 hops dis-tant and 2 processors compete for each wire. In the fourth step, 4 processors must sendD=8 data over the same wire, and so on, with the result that data volume must bescaled by (1=2) log2Q. As before, we use the value for the recursive halving algorithmin qualitative comparisons, giving the expression in Table 4.Algorithm Limitations. In order to exploit symmetry (i.e., to avoid computing spec-tral coe�cients for negative wavenumbers), corresponding latitudes from the northernand southern hemispheres are paired. Hence, the J index set is partitioned over thePY column processors into 2PY equal-sized blocks, and two blocks are assigned to eachprocessor column. Thus, PY � J=2 if whole processor rows are not to be idle duringthe LT. Similarly, PX � M + 1 � (2=3)(J + 1), if whole processor columns are not tobe idle.Load Balance. Load imbalance arises if PY does not divide J=2 evenly, with theprocessor row with the maximum load computing 2cdJ=(2PY )e ops per spectral coef-�cient instead of c(J=PY ), for some constant c. The communication volume does notchange because spectral coe�cients are being communicated, not Fourier coe�cients.The performance of the distributed LT algorithms is also a�ected by the FFT al-gorithm used. As the Fourier transform is unordered, the distributed FFT algorithmassigns blocks of permuted Fourier coe�cients to the Px processor columns. This as-signment approximately balances the assignment of \short" Legendre transforms (largewavenumbers) and \long" Legendre transforms (small wavenumbers) [32], but the load



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 17Table 5Relative Increase in Computation and Communication Costs in Fourier Transforms As a Resultof Load ImbalancesAlgorithm Computation Cost Data VolumeDist. FFT/Dist. LT dJ=(2PY )eJ=(2PY ) dJ=(2PY )eJ=(2PY )Trans. FFT/Dist. LT dJ=(2PY )eJ=(2PY ) dK=PXeK=PX dJ=(2PY )eJ=(2PY ) dK=PXeK=PXDist. FFT/Trans. LT dJ=PY eJ=PY dJ=PY eJ=PYTrans. FFT/Trans. LT dJ=PY eJ=PY dK=PXeK=PX dJ=PY eJ=PY dK=PXeK=PXbalance is not perfect and some processor columns have more work than others. Asimple (over)estimate of the maximum number of spectral coe�cients assigned to aprocessor column is32 (M + 1)2KPX + 32(M + 1)K + 38KPX for PX � (M + 1)and 3(M + 1)K for PX � M + 1. If a transpose FFT is used, then the wavenumberdimension is not partitioned. The maximum number of spectral coe�cients assigned toa processor column is (3=2)(M + 1)(M + 2)dK=PXe, and there is load imbalance if PXdoes not divide K evenly.Load imbalance in the assignment of spectral coe�cients a�ects both the commu-nication and computation costs, scaling both proportionately, as indicated in Tables 5and 6.6.2. Transpose LT. The transpose algorithms of x5.2 can also be used to reor-ganize the Fourier grid so that the LT can proceed without further communication. Ifthe FFTs are computed using a distributed algorithm, then the forward LT requiresthat the Fourier grid �rst be reorganized from (MX;JY ;K) to (MX ;J ;KY ). Thetransform then produces a (MX ;N ;KY ) decomposition of the spectral grid. For theinverse LT, no further reorganization is needed, but the Fourier grid must be returnedto the original (MX;JY ;K) decomposition before the inverse FFT algorithm can be-gin. If the FFTs are computed using a transpose algorithm, then the Fourier grid mustbe reorganized from (M;JY ;KX) to (MY ;J ;KX) before the forward LT, and from(MY ;J ;KX) to (M;JY ;KX) after the inverse LT.In both cases, the reorganizations require PX independent transposes, each involv-ing PY processors. Note that these transpositions involve the truncated Fourier gridrather than the spectral coe�cients: that is, (M + 1)� J �K complex values. Hence,assuming perfect load balance, D = 16(M + 1)JK=PX for the transpose preceding theforward LT and D = 10(M + 1)JK=PX for the transposition following the inverse LT.



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 18Table 6Relative Increase in Computation and Communication Costs in Legendre Transforms As a Resultof Load Imbalances (worst-case approximations)Algorithm Computation Cost Data VolumeDist. FFT/Dist. LT:PX < 23(J + 1) dJ=(2PY )eJ=(2PY )  1 + 34 PXJ + 1!2  1 + 34 PXJ + 1!2PX � 23(J + 1) dJ=(2PY )eJ=(2PY ) 6PX2J + 5 6PX2J + 5Trans. FFT/Dist. LT dJ=(2PY )eJ=(2PY ) dK=PXeK=PX dK=PXeK=PXDist. FFT/Trans. LT:PX < 23(J + 1) dK=PY eK=PY  1 + 34 PXJ + 1!2 dK=PY eK=PY  1 + 34 PXJ + 1!2PX � 23(J + 1) dK=PY eK=PY 6PX2J + 5 dK=PY eK=PY 6PX2J + 5Trans. FFT/Trans. LT:PY < 23(J + 1) dK=PXeK=PX  1 + 94 P 2Y(J + 1)2! dK=PXeK=PX  1 + 94 P 2Y(J + 1)2!PY � 23(J + 1) dK=PXeK=PX 6PY2J + 5 dK=PXeK=PX 6PY2J + 5Adapting (17) and (18) to this situation and using 2J � 3M +1, we obtain the expres-sions in Table 3 for LT-related communication costs when using transpose algorithms.The transpose LT algorithms, like the transpose FFT algorithms, become less e�-cient when modi�ed to overlap computation with communication. Bandwidth limita-tions on a mesh a�ect the transpose LT algorithms in the same ways as the transposeFFT algorithms, as indicated in Table 4.Algorithm Limitations. The distributed FFT/transpose LT algorithm decomposesthe vertical dimension before computing the LT and, hence, requires PY � K to avoididle processor rows. For processor columns not to be idle requires PX � M + 1 �(2=3)(J + 1).Conversely, the transpose FFT/transpose LT algorithm decomposes the wavenum-ber dimension before computing the LT and requires PY �M+1 to avoid idle processorrows. For processor columns not to be idle requires PX � K.Load Balance. Load imbalances occur in the distributed FFT/transpose LT algo-rithm if PY does not divide K evenly, and in the transpose FFT/transpose LT if PXdoes not divide K evenly.The distributed FFT/transpose LT is also subject to load imbalance as a resultof the distribution of spectral coe�cients generated by the distributed FFT, as de-



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 19scribed for the distributed FFT/distributed LT algorithm. Because the transposeFFT/transpose LT algorithm also partitions the wavenumber dimension, it also suf-fers from load imbalance. Since all equipartitions incur the same communication costsin the transpose algorithms, we minimize load imbalance by using the partitioning strat-egy described by Barros and Kauranne [3]. This pairs \short" transforms with \long"transforms in the assignment, and there is no load imbalance when PY divides (M+1)=2evenly. Let � = M + 12PY � �M + 12PY � :With the Barros-Kauranne strategy, the maximum number of spectral coe�cients fora given vertical level assigned to a processor column is32 (M + 1)(M + 2)PY + 6PY �(1 � �)� 3� for PY � (M + 1)and 3(M + 1)K for PX � M + 1, in contrast to (2=9)(J + 1)(2J + 5)K=PX for aload balanced assignment. Load imbalances in the assignment of spectral coe�cientsa�ect both the communication and computation costs, scaling both proportionately.See Tables 5 and 6.7. Qualitative Analysis. The three FFT algorithms described in x5 perform ex-actly the same computations. The four LT algorithms described in x6 perform es-sentially the same computations, modulo di�erent partial orders and some redundantcomputations on the spectral grid. The FFT and LT algorithms are distinguished pri-marily by their communication performance and their load balance. In this section,we use the communication cost and load balance models (Tables 1{6) to make simplequalitative comparisons.7.1. Parallel FFT Algorithm Comparisons.Data Transfer Costs. �(Q) transpose communicates the least data: �(J2K=P )per processor versus �((log2 PX)J2K=P ) for �(logQ) transpose and distributed FFT.Hence, �(Q) transpose should perform better on large problems, particularly if datatransfer costs (tw) are high relative to message startup costs (ts).Message Startup Costs. Distributed FFT and �(logQ) transpose send fewer mes-sages than �(Q) transpose: �(logQ) rather than �(Q). Hence, they should performbetter when message startup costs are large relative to data transfer costs, and onproblems that are small relative to the number of processors: that is, when J2K=P issmall.Computation/Communication Overlap. Distributed FFT communicates the mostdata but is the most e�cient at overlapping communication with computation and,hence, should perform better on computers that support computation/communicationoverlap.



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 20Bandwidth Limitations. Distributed FFT and �(logQ) transpose su�er less than�(Q) transpose from bandwidth limitations on mesh networks; when these are takeninto account, their e�ective data volumes di�er only by constant factors from that ofthe �(Q) transpose.7.2. Parallel LT Algorithm Comparisons.Data Transfer Costs. For large PY , �(Q) transpose communicates the least data:�(J2K=P ) per processor versus �((log2 PY )J2K=P ) for �(logQ) transpose and �(PY J2K=P )for ring and buttery sum. Hence, �(Q) transpose should perform better on large prob-lems, particularly if data transfer costs are high relative to message startup costs.On smaller numbers of processors, the coe�cient as well as the complexity of thedata transfer term needs to be considered. As the �(Q) transpose operates on thetruncated Fourier grid, each processor communicates at least (52=3)J2K(PY �1)=(PPY )words. The summation algorithms operate on the spectral coe�cients. Thus, ring andbuttery sum need move only about (16=9)(J2K)(PY � 1)=P words, and, for PY < 10,these algorithms communicate less data than the transpose.Message Startup Costs. As buttery sum and �(logQ) transpose send the fewestmessages (2 log2 PY versus 2PY for the others), they should be superior on machineswhere message startup costs are large and on problems that are small relative to thenumber of processors. Again, the data volume term for �(logQ) transpose is asymp-totically smaller than for the buttery sum, but is larger for PY < 24.Computation/Communication Overlap and Bandwidth Limitations. Ring sum canoverlap computation and communication when PY is small or J is large. It does notsu�er from bandwidth limitations on mesh computers and has the smallest data volumeon mesh computers.7.3. Parallel Spectral Transform Algorithm Comparisons. A parallel spec-tral transform algorithm must specify not only a parallel FFT and LT algorithm butalso a processor grid aspect ratio (PX and PY ) for a given number of processors. PXand PY are the processors used in the FFT and LT, respectively.Aspect Ratio. Algorithmic comparisons are complicated by the fact that di�erentcombinations of FFT and LT algorithms perform best with di�erent aspect ratios. Forexample, consider the algorithm combination �(Q) transpose FFT and �(Q) transposeLT. Here, a square grid is most e�cient, as comparable amounts of data are movedin each phase in the same way, and overlap is not exploited, so the di�erence in com-putational cost between the two phases is not an issue. In contrast, for distributedFFT/ring sum LT it is most e�cient to (a) apply all processors to the LT for small P ;(b) use remaining processors for the FFT until communication costs in each phase arecomparable; and (c) use an aspect ratio that favors the FFT increasingly for large P .The reason is that for small P the ring sum moves less data than does the distributedFFT and permits more computation/communication overlap. For large P , the ringsum sends more messages and more data, and the amount of computation available to



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 21overlap communication is small. This analysis changes on meshes, where the ring sumis favored if message startups do not dominate communication cost.These considerations suggest that it is not su�cient to perform separate studies ofFFT and LT algorithms, with the goal of selecting an optimal FFT and an optimal LTalgorithm for inclusion in a parallel spectral transform. Instead, we must consider allpossible pairs of algorithms at all possible aspect ratios.Load Balance. Load balance issues arise when evaluating di�erent FFT/LT algo-rithm combinations. Load balance is sensitive to problem size and number of processors,so general comparisons are di�cult to make. While load balance problems can often beavoided by intelligent choices of the number of processors and aspect ratio of the logicalgrid, these choices implicitly represent algorithm limitations for the given algorithmcombination.There are two situations in which load imbalance is di�cult to avoid:1. The number of vertical levels is relatively small in climate models. Hence,transpose algorithms tend to need to apply relatively more processors in theother dimensions to avoid idle processors. For example, a transpose FFT im-plies a need for more LT processors. Because communication costs increasewith P , LT performance will be worse than if an equal number of processorswere applied to both FFT and LT.2. The partitioning of the spectral coe�cients usually introduces some load im-balance. The distributed FFT su�ers the most from this phenomenon, buttranspose FFT/transpose LT is subject to it also.The e�ects of load imbalances are summarized in Tables 5 and 6; we see that transposeFFT/distributed LT is slightly less sensitive to load imbalance problems than otheralgorithms.7.4. Summary. The qualitative comparisons suggest that no single algorithm islikely to be optimal in all situations. The choice of algorithm depends on a variety offactors such as problem size, type of network, number of processors, and communicationparameters.8. Empirical Studies. As indicated in preceding sections, the analytic modelsintroduced in Tables 1{4 can provide insights into performance issues. The models canalso be used to evaluate scalability and to make rough performance estimates [14, 15,22]. For de�nitive algorithm comparisons, however, empirical studies are required tocalibrate and validate the models. We expect constant factors to matter for a largerange of multiprocessor sizes, and the relative e�ciency of the implementations of thedi�erent algorithms can also play a crucial role. For example, the �(logQ) transposerequires more data copying than the other algorithms, increasing its \e�ective" tw value,In this section we describe our experimental vehicle, methodology, and results. Wedemonstrate that the best algorithms do vary with architecture, number of processors,and problem size. We compare the optimal algorithms with a robust and asymptoticallyoptimal algorithm, to indicate the importance of optimizing on the di�erent platforms.



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 22We also use the results of the algorithmic comparison to identify the performance-criticalaspects of each platform and to make simple scaling predictions.8.1. PSTSWM: A Testbed Code. To permit a fair comparison of the suitabilityof the various algorithms for atmospheric models, we have incorporated the algorithmsin a single testbed code called PSTSWM (for parallel spectral transform shallow watermodel).PSTSWM is a message-passing parallel implementation of the sequential Fortrancode STSWM 2.0 [20]. STSWM uses the spectral transform method to solve the nonlin-ear shallow water equations on a rotating sphere; its data structures and implementationare based directly on equivalent structures and algorithms in CCM2.PSTSWM di�ers from STSWM in one major respect: vertical levels have beenadded to permit a fair evaluation of the transpose algorithms. This is necessary becausein a one-layer model, a transpose algorithm reduces to a one-dimensional decompositionof each grid and hence can utilize only a small number of processors. The addition ofvertical levels also has the advantage of modeling more accurately the granularity of thedynamics computation in atmospheric model. In all other respects we have changed thealgorithmic aspects of STSWM as little as possible. In particular, we did not change loopand array index ordering. Although such changes would probably improve performanceof some algorithms, our goal was to have a code as similar to a real atmospheric modelas possible.PSTSWM is structured so that a variety of di�erent algorithms can be selected byruntime parameters. The FFT can be calculated using the distributed, �(Q) trans-pose, or �(logQ) transpose algorithms. The LT can be calculated using either the ringsum, buttery sum, �(Q) transpose, or �(logQ) transpose algorithms. In addition,the distributed FFT can use either the two-block algorithm that permits computa-tion/communication overlap or the one-block algorithm, and the ring sum LT can useeither the overlap or nonoverlap algorithms. Additional parameters select a range ofvariants of each of these major algorithms [36].Note that all parallel algorithms were carefully implemented, eliminating unnec-essary bu�er copying and exploiting our knowledge of the context in which they arecalled. At the present time, this allows us to achieve better performance than can beachieved by calling available vendor-supplied routines. Hence, it provides a fairer testof the parallel algorithms.8.2. Target Computers. We performed experiments on the �ve parallel com-puter systems listed in Table 7. These systems have similar architectures and program-ming models, but vary considerably in their communication and computational capa-bilities. Our values for ts and tw di�er from those reported by most researchers [11, 10]because we measure the time required to swap oating-point values between two pro-cessors rather than the time to send bytes from a source to a destination. Also, thecomputational rate is measured by running PSTSWM on a single node and so is anachieved rather than a peak rate.The Paragon experiments used the OSF-based R1.1.2 operating system and the



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 23Table 7Parallel Computers Used in Empirical StudiesName OS Processor Network PnCUBE/2 VERTEX R3.2 nCUBE 2 hypercube 1024iPSC/860 NX 3.3.2 i860 hypercube 128DELTA NX/M R1.5 i860 16 � 32 mesh 512Paragon OSF/1 R1.1.2 i860SP 16 � 32 mesh 512Paragon SUNMOS i860SP 16 � 32 mesh 512Name ts (�sec) tw (�sec) Single-processor MFlops/secnCUBE/2 240 2.3 1.2iPSC/860 200 1.4 9.8DELTA 240 0.84 9.8Paragon (OSF) 350 0.18 11.6Paragon (SUNMOS) 230 0.04 11.6low-overhead SUNMOS operating system from Sandia National Laboratories and theUniversity of New Mexico. As both systems are still evolving, any conclusions as totheir performance will be short-lived. They are interesting for this study, however,because they have signi�cantly di�erent performance characteristics.8.3. Methodology. PSTSWM incorporates too many algorithmic variants to per-mit a comprehensive study of all possible combinations of parameters, problem size,computer, and processor count. Hence, we proceeded in two stages: algorithm selectionand algorithm comparison.Algorithm Selection. We �rst performed a series of tuning experiments to iden-tify \optimal" communication parameters for each FFT and LT algorithm variant oneach computer. For example, these parameters specify whether to use blocking or non-blocking sends and receives, or what schedule to use when the order of communicationrequests is not �xed by the algorithm. These experiments were performed using one-dimensional decompositions (PX = 1 or PY = 1), allowing FFT and LT algorithmsto be studied in isolation. Problem dimensions were reduced to provide the correctcomputation and communication granularities. For example, when evaluating the ringsum algorithm for a 16 � 8 processor grid at T85L32 resolution, a 1� 8 processor gridwas used with the number of vertical levels reduced by a factor of 16 (from 32 to 2).We initially evaluated communication parameters only on \largest" and \mid-sized"computer con�gurations: for example, P = 512 and P = 128 on the Paragon. If oneset of communication parameters proved consistently superior, no further experimentswere performed. We expected the performance impact of communication parametersto be insensitive to problem granularity and number of processors, and we found thisto be true in most cases. When a di�erence was signi�cant, we selected the parametersthat worked best for the larger con�gurations. In all cases, subsequent experimentsfor a given platform and algorithm used a �xed set of communication parameters.These experiments were also used to eliminate noncompetitive FFT and LT algorithmic



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 24variants.Algorithm Comparisons. A second set of experiments compared all possible combi-nations of the remaining FFT and LT algorithms on all possible aspect ratios for eachpower of two number of processors supported by each computer. For example, on theIntel DELTA and Paragon, we used 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 processors;for 32 processors, we tried the aspect ratios 1 � 32, 2 � 16, 4 � 8, 8 � 4, 16 � 2, and32 � 1.To measure the importance of the algorithm tuning and comparison, we repeatedthese experiments using a reference algorithm comprising the �(Q) transpose FFTand LT algorithms. The reference algorithm uses a particularly simple and portablecommunication protocol and is asymptotically optimal in the sense that it has thesmallest data volume (tw); as the problem size grows, this term comes to dominatecommunication costs in all of the parallel algorithms.All experiments used the performance benchmark described in [34]: global steadystate nonlinear zonal geostrophic ow. Experiments were performed for problem sizesT21L8, T42L16, and T85L32.8.4. Results: Algorithm Selection. In presenting the results of the algorithmselection experiments, we do not discuss the communication parameters studied (see [36]for details) but focus on the algorithms. Table 8 summarizes both the algorithmsconsidered and those selected for further consideration on di�erent machines. For themost part, the table is self-explanatory. We always selected at least one distributedalgorithm and one transpose algorithm for both the LT and FFT. In some cases, twodistributed or transpose algorithms were selected, indicating that both were competitivefor at least some of the problem sizes and processor counts being investigated. Thenumber of distinct parallel spectral transform algorithms selected for each platform isalso indicated in Table 8. For example, on the iPSC/860, seven algorithms were selected:2 parallel FFT algorithms � 3 parallel LT algorithms plus the reference algorithm.8.5. Results: Algorithm Comparisons. Tables 9 and 10 list the best algorithmfor each computer, problem size, and processor count. Table 9 lists the best \FFT al-gorithm/LT algorithm" pair, where the FFT and LT algorithms are denoted by thekeys listed in the �rst column of Table 8. If the best algorithm uses a one-dimensionaldecomposition (i.e., either the FFT or the LT is not parallelized), then no algorithm islisted for the unparallelized transform. Table 10 lists the aspect ratio associated withthe best algorithm (i.e., the number of processors allocated to the FFT and LT, respec-tively). We see considerable variety, with 12 of the 30 algorithm combinations beingoptimal in some situations, as well as a variety of di�erent aspect ratios. The variationin the aspect ratios stems both from the use of di�erent algorithms in di�erent situa-tions and from limitations on transpose algorithms because of the number of verticallevels.The tables do not indicate how much di�erence there is between di�erent algo-rithms. Figs. 2 and 3 provide some of this information. They shows on each machineat T42 and T85 resolution the performance of the reference algorithm and three other



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 25Table 8Parallel Algorithms Considered in Algorithm Selection Studies, and Algorithms Selected for Al-gorithm Comparison Studies on nCUBE/2 (N), iPSC/860 (I), DELTA (D), Paragon-OSF (P), andParagon-SUNMOS (S). A dash indicates a noncompetitive algorithm that was not considered for furtherstudy. The reference algorithm is included in the number of algorithm combinations.Key Phase Algorithm Variant N I D P SD FFT Distributed no overlap { { Y Y YO overlap Y Y { { {M �(Q) transpose Y Y Y Y YL �(logQ) transpose { { { Y YN LT Ring sum no overlap { { { { {R overlap Y Y Y Y YB Buttery sum Y Y Y Y YM �(Q) transpose Y Y Y Y YL �(logQ) Transpose { { { Y YNumber of algorithm combinations 7 7 7 13 13Table 9Best Parallel Algorithms as a Function of Machine/OS, Problem Size, and ProcessorsMachine Problem ProcessorsType T L 2 4 8 16 32 64 128 256 512nCUBE/2 21 8 {/R {/R {/R {/R T/R T/R T/B O/B |nCUBE/2 42 16 | | {/R {/R T/R T/R T/R T/R T/RnCUBE/2 85 32 | | | | | O/R T/R T/R T/RiPSC/860 21 8 {/R {/B {/B T/R T/R T/B T/B | |iPSC/860 42 16 | {/R {/R {/T T/R T/R T/R | |iPSC/860 85 32 | | | | T/R T/R T/R | |DELTA 21 8 {/B {/B {/B T/B T/B T/B T/B D/B |DELTA 42 16 {/R {/R {/B {/T T/B T/B T/B T/B T/BDELTA 85 32 | | | {/R {/T T/R T/B T/R T/TPG-OSF 21 8 {/B {/B {/B T/R T/R T/B L/B L/L |PG-OSF 42 16 | {/B {/B {/T T/R T/R T/T T/T L/LPG-OSF 85 32 | | | | T/R T/R T/R T/T T/TSUNMOS 21 8 {/B {/B {/B L/B T/B L/B L/B L/L |SUNMOS 42 16 {/B {/B {/B {/T L/B T/R T/R T/B L/LSUNMOS 85 32 | | | | {/T D/T L/R T/R L/T
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Table 10Best Logical Aspect Ratios as a Function of Machine/OS, Problem Size, and ProcessorsProblem ProcessorsT L 2 4 8 16 32 64 128 256 512nCUBE/221 8 1 � 2 1� 4 1 � 8 1� 16 8� 4 8� 8 8 � 16 16 � 16 |42 16 | | 1 � 8 1� 16 8� 4 8� 8 16 � 8 16 � 16 16 � 3285 32 | | | | | 4 � 16 16 � 8 32 � 8 32 � 16iPSC/86021 8 1 � 2 1� 4 1 � 8 4� 4 8� 4 8� 8 8 � 16 | |42 16 | 1� 4 1 � 8 1� 16 8� 4 16 � 4 16 � 8 | |85 32 | | | | 4� 8 16 � 4 16 � 8 | |DELTA21 8 1 � 2 1� 4 1 � 8 8� 2 8� 4 4 � 16 8 � 16 16 � 16 |42 16 1 � 2 1� 4 1 � 8 1� 16 8� 4 16 � 4 16 � 8 16 � 16 16 � 3285 32 | | | 1� 16 1� 32 32 � 2 32 � 4 32 � 8 8� 64Paragon-OSF21 8 1 � 2 1� 4 1 � 8 8� 2 8� 4 8� 8 8 � 16 8 � 32 |42 16 | 1� 4 1 � 8 1� 16 16� 2 16 � 4 8 � 16 16 � 16 16 � 3285 32 | | | | 4� 8 16 � 4 16 � 8 16 � 16 32 � 16Paragon-SUNMOS21 8 1 � 2 1� 4 1 � 8 2� 8 4� 8 8� 8 8 � 16 8 � 32 |42 16 1 � 2 1� 4 1 � 8 1� 16 8� 4 16 � 4 16 � 8 16 � 16 16 � 3285 32 | | | | 1� 32 2 � 32 16 � 8 32 � 8 16 � 32



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 27\interesting" algorithms: normally those algorithms that proved to be optimal for someprocessor count on that machine and problem size. (In a few cases, an algorithm thatis optimal for just one processor count is omitted, if another algorithm has similar per-formance.) Performance is given relative to the performance of the best algorithm ateach processor count.Speci�c comments on the empirical results follow:1. The reference algorithm is never optimal, and in some cases is ninety per centworse than the best algorithm.2. Some form of transpose forms part of the optimal algorithm combination inalmost all cases on 16 or more processors. On maximal processor con�gurations,the algorithm T/T (�(Q) transpose for both FFT and LT) is either optimal ornearly optimal in almost all cases. Notice that this algorithm is identical withthe reference algorithm except that its communication parameters have beentuned for the particular machine.3. The algorithm combination that is optimal in the largest number of con�gura-tions is T/R: �(Q) transpose FFT and (overlapped) ring summation LT. Thisseems a good candidate for a standard algorithm, although its performancedegrades for large P , particularly on the Paragon. This situation may changewhen the message coprocessor on the Paragon is enabled, decreasing messagestartup costs and better supporting computation/communication overlap.4. Because the FFT involves more data than the LT, optimal algorithms on smallnumbers of processors (16 or less) mostly decompose data structures in a singledimension so as to avoid communication in the FFT, and use either the ringsummation or buttery summation algorithm for the LT. When the FFT isparallelized, transpose algorithms are almost always superior to distributedFFTs. Algorithm combinations such as O/R and D/T are optimal in a fewcon�gurations, but are not consistent in their performance.Finally, Fig. 4 give the execution time for the best algorithm on each computer as afunction of P , for problem sizes T42 and T85. We see considerable variation in executiontimes, with the nCUBE slower than the other machines by an order of magnitude,and the Paragon under SUNMOS fastest in almost all situations. The 512-processorSUNMOS time for T85L32 represents a computational rate of 4.3 GFlops/second.8.6. Discussion. These results demonstrate the limitations of asymptotic analy-sis: the asymptotically optimal transpose algorithms are not the most e�cient in manysituations, particularly for smaller P . The results also demonstrate the importanceof tuning algorithms to the communication characteristics of a particular machine. Insome cases, tuning makes a greater di�erence than the choice of algorithm.A parallel spectral transform code designed for portability should probably incor-porate several parallel algorithms. The testbed code PSTSWM indicates that this isfeasible. The most useful algorithms seem to be the two transpose algorithms for bothFFT and LT, and the overlapped ring sum LT algorithm. A distributed FFT algorithmwould also be needed if the number of vertical levels is small. A program designed toexecute on a small number of processors (16 or less) can decompose data structures in
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Fig. 2. Performance of various parallel algorithms on nCUBE/2, iPSC/860, and Intel DELTA.Each graph gives, for a range of processor counts, performance relative to the best algorithm at thatprocessor count.
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Fig. 3. Performance of various parallel algorithms on Intel Paragon. Each graph gives, for arange of processor counts, performance relative to the best algorithm at that processor count.
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PARALLEL SPECTRAL TRANSFORM ALGORITHMS 30one dimension only, and use buttery summation or overlapped ring sum LT algorithms.9. Caveats and Generalizations. We have attempted to make our empiricalstudies relevant and comprehensive. But the generality of the study required somesimplifying assumptions, and certain algorithms were not examined. In this section, webriey discuss some of these issues. Algorithm comparisons may need to be repeatedif problems of interest di�er drastically from our simplifying assumptions. Benchmarkcodes like PSTSWM make this feasible.Problem size. For these experiments, problems sizes and processor counts were allpowers of two. All of the algorithms work best in under these conditions. Some,like the �(logQ) transpose and distributed FFT algorithms, do not work at all on anonpower-of-two number of processors. Other algorithms su�er performance degrada-tion. Nonpower-of-two problem dimensions also cause load imbalances, and the amountof performance degradation is strongly algorithm dependent.Real weather and climate models often use a number of vertical levels signi�cantlysmaller than the other dimensions of the problem. For example, T213L31 is used insome operational weather-forecast models [22], corresponding to a 640�320�31 physicalgrid. The transpose FFT algorithms su�er because they must use a larger number ofprocessors for the LT than an algorithm that uses a distributed FFT.Decomposing \�eld" dimension. As mentioned in x5.2, one technique for applyingthe transpose algorithms when there are few vertical levels is to partition the statevariables among the processors also. (This issue did not arise in our experiments,because our example problems had su�cient vertical levels relative to other problemdimensions.) This technique can be used in two ways in a transpose FFT/distributedLT algorithm:1a. Starting with the usual (IX ;JY ;K) distribution of the physical grid, we trans-pose within processor rows over both K levels and 8 �elds. We compute theFFTs, then transpose back (again within rows) to a (MX ;JY ;K) decompo-sition of the Fourier grid. We then proceed with the LT. A similar approachis used for the inverse transform, although only 5 rather than 8 �elds areavailable. This approach performs twice as many transposes as the transposeFFT/distributed LT algorithm, but can use 5 times more processors withoutload imbalance. It has been used successfully in the message-passing version ofCCM2 [7].1b. We can avoid the double transpose at the cost of redundant work and someother additional communication by duplicating one �eld and decomposing overK levels and 3 sets of 3 �elds. After the FFT, we then have separate distributedLT calculations for �, �, and � for the forward transform. For the inversetransform, we have 5K LT calculations to distribute over (�elds �, �, �, U , V ),and the U and V calculations require the updated � and � �elds. The simplestapproach, assigning U and V to the � and � \columns," requires duplication of �and � between processor columns and signi�cant load imbalance and redundantwork. A better load-balancing strategy would require something equivalent to



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 31an additional transpose and would still not eliminate all redundant work. Notethat load imbalance in the inverse LT due to assignment of �elds also impliesload imbalance in the inverse FFT. We gain (at best) the ability to use 3 timesmore processors with this approach.There is a single approach to distributing �elds during the transpose FFT in a transposeFFT/transpose LT algorithm:2. Again duplicate one �eld and decompose over 3K sets of �elds, transposingacross processor rows. After the FFT, transpose within processor columns,with each processor column computing forward LTs for either �, �, or �. For theinverse transform, we again need to assign the U and V calculations, duplicatingthe updated � and � �elds. Similar communication and computation costs arise.The double transpose FFT cannot be applied here because the transpose LT requiresthat the �eld and vertical dimensions remain decomposed if all processors are to beutilized.We feel that the most promising of these approaches is (1a). It is simple, is rela-tively independent of problem size and number of processors, and incurs no additionalcomputation cost.Serial FFT algorithm. FFT routines that can handle vector lengths with factors of2, 3, 4, and 5 allow a larger set of problem sizes to be treated. In addition, exploiting afactor of 4 is approximately 30 per cent faster than two factors of 2. These routines canbe exploited directly in transpose FFTs. The distributed FFT can also be generalized,but some e�ciency is lost.Generalized �(logQ) algorithms. A range of hybrid algorithms combining aspectsof the �(logQ) and �(Q) transpose algorithms can be de�ned that trade o� messagecounts and communication volume in di�erent ways. For example, the �(logQ) algo-rithm can be modi�ed to use log4Q stages by communicating with 3 other processorsat each stage, assuming that the problem size and number of processors support this.Another approach is to use a switch, taking a few steps of the �(logQ) algorithm, thenswitching to the �(Q) algorithm, analogously to the buttery sum algorithm.The distributed FFT can also be modi�ed to use log4Q stages and can then exploitfactors of 4 to reduce computation costs. And it is possible to apply a transpose-likealgorithm within the FFT itself [9].These hybrid algorithms can improve performance somewhat in regimes where mes-sage startup costs and data volume costs are comparable. However, they place addi-tional requirements on problem size and processor counts.Mesh-based algorithms. We have restricted ourselves to algorithms designed for one-dimensional processor meshes. In cases where nonsquare logical meshes were mappedto approximately square physical grids, it would be possible in principle to utilize spe-cialized algorithms that exploit the extra connectivity [2, 30]. Because our experimentsshow that \optimal" processor grids are mostly close to square, we believe that thesealgorithms would not change our results. This issue will be addressed in further re-search.



PARALLEL SPECTRAL TRANSFORM ALGORITHMS 32Future work.. In order to perform empirical investigation of some of the issuesdiscussed in this section, we plan to incorporate into PSTSWM both distributed andtranspose versions of the 2-3-4-5 parallel FFT, the double transpose FFT, and thehybrid �(Q) � �(logQ)) transpose algorithms. These add additional capabilites forproblem and machines sizes that we have not yet examined, but should not change ourpreliminary conclusions. Given the success of the overlap ring sum algorithm, we willalso implement the overlap buttery sum algorithm. This may increase the range ofoptimality of the transpose FFT/distributed LT algorithms on some machines.10. Conclusions. We have conducted a detailed analysis and empirical investiga-tion of parallel algorithms for the spectral transform method. This study has allowed usto identify optimal algorithms for various problem size and machine parameter regimes.This information should be directly useful to developers of parallel spectral-transform-based climate and weather models.Most of the observed performance trends can be explained using our analytic per-formance models; this gives us con�dence both that these models are correct and thatthe parallel algorithm implementations incorporated in our testbed code are e�cient.It also provides a basis for extrapolating the results obtained here to other regimes.However, the models as described here are not su�ciently detailed to provide detailedperformance predictions. In future work, we will investigate to what extent the empiri-cal studies can be used to generate performance models that can be used for prediction.This exhaustive study of alternative algorithms, communication techniques, and as-pect ratios suggests some conclusions regarding parallel libraries. It is common practicein parallel computing to select parallel algorithms on the basis of asymptotic analysis,and then to incorporate these algorithms in portable libraries that are used unchangedon di�erent computers. The results of this study emphasize three limitations of thisapproach. First, asymptotically suboptimal algorithms may be superior in many inter-esting regimes. Second, reference implementations of parallel algorithms designed forportability can be considerably less e�cient than implementations tuned for a partic-ular machine. Third, interactions between algorithms can impact performance; hence,for peak performance, it can be important to optimize algorithm combinations ratherthan individual algorithms.Our work suggests three techniques that can be used to overcome these limitations.First, detailed analytic models that take into account constant factors and issues such asload imbalance can be used to develop improved understandings of algorithmic tradeo�s.Second, libraries can be de�ned to incorporate multiple algorithmic options selectable atruntime. This allows codes to be tuned for di�erent problem or machine characteristics,either by the programmer or automatically on the basis of runtime performance data.Third, testbed codes such as PSTSWM can be used to explore algorithmic alternatives.Acknowledgments. This work was supported in part by the Atmospheric andClimate Research Division and by the O�ce of Scienti�c Computing under ContractW-31-109-Eng-38, both of the O�ce of Energy Research, U.S. Department of Energy.We are grateful to members of the CHAMMP Interagency Organization for Numerical
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