PARALLEL ALGORITHMS FOR THE SPECTRAL TRANSFORM
METHOD

IAN T. FOSTER* AND PATRICK H. WORLEYT

Abstract. The spectral transform method is a standard numerical technique for solving partial
differential equations on a sphere and is widely used in atmospheric circulation models. Recent re-
search has identified several promising algorithms for implementing this method on massively parallel
computers; however, no detailed comparison of the different algorithms has previously been attempted.
In this paper, we describe these different parallel algorithms and report on computational experiments
that we have conducted to evaluate their efficiency on parallel computers. The experiments used a
testbed code that solves the nonlinear shallow water equations on a sphere; considerable care was
taken to ensure that the experiments provide a fair comparison of the different algorithms and that
the results are relevant to global models. We focus on hypercube- and mesh-connected multicomputers
with cut-through routing, such as the Intel iPSC/860, DELTA, and Paragon, and the nCUBE/2, but
also indicate how the results extend to other parallel computer architectures. The results of this study
are relevant not only to the spectral transform method but also to multidimensional FFTs and other
parallel transforms.

Key words. Spectral transform method, parallel algorithms, performance analysis

1. Introduction. The spectral transform method is widely used for fluid dynam-
ics problems in spherical geometry, in such areas as climate modeling, weather modeling,
astrophysics, and reactor design. In this paper, we examine the problem of implement-
ing the spectral transform method on massively parallel computers. Such computers
comprise 10%-10* processors, each with local memory and able to access other proces-
sors’ memory via an interconnection network. When designing algorithms for these
computers, important considerations include minimizing nonlocal memory accesses, or-
ganizing interprocessor communication to make efficient use of the network, masking
communication latency, and minimizing load imbalances.

The spectral transform method as used in climate models comprises a Fourier trans-
form phase, in which fast Fourier transforms (FFTs) are applied to each latitude of a
latitude/longitude grid, and a Legendre transform phase, in which Gaussian quadra-
ture is used to approximate the Legendre transform (LT) applied to each longitude
(now wavenumber) of the same grid [4]. Efficient parallel FFT and LT algorithms have
been the topic of intensive research (e.g., see [16, 25, 28, 29]). The spectral transform
is nevertheless deserving of special study, first because the matrices involved are typ-
ically much smaller than usual for Fourier and Legendre transforms (e.g., 64-1024 in
each dimension, rather than tens of thousands), second because the two phases interact
in interesting ways on certain architectures, and third because the importance of the
spectral transform makes even small performance improvements valuable.

Parallel spectral transform algorithms have been investigated previously by several
researchers. We and colleagues at Argonne and Oak Ridge national laboratories have

* Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.
T Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012, Oak Ridge, TN 37831-6367.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 2

developed a parallel transform approach based on parallel FFT and quadrature algo-
rithms [14, 32, 35]; this work has been incorporated in a parallel implementation [7, 8]
of the National Center for Atmospheric Research (NCAR)’s Community Climate Model
(CCM2) [19]. Other researchers have examined a transpose approach, in which commu-
nication requirements are encapsulated in a matrix transpose operation. This approach
is used, for example, in the European Center for Medium-Range Weather Forecasts spec-
tral weather model [6] and in Loft and Sato’s data parallel implementation of CCM2 [23].
It has also been explored by Kauranne and Barros [22], Pelz and Stern [26], and Gartel,
Joppich, and Schiiller [17].

In addition to the transform and transpose approaches, a variety of hybrid algo-
rithms are possible that combine aspects of both. A comprehensive comparison of these
algorithms has not previously been attempted. (Both [15] and [22] provide a qualita-
tive analysis of some algorithms, but not detailed quantitative results or performance
models.) Hence, it is difficult to evaluate the performance tradeoffs that arise when
choosing a parallel algorithm for a particular application.

In this paper, we describe analytic and empirical studies that we have conducted
to determine

1. whether there is a best algorithm (on a given platform, for a given problem
size, etc.);

2. the sensitivity of the choice of optimal algorithm to problem size, number of
processors, and platform specifics; and

3. the benefits of optimizing for a given platform or problem size.

In the analytic studies, we develop models that characterize the performance of
the various spectral transform algorithms by relating communication requirements and
load imbalances to problem size, processor count, and other parameters.

The empirical studies utilize a parallel shallow water equation solver designed specif-
ically for these experiments [36]. Considerable care has been taken to ensure that exper-
iments are as fair as possible, that is, that one algorithm is not unduly favored through
choice of data structures, greater optimization, etc. In addition, the code structure
mimics that of general circulation models, maximizing the applicability of results to
these models.

The contributions of this paper are as follows. First, the analytic models provide a
qualitative characterization of the performance of numerous parallel algorithms for the
spectral transform, including both parallel algorithms developed previously and new
algorithms developed in the course of this work. Second, the empirical results provide
a detailed understanding of the performance characteristics of these algorithms on the
target platforms. Third, we identify robust algorithm combinations for various problem
size and machine characteristic regimes.

The rest of this paper is as follows. Sections 2, 3, and 4 provide background
information on the shallow water equations solved by our testbed code, the spectral
transform method, and parallel computation. Sections 5 and 6 describe the parallel
algorithms that we examine in the Fourier and Legendre phases of the transform. In
87, we use these models to make qualitative comparisons between the algorithms and

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 3

to identify performance tradeoffs on different parallel computer architectures. Section 8
describes empirical studies conducted on a range of scalable parallel computers, and
relates the results to algorithm and machine characteristics. Section 9 describes issues
not addressed in this study, and directions for future work. Section 10 presents our
conclusions.

2. The Shallow Water Equations. The nonlinear shallow water equations on
a rotating sphere constitute a two-dimensional atmospheric-like fluid prediction model
that exhibits many of the features of more complete models [34]. These equations are
frequently used to investigate and compare numerical methods because they present
many of the difficulties found in simulating the horizontal dynamics in three-dimensional
global atmospheric models [5].

The algorithms used to solve the shallow water equations via the spectral transform
method are similar to those employed in the NCAR Community Climate Model to
handle the horizontal dynamics component of the primitive equations [19]. Hence, a
model that solves the shallow water equations on multiple (independent) levels during
each timestep of the simulation provides a framework in which the performance of
CCM2’s horizontal dynamics can be studied in isolation from the other aspects of the full
model. While this framework is not a completely reliable predictor of the performance
of the parallel algorithms in the full model, it allows us to determine accurately the
relative merits of the different parallel approaches.

For completeness, we now describe the shallow water equations in the form that we
solve using the spectral transform method. The shallow water equations on a sphere
consist of equations for the conservation of momentum and the conservation of mass.
Let 1, j, and k denote unit vectors in spherical geometry, V denote the horizontal
velocity, V = iu + jv, ® denote the geopotential, and f denote the Coriolis term. Then
the horizontal momentum and mass continuity equations can be written as [33]

DV

1 — = —fkxV-V0
(1) NV fcev-v

Do

— = —0V.V

Dt ’
where the substantial derivative is given by

D 0
2 —() == V. :
2 Di=204v)

The spectral transform method does not solve these equations directly; rather, it
uses a streamfunction-vorticity formulation in order to work with scalar fields. Define
the vorticity n and the horizontal divergence 6 by

n = f+k-(VxV)
6 = V-V.

To avoid the singularity in velocity at the poles, let 8 represent latitude, and also redefine
the horizontal velocity components as

(U,V)=Vcosh .

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 4

Then, after some manipulation, the equations can be written in the form

B P = U e

06 19 19 , U2 4 v
W T aemal g Y (“2(1—#2))
(5) aa—(f - —7a(1iﬂz)%(zf¢)_2%(v¢)_¢5.

Here a is the radius of the sphere; the independent variables A and g denote longitude
and sin 8, respectively; and ® is now a perturbation from a constant average geopotential
.

Finally, U and V can be represented in terms of n and ¢ through two auxiliary
equations expressed in terms of a scalar streamfunction ¢ and a velocity potential y:

o lox 11— p? oy
(6) v = ad\ a g
_10¢ 1—p?ox
where
(8) n o= V4 f
9) § = Vi

In the spectral transform method, we solve Equations (3)—(5) for 5, ¢, and ®, and
use Equations (6)—(9) to calculate U and V.

3. The Spectral Transform Method. In the spectral transform method, fields
are transformed at each timestep between the physical domain, where the physical forces
are calculated, and the spectral domain, where the horizontal terms of the differential
equation are evaluated. In the three-dimensional atmospheric models that we wish to
emulate, all coupling between vertical levels is also calculated in the physical domain.

The spectral representation of a field variable £ on a given vertical layer above
the surface of a sphere is defined by a truncated expansion in terms of the spherical
harmonic functions { P™(u)e™* }:

M N(m) .
Ep)= >0 D &rpT(u)e™,

m:—M n:|m|

where

Il
—
=
Iy
e
=
av)
3
=
=
=

PARALLEL SPECTRAL TRANSFORM ALGORITHMS)

Here i = /—1, p = sin 0, 0 is latitude, X is longitude, m is the wavenumber or Fourier
mode, and P (p) is the associated Legendre function. The spherical harmonic functions
are the eigensolutions of the Laplacian operator in spherical coordinates and constitute
a complete and orthogonal expansion basis for square integrable functions on the sphere.
Additional properties of these functions can be found in [24].

In the truncated expansion, M is the highest Fourier mode and N(m) is the highest
degree of the associated Legendre function in the north-south representation. Since the
physical quantities are real, £, is the complex conjugate of . This fact is used to
reduce both computational complexity and storage requirements by calculating only
spectral coefficients for nonnegative modes.

In each vertical layer of the physical domain, fields are approximated on an I x J
longitude-latitude grid, where the I longitude grid lines are evenly spaced and the J
latitude grid lines are placed at the Gaussian quadrature points {y;} in [—1,1]. Trans-
forming from physical coordinates to spectral coordinates involves first performing a
Fourier transform for each line of constant latitude, generating the values {£™(p;)} on
an M x J wavenumber-latitude grid that we will refer to as the Fourier grid. This is fol-
lowed by integration over latitude for each line of constant wavenumber, approximated
using J-point Gaussian quadrature, to obtain the spectral coefficients,

J-1
& =2 &M () P () wj
=0
Here w; is the Gaussian quadrature weight corresponding to the Gaussian latitude g;.
The point values are recovered from the spectral coefficients by computing

for each m, followed by inverse Fourier transforms to calculate £(A, p). When the
spectral transform method is applied in a three-dimensional atmospheric model, the
principal data structures are as shown in Fig. 1. P denotes the physical grid, F' the
Fourier grid, and S the spectral grid.

In the shallow water equation code [20], each timestep begins by calculating the
nonlinear terms Un, Vi, U®, V@, and & + (U? +V?)/(2(1 — *)) on the physical grid.
Next, the nonlinear terms and the state variables n, 6, and ® are Fourier transformed.
The forward Legendre transforms of these fields are then combined with the calculation
of the tendencies used in advancing n, 6, and ® in time (essentially evaluating the
right-hand sides of Equations (3)—(5)) and the first step of the time update. This
approach decreases the cost, when compared with calculating transforms individually
and then calculating the tendencies, and generates spectral coefficients for only three
fields instead of eight. Next, the time updates of n, 6, and ® on the spectral grid are
completed. Finally, the inverse Legendre transforms of n, 6, and ® are combined with
the calculation of the fields U and V' (solving Equations (6)—(9)), followed by inverse
Fourier transforms of these five fields.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 6

FFT LT

A m
Fia. 1. Principal Data Structures in Spectral Transform

Without significant loss of generality, we assume a triangular spectral truncation
in this paper: N(m) = M and the (m,n) indices of the spectral coefficients for a single
vertical layer form a triangular grid. For a triangular truncation, exact, unaliased
transforms of quadratic terms are obtained if [> 3M + 1 and if I = 2J [33]. In this
work we also use a fast Fourier transform (FFT) algorithm that requires [to be a power
of two. As is commonly done, for a given M we choose [to be the minimum power of
two satisfying I > 3M + 1, and set J = /2. With these assumptions, the value of M
can be used to characterize the horizontal resolution of the grids, and the term “TAM”
is used to denote a particular discretization. For example, for T85 we have M = 85,
I =256, and J = 128, and the number of spectral coefficients (Ngpec) calculated per
field for a single vertical layer is

M M 1
Nopee = Y. > 1 = 5(M+1)(M+2) = 3741.

m=0n=m

The number of vertical levels is determined primarily by the physical processes that are
being modeled and is chosen independent of M in current meteorological models. The
term “TMLK” will be used to denote a model with a TM horizontal grid resolution
and K vertical levels.

In subsequent discussion, we denote the index set of the physical grid by a triple
(Z,TJ,K), with T corresponding to longitude, J to latitude, and K to the vertical. We
denote the index set of the Fourier grid by the triple (M, J,K), with M corresponding
to wavenumbers. We denote the index set of the spectral grid by the triple (M, N, K),
with A corresponding to polynomial degree. (Note that in a triangular truncation,
the index set AN is dependent on the wavenumber.) We assume that computation is
performed on a two-dimensional logical grid of P = Px x Py processors. We denote an
individual processor by an index pair (z,y).

Different phases of a parallel spectral transform algorithm may employ different
decompositions of the computational grids onto the processor grid. We describe these
by a triple, for example, of the form (Z,, 7, K.), where a, b, and ¢ are X, meaning that
indices in the subscripted dimension are partitioned over processors in the X plane of
the processor grid; Y, meaning that indices are partitioned over processors in the Y
plane; or null, meaning that indices are not partitioned. Analogous notations are used
to represent the decompositions of the Fourier and spectral grids. Our decompositions
never decompose over more than two dimensions. We assume that the physical space
grid is always decomposed as (Zx,Jy,K) and that the physical domains of all fields

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 7

are decomposed (and mapped to processors) in the same way, so that computations
in vertical columns can proceed without communication. (These computations are not
considered here but are an important and complex part of a climate model that are
difficult to parallelize efficiently.) Unless otherwise noted, we also assume that all fields
use the same Fourier and spectral domain decompositions.

4. Parallel Algorithms and Architectures. Scalable parallel computers gen-
erally comprise a number of independent computers and an interconnection network.
Each computer has its own processor and memory, can execute a sequential program,
and can send and receive messages to and from other computers. In the absence of
concurrent computation and communication, the run time for a parallel program on
such a system can be characterized on a per-processor basis as

(10) T = Tcomp + Tcomm 5

where Tiomm is the time spent (actively) communicating or waiting for messages to
arrive and Teomp is the time spent computing (i.e., not communicating).

In all of the algorithms described in this paper, each send request is closely preceded
or followed by a receive request for a message of approximately the same size. In
current multiprocessors, the cost of such a send/receive pair can often be modeled with
reasonable accuracy as

(11) TComm:ts—I_Ntum

where £, is the time to initiate the communication requests, IV is the size of the messages
in words, and t,, is the time to transfer a single word of data into the network and
transfer another word out of the network. By choosing #, and ¢, to reflect intrinsic
system performance characteristics and defining T.omm to be the sum of the cost of
these send/receive pairs, (10) becomes a lower bound on the execution time of the form

(12) T = TCOmp + Z (ts + Nztw) .

Costs omitted in this lower bound—for example, idle time waiting for messages to
arrive or buffer copying associated with message passing—are generally proportional to
the number of messages or to the message lengths in each of our algorithmic phases:
physical domain computations, FFT, LT, and spectral domain computations. (This is
due to the nature of our algorithms and does not hold in general.) Hence, by fitting
(12) for a given phase to empirical data, system- and algorithm-dependent values for
ts and t,, can often be derived for which (12) is valid for a large range of problem sizes
and numbers of processors.

Whether as a lower bound or as an empirically-fitted performance model, (12) is
often sufficient to make accurate qualitative comparisons between parallel algorithms,
and will be used in the algorithm analysis to follow. There are also two generalizations of
this model that are important for some of the multiprocessor platforms included in this
study, incorporating the impact of computation/communication overlap and network
bandwidth limitations, respectively. In the following, we use an example to illustrate
the simple model; we then introduce the generalizations.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 8

4.1. Parallel Algorithm Example. We use the fast Fourier transform (FFT) to
illustrate the use of (12). The Fourier transform, y = {yx}, of a sequence of D values
x = {x;} is given by

D-1
_ ~2rmijk/D
yp = 3wt HD

7=0

where s = \/—1. The FFT exploits symmetry to perform this computation in log, D
steps, each involving ©(D) operations. Assume that x is partitioned over) processors
by blocks, and let D = 2¢ and) = 27 for some integer d and ¢, d > ¢. The first
d — g stages of the FFT can then proceed without communication, while each of the
last ¢ stages involves a pairwise exchange of 2977 data or intermediate results with
another processor [16, 18, 25, 28, 29]. Each processor engages in log, () communication
operations, each involving the transfer of D/@) data, and communication costs are

D
Tcomm: lo 2 5 ~lw |-
(13) 0@ (14 gt)

The parallel and sequential algorithms perform exactly the same computation. As this

computation is partitioned evenly among the () processors, our performance model

predicts that the time taken by the parallel code is

Tseq
Q

where T is the time taken by the sequential code on a single processor.

(14) T =

—I_ Tcomm7

4.2. Computation/Communication Overlap. Some computers allow the ef-
fective cost of interprocessor communication to be reduced by overlapping computation
with some of the operations performed to send or receive a message or with the time
spent waiting for a message to arrive. A simple lower bound on the execution time
when exploiting overlap is

T = maX{Tcomp7 Tcomm};

hence, overlap at most halves the nonoverlap performance and does not change asymp-
totic behavior. We do not model explicitly the effect of overlap, but note when it can
be used to reduce communication cost.

4.3. Network Bandwidth Limitations. Equation (12) assumes that the cost of
sending a message is independent of the number of processors that are communicating
at the same time. However, some interconnection network/algorithm combinations
may result in multiple processors attempting to send messages over the same wire
simultaneously. The impact of this behavior on performance can often be modeled with
reasonable accuracy by assuming that the processors share available bandwidth, that
is, by scaling the data volume term of our communication cost model by .S, the number
of processors sending concurrently:

(15) T omm bandwidth limited = s + S N1,.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 9

The value S depends on properties of both the parallel algorithm and the underlying
communication network. For example, the FFT described above can be organized to
execute without competition for bandwidth on a hypercube [21]. In contrast, on a 1-D
mesh of () processors, each processor generates messages that must traverse 1, 2, ...,
2971 hops distant in the ¢ steps of the algorithm [14, 18]. The total number of hops
traversed by these messages is Q Y020 20 = Q(Q — 1). This represents the number of
wires to which a processor requires exclusive access during the FFT. Because a 1-D
bidirectional mesh provides only 2(¢) — 1) wires, the algorithm cannot possibly proceed
in less than /2 steps, rather than log, @) steps as supposed previously. Hence, the
following model is a lower bound on communication costs:

D
(16) Tfft_lnesh_ld — (10g2 Q)ts + Etw .

5. Parallel Fourier Transform Algorithms. We now present the parallel spec-
tral transform algorithms that we evaluate in this paper. By assumption, the physical
and spectral domains for each field (5, 6, ®, U, and V') are decomposed and mapped
onto processors in the same fashion. Thus, the calculation of the nonlinear terms
and the completion of the time update of 5, 6, and ® can proceed independently on
each processor, and the computations will be load balanced if the decompositions are
equipartitions of the index sets. These calculations have ©(N) complexity, compared
with ©(Nlog, N) for the Fourier transform and ©(N?) for the Legendre transform.
Since any load imbalances will also reflect load imbalances in the Fourier or Legendre
transforms, the effect of load imbalances on performance can be compared qualita-
tively by considering the transforms only. Hence, we discuss only parallel Fourier and
Legendre transform algorithms.

For each algorithm that we consider, we develop performance models based on
(12). We also consider the impact of bandwidth limitations in mesh architectures.
On a hypercube we assume that the two-dimensional logical processor mesh of size
Px x Py = 27 x 2" = 2P is mapped into a hypercube of dimension p in such a way
that each processor row and column is mapped to a subcube of dimension ¢ and r,
respectively [21]. Hence, performance analysis reduces to the problem of determining
the cost of an FFT or LT in a hypercube. On a 2-D mesh computer, we assume that
the Px x Py logical processor mesh is mapped to an equivalent physical mesh. Thus,
each FFT and LT algorithm executes in a 1-D processor array. Although this means
that at most one half of the available wires are used in each communication phase,
experiments suggest that this mapping is close to optimal when Py =~ Py. Increasing
the connectivity for one phase (e.g., FFT) of the spectral transform in order to improve
performance generally decreases the performance of the other phase (e.g., LT) to a
degree that offsets the earlier gain. Moreover, as will be shown later, Py ~ Py is
generally optimal, so this assumption will not unduly affect the qualitative analysis.

We first consider parallel algorithms for the first phase of the spectral transform,
in which real FFTs are performed on each row of the physical grid. The test case used
in these experiments involves one forward FF'T for each of 8 fields, J latitudes, and K
vertical levels, and one inverse FFT for each of 5 fields, J latitudes, and K levels, per

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 10

TABLE 1
Commaunication Characteristics of Parallel FFT Algorithms

Algorithm Messages | Data Volume
2[7
Distributed 2log, Px | 26 JPX log, Px
o J*K
Overlapped Distributed | 4log, Px | 26 Iz log, Px
J*K Px — 1
O(Q) transpose 2(Px —1) | 26 X
P Py
JIK
O(log Q) transpose 2log, Px | 13 5 log, Px

timestep. As [= 2J, we must perform 13JK FFTs per timestep, each on a vector of
length 2J. As noted in §3, we assume that the physical grid is initially decomposed
as (Ix,Jy,K). We also assume that the 7 index set is partitioned over the Px row
processors in Px equal-sized blocks and that Py divides J evenly. We will relax the
latter assumption when considering load imbalances.

An unordered real FFT is used in all experiments. This is cheaper than an ordered
FFT, especially for the parallel FFT of §4, which would require additional communica-
tion to effect the ordering. It also provides some load balancing during the LT phase,

as will be described in §6.
5.1. Distributed FFT. Our first FFT algorithm assumes (Zx, Jy, K) and (Mx, Jy, K)

decompositions of the physical and Fourier grids, respectively. Hence, both its input
and output are decomposed across Px processors, and we can use the algorithm pre-
sented in §4. There is no load imbalance if P divides J evenly, there is no redundant
work, and communication cost is given by (13).

Each row of Px processors is responsible for transforming 1/ Py of the physical grid,
that is, computing 8K .J/Py forward FFTs and 5K.J/Py inverse FFTs. The forward
and inverse FFTs are each computed as a block, so the number of messages is that
required for two single transforms. As each FFT is applied to a vector of length I, the
two block FFTs transform 8K 1J/Py = 16K.J*/Py and 5K1.J/Py = 10K J?/Py data
per processor row, respectively. Substituting the data volume values for D and Px for
() and using P = Py Py, we obtain from (13) the communication cost expression in

Table 1.

Computation/Communication Overlap. To exploit overlap, the single-block FFT
can be divided into two, allowing one block’s communication to be overlapped with
the other’s computation [32]. Only the first swap involving the first block is not over-
lapped with computation. This process requires twice as many messages, as indicated
in Table 1, but has been shown to be cost effective on some multiprocessors.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 11

TABLE 2
FFT Performance Models Specialized for 1-D Mesh (where they differ)

Algorithm Revised Data Volume
Distributed 13%]3)(
O(Q) transpose ?%(PX +1)
O(log Q) transpose g%PX

Bandwidth Limitations. Both the one- and two-block algorithms can be mapped to
a hypercube without competition for bandwidth [16]. As noted in §4.3, they will suffer
from bandwidth limitations on a 1-D mesh. Applying (16) to the shallow water code,
we obtain the expression in Table 2.

Algorithm Limitations. The basic operation in the standard power-of-two FFT is
a “butterfly” transform involving two complex values. This corresponds to four real
values in the real FFT, and at least four longitudes must be assigned to each processor
to avoid redundant computation. Thus, if I = 27, we are restricted to Py < 2972, The
distributed FFT algorithm used in this study also requires that Py be a power of two.

Load Balance. As will be discussed in §6, the choice of Legendre algorithm deter-
mines whether the J index set is partitioned over the Py column processors in Py or
2Py equal-sized blocks. Two blocks are assigned per processor column in the latter
case. If Py does not divide J (or .J/2) evenly, load is somewhat unbalanced, with the
processor row with maximum load computing 13K [.J/Py] (or 26 K[.J/(2Py)]) FFTs.
This imbalance increases both data volume and computation cost proportionally. See

Table 5.

5.2. Transpose FFT. An alternative algorithm reorganizes the physical grid from
(Ix,Jy,K) to (Z,Jy,Kx) prior to the forward FFT so that each latitude row is stored
within a single processor [1, 3, 6, 23, 26]. This eliminates the need for communication
during the FFT, but requires communication within the transpose used for the reorga-
nization. After the transform, the Fourier grid is decomposed as (M, Jy,Kx). The
inverse FFT proceeds similarly, requiring a transpose after the transform to reorganize
from (I, jy, ICX) to (IX, jy, IC)

The transpose requires that each processor exchange information with the other
Px processors in the same row of the processor grid. The two primary implementation
approaches require ©(Px) and O(log Px) communication steps, respectively.

O(Q) Transpose. The first algorithm proceeds in) — 1 steps on) processors:
at each step, each processor sends 1/() of its data to another processor [12, 21, 28].

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 12

Communication cost is as follows.
D
(17) CZjlinear transpose — (Q - 1) (ts —I' @tw)

Substituting appropriate values for D and () and counting both the forward and inverse
FFTs, we obtain the expression in Table 1.

Note that for this algorithm to be efficient, and for (17) to hold, some care must be
taken with the order of the data communication. For example, significant contention
can result if all processors send to processor ¢ in the ith step. The schedules used in
our experiments send at most one message to each processor during a given step.

O(log Q) Transpose. The transpose can be performed in (log, ¢)) communication
steps at the cost of increased communication volume [13, 27]. We first partition proces-
sors into two sets. Fach processor sends to the corresponding processor in the other set
a single message containing all the data that it possesses that is destined for processors
in the other set. This partitioning and communication process is repeated log () times
until each set contains a single processor. Each message has size D/(2Q), so the total
communication volume is (log, @)/2 times greater than in the ©(P) algorithm, and
communication costs are

D
(18) CZjlog transpose — 10g2 Q (ts + Q—tw) .

When applied to the FFTs in the shallow water code, communication costs are as in

Table 1.

Computation/Communication Overlap. Overlap can be introduced in the transpose
algorithms by breaking up a one-block transform comprising F' vectors into B blocks of
size F'/B. After the first block is completely transposed, the transpose of a block can
(potentially) be overlapped with the transform of the block preceding it.

This algorithm has not proven to be efficient in practice. Large B minimizes F'/B,
the size of the block whose transpose is not overlapped, but the number of messages
grows by a factor of B, and not all message startup costs can be overlapped. Also, the
transform must be divided into the same number of stages as the transpose algorithm
to allow for interleaving. This restriction may diminish the computational rate.

Bandwidth Limitations. Neither transpose algorithm suffers from significant band-
width limitations on hypercubes [12, 16, 21], but both do so on mesh architectures.
In the ©(Q) transpose, a total of (Q* — ())/3 hops are traversed on 2(() — 1) wires,
requiring that the data volume be scaled by Q(Q) + 1)/6 instead of) — 1. The scaling
factor for the O(log @) transpose is the same as that used for the distributed FFT. See
Table 2.

Algorithm Limitations. Both transpose algorithms decompose the vertical dimen-
sion and thus require that Py < K if whole processor rows are not to be idle during
the FFT. As K can be significantly smaller than I, this restriction is limiting for the

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 13

transpose algorithms. One approach to mitigating this problem is to decompose also
over the field “dimension” (8 for the forward FFT and 5 for the inverse) [22]. Many of
these fields must be reunited for the LT phase, however, resulting in other performance
problems. This generalization and the associated problems are discussed in §9. The
O(log Q) transpose algorithm requires that Px be a power of two.

Load Balance. If Py does not divide J or J/2 evenly, load is unbalanced as in
the distributed FFT algorithm. There is also load imbalance if Py does not divide K
evenly; some processor columns must compute FFTs for as many as [K/Px]| vertical
levels. See Table 5. An analogous load imbalance does not occur in the distributed
FFT because I and Px are both required to be powers of two.

6. Parallel Legendre Transform Algorithms. We next consider parallel algo-
rithms for the second phase of the spectral transform, in which Legendre transforms
(LT) are performed on each column of the Fourier grid. We define a single forward trans-
form to be the calculation of the set of spectral coefficients {7 |n = |m|,..., N(m)}
for a given wavenumber m and field variable ¢, and an inverse transform to be the
calculation of the set of Fourier coefficients {£”(y;) |1 < j < J} for a given wavenum-
ber m and field variable £. Thus the number of spectral coefficients output (input) for
each field in the forward (inverse) transform is a function of the wavenumber and of
the spectral truncation used. Since we assume a triangular truncation, M — m spectral
coefficients are generated for wavenumber m.

At each timestep, the shallow water code performs one forward LT for each of three
fields, M wavenumbers, and K vertical levels, and one inverse LT for each of five fields,
M wavenumbers, and K vertical levels. Eight fields of Fourier coefficients are used to
produce the three fields of spectral coefficients, and these three spectral fields are used
to produce the five fields of Fourier coefficients. As we assume that J ~ (3M + 1)/2
and [= 2J, the total number of spectral coefficients produced/consumed in these
transforms is 3Ngpec K = (3/2)(M + 1)(M + 2)K ~ (2/9)(J + 1)(2J + 5)K.

We describe four Legendre transform algorithms. The first two use distributed
vector sum algorithms to complete the LT, while the third and fourth use the trans-
pose algorithms of the preceding section. Fach algorithm can be used with any FFT
algorithm, but load balance may vary. To simplify the exposition, we assume initially
assume that the distribution of spectral coefficients between the different processor
columns is uniform, that is, approximately (2/9)(J + 1)(2J + 5)K/Px spectral coeffi-
cients per processor column.

6.1. Distributed LT. The first two LT algorithms assume either (M x, Jy,K)/(Mx, Ny, K)
decompositions of Fourier and spectral space, respectively, or (M, Jy,Kx)/(M, Ny, Kx)
decompositions. The simple forward LT is computed as

(19) & = gfm(uj)Pﬁ(uj)wj = 2 (Z; fm(ﬂj)Pf(ﬂj)wj) - 2 L y) -

Each partial sum T)"(y) can be evaluated within a processor (x,y) without interpro-
cessor communication. The final calculation of the spectral coefficient £* requires the

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 14

summation of Py partial sums distributed over Py processors. A “column-wise” dis-
tributed vector sum algorithm can be used to perform this summation in a block fashion
for all spectral coefficients, fields, and vertical levels associated with a given processor
column. The same approach can also be used with the more complicated transforms
producing £ from multiple fields of Fourier coeflicients.

The simple inverse LT is computed as

N(m)

" (pg) = D EFPIM(py)-

n=|m|

Each processor can calculate its associated Fourier grid values independently if the
(distributed) vector of spectral coefficients {£/*} is first replicated on all Py processors
in the given processor column. This requires a broadcast operation prior to the inverse
LT. The same approach also works when more than one field of spectral coefficients is
needed to evaluate the Fourier grid values.

For ease of coding and interprocessor communication efficiency, we have found it
useful to combine the distributed vector sum and broadcast in a single operation. Thus,
at the end of the forward LT, all processors in a given column have the same spectral co-
efficients, and the decomposition of the spectral grid is (Mx, N, K), a one-dimensional
rather than two-dimensional decomposition. A disadvantage of this approach is that a
small amount of computation that modifies the spectral coefficients between the forward
and inverse L'T's must be performed redundantly on the replicated coefficients. But the
complexity of this computation is of a lower order and has a smaller constant than
that involved in the LT operations. In our experiments, the savings due to improved
communication efficiency easily outweigh the cost of the redundant computation. The
redundant computation is ignored in subsequent analysis.

Ring Sum. We now describe the first of two L'T algorithms based on this structure
(distributed vector sum and broadcast). These algorithms differ only in the mechanisms
used to sum the vectors of partial sums 7" and to replicate the results. In the ring sum
algorithm, data flows around a logical ring of processors. A summation involving)
processors proceeds in () — 1 steps, with each processor receiving D /() data from its left
neighbor and sending D/ data to its right neighbor at each step. Upon completion,
the vector of D spectral coefficients is evenly distributed over the () processors. This
process is reversed (without the summations) to broadcast the result. Communication
costs are

(20) Thing sum = 2(Q — 1) (ts + %tw) .

In the shallow water code, @ = Py and D =~ (4/9)(J + 1)(2J + 5)K/Px (because the

spectral coefficients are complex (two-word) values), giving the expression in Table 3.

Butterfly Sum. The butterfly sum algorithm is a hybrid of two algorithms [31].
For long vectors, we use a recursive halving algorithm [16] that utilizes a butterfly

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 15

TABLE 3
Commaunication Characteristics of Parallel LT Algorithms

Algorithm Messages Data Volume

Ring sum 2(Py — 1) g (/ + 1)(]23J LS (Py — 1)
Butterfly sum 2log, Py g (/ + 1)(]23J LS (Py — 1)
O(Q) transpose 2(Py — 1) % (J —I_;)JK PYP; !
O(log Q) transpose | 2log, Py ? ({]—I}# log, Py

TABLE 4
LT Performance Models Specialized for 2-D Mesh (where they differ)

Algorithm Revised Data Volume
4 1)(2 K
Butterfly sum - (J+ DT +5)K Py log, Py
9 P
2 HJK
O(Q) transpose 26 M (Py + 1)
9 P
13 (J+1)JK
O(log Q) transpose 3 % Py

communication pattern like the distributed FFT. Each processor communicates (and
sums) D/2 data in the first stage, half as much (D/4) in the second, and so on, so that
each processor communicates a total of D(Q —1)/Q data in (log, @) steps. The global
sum is then complete, and the vector of D spectral coefficients is evenly distributed
over the) processors. This process is reversed (without the summations) to broadcast
the result. Total communication cost is as follows:

(21) Tbutterﬂy sum — 210g2 Q ts + QD%LU .

When the vector becomes small, the hybrid algorithm switches to an exchange algo-
rithm in which each processor communicates all the remaining data at each subsequent
step. This eliminates some of the broadcast communication. The vector length at which
the hybrid algorithm switches is a machine-dependent constant, and the communication
cost of the butterfly sum is well characterized by (21). This approximation is used for
the expression in Table 3.

Computation/Communication Overlap. The computation of the local sums {7 (y)}
can be interleaved with stages of the distributed vector sum algorithms. Similarly, the

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 16

broadcast can be delayed until the computation of the inverse LT, and the stages of the
broadcast interleaved with computation. This eliminates the redundant computation
on the spectral grid, because the broadcast is delayed, and does not change the number
of messages or data volume.

When the interleaving is organized so that the communication of one stage of
the algorithm is overlapped with the computation of the next stage, the ring sum is
able to perform ©(.J*/Py) computation while communicating O(PyJ?) data [35]. This
overlapping can be highly effective for small Py and/or large .J, decreasing the cost of
communication significantly.

Overlap is less effective for the butterfly sum. Interleaving only applies to the
recursive halving phase of the algorithm, and the communication of a vector of length
D/2¢ is overlapped with the computation of local sums for a vector of length D/2+!,
i.e., half the size, rather than the same size as in the ring sum. Due to time constraints,
we have evaluated the overlap technique only in the ring sum algorithm.

Bandwidth Limitations. A ring can be embedded in a hypercube or bidirectional
mesh, and ring sum does not suffer from bandwidth limitations on either interconnection
topology.

The exchange and recursive halving components of the butterfly sum algorithm
have the same communication structure as the FFT and, thus, suffer from bandwidth
limitations on a mesh. But the recursive halving component suffers less than the dis-
tributed FFT. In the first step, D/2 data are exchanged with nearest neighbors without
competition. In the second step, D/4 data are exchanged with processors 2 hops dis-
tant and 2 processors compete for each wire. In the fourth step, 4 processors must send
D/8 data over the same wire, and so on, with the result that data volume must be
scaled by (1/2)log,). As before, we use the value for the recursive halving algorithm
in qualitative comparisons, giving the expression in Table 4.

Algorithm Limitations. In order to exploit symmetry (i.e., to avoid computing spec-
tral coefficients for negative wavenumbers), corresponding latitudes from the northern
and southern hemispheres are paired. Hence, the J index set is partitioned over the
Py column processors into 2Py equal-sized blocks, and two blocks are assigned to each
processor column. Thus, Py < J/2 if whole processor rows are not to be idle during
the LT. Similarly, Py < M + 1 = (2/3)(J 4 1), if whole processor columns are not to
be idle.

Load Balance. Load imbalance arises if Py does not divide J/2 evenly, with the
processor row with the maximum load computing 2¢[.J/(2Py)] flops per spectral coef-
ficient instead of ¢(.J/ Py), for some constant ¢. The communication volume does not
change because spectral coefficients are being communicated, not Fourier coefficients.

The performance of the distributed LT algorithms is also affected by the FFT al-
gorithm used. As the Fourier transform is unordered, the distributed FFT algorithm
assigns blocks of permuted Fourier coefficients to the P, processor columns. This as-
signment approximately balances the assignment of “short” Legendre transforms (large
wavenumbers) and “long” Legendre transforms (small wavenumbers) [32], but the load

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 17

TABLE 5

Relative Increase in Computation and Communication Costs in Fourter Transforms As a Result
of Load Imbalances

Algorithm Computation Cost Data Volume
[J/ (2P)] [J/2H)]
J/(2Fy) J/2Py)
)

[J/CP] K/ Px] | [J/CRP)] [Py

Dist. FFT/Dist. LT

Trans. FFT/Dist. LT

. L]/PY—‘ L]/PY—‘
Dist. FFT/Trans. LT W]/TY
[J/Py] [K/Px] [J/Pyv] [K/Px]
Trans. FFT/Trans. LT J/Py K/Py J/Py K/Py

balance is not perfect and some processor columns have more work than others. A
simple (over)estimate of the maximum number of spectral coefficients assigned to a
processor column is

3(M +1)°K

3 3
= (M + 1K “KPy for Py < (M +1
5 e +2(+)s+8xxor x < (M +1)

and 3(M + 1)K for Px > M + 1. If a transpose FFT is used, then the wavenumber
dimension is not partitioned. The maximum number of spectral coefficients assigned to
a processor column is (3/2)(M + 1)(M + 2)[K/Px], and there is load imbalance if Py
does not divide K evenly.

Load imbalance in the assignment of spectral coefficients affects both the commu-
nication and computation costs, scaling both proportionately, as indicated in Tables 5

and 6.

6.2. Transpose LT. The transpose algorithms of §5.2 can also be used to reor-
ganize the Fourier grid so that the LT can proceed without further communication. If
the FFTs are computed using a distributed algorithm, then the forward LT requires
that the Fourier grid first be reorganized from (My,Jy,K) to (Mx,J,Ky). The
transform then produces a (Mx,N,Ky) decomposition of the spectral grid. For the
inverse LT, no further reorganization is needed, but the Fourier grid must be returned
to the original (Mx, Jy, K) decomposition before the inverse FFT algorithm can be-
gin. If the FFTs are computed using a transpose algorithm, then the Fourier grid must
be reorganized from (M, Jy, Kx) to (My,J,Kx) before the forward LT, and from
(My,T,Kx) to (M, Ty, Kx) after the inverse LT.

In both cases, the reorganizations require Px independent transposes, each involv-
ing Py processors. Note that these transpositions involve the truncated Fourier grid
rather than the spectral coefficients: that is, (M + 1) x J x K complex values. Hence,
assuming perfect load balance, D = 16(M + 1)JK/Px for the transpose preceding the
forward LT and D = 10(M + 1)JK/Px for the transposition following the inverse LT.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 18

TABLE 6
Relative Increase in Computation and Communication Costs in Legendre Transforms As a Result
of Load Imbalances (worst-case approzimations)

Algorithm Computation Cost Data Volume
Dist. FFT/Dist. LT
2 2
et B ()
Py o e e
Trans. FFT/Dist. LT E?gg;w Eﬁﬁ? %

Dist. FFT/Trans. LT:

Py < 2(J+1) [K/Py] (1+3 Py)2 [K/Py) (1+3 Py)2

K/Py 4J+1 K/Py 17+1
Px > %(J+1) [K/Py] 6Py [K/Py] 6Px
— K/Py 2J+5 K/Py 2J+5

Trans. FFT/Trans. LT:

Py < 2(J+1) [K/Px] (1+9 P}) [K/Px] (1+9 P)

K/ Py 1(J+1)?) | K/Px 1T+ 1)
_ K/Px 2J+5 K/Px 2745

Adapting (17) and (18) to this situation and using 2.J &~ 3M + 1, we obtain the expres-
sions in Table 3 for L'T-related communication costs when using transpose algorithms.

The transpose LT algorithms, like the transpose FFT algorithms, become less effi-
cient when modified to overlap computation with communication. Bandwidth limita-

tions on a mesh affect the transpose LT algorithms in the same ways as the transpose
FFT algorithms, as indicated in Table 4.

Algorithm Limitations. The distributed FFT /transpose LT algorithm decomposes
the vertical dimension before computing the LT and, hence, requires Py < K to avoid
idle processor rows. For processor columns not to be idle requires Py < M + 1 ~
(2/3)(J 4+ 1).

Conversely, the transpose FFT /transpose LT algorithm decomposes the wavenum-
ber dimension before computing the LT and requires Py < M +1 to avoid idle processor
rows. For processor columns not to be idle requires Py < K.

Load Balance. Load imbalances occur in the distributed FFT /transpose LT algo-
rithm if Py does not divide K evenly, and in the transpose FFT /transpose LT if Py
does not divide K evenly.

The distributed FFT /transpose LT is also subject to load imbalance as a result
of the distribution of spectral coefficients generated by the distributed FFT, as de-

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 19

scribed for the distributed FFT/distributed LT algorithm. Because the transpose
FFT /transpose LT algorithm also partitions the wavenumber dimension, it also suf-
fers from load imbalance. Since all equipartitions incur the same communication costs
in the transpose algorithms, we minimize load imbalance by using the partitioning strat-
egy described by Barros and Kauranne [3]. This pairs “short” transforms with “long”
transforms in the assignment, and there is no load imbalance when Py divides (M +41)/2
evenly. Let

(a4

_M+1{M+w
2Py oPy |7

With the Barros-Kauranne strategy, the maximum number of spectral coefficients for
a given vertical level assigned to a processor column is
3(M+1)(M +2)

— + 6Pva(l —a)—3a for P < (M +1)
2 Py

and 3(M + 1)K for Py > M + 1, in contrast to (2/9)(J + 1)(2J + 5)K/Px for a
load balanced assignment. Load imbalances in the assignment of spectral coefficients
affect both the communication and computation costs, scaling both proportionately.

See Tables 5 and 6.

7. Qualitative Analysis. The three FFT algorithms described in §5 perform ex-
actly the same computations. The four LT algorithms described in §6 perform es-
sentially the same computations, modulo different partial orders and some redundant
computations on the spectral grid. The FFT and LT algorithms are distinguished pri-
marily by their communication performance and their load balance. In this section,
we use the communication cost and load balance models (Tables 1-6) to make simple
qualitative comparisons.

7.1. Parallel FFT Algorithm Comparisons.

Data Transfer Costs. ©(Q) transpose communicates the least data: O(J*K/P)
per processor versus O((log, Px)J*K/P) for O(log () transpose and distributed FFT.
Hence, ©(Q) transpose should perform better on large problems, particularly if data
transfer costs (t,,) are high relative to message startup costs ().

Message Startup Costs. Distributed FFT and O(log @) transpose send fewer mes-
sages than ©(Q) transpose: O(log @Q)) rather than ©(Q). Hence, they should perform
better when message startup costs are large relative to data transfer costs, and on
problems that are small relative to the number of processors: that is, when J?K/P is
small.

Computation/Communication Overlap. Distributed FFT communicates the most
data but is the most efficient at overlapping communication with computation and,
hence, should perform better on computers that support computation/communication
overlap.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 20

Bandwidth Limitations. Distributed FFT and O(log @) transpose suffer less than
O(Q) transpose from bandwidth limitations on mesh networks; when these are taken

into account, their effective data volumes differ only by constant factors from that of
the ©(Q) transpose.

7.2. Parallel LT Algorithm Comparisons.

Data Transfer Costs. For large Py, O(Q) transpose communicates the least data:
O(J2*K/P) per processor versus O((log, Py)J*K/P) for O(log Q) transpose and O(Py J*K/ P)
for ring and butterfly sum. Hence, ©(Q) transpose should perform better on large prob-
lems, particularly if data transfer costs are high relative to message startup costs.

On smaller numbers of processors, the coefficient as well as the complexity of the
data transfer term needs to be considered. As the ©(Q) transpose operates on the
truncated Fourier grid, each processor communicates at least (52/3)J*K (Py —1)/(PPy)
words. The summation algorithms operate on the spectral coefficients. Thus, ring and
butterfly sum need move only about (16/9)(J*K)(Py — 1)/ P words, and, for Py < 10,
these algorithms communicate less data than the transpose.

Message Startup Costs. As butterfly sum and O(log @)) transpose send the fewest
messages (2log, Py versus 2Py for the others), they should be superior on machines
where message startup costs are large and on problems that are small relative to the
number of processors. Again, the data volume term for ©(log)) transpose is asymp-
totically smaller than for the butterfly sum, but is larger for Py < 24.

Computation/Communication Overlap and Bandwidth Limitations. Ring sum can
overlap computation and communication when Py is small or J is large. It does not
suffer from bandwidth limitations on mesh computers and has the smallest data volume
on mesh computers.

7.3. Parallel Spectral Transform Algorithm Comparisons. A parallel spec-
tral transform algorithm must specify not only a parallel FFT and LT algorithm but
also a processor grid aspect ratio (Px and Py) for a given number of processors. Py
and Py are the processors used in the FFT and LT, respectively.

Aspect Ratio. Algorithmic comparisons are complicated by the fact that different
combinations of FFT and LT algorithms perform best with different aspect ratios. For
example, consider the algorithm combination ©(Q) transpose FFT and ©(Q) transpose
LT. Here, a square grid is most efficient, as comparable amounts of data are moved
in each phase in the same way, and overlap is not exploited, so the difference in com-
putational cost between the two phases is not an issue. In contrast, for distributed
FFT/ring sum LT it is most efficient to (a) apply all processors to the LT for small P;
(b) use remaining processors for the FFT until communication costs in each phase are
comparable; and (c) use an aspect ratio that favors the FFT increasingly for large P.
The reason is that for small P the ring sum moves less data than does the distributed
FFT and permits more computation/communication overlap. For large P, the ring
sum sends more messages and more data, and the amount of computation available to

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 21

overlap communication is small. This analysis changes on meshes, where the ring sum
is favored if message startups do not dominate communication cost.

These considerations suggest that it is not sufficient to perform separate studies of
FFT and LT algorithms, with the goal of selecting an optimal FFT and an optimal LT
algorithm for inclusion in a parallel spectral transform. Instead, we must consider all
possible pairs of algorithms at all possible aspect ratios.

Load Balance. Load balance issues arise when evaluating different FFT /LT algo-
rithm combinations. Load balance is sensitive to problem size and number of processors,
so general comparisons are difficult to make. While load balance problems can often be
avoided by intelligent choices of the number of processors and aspect ratio of the logical
grid, these choices implicitly represent algorithm limitations for the given algorithm
combination.

There are two situations in which load imbalance is difficult to avoid:

1. The number of vertical levels is relatively small in climate models. Hence,
transpose algorithms tend to need to apply relatively more processors in the
other dimensions to avoid idle processors. For example, a transpose FFT im-
plies a need for more LT processors. Because communication costs increase
with P, LT performance will be worse than if an equal number of processors
were applied to both FFT and LT.

2. The partitioning of the spectral coefficients usually introduces some load im-
balance. The distributed FFT suffers the most from this phenomenon, but
transpose FFT /transpose LT is subject to it also.

The effects of load imbalances are summarized in Tables 5 and 6; we see that transpose
FFT/distributed LT is slightly less sensitive to load imbalance problems than other
algorithms.

7.4. Summary. The qualitative comparisons suggest that no single algorithm is
likely to be optimal in all situations. The choice of algorithm depends on a variety of
factors such as problem size, type of network, number of processors, and communication
parameters.

8. Empirical Studies. As indicated in preceding sections, the analytic models
introduced in Tables 1-4 can provide insights into performance issues. The models can
also be used to evaluate scalability and to make rough performance estimates [14, 15,
22]. For definitive algorithm comparisons, however, empirical studies are required to
calibrate and validate the models. We expect constant factors to matter for a large
range of multiprocessor sizes, and the relative efficiency of the implementations of the
different algorithms can also play a crucial role. For example, the O(log)) transpose
requires more data copying than the other algorithms, increasing its “effective” ¢,, value,

In this section we describe our experimental vehicle, methodology, and results. We
demonstrate that the best algorithms do vary with architecture, number of processors,
and problem size. We compare the optimal algorithms with a robust and asymptotically
optimal algorithm, to indicate the importance of optimizing on the different platforms.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 22

We also use the results of the algorithmic comparison to identify the performance-critical
aspects of each platform and to make simple scaling predictions.

8.1. PSTSWM: A Testbed Code. To permit a fair comparison of the suitability
of the various algorithms for atmospheric models, we have incorporated the algorithms
in a single testbed code called PSTSWM (for parallel spectral transform shallow water
model).

PSTSWM is a message-passing parallel implementation of the sequential Fortran
code STSWM 2.0 [20]. STSWM uses the spectral transform method to solve the nonlin-
ear shallow water equations on a rotating sphere; its data structures and implementation
are based directly on equivalent structures and algorithms in CCM2.

PSTSWM differs from STSWM in one major respect: vertical levels have been
added to permit a fair evaluation of the transpose algorithms. This is necessary because
in a one-layer model, a transpose algorithm reduces to a one-dimensional decomposition
of each grid and hence can utilize only a small number of processors. The addition of
vertical levels also has the advantage of modeling more accurately the granularity of the
dynamics computation in atmospheric model. In all other respects we have changed the
algorithmic aspects of STSWM as little as possible. In particular, we did not change loop
and array index ordering. Although such changes would probably improve performance
of some algorithms, our goal was to have a code as similar to a real atmospheric model
as possible.

PSTSWM is structured so that a variety of different algorithms can be selected by
runtime parameters. The FFT can be calculated using the distributed, ©(Q) trans-
pose, or O(log Q) transpose algorithms. The LT can be calculated using either the ring
sum, butterfly sum, O(Q) transpose, or O(log Q) transpose algorithms. In addition,
the distributed FFT can use either the two-block algorithm that permits computa-
tion/communication overlap or the one-block algorithm, and the ring sum LT can use
either the overlap or nonoverlap algorithms. Additional parameters select a range of
variants of each of these major algorithms [36].

Note that all parallel algorithms were carefully implemented, eliminating unnec-
essary buffer copying and exploiting our knowledge of the context in which they are
called. At the present time, this allows us to achieve better performance than can be
achieved by calling available vendor-supplied routines. Hence, it provides a fairer test
of the parallel algorithms.

8.2. Target Computers. We performed experiments on the five parallel com-
puter systems listed in Table 7. These systems have similar architectures and program-
ming models, but vary considerably in their communication and computational capa-
bilities. Our values for ¢, and ¢,, differ from those reported by most researchers [11, 10]
because we measure the time required to swap floating-point values between two pro-
cessors rather than the time to send bytes from a source to a destination. Also, the
computational rate is measured by running PSTSWM on a single node and so is an
achieved rather than a peak rate.

The Paragon experiments used the OSF-based R1.1.2 operating system and the

PARALLEL SPECTRAL TRANSFORM ALGORITHMS

TABLE 7

Parallel Computers Used in Empirical Studies

23

Name 0S Processor Network P
nCUBE/2 | VERTEX R3.2 | nCUBE 2 | hypercube | 1024
iPSC/860 NX 3.3.2 1860 hypercube 128
DELTA NX/M R1.5 1860 16 x 32 mesh | 512
Paragon OSF/1 R1.1.2 1I8605P | 16 x 32 mesh | 512
Paragon SUNMOS 1I8605P | 16 x 32 mesh | 512
Name ts (psec) | t, (psec) | Single-processor MFlops/sec
nCUBE/2 240 2.3 1.2
iPSC/860 200 1.4 9.8
DELTA 240 0.84 9.8
Paragon (OSF) 350 0.18 11.6
Paragon (SUNMOS) 230 0.04 11.6

low-overhead SUNMOS operating system from Sandia National Laboratories and the
University of New Mexico. As both systems are still evolving, any conclusions as to
their performance will be short-lived. They are interesting for this study, however,
because they have significantly different performance characteristics.

8.3. Methodology. PSTSWM incorporates too many algorithmic variants to per-
mit a comprehensive study of all possible combinations of parameters, problem size,
computer, and processor count. Hence, we proceeded in two stages: algorithm selection
and algorithm comparison.

Algorithm Selection. We first performed a series of tuning experiments to iden-
tify “optimal” communication parameters for each FFT and LT algorithm variant on
each computer. For example, these parameters specitfy whether to use blocking or non-
blocking sends and receives, or what schedule to use when the order of communication
requests is not fixed by the algorithm. These experiments were performed using one-
dimensional decompositions (Py = 1 or Py = 1), allowing FFT and LT algorithms
to be studied in isolation. Problem dimensions were reduced to provide the correct
computation and communication granularities. For example, when evaluating the ring
sum algorithm for a 16 x 8 processor grid at T85L32 resolution, a 1 x 8 processor grid
was used with the number of vertical levels reduced by a factor of 16 (from 32 to 2).

We initially evaluated communication parameters only on “largest” and “mid-sized”
computer configurations: for example, P = 512 and P = 128 on the Paragon. If one
set of communication parameters proved consistently superior, no further experiments
were performed. We expected the performance impact of communication parameters
to be insensitive to problem granularity and number of processors, and we found this
to be true in most cases. When a difference was significant, we selected the parameters
that worked best for the larger configurations. In all cases, subsequent experiments
for a given platform and algorithm used a fixed set of communication parameters.
These experiments were also used to eliminate noncompetitive FFT and LT algorithmic

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 24

variants.

Algorithm Comparisons. A second set of experiments compared all possible combi-
nations of the remaining FFT and LT algorithms on all possible aspect ratios for each
power of two number of processors supported by each computer. For example, on the
Intel DELTA and Paragon, we used 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 processors;
for 32 processors, we tried the aspect ratios 1 x 32, 2 x 16, 4 x 8, 8 x 4, 16 x 2, and
32 x 1.

To measure the importance of the algorithm tuning and comparison, we repeated
these experiments using a reference algorithm comprising the ©(Q) transpose FFT
and LT algorithms. The reference algorithm uses a particularly simple and portable
communication protocol and is asymptotically optimal in the sense that it has the
smallest data volume (%,); as the problem size grows, this term comes to dominate
communication costs in all of the parallel algorithms.

All experiments used the performance benchmark described in [34]: global steady
state nonlinear zonal geostrophic flow. Experiments were performed for problem sizes

T21L8, T42L16, and TS5L32.

8.4. Results: Algorithm Selection. In presenting the results of the algorithm
selection experiments, we do not discuss the communication parameters studied (see [36]
for details) but focus on the algorithms. Table 8 summarizes both the algorithms
considered and those selected for further consideration on different machines. For the
most part, the table is self-explanatory. We always selected at least one distributed
algorithm and one transpose algorithm for both the LT and FFT. In some cases, two
distributed or transpose algorithms were selected, indicating that both were competitive
for at least some of the problem sizes and processor counts being investigated. The
number of distinct parallel spectral transform algorithms selected for each platform is
also indicated in Table 8. For example, on the iPSC/860, seven algorithms were selected:
2 parallel FFT algorithms x 3 parallel LT algorithms plus the reference algorithm.

8.5. Results: Algorithm Comparisons. Tables 9 and 10 list the best algorithm
for each computer, problem size, and processor count. Table 9 lists the best “FFT al-
gorithm /LT algorithm” pair, where the FFT and LT algorithms are denoted by the
keys listed in the first column of Table 8. If the best algorithm uses a one-dimensional
decomposition (i.e., either the FFT or the LT is not parallelized), then no algorithm is
listed for the unparallelized transform. Table 10 lists the aspect ratio associated with
the best algorithm (i.e., the number of processors allocated to the FFT and LT, respec-
tively). We see considerable variety, with 12 of the 30 algorithm combinations being
optimal in some situations, as well as a variety of different aspect ratios. The variation
in the aspect ratios stems both from the use of different algorithms in different situa-
tions and from limitations on transpose algorithms because of the number of vertical
levels.

The tables do not indicate how much difference there is between different algo-
rithms. Figs. 2 and 3 provide some of this information. They shows on each machine
at T42 and T85 resolution the performance of the reference algorithm and three other

Parallel Algorithms Considered in Algorithm Selection Studies, and Algorithms Selected for Al-
gorithm Comparison Studies on nCUBE/2 (N}, iPSC/860 (I), DELTA (D), Paragon-OSF (P), and
Paragon-SUNMOS (5). A dash indicates a noncompetitive algorithm that was not considered for further

PARALLEL SPECTRAL TRANSFORM ALGORITHMS

TABLE &

study. The reference algorithm is included in the number of algorithm combinations.

‘ Key ‘ Phase ‘ Algorithm ‘ Variant ‘ N ‘ I ‘ D ‘ p ‘ S ‘
D | FFT | Distributed nooverlap | - | - | Y| Y | Y
O overlap Y'Y || - |-
M O(Q) transpose YIY|Y|Y|Y
L O(log Q) transpose -IY|Y
N | LT Ring sum nooverlap | — | = | = | — | —
R overlap YIYIY|Y|Y
B Butterfly sum YIYIY|Y|Y
M O(Q) transpose YIY|Y|Y|Y
L O(log)) Transpose - |l-1-1Y1]Y

Number of algorithm combinations ‘ 7 ‘ 7 ‘ 7 ‘ 13 ‘ 13
TABLE 9

Best Parallel Algorithms as a Function of Machine/0S, Problem Size, and Processors

Machine Problem Processors

Type T L | 2| 4] 8] 16| 32| 64 | 128256 | 512
nCUBE/2 (21| 8 |-/R|-/R|-/R|~-/R |T/R|T/R|T/B|O/B| —
nCUBE/2 | 42 | 16 — | — |-/R|-/R|T/R|T/R|T/R|T/R|T/R
nCUBE/2 | 85 | 32 — | — | — — — |O/R | T/R|T/R|T/R
iPsCc/860 (21| 8 |-/R|-/B|-/B|T/R|T/R|T/B|T/B| — —
iPSC/860 | 42 | 16 — |-/R|~/R|-/T | T/R|T/R|T/R| — —
iPSC/860 | 85 | 32 — | — | — — | T/R|T/R|T/R| — —
DELTA 21 8 |-/B|-/B|-/B|T/B|T/B|T/B|T/B|D/B| —
DELTA 42116 |-/R|-/R|-/B|-/T |T/B|T/B|T/B|T/B|T/B
DELTA 85| 32 — ! — | —|-/R|-/T|T/R|T/B|T/R|T/T
pPG-OSF 21| 8 (-/B|-/B|-/B|T/R|T/R|T/B|L/B|L/L| —
PG-OSF |42 | 16 — |-/B|-/B| /T |T/R|T/R|T/T|T/T]| L/L
PG-OSF |85 | 32 — | — | — — |T/R|T/R|T/R|T/T|T/T
SUNMOS |21} 8 |-/B|-/B|-/B|L/B|T/B|L/B|L/B|L/L| —
SUNMOS |42} 16 |-/B|-/B|-/B|-/T |L/B|T/R|T/R|T/B| L/L
SUNMOS | 85| 32 — | — | — — |-/T |Db/T|L/R|T/R|L/T

PARALLEL SPECTRAL TRANSFORM ALGORITHMS

TaBLE 10
Best Logical Aspect Ratios as a Function of Machine/OS, Problem Size, and Processors

26

Problem Processors

T L | 2 4 8 | 16 | 32 | 64 | 128 | 256 512

nCUBE/2

21] 8 |1 x2|1x4|1x8|1x16] 8x4 | 8x8 |8x16]|16 x16 —

42| 16 — — |1 x8|1x16| 8x4 | 8x8 |16 x8]16x16 |16 x 32
85 | 32 — — — — — 4x16 |16 x8| 32x8 |32x16
iPSC/860

21 8 Ix2]1x4]1x8]4x4 | 8x4 | 8x8 |8x16 — —

42| 16 — | 1x4]1x8|1x16| 8x4 |16 x4]|16 x38 — —

85 | 32 — — — — 4x8 |16 x4]|16 x8 — —

DELTA

21] 8 |1 x2|1x4|1x8| 8x2 | 8x4 |4x16|8x16 1|16 x16 —

421 16 |1 x2 |1 x4 |1 x8|1x16| 8x4 |16 x4 |16x8|16 x 16 |16 x 32
85 | 32 — — — | 1x16 [1x32[32x2|32x4] 32x8 | 8x64
Paragon-OSF

21 8 Ix2]1x4]1x8] 8x2 | 8x4 | 8x8 |8x16] 8x32 —

42| 16 — | 1x4]1x8|1x16|16x2][16x4|8x16|16x16 |16 x 32
85 | 32 — — — — 4x8 |16 x4[16x8 |16 x16 | 32 x 16
Paragon-SUNMOS

211 8 |1 x2|1x4|1x8| 2x8 | 4x8 | 8x8 |8x16]| 8x32 —

421 16 |1 x2 |1 x4 |1 x8|1x16| 8x4 |16 x4 |16x8|16 x 16 |16 x 32
85 | 32 — — — — 1x32(12x32|16x8] 32x8 |16 x 32

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 27

“interesting” algorithms: normally those algorithms that proved to be optimal for some
processor count on that machine and problem size. (In a few cases, an algorithm that
is optimal for just one processor count is omitted, if another algorithm has similar per-
formance.) Performance is given relative to the performance of the best algorithm at
each processor count.

Specific comments on the empirical results follow:

1. The reference algorithm is never optimal, and in some cases is ninety per cent
worse than the best algorithm.

2. Some form of transpose forms part of the optimal algorithm combination in
almost all cases on 16 or more processors. On maximal processor configurations,
the algorithm T/T (©(Q) transpose for both FFT and LT) is either optimal or
nearly optimal in almost all cases. Notice that this algorithm is identical with
the reference algorithm except that its communication parameters have been
tuned for the particular machine.

3. The algorithm combination that is optimal in the largest number of configura-
tions is T/R: ©(Q) transpose FFT and (overlapped) ring summation L'T. This
seems a good candidate for a standard algorithm, although its performance
degrades for large P, particularly on the Paragon. This situation may change
when the message coprocessor on the Paragon is enabled, decreasing message
startup costs and better supporting computation/communication overlap.

4. Because the FFT involves more data than the LT, optimal algorithms on small
numbers of processors (16 or less) mostly decompose data structures in a single
dimension so as to avoid communication in the FFT, and use either the ring
summation or butterfly summation algorithm for the LT. When the FFT is
parallelized, transpose algorithms are almost always superior to distributed
FFTs. Algorithm combinations such as O/R and D/T are optimal in a few
configurations, but are not consistent in their performance.

Finally, Fig. 4 give the execution time for the best algorithm on each computer as a
function of P, for problem sizes T42 and T85. We see considerable variation in execution
times, with the nCUBE slower than the other machines by an order of magnitude,
and the Paragon under SUNMOS fastest in almost all situations. The 512-processor
SUNMOS time for T85L32 represents a computational rate of 4.3 GFlops/second.

8.6. Discussion. These results demonstrate the limitations of asymptotic analy-
sis: the asymptotically optimal transpose algorithms are not the most efficient in many
situations, particularly for smaller P. The results also demonstrate the importance
of tuning algorithms to the communication characteristics of a particular machine. In
some cases, tuning makes a greater difference than the choice of algorithm.

A parallel spectral transform code designed for portability should probably incor-
porate several parallel algorithms. The testbed code PSTSWM indicates that this is
feasible. The most useful algorithms seem to be the two transpose algorithms for both
FFT and LT, and the overlapped ring sum LT algorithm. A distributed FFT algorithm
would also be needed if the number of vertical levels is small. A program designed to
execute on a small number of processors (16 or less) can decompose data structures in

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 28

T42/L16 on nCUBE/2 T85/L32 on nCUBE/2
2 T T T T T T T T T 2 T T T T T T T
« OB —-— OR ———
S TR -+ TIR -+
18 f UOTIT ' T 18 r TIT =
;. Ref Ref -
16 - S . 16 1
H >><
14 - ‘ R 14 + R
12 + - 1.2 -
1 C 1 7 1 C 1 1 i
2 4 8 16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
T42/L.16 on iPSC/860 T85/L.32 on iPSC/860
2 T T T T T T 2 T T T T
OIT —-— T/R —-—
TR —+— T/B —+—
18 T/B -o- 7 18 TIT -2 7
.. - Ref -x Ref -x
16 x, L« 4 16t -
>< “)(
14 - 14 - .
12 + B 1.2 + B
o
1 C 7 1 C 1 |I3 Iﬂii_il i
2 4 8 16 32 64 128 16 32 64 128
T42/L16 on Delta T85/L32 on Delta
2 T T T T T T T T 2 T T T T T T
DIT —-— DIT —-—
T/B -+ TIR —+—
18 TIT - 18 TIT -
Ref —x Ref —x
- 16 - |
- 14 - -
- 12 - |
- 1 - -
2 4 8 16 32 64 128 256 512 16 32 64 128 25 512

Fia. 2. Performance of various parallel algorithms on nCUBE/2, iPSC/860, and Intel DELTA.

FEach graph gives, for a range of processor counts, performance relative to the best algorithm at that
processor count.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 29

T42/L.16 on Paragon/OSF1 T85/L32 on Paragon/OSF1
2 T T T T T T T T 2 T T T T T T
. L —— T/B ——
¥oOTIR v TR -~
18 T/IT = 7 18 TT = 7
| Ref x Ref -
16 / 1 16} -
X) ’,”
14 - x i 14t .
12 + . 12 + .
1 - g 1F g
2 4 8 16 32 64 128 256 512 16 32 64 128 256 512
T42/L.16 on Paragon/SUNMOS T85/L32 on Paragon/SUNMOS
2 T T T T T T T T 2 T T T T T T
T/B —— DIT —o—
TIR -+ TIR -+
18 L/L -&--- 18 LT & 7
Ref —x Ref —x
16 - g 16 g
F
14F * / - 14 -
X
12 - g 12 - g
1r - 1r -

2 4 8 16 32 64 128 256 512 16 32 64 128 256 512

Fia. 3. Performance of various parallel algorithms on Intel Paragon. Fach graph gives, for a
range of processor counts, performance relative to the best algorithm at that processor count.

100 T T A\\ T T T T T T T 10(X) T T T T T T T
N - J
8 * . -
S S 8- S -8--
| ---- a_ | -
10 ¢ [\ 100 N A N & 4
1 E 10 ¢ R
:::$
e
01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 5121024 8 16 32 64 128 256 512 1024
Processors

Processors

Fia. 4. Ezecution time for 12 time steps of best algorithms for different P, at T42 and T85

resolutions

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 30

one dimension only, and use butterfly summation or overlapped ring sum LT algorithms.

9. Caveats and Generalizations. We have attempted to make our empirical
studies relevant and comprehensive. But the generality of the study required some
simplifying assumptions, and certain algorithms were not examined. In this section, we
briefly discuss some of these issues. Algorithm comparisons may need to be repeated
if problems of interest differ drastically from our simplifying assumptions. Benchmark

codes like PSTSWM make this feasible.

Problem size. For these experiments, problems sizes and processor counts were all
powers of two. All of the algorithms work best in under these conditions. Some,
like the O©(log Q) transpose and distributed FFT algorithms, do not work at all on a
nonpower-of-two number of processors. Other algorithms suffer performance degrada-
tion. Nonpower-of-two problem dimensions also cause load imbalances, and the amount
of performance degradation is strongly algorithm dependent.

Real weather and climate models often use a number of vertical levels significantly
smaller than the other dimensions of the problem. For example, T213L31 is used in
some operational weather-forecast models [22], corresponding to a 640 x 320 x 31 physical
grid. The transpose FFT algorithms suffer because they must use a larger number of
processors for the LT than an algorithm that uses a distributed FFT.

Decomposing “field” dimension. As mentioned in §5.2, one technique for applying
the transpose algorithms when there are few vertical levels is to partition the state
variables among the processors also. (This issue did not arise in our experiments,
because our example problems had sufficient vertical levels relative to other problem
dimensions.) This technique can be used in two ways in a transpose FFT/distributed
LT algorithm:
la. Starting with the usual (Zx, Jy, K) distribution of the physical grid, we trans-
pose within processor rows over both K levels and 8 fields. We compute the
FFTs, then transpose back (again within rows) to a (Mx,Jy,K) decompo-
sition of the Fourier grid. We then proceed with the L'T. A similar approach
is used for the inverse transform, although only 5 rather than 8 fields are
available. This approach performs twice as many transposes as the transpose
FFT/distributed LT algorithm, but can use 5 times more processors without
load imbalance. It has been used successfully in the message-passing version of
CCM2 [7].

1b. We can avoid the double transpose at the cost of redundant work and some
other additional communication by duplicating one field and decomposing over
K levels and 3 sets of 3 fields. After the FF'T, we then have separate distributed
LT calculations for ¢, ¢, and (for the forward transform. For the inverse
transform, we have 5K LT calculations to distribute over (fields 6, ¢, ¢, U, V),
and the U and V calculations require the updated 6 and ¢ fields. The simplest
approach, assigning U and V to the 6 and ¢ “columns,” requires duplication of é
and ¢ between processor columns and significant load imbalance and redundant
work. A better load-balancing strategy would require something equivalent to

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 31

an additional transpose and would still not eliminate all redundant work. Note
that load imbalance in the inverse L'T due to assignment of fields also implies
load imbalance in the inverse FFT. We gain (at best) the ability to use 3 times
more processors with this approach.
There is a single approach to distributing fields during the transpose FFT in a transpose
FFT /transpose LT algorithm:

2. Again duplicate one field and decompose over 3K sets of fields, transposing
across processor rows. After the FFT, transpose within processor columns,
with each processor column computing forward LTs for either 6, ¢, or (. For the
inverse transform, we again need to assign the U and V calculations, duplicating
the updated ¢ and ¢ fields. Similar communication and computation costs arise.

The double transpose FFT cannot be applied here because the transpose LT requires
that the field and vertical dimensions remain decomposed if all processors are to be
utilized.

We feel that the most promising of these approaches is (la). It is simple, is rela-
tively independent of problem size and number of processors, and incurs no additional
computation cost.

Serial FF'T algorithm. FFT routines that can handle vector lengths with factors of
2,3, 4, and 5 allow a larger set of problem sizes to be treated. In addition, exploiting a
factor of 4 is approximately 30 per cent faster than two factors of 2. These routines can
be exploited directly in transpose FFTs. The distributed FFT can also be generalized,
but some efficiency is lost.

Generalized O(log Q) algorithms. A range of hybrid algorithms combining aspects
of the O(log Q) and O(Q)) transpose algorithms can be defined that trade off message
counts and communication volume in different ways. For example, the O(log @)) algo-
rithm can be modified to use log, () stages by communicating with 3 other processors
at each stage, assuming that the problem size and number of processors support this.
Another approach is to use a switch, taking a few steps of the O(log)) algorithm, then
switching to the ©(Q) algorithm, analogously to the butterfly sum algorithm.

The distributed FFT can also be modified to use log, () stages and can then exploit
factors of 4 to reduce computation costs. And it is possible to apply a transpose-like
algorithm within the FFT itself [9].

These hybrid algorithms can improve performance somewhat in regimes where mes-
sage startup costs and data volume costs are comparable. However, they place addi-
tional requirements on problem size and processor counts.

Mesh-based algorithms. We have restricted ourselves to algorithms designed for one-
dimensional processor meshes. In cases where nonsquare logical meshes were mapped
to approximately square physical grids, it would be possible in principle to utilize spe-
cialized algorithms that exploit the extra connectivity [2, 30]. Because our experiments
show that “optimal” processor grids are mostly close to square, we believe that these
algorithms would not change our results. This issue will be addressed in further re-
search.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 32

Future work.. In order to perform empirical investigation of some of the issues
discussed in this section, we plan to incorporate into PSTSWM both distributed and
transpose versions of the 2-3-4-5 parallel FFT, the double transpose FFT, and the
hybrid ©(Q) — O(log Q)) transpose algorithms. These add additional capabilites for
problem and machines sizes that we have not yet examined, but should not change our
preliminary conclusions. Given the success of the overlap ring sum algorithm, we will
also implement the overlap butterfly sum algorithm. This may increase the range of
optimality of the transpose FFT/distributed LT algorithms on some machines.

10. Conclusions. We have conducted a detailed analysis and empirical investiga-
tion of parallel algorithms for the spectral transform method. This study has allowed us
to identify optimal algorithms for various problem size and machine parameter regimes.
This information should be directly useful to developers of parallel spectral-transform-
based climate and weather models.

Most of the observed performance trends can be explained using our analytic per-
formance models; this gives us confidence both that these models are correct and that
the parallel algorithm implementations incorporated in our testbed code are efficient.
It also provides a basis for extrapolating the results obtained here to other regimes.
However, the models as described here are not sufficiently detailed to provide detailed
performance predictions. In future work, we will investigate to what extent the empiri-
cal studies can be used to generate performance models that can be used for prediction.

This exhaustive study of alternative algorithms, communication techniques, and as-
pect ratios suggests some conclusions regarding parallel libraries. It is common practice
in parallel computing to select parallel algorithms on the basis of asymptotic analysis,
and then to incorporate these algorithms in portable libraries that are used unchanged
on different computers. The results of this study emphasize three limitations of this
approach. First, asymptotically suboptimal algorithms may be superior in many inter-
esting regimes. Second, reference implementations of parallel algorithms designed for
portability can be considerably less efficient than implementations tuned for a partic-
ular machine. Third, interactions between algorithms can impact performance; hence,
for peak performance, it can be important to optimize algorithm combinations rather
than individual algorithms.

Our work suggests three techniques that can be used to overcome these limitations.
First, detailed analytic models that take into account constant factors and issues such as
load imbalance can be used to develop improved understandings of algorithmic tradeoffs.
Second, libraries can be defined to incorporate multiple algorithmic options selectable at
runtime. This allows codes to be tuned for different problem or machine characteristics,
either by the programmer or automatically on the basis of runtime performance data.
Third, testbed codes such as PSTSWM can be used to explore algorithmic alternatives.

Acknowledgments. This work was supported in part by the Atmospheric and
Climate Research Division and by the Office of Scientific Computing under Contract
W-31-109-Eng-38, both of the Office of Energy Research, U.S. Department of Energy.
We are grateful to members of the CHAMMP Interagency Organization for Numerical

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 33

Simulation, a collaboration involving Argonne National Laboratory, the National Center
for Atmospheric Research, and Oak Ridge National Laboratory, for sharing codes and
results; to Brian Toonen for his tremendous help with the computational experiments;
and to the SUNMOS development team for help in getting PSTSWM running under
SUNMOS on the Intel Paragon.

This research was performed using Intel iPSC/860 and Paragon multiprocessor
systems at Oak Ridge National Laboratory, the nCUBE/2 and Intel Paragon systems at
Sandia National Laboratories, the nCUBE/2 system at Ames National Laboratory, and
the Intel Touchstone DELTA System operated by Caltech on behalf of the Concurrent
Supercomputing Consortium.

REFERENCES

[1] D. H. BAILEY, FFTs in external or hierarchical memory, J. Supercomputing, 4 (1990), pp. 23-45.

[2] M. BARNETT, R. vAN DE GEIIN, S. GupTA, D. G. PAYNE, L. SHULER, AND J. WATTS, Inier-
processor collective communication library (InterCom), in Proc. Scalable High Performance
Computing Conf., IEEE Computer Society Press, Los Alamitos, CA, 1994. (in press).

[3] S. BaArRrROs AND T. KAURANNE, On the parallelizalion of global spectral Eulerian shallow-
water models, in Parallel Supercomputing in Atmospheric Science: Proceedings of the Fifth
ECMWF Workshop on Use of Parallel Processors in Meteorology, G.-R. Hoffman and T. Kau-
ranne, eds., World Scientific Publishing Co. Pte. Ltd., Singapore, 1993, pp. 36-43.

[4] W. BOURKE, An efficient, one-level, primilive-equation spectral model, Mon. Wea. Rev., 102
(1972), pp. 687-701.

[6] G. L. BRowNING, J. J. HAcK, AND P. N. SWARZTRAUBER, A comparison of three numerical
methods for solving differential equations on the sphere, Mon. Wea. Rev., 117 (1989), pp. 1058-
1075.

[6] D. DENT, The ECMWEF model on the Cray Y-MP8, in The Dawn of Massively Parallel Processing
in Meteorology, G.-R. Hoffman and D. K. Maretis, eds., Springer-Verlag, Berlin, 1990.

[7] J. B. DRAKE, R. E. FLANERY, I. T. FOSTER, J. J. Hack, J. G. MICHALAKES, R. L. STEVENS,
D. W. WALKER, D. L. WIiLLIAMSON, AND P. H. WORLEY, The message-passing version
of the parallel community climate model, in Parallel Supercomputing in Atmospheric Science:
Proceedings of the Fifth ECMWF Workshop on Use of Parallel Processors in Meteorology,
G.-R. Hoffman and T. Kauranne, eds., World Scientific Publishing Co. Pte. Ltd., Singapore,
1993, pp. 500-513.

[8] J. B. DRAKE, I. T. FOSTER, J. J. HACK, J. G. MICHALAKES, B. D. SEMERARO, B. TOONEN,
D. L. WiLLiaMsoN, AND P. H. WoRLEY, PCCM2: A GCM adapted for scalable parallel
computer, in Fifth Symposium on Global Change Studies, American Meteorological Society,
Boston, 1994, pp. 91-98.

[9] A. DuBEY, M. ZuBAIR, AND C. E. GROSCH, A general purpose subroutine for fast Fourier
transform on a distributed memory parallel machine, Parallel Computing, (to appear).

[10] T. H. DuNiGaN, Communication performance of the Intel Touchstone DELTA Mesh, Tech.
Report ORNL/TM-11983, Oak Ridge National Laboratory, Oak Ridge, TN, December 1991.

[11] ——, Performance of the Intel iPSC/860 and the Ncube 6400 hypercubes, Parallel Computing,
17 (1991), pp. 1285-1302.

[12] A. EDELMAN, Optimal matriz transposition and bit reversal on hypercubes: all-to-all personalized
communication, J. Par. Dist. Comp., 11 (1991), pp. 328-331.

[13] J. O. EXLUNDH, A fast computler method for matriz transposing, IEEE Trans. Comput., C-21
(1972), pp. 801-803.

[14] T. FosTER, W. GRoPP, AND R. STEVENS, The parallel scalability of the spectral transform
method, Mon. Wea. Rev., 120 (1992), pp. 835-850.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 34

[15] T. T. FosTER AND P. H. WORLEY, Parallelizing the spectral transform method: A comparison of

[16]

U.

Al

J.

J.

S.

T.

alternative parallel algorithms, in Parallel Processing for Scientific Computing, R. F. Sincovec,
D. E. Keyes, M. R. Leuze, L. R. Petzold, and D. A. Reed, eds., Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1993, pp. 100-107.

. C. Fox, M. A. JonnsoN, G. A. Lyzencga, S. W. OrTo, J. K. SALMON, AND D. W.

WALKER, Solving Problems on Concurrent Processors, vol. 1, Prentice-Hall, Englewood Cliffs,
NJ, 1988.

GARTEL, W. JOPPICH, AND A. SCHULLER, Parallelizing the ECMWIF’s weather forecast
program: The 2D case, Parallel Computing, 19 (1993), pp. 1413-1426.

GupTa AND V. KuMAR, The scalability of FFT on parallel computers, IEEE Trans. Par.
Dist. Sys., 4 (1993), pp. 922-932.

J. Hack, B. A. BoviLLe, B. P. BriegrLes, J. T. Kiedr, P. J. RascH, anD D. L.
WILLIAMSON, Description of the NCAR Commaunity Climate Model (CCM2), NCAR Tech.
Note NCAR/TN-382+4STR, National Center for Atmospheric Research, Boulder, Colo., 1992.
J. Hack aND R. JAKOB, Description of a global shallow water model based on the spectral
transform method, NCAR Tech Note NCAR/TN-343+STR, National Center for Atmospheric
Research, Boulder, CO, February 1992.

L. JounssoN AND C.-T. Ho, Algorithms for matriz transposition on Boolean N-cube config-
ured ensemble architectures, STAM J. Matrix Anal. Appl., 9 (1988), pp. 419-454.
KAURANNE AND S. BARROS, Scalability estimates of parallel spectral atmospheric models, in
Parallel Supercomputing in Atmospheric Science: Proceedings of the Fifth ECMWF Work-
shop on Use of Parallel Processors in Meteorology, G.-R. Hoffman and T. Kauranne, eds.,
World Scientific Publishing Co. Pte. Ltd., Singapore, 1993, pp. 312-328.

D. LorT aAND R. K. SATO, Implementation of the NCAR CCM2 on the Connection Machine,
in Parallel Supercomputing in Atmospheric Science: Proceedings of the Fifth ECMWF Work-
shop on Use of Parallel Processors in Meteorology, G.-R. Hoffman and T. Kauranne, eds.,

World Scientific Publishing Co. Pte. Ltd., Singapore, 1993, pp. 371-393.

. MACHENHAUER, The spectral method, in Numerical Methods Used in Atmospheric Models,

vol. IT of GARP Pub. Ser. No. 17. JOC, World Meteorological Organization, Geneva, Switzer-
land, 1979, ch. 3, pp. 121-275.

. PEASE, An adaptation of the fast Fourier transform for parallel processing, J. Assoc. Comput.

Mach., 15 (1968), pp. 252-264.

R. B. PELZ AND W. F. STERN, A balanced parallel algorithm for spectral global climate models, in

Parallel Processing for Scientific Computing, R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R.
Petzold, and D. A. Reed, eds., Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1993, pp. 126-128.

. S. STONE, Parallel processing with the perfect shuffle, IEEE Trans. Comput., C-21 (1971),

pp- 1563-161.

N. SWARZTRAUBER, Multiprocessor FFTs, Parallel Computing, 5 (1987), pp. 197-210.

N. SwARZTRAUBER, W. L. Brigas, R. A. SweeT, V. E. HENsoN, aND J. OTTO,
Bluestein’s FFT for arbitrary n on the hypercube, Parallel Computing, 17 (1991), pp. 607-618.

. S. TAKKELLA AND S. R. SEIDEL, Complete exchange and broadcast algorithms for meshes,

in Proc. Scalable High Performance Computing Conf., IEEE Computer Society Press, Los
Alamitos, CA, 1994. (in press).

A. vaN DE GEDN, Efficient global combine operations, in The Sixth Distributed Memory
Computing Conference Proceedings, Q. F. Stout and M. Wolfe, eds., IEEE Computer Society
Press, Los Alamitos, CA, 1991, pp. 291-294.

. W. WALKER, P. H. WORLEY, AND J. B. DRAKE, Parallelizing the spectral transform method.

Part I, Concurrency: Practice and Experience, 4 (1992), pp. 509-531.

. WASHINGTON AND C. PARKINSON, An Introduction to Three-Dimensional Climate Modeling,

University Science Books, Mill Valley, CA, 1986.

. L. WiLrLiamson, J. B. DrakEe, J. J. HAack, R. JaAkoB, AND P. N. SWARZTRAUBER, A

standard test set for numerical approximations to the shallow water equations on the sphere,
J. Computational Physics, 102 (1992), pp. 211-224.

PARALLEL SPECTRAL TRANSFORM ALGORITHMS 35

[35] P. H. WoRLEY AND J. B. DRAKE, Parallelizing the spectral transform method, Concurrency:
Practice and Experience, 4 (1992), pp. 269-291.
[36] P. H. WoRLEY AND I. T. FosTER, Parallel Spectral Transform Shallow Water Model: A

runtime—tunable parallel benchmark code, in Proc. Scalable High Performance Computing
Conf., IEEE Computer Society Press, Los Alamitos, CA, 1994. (in press).

