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bstract. This article is the thirty-second of a series of articles discussing various open research prob-
-

e
lems in automated reasoning. The problem proposed for research asks one to find a variant of the infer
nce rule hyperparamodulation that avoids generating many of the binary paramodulants ordinarily

K

deduced.
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l
p
Question: What is the appropriate definition of hyperparamodulation that avoids generating al
aramodulants? (This question is the ninth of 33 problems proposed for research in [6] and will be

-
l
referred to as Research Problem 9 throughout this article. All references to sections, chapters, test prob
ems, and such also refer to [6].)

An automated reasoning program employing paramodulation [4, 11] treats equality as ‘‘under-
-

i
stood’’ or ‘‘built in’’; this inference rule generalizes the usual notion of equality substitution. A reason
ng program using hyperresolution [5] combines a number of small (binary resolution) deduction steps

w
into one. Observing the successes obtained with these inference rules naturally suggested research

hose goal was to find an inference rule that would possess the good features of both. The result was
f

p
the formulation of the inference rule hyperparamodulation [8], a rule that combines a number o
aramodulation steps into one. Therefore—as we shall see from the example given in this article—

-
i
hyperparamodulation in effect enables an automated reasoning program to combine a number of equal
ty substitution steps into one deduction step. The technique of identifying the valuable properties of

,
c
different inference rules, and then seeking a single rule that possesses many or all of the properties
an—as it did with hyperparamodulation—lead to interesting and rewarding research. Specifically, in

d
a
part because of the cited research, the inference rule negative hyperparamodulation was formulated, an
n implementation of (positive) hyperparamodulation was produced [7] that is cleaner than the first ver-

sion that was published and tested.

So that the nature of Research Problem 9 will be clear—this research problem is far more subtle
-

p
and complicated than it might appear—let us examine an example of applying one variant of hyper
aramodulation before giving a precise statement of the problem. For illustrative purposes only, we

c
shall treat the example in terms of hyperresolution. To successfully apply hyperresolution, the program
onsiders simultaneously a set of clauses such that one of the clauses (the nucleus) contains at least one

-
s
negative literal, the remaining clauses (the satellites) each contain no negative literals, and the conclu
ion (the hyperresolvent) contains no negative literals. Whether the program applies the substitutions

t
a
required to unify the appropriate literal pairs and removes each negative literal from the nucleus one a

time or all at once is not important here. What is important is that no intermediate clauses are con-

c
sidered for possible retention; only the final deduction, free of negative literals, is treated as a new
lause to be processed further.

For example, if hyperresolution considers the clauses

h
left identity:
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*This work was supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-
Eng-38.



LARRY WOS 2 HYPERPARAMODULATION

r

(GT-1) P(e,x,x)

ight identity:
)

l

(GT-2) P(x,e,x

eft inverse:
)

a

(GT-3) P(inv(x),x,e

ssociativity:
(GT-5) ¬P(x,y,u) e ¬P(y,z,v) e ¬P(u,z,w) e P(x,v,w)

)

a

(GT-6) ¬P(x,y,u) e ¬P(y,z,v) e ¬P(x,v,w) e P(u,z,w

nd, in particular, is applied to clause (GT-5) as nucleus and clauses (GT-3), (GT-3), and (GT-1) as
satellites (paired with the negative literals left to right), the clause

P(inv(inv(x)),e,x)

is deduced. If, instead, clause (GT-5) is replaced by clause (GT-6) and clause (GT-1) is replaced by
clause (GT-2), then the clause

P(e,x,inv(inv(x)))

is deduced. Although not precisely, the two deduced clauses, in effect, say that the inverse of the
inverse of x is x.

If we apply essentially the same reasoning as is used in either of the preceding two deductions,

t
and use the equality formulation with paramodulation as the inference rule, but do not stop until no into
erms in the nucleus other than variables remain untouched, we can reach the precise conclusion we are

after in four steps.

(GTEQ-1) EQUAL(prod(e,x),x)
)

(
(GTEQ-2) EQUAL(prod(x,e),x
GTEQ-3) EQUAL(prod(inv(x),x),e)

)

f

(GTEQ-5) EQUAL(prod(prod(x,y),z),prod(x,prod(y,z))

rom (GTEQ-3) into (GTEQ-5), into term prod(y,z)

f

(P-1) EQUAL(prod(prod(x,inv(z)),z),prod(x,e))

rom (GTEQ-3) into (P-1), into term prod(x,inv(z))

f

(P-2) EQUAL(prod(e,z),prod(inv(inv(z)),e))

rom (GTEQ-1) into (P-2), into term prod(e,z)

f

(P-3) EQUAL(z,prod(inv(inv(z)),e))

rom (GTEQ-2) into (P-3), into term prod(inv(inv(z)),e)

T

(P-4) EQUAL(z,inv(inv(z)))

his last deduction differs from the preceding (in which hyperresolution was used) in a number of
-

l
ways including the deduction of intermediate clauses, clauses (P-1), (P-2), and (P-3). Hyperparamodu
ation was formulated to yield the clause (P-4) in one step, without yielding any intermediate clauses.

(
Hyperresolution yielded a clause by simultaneously considering clauses (GT-5), (GT-3), (GT-3), and
GT-1), for example. Hyperparamodulation yields clause (P-4) by simultaneously considering clauses

-
t
(GTEQ-5), (GTEQ-3), (GTEQ-3), (GTEQ-1), and (GTEQ-2). Where hyperresolution removes all nega
ive literals from the nucleus, hyperparamodulation applies equality substitution steps into all terms

p
(other than variables) in the nucleus. With hyperresolution, each negative literal is unified with one
ositive literal in a satellite; with hyperparamodulation, each nonvariable term is unified with one argu-

ment of a satellite.

Research Problem 9 asks for a variant of hyperparamodulation that does not yield all clauses
t

a
yielded by paramodulation—a variant that avoids generating many of the (binary) paramodulants tha
re ordinarily deduced. The notion is that the absence (in the database of retained clauses) of a large

number of binary paramodulants might increase the effectiveness of reasoning programs.
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s
v

(Throughout this article, we focus on one variant of hyperparamodulation. In contrast to thi
ariant, which requires all nonvariable terms to be unified with an argument of some satellite, the vari-

p
ant published in 1980 [8] requires the user to choose for each nucleus the precise terms into which
aramodulation is applied. We mention the earlier variant only so that researchers who are acquainted

with it are totally clear about the nature of Research Problem 9.)

Although at first the variant of hyperparamodulation on which we are focusing here might appear
-

l
to be the sought-after inference rule, in fact, it is not. Except for paramodulants obtained by paramodu
ating into a variable—and we ordinarily avoid those—this variant permits deducing all binary paramo-

t
dulants. For example, clause (P-1) will be deduced by applying (this variant of) hyperparamodulation
o clause (GTEQ-5) as nucleus and, as satellites, clause (GTEQ-3) and three copies of the clause

w

(GTEQ-6) EQUAL(x,x)

hich is the axiom of reflexivity. The individual paramodulation steps from reflexivity do nothing, of
-

t
course. More generally, regardless of the choice of nucleus, to have this variant of hyperparamodula
ion yield a given binary paramodulant, the program simply uses the same from clause that was used in

f
r
the binary paramodulation step, and uses for the remaining satellites the required number of copies o
eflexivity. In short, one of the main obstacles to the formulation of the sought-after variant of hyper-

a
paramodulation focuses on how reflexivity is to be treated as a satellite. Specifically, when should it be
cceptable for one of the paramodulation steps, combined into the single larger hyperparamodulation

step, to be a paramodulation from reflexivity?

Note that we are not in any way referring to the functional reflexive axioms [4, 11, 10, 2, 3] in
e

l
this discussion. We in fact recommend against their inclusion even though, in certain odd cases, th
ack of those axioms can result in the loss of refutation completeness when using the set of support stra-

tegy [1]. Among the functional reflexive axioms are those instances of reflexivity of the form

EQUAL(inv(x),inv(x))
)

w

EQUAL(prod(x,y),prod(x,y)

here inv and prod are functions occurring in the set of clauses under consideration. For each function,

l
the full set of functional reflexive axioms includes a clause of the type just displayed. An example of
osing refutation completeness when the set of support strategy is employed and the appropriate func-

tional reflexive axiom is omitted consists of the following four clauses.

Q(x,x)
¬Q(f(a),f(b))

E
EQUAL(a,b)

QUAL(x,x)

If the only clause in the set of support is the first of the four, then no proof can be found. If all four

a
clauses are in the set of support, then one can paramodulate from the third into the second to complete

proof. Finally, if the clause

i

EQUAL(f(x),f(x))

s present, the use of paramodulation quickly leads to a proof; however, two of the steps require
paramodulation into a variable.

To understand the role of reflexivity in Research Problem 9 more fully, first recall that, for many
,

t
theorems of mathematics, two rather different approaches to representation are frequently taken. In one
he equality relation is emphasized, and an inference rule such as paramodulation is employed. In the

h
other, the equality relation is avoided where possible, and inference rules such as UR-resolution [9] and
yperresolution are employed. In a straightforward manner, proofs employing the second notational

i
approach can be mapped to proofs in the first. For example, where the axiom of left identity in a group
s represented with the clause

i

P(e,x,x)

n the second notation, this axiom is represented with the clause

i

EQUAL(prod(e,x),x)

n the first notation (see Section 6.1 for the axioms for a group in both notations). For a second
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xample, where the associative law, in the notation avoiding (where possible) equality, is written as two
clauses

¬P(x,y,u) e ¬P(y,z,v) e ¬P(u,z,w) e P(x,v,w)

and

¬P(x,y,u) e ¬P(y,z,v) e ¬P(x,v,w) e P(u,z,w)

the single clause

EQUAL(prod(prod(x,y),z),prod(x,prod(y,z)))

is used in the notation emphasizing equality.

For a third example—and here we have one of the salient points—the image of the closure (or
totality) axiom

P(x,y,prod(x,y))

(where prod is an appropriate function) is the clause

u

EQUAL(prod(x,y),prod(x,y))

nder the mapping under discussion. But the clause

w

EQUAL(prod(x,y),prod(x,y))

hich is the functional reflexive axiom for the function prod, is merely an instance of the clause for
reflexivity

EQUAL(x,x)

and is, therefore, subsumed by the clause for reflexivity. Since, for reasons of efficiency, one does not

w
ordinarily include a clause in the input when a second input clause subsumes it, the image of closure

ould typically be absent when using the equality-oriented notation. The obvious alternative to this

d
practice is to include the functional reflexive axioms. This action, however, often results in a sharp
ecrease in the effectiveness of a reasoning program. Therefore, when a proof is mapped from the

second notational approach to the first, the use of the clause

P(x,y,prod(x,y))

emust be mapped to the use of the claus

EQUAL(x,x)

.which brings us to the following summary

For the inference rule hyperparamodulation, permitting unrestricted paramodulation from
-

t
reflexivity generates all (binary) paramodulants; completely blocking such applications of paramodula
ion, on the other hand, presents the obstacle of a possible loss of refutation completeness because

.
A
reflexivity is in part the image of the closure axiom in representations that do not emphasize equality

n examination of various proofs employing hyperresolution reveals the frequent use of a closure
s

(
axiom as one of the satellites. For example, in the proof of the theorem that states that Boolean ring
rings in which the square of x is itself) are commutative (Test Problem 8, Section 6.2.1), one of the

t
d
steps commonly used is the deduction of the fact that x(x+x) = x+x. That deduction, in the notation tha
oes not emphasize equality, uses two occurrences of the closure axiom as a satellite. Therefore, if one

e
o
maps proofs—in particular, the proof that Boolean rings are commutative—from one notation to th
ther as illustrated here, the variant of hyperparamodulation in focus throughout this article will occa-

sionally include steps that correspond to paramodulating from reflexivity.

We can provide additional insight for this problem with the following observations. In most

r
cases, any negative literals that must be removed to complete an application of hyperresolution can be
emoved with the closure axiom. The exceptions occur when, for example, some constant has replaced

e
a
a variable and, therefore, the corresponding unification fails. In contrast, when attempting to complet
n application of (this variant of) hyperparamodulation, and a nonvariable term must be considered for

a
an equality substitution, reflexivity can be used; the corresponding unification never fails. Since some
pplications of hyperresolution, therefore, cannot be completed but all applications of hyperparamodula-

tion can always be completed, we encounter an additional complication. However, a thorough analysis
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of this difference might provide an important clue to solving Research Problem 9.

To test a proposed solution to Research Problem 9, one might study the theorem from ring theory

(
just discussed, where the representation is in terms of equality unit clauses. The exponent 3 theorem
Test Problem 9, Section 6.2.2) from ring theory cited in the preceding section, if phrased as equality

n
p
unit clauses, is a more significant test for a proposed solution to this problem. The latter suggestio
rovides a better test for a proposed solution to Research Problem 9 because that test problem is sub-

t
stantially harder, causing the reasoning program to deduce a large number of clauses when attempting
o solve it. Among a large set of deduced clauses, one is more likely to find different variations of the

R

use of the image of closure.
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