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ABSTRACTGlobal methods for nonlinear complementarity problems formulate the problem as a systemof nonsmooth nonlinear equations approach, or use continuation to trace a path de�ned bya smooth system of nonlinear equations. We formulate the nonlinear complementarityproblem as a bound-constrained nonlinear least squares problem. Algorithms based on thisformulation are applicable to general nonlinear complementarity problems, can be startedfrom any nonnegative starting point, and each iteration only requires the solution of systemsof linear equations. Convergence to a solution of the nonlinear complementarity problemis guaranteed under reasonable regularity assumptions. The converge rate is Q-linear, Q-superlinear, or Q-quadratic, depending on the tolerances used to solve the subproblems.



Global Methods for Nonlinear Complementarity ProblemsJorge J. Mor�e1 IntroductionThe solution of economic equilibria has been an important motivation for the develop-ment of algorithms for nonlinear complementarity problems. The work of Ahn [1] on thePIES (Project Independence Evaluation System) project, in particular, created much inter-est in the formulation and solution of economic equilibrium problems as complementarityproblems. In this paper we are concerned only with the complementarity formulation. Foradditional information on economic equilibrium problems see the collection of papers editedby Manne [30] and Nagurney [37]; Dirkse and Ferris [10] provide an interesting collectionof nonlinear complementarity problems.The aim of current research on the numerical solution of nonlinear complementarityproblems has been to obtain algorithms with global convergence properties. This goal hasproved to be elusive. Global methods for the nonlinear complementarity problemx � 0; f(x) � 0; xT f(x) = 0; (1:1)speci�ed by a mapping f : IRn 7! IRn, either transform (1.1) into a system of nonsmoothnonlinear equations or use continuation to trace a path that leads, under suitable conditions,to a solution of the nonlinear complementarity problem.In the nonsmooth nonlinear equations approach, the nonlinear complementarity problemis transformed into a system of nonlinear equations h(x) = 0 with a mapping h : IRn 7! IRnthat is continuous, but not di�erentiable everywhere. For example, in the approach studiedby Robinson [41], the nonlinear complementarity problem is formulated as the nonsmoothsystem of nonlinear equations f(x+) + x� = 0; (1:2)where x+ = max(x; 0) and x� = min(x; 0). A computation shows that a solution x� of (1.2)yields a solution x�+ of the nonlinear complementarity problem (1.1). Conversely, a solutionx� of (1.1) yields a solution x� � f(x�) of the nonsmooth system (1.2). This approach hasbeen pursued, in particular, by Ralph [40], Dirkse and Ferris [9], and Xiao and Harker[47, 48].Pang [38] has also followed a nonsmooth approach. In Pang's approach the nonlinearcomplementarity problem is formulated as the constrained system of nonlinear equationsmin(x; f(x)) = 0; x � 0: (1:3)Work supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38. 1



Clearly, x� solves (1.3) if and only if x� is a solution of the nonlinear complementarityproblem. This approach has been developed by Harker and Xiao [19], Pang and Gabriel [39],Gabriel and Pang [14, 15], and Monteiro, Pang, and Wang [32].The nonlinear complementarity problem (1.1) can also be formulated as the constrainedsystem of nonlinear equationsh(x; y) = 0; x � 0; y � 0; (1:4)where h : IR2n 7! IR2n is de�ned byh(x; y) = 0@ f(x)� yY x 1A ; (1:5)and Y is the diagonal matrix diag(yi). The nonlinear complementarity problem (1.1) isequivalent to the system (1.4) because if the vector x� solves problem (1.1), then h(x�; y�) =0 for y� = f(x�) � 0, and conversely, if the pair (x�; y�) solves (1.4), then x� solves (1.1)and y� = f(x�).In the continuation approach proposed by McLinden [31] and Kojima, Mizuno, andNoma [24], the nonlinear complementarity problem is transformed into the constrainedsystem of nonlinear equationsh(x(�); y(�)) = � 0@ ab 1A ; � > 0; (x(�); y(�))> 0:Convergence results for this approach show that under suitable conditions there is a so-lution (x(�); y(�)) that converges to a solution of the nonlinear complementarity problem.The properties of the path (x(�); y(�)) have been explored in a series of papers by Kojima,Mizuno, and Noma [25], Kojima, Megiddo, and Noma [23], and Kojima, Megiddo, andMizuno [22]. The continuation approach has received considerable attention in the mono-tone case since it covers linear programming and convex quadratic programming. Indeed,interior-point methods for linear complementarity problems can be viewed as modi�ed New-ton methods that follow the continuation path de�ned by (x(�); y(�)). See, for example,the discussions in Wright [46] and Kojima, Megiddo, and Mizuno [22]. Recent work onnonlinear monotone mappings includes Chen and Harker [4], Kojima, Noma, and Yoshise[26], and Wright [45].Disadvantages of the continuation approach are that the method breaks down if f doesnot satisfy global assumptions that guarantee, in particular, that the solution (x(�); y(�))of the system (1.4) exists for all � > 0 and that a starting point x0 with x0 > 0 andf(x0) > 0 is required. The constrained nonsmooth equations approach, on the other hand,is de�ned for all mappings f , but is guaranteed to converge to a solution of (1.1) only if theiterates have a limit point that satis�es certain regularity assumptions. A disadvantage of2



the nonsmooth equations approach is that the lack of di�erentiability invalidates classicalNewton and quasi-Newton methods, and thus it is necessary to device special purposemethods for solving these systems.Other approaches to the solution of (1.1) include transformation into a smooth systemof nonlinear equations (Mangasarian [28], Watson [44], Subramanian [43], Kanzow [21]),and into an optimization problem (Fukushima [13], Mangasarian and Solodov [29], Kanzow[20], Geiger and Kanzow [17]). For additional approaches, see the paper of Harker andPang [18]. Some of these approaches are related to the constrained nonsmooth equationsapproach. For example, Fukushima [13] shows that x� solves the nonlinear complementarityproblem (1.1) if and only if x� is a global solution ofminnkf(x)k22 � kx� f(x)� [x� f(x)]+k22 : x � 0o :Fukushima also shows that a stationary point for this problem is a solution of (1.1) if theJacobian matrix is positive de�nite at the stationary point. Global convergence results forthese approaches are generally weaker than those for the nonsmooth equations approach,and thus we do not emphasize these results.We formulate the nonlinear complementarity problem (1.1) as the bound-constrainednonlinear least squares problemminn12kh(x; y)k22 : x � 0; y � 0o : (1:6)We show that this approach is valid because, under reasonable conditions, stationary pointsof (1.6) are solutions to the nonlinear complementarity problem (1.1). Moreover, we showthat our approach is valid under weaker conditions than the nonsmooth equations approach.We also propose the use of a trust region method for the solution of (1.1). The trustregion method is de�ned for all di�erentiable mappings f . Moreover, global and superlinearconvergence to a solution of (1.1) takes place under reasonable conditions. We also pointout that implementation of the trust region method only requires the solution of systemsof linear equations; there is no need to solve either a linear programming problem or aquadratic programming problem.We begin the study of the system of equations de�ned by (1.4) and (1.5) by introduc-ing the P0- and the P -functions. These two classes of function were introduced by Mor�eand Rheinboldt [35] as nonlinear generalizations of the P - and P0-matrices of Fiedler andPt�ak [11], and were �rst used for the study of nonlinear complementarity problems byMor�e [33, 34]. The material in Section 2 relates our work to that of Kojima, Megiddo, andNoma [24, 25] and Kojima, Mizuno, and Noma [23] since their convergence results requirethat f be a P0-function in IRn+. As we shall see, the convergence results for the nonsmoothsystems approach, and the approach based on (1.6) are also related to the P0- and theP -functions. 3



In Section 3 we introduce a regularity assumption, and show that if x� is regular, thenany stationary point (x�; y�) of (1.6) produces a solution x� of the nonlinear complementarityproblem (1.1). Our objective is to provide conditions that guarantee that any limit pointof a sequence generated by an algorithm for (1.6) is a solution of (1.1). Conditions thatguarantee regularity are explored in Section 4. Our results are similar to those obtainedby Pang and Gabriel [39], Gabriel and Pang [14, 15], Monteiro, Pang, and Wang [32], andXiao and Harker [47, 48], but we do not require any explicit assumptions of nonsingularity.The global convergence of the trust region method is presented in Section 5, with the rateof convergence analysis in Section 6. We show that under reasonable regularity assumptions,the trust region method converges to a solution of the nonlinear complementarity problem(1.1). The rate of convergence is Q-linear or Q-superlinear, depending on the choice of tol-erances for the approximate solution of the subproblems. This analysis is of interest becausethe nonlinear least squares problem (1.6) is degenerate from an optimization viewpoint.In this paper k � k is the Euclidean norm. Vector inequalities apply to each component,and thus x � 0 if all the components of x are nonnegative. The set IRn+ consists of allx 2 IRn with x � 0, and IRn++ is the set of all x > 0. Given an index set C, the vector xCconsists of all components xi of x with i 2 C. For a matrix A 2 IRn�n , we use the notationAC for the principal submatrix of A with elements ai;j and i; j 2 C.2 Global propertiesThe P - and P0-matrices of Fiedler and Pt�ak [11] play a central role in the study of thelinear complementarity problem since A 2 IRn is a P -matrix if and only if the linear com-plementarity problem x � 0; Ax+ q � 0; xT (Ax+ q) = 0has a unique solution for any q 2 IRn. The nonlinear generalization of the P - and P0-matricesare the P - and P0-functions. In this section we show, in particular, that f : IRn 7! IRn isa P0-function on IRn+ if and only if the function h : IR2n 7! IR2n de�ned by (1.5) is aP0-function on IR2n+ .A function f : IRn 7! IRn is a P -function in a set 
 if for each x and y in 
 with x 6= y,there is an index i such that (xi � yi)[fi(x)� fi(y)] > 0:Similarly, f : IRn 7! IRn is a P0-function in 
 if for each x and y in 
 with x 6= y, there isan index i such that xi 6= yi; (xi � yi)[fi(x)� fi(y)] � 0:The P and P0-functions share many of the properties of P and P0-matrices. For example,every P -function is also a P0-function. Moreover, f is a P0-function if and only if the4



function f� : IRn 7! IRn de�ned by f�(x) = f(x) + �x is a P -function for all � > 0. Foradditional properties of these functions, see Mor�e and Rheinboldt [35].Theorem 2.1 The function f : IRn 7! IRn is a P0-function on IRn+ if and only if thefunction h : IR2n 7! IR2n is a P0-function on IR2n+ .Proof. If h is a P0-function, then given �x 6= x, there is an index i such that �xi 6= xi and(�xi � xi)[hi(�x; 0)� hi(x; 0)] � 0:Since fi(x) = hi(x; 0) for 1 � i � n, we obtain that(�xi � xi)[fi(�x)� fi(x)] = (�xi � xi)[hi(�x; 0)� hi(x; 0)]� 0;and thus f is a P0-function.Assume now that f is a P0-function, and consider two pairs (�x; �y) 6= (x; y). First considerthe case where �x 6= x. In this case the de�nition of a P0-function implies that there is anindex i with �xi 6= xi and (�xi � xi)[fi(�x)� fi(x)] � 0:If (�xi � xi)(�yi � yi) � 0, then(�xi � xi)[hi(�x; �y)� hi(x; y)] = (�xi � xi)[fi(�x)� fi(x)]� (�xi � xi)(�yi � xi) � 0:If, on the other hand, (�xi � xi)(�yi � yi) > 0, then(�yi � yi)[�yi�xi � yixi] = (�yi � yi)[(�yi � yi)�xi + (�xi � xi)yi] � 0:This yields the desired result if �x 6= x. If �x = x, then(�yi � yi)[�yi�xi � yixi] = (�yi � yi)2xi � 0for all indices. This proves that h is a P0-function. �For di�erentiable mappings, Mor�e and Rheinboldt [35] proved that f is a P0-function ina rectangle 
 if and only if f 0(x) is a P0-matrix for each x 2 
. We can combine this resultwith Theorem 2.1 to obtain that if f is di�erentiable on IRn+, then h is a P0-function onIR2n+ if and only if f 0(x) is a P0-matrix for each x 2 IRn+. Stronger results can be obtainedif we restrict attention to IRn++.Theorem 2.2 If f : IRn 7! IRn is di�erentiable at x 2 IRn+ and f 0(x) is a P0-matrix, thenh0(x; y) is a P0-matrix for any y 2 IRn+. Moreover, if y > 0, then h0(x; y) is nonsingular.5



Proof. The proof is along the same lines as that of Theorem 2.1. We need to show that forany nonzero vector w 2 IR2n, there is an index i such thatui 6= 0; ui[h0(x; y)w]i � 0; or vi 6= 0; vi[h0(x; y)w]i+n � 0;where w = (u; v). Assume that u 6= 0. Since f 0(x) is a P0-matrix there is an index i withui 6= 0 such that ui[f 0(x)u]i � 0. If uivi � 0, thenui[h0(x; y)w]i = ui[f 0(x)u]i � uivi � 0:If, on the other hand, uivi > 0, thenvi[h0(x; y)w]i+n = vi[yiui + xivi] = yiuivi + xiv2i � 0:This yields the desired result if u 6= 0. If u = 0, thenvi[h0(x; y)w]i+n = xiv2i � 0for all indices. This proves that h0(x; y) is a P0-matrix.Assume now that y > 0 and that h0(x; y)w = 0. This implies thatf 0(x)u = v; yiui + xivi = 0:If u 6= 0, then there is an index i with ui 6= 0 such that ui[f 0(x)u]i � 0. Hence, uivi � 0.This is not possible because yiui+xivi = 0, yi > 0, and ui 6= 0. Hence, we must have u = 0,and thus v = f 0(x)u = 0. This proves that h0(x; y) is nonsingular. �Theorem 2.2 is closely related to Lemma 5.4 in the paper of Kojima, Megiddo, andNoma [23]. However, they assume that x > 0 and do not show that h0(x; y) is a P0-matrix.In our situation Theorem 2.2 shows that if f is a P0-function on IRn+, then (1.6) has nostatioanry points in the interior of IR2n+ . Indeed, if (x; y) is a stationary point with x > 0and y > 0, then h0(x; y)Th(x; y) = 0;and since Theorem 2.2 shows that h0(x; y) is nonsingular, we must have h(x; y) = 0. Inparticular, xiyi = 0. This contradicts our assumption that (x; y) is in the interior of IR2n+ .Theorem 2.3 The function f : IRn 7! IRn is a P -function on IRn++ if and only if thefunction h : IR2n 7! IR2n is a P -function on IR2n++.Proof. The proof is very similar to that of Theorem 2.1. �Mor�e and Rheinboldt [35] proved that if f is di�erentiable on a rectangle 
 and f 0(x)is a P -matrix for each x 2 
, then f is a P -function in 
; the converse is clearly false.Combining this result with Theorem 2.3 we obtain that if f is di�erentiable on IRn+ andf 0(x) is a P -matrix for each x 2 IR2n+ , then h is a P -function on IR2n++.6



3 RegularityWe want to show that if x� satis�es a regularity assumption, then any stationary point(x�; y�) of (1.6) yields a solution x� to the nonlinear complementarity problem (1.1). Theregularity assumption requires the introduction of index sets associated with a vector x inIRn+. The �rst index set C = fi : xi � 0; fi(x) � 0; xifi(x) = 0gis the set of indices that are complementary (C for complementary). Other indices can beclassi�ed according to the sign of xifi(x); we have the negative and positive indicesN = fi : xi > 0; fi(x) < 0g ; P = fi : xi > 0; fi(x) > 0g ;and the residual indices R = fi : xi = 0; fi(x) < 0g :Note that these sets depend on a given x 2 IRn+, but that the notation does not reect thisdependence. This should not cause any confusion because the given x 2 IRn+ will always beclear from the context.De�nition 3.1 The vector x 2 IRn+ is regular with respect to problem (1.6) if for anynonzero z 2 IRn such thatzC = 0; zN < 0; zP > 0; zR < 0; (3:1)there is a vector p 2 IRn such thatpC � 0; pP � 0; pR � 0; (3:2)with zTf 0(x)p > 0: (3:3)Our objective is to provide conditions that guarantee that any limit point of a sequencegenerated by an algorithm for (1.6) is a solution of (1.1). Thus we are only interested inthe regularity of points of attraction for a minimization algorithm for (1.6)A solution of the nonlinear complementarity problem (1.1) is regular according to thisde�nition. This is clear because at a solution of (1.1) the sets P , N , and R are empty, andthus the only vector z that satis�es (3.1) is the zero vector.Also note that the regularity condition imposes a restriction on the rows of the Jacobianmatrix f 0(x) with indices in D = N [ P [ R:7



The set D is the set of defective indices; indices in the set C are not relevant because zC = 0.We usually choose pC = 0 and guarantee regularity by imposing conditions on [f 0(x)]D .For example, note that if we assume that [f 0(x)]D is positive de�nite, then x is regularbecause we can choose p = z. In particular, x is regular if f 0(x) is positive de�nite.Theorem 3.2 Assume that f : IRn 7! IRn is di�erentiable on IRn+. If (x�; y�) is a stationarypoint of (1.6), then x� is regular if and only if x� solves the nonlinear complementarityproblem (1.1).Proof. We have already noted that if x� is a solution to the nonlinear complementarityproblem (1.1), then x� is regular, so we only need to prove the converse.If (x; y) is a stationary point of the nonlinear least squares problem (3.2), then theKuhn-Tucker conditions imply that there are multipliers u and v such that0@ f 0(x)T Y�I X 1A0@ f(x)� yY x 1A = 0@ uv 1A ;where u and v satisfy the complementarity conditionsu � 0; v � 0; uTx = 0; vTy = 0:We express these conditions in terms of vectors z = f(x)� y, and w = Y 2x asf 0(x)Tz + w = u; X2y � z = v: (3:4)The �rst relation will not be needed until the end of the proof. However, in the proof belowwe make heavy use of the relationships x2i yi � zi = vi and zi = fi(x)� yi.First consider the case where z = 0. If z = 0, then f(x) = y � 0. Moreover, x2i yi = vi,and since viyi = 0, we must have xiyi = 0. Hence, x solves (1.1). In the remainder of theproof we show that the regularity assumption implies that z = 0.The �rst step in the proof is to show thatzC = 0; zN < 0; zP > 0; zR < 0: (3:5)We �rst show that zC = 0. If i 2 C, then x2i yi � zi = vi shows that if xi = 0, thenzi = �vi � 0, while zi = fi(x) � yi shows that if fi(x) = 0, then zi = �yi � 0. Hence,zi � 0. If we assume that zi < 0, then vi = x2i yi � zi > 0, and thus yi = 0 by thecomplementarity conditions. This leads to the contradiction zi = fi(x) � yi � 0. Hence,zi = 0 in this case.We prove that zP > 0 by considering two cases. If i 2 P and vi = 0, then zi = x2i yi. Wecannot have yi = 0 because then zi = 0, but on the other hand, zi = fi(x) > 0 for i 2 P .This contradiction shows that yi > 0, and thus zi > 0. If i 2 P and vi > 0, then yi = 0 bycomplementarity, and thus zi = fi(x) > 0. Hence, we have shown that zP > 0.8



The proof that zN < 0 and that zR < 0 follows directly by noting that fi(x) < 0 fori 2 N [R, that yi � 0, and that zi = fi(x)� yi.The next step in the proof is to show thatwC = 0; wN = 0; wR = 0: (3:6)We �rst prove that wC = 0. Assume that i 2 C. If xi = 0, then wi = 0 is immediate. Ifxi > 0, then fi(x) = 0, and since we have already shown that zi = 0, we obtain that yi = 0.Hence, wi = 0 as desired.We prove that wN = 0 by �rst recalling that x2i yi = zi + vi and that zi < 0 for i 2 N .Hence, x2i yi < vi, and since yivi = 0, we must have yi = 0. Hence, wN = 0. The proof thatwR = 0 is immediate since xi = 0 for i 2 R.We also need to note that since xi > 0 for i 2 N [ P , the complementarity conditionsshow that uN = 0; uP = 0: (3:7)For the �nal step in the proof, let p be the vector guaranteed by the regularity assump-tion, and assume that z 6= 0. The results (3.6) and (3.7), together with (3.2), clearly showthat wTp � 0; uTp � 0:The Kuhn-Tucker conditions (3.4) imply that f 0(x)Tz + w = u, and thus these inequalitiesshow that zTf 0(x)p � 0. This contradicts (3.3) and proves our result. �Pang and Gabriel [39] proved a result similar to Theorem 3.2. They considered theproblem minn12kH(x)k2 : x � 0o ; (3:8)where H(x) = min(x; f(x));and showed that x 2 IRn+ is a stationary point for this problem if and only if x 2 IRn+ iss-regular, in the sense that there is a p 2 IRn such that[f 0(x)p]i = �fi(x) if fi(x) < xi; xi > 0[f 0(x)p]i � �fi(x) if fi(x) < xi; xi = 0[f 0(x)p]i � �fi(x) if fi(x) = xi; xi > 0and pi � �xi if fi(x) < xi; xi = 0pi � �xi if fi(x) = xi; xi > 0pi = �xi if fi(x) > xi or fi(x) = xi; xi = 0:9



A di�erence between our regularity assumption and s-regularity is that s-regularity requiresthat the vector p satisfy the equations[f 0(x)p]i = �fi(x); i 2 I = fi : fi(x) < xi; xi > 0g :This can be satis�ed for arbitrary f only if we assume that [f 0(x)]I is nonsingular.Also note that the notion of s-regularity depends on the scaling of f ; that is, if weconsider the scaled function fs(x) = �f(x) where � > 0, then f may be s-regular at a givenx, but fs can fail to be s-regular at x. The dependence of s-regularity on the scaling canbe explained by noting that problem (3.8) depends on the scaling of f . On the other hand,a computation shows that the stationary points of (1.6) are unchanged under this changeof scale.We should also consider more general scalings since the nonlinear complementarity prob-lem (1.1) is invariant under the change of scale de�ned by fs(x) = Drf(Dvx), where Drand Dv are diagonal matrices with positive diagonal entries. Note, however, that stationarypoints of (1.6) are not invariant under this change of scale unless we replace the Euclideannorm by a scaled norm that reects the scaling in the problem.An advantage of our approach is that most algorithms for solving the minimizationproblem (1.6) can be shown to generate sequences f(xk; yk)g such that any limit point(x�; y�) of f(xk; yk)g is a stationary point of (1.6). Hence, Theorem 3.2 shows that ifx� is regular, then x� is a solution of the nonlinear complementarity problem (1.1). Theassumptions needed to obtain this result are usually that f is continuously di�erentiable onIRn+ and that the level set�(x; y) 2 IRn+ : kh(x; y)k � kh(x0; y0)k	is bounded. Pang and Gabriel [39], and Gabriel and Pang [14] can show that limit pointsare solutions of the nonlinear complementarity problem (1.1) only if they assume that x� iss-regular and [f 0(x�)]I is nonsingular for any index set I such thatfi : fi(x�) < x�i ; x�i > 0g � I � fi : fi(x�) � x�i g :In their terminology, they need to assume that the limit x� is b-regular.The regularity assumption needed by the algorithm of Xiao and Harker [47, 48] is similarin the sense that limit points of the sequence generated by their algorithm are guaranteedto be solutions of (1.1) only if [f 0(x�)]I is nonsingular for any index set I such thatfi : x�i > 0g � I � fi : x�i � 0g :We provide a precise de�nition of this regularity assumption at the end of the next section.10



4 Regularity ConditionsIn this section we explore conditions that guarantee regularity of x in terms of the Jacobianmatrix f 0(x). This requires the introduction of two classes of matrices that have played animportant role in the study of complementarity problems.A matrix A 2 IRn�n is a P -matrix if for each x 6= 0 there is an index i such thatxi[Ax)]i > 0. Similarly, a matrix A 2 IRn�n is a P0-matrix if for each x 6= 0 there is anindex i such that xi 6= 0 and xi[Ax]i � 0.The P -matrices were introduced by Fiedler and Pt�ak [11] as generalizations of the pos-itive de�nite matrices, the M -matrices, and the irreducibly diagonally dominant matrices.One of the main reasons for the importance of the P -matrices in the study of linear comple-mentarity problems is that A 2 IRn is a P -matrix if and only if the linear complementarityproblem x � 0; Ax+ q � 0; xT (Ax+ q) = 0has a unique solution for any q 2 IRn.Fiedler and Pt�ak [12] also de�ned the S-matrices: A matrix A 2 IRn�n is an S-matrixif there is an x 6= 0 such that x � 0 and Ax > 0, while A 2 IRn�n is an S0-matrix if thereis an x 6= 0 such that x � 0 and Ax � 0. Clearly, A is an S-matrix if and only if the abovelinear complementarity is feasible for all q 2 IRn.The P -matrices and S-matrices are related. Indeed, a P -matrix must be an S-matrix,and any P0-matrix must be an S0-matrix. This result of Fiedler and Pt�ak [12] is a directconsequence of the following classical theorem of the alternative.Theorem 4.1 Let A 2 IRm�n.A is an S-matrix if and only if ny : y � 0; AT y � 0; y 6= 0o is empty.A is an S0-matrix if and only if ny : y � 0; ATy < 0o is empty.For additional information on P - and S-matrices and their connection to linear comple-mentarity problems, see the book of Cottle, Pang, and Stone [8].The regularity requirements can be expressed in terms of nonnegative vectors by makinga transformation. Let z 2 IRn be a nonzero vector that satis�es (3.1), and let T be thenonsingular diagonal matrix de�ned byT = diag(ti); ti = 8<: 1 i 2 P�1 i =2 P (4:1)De�ne the transformed z by ~z = Tz, and note that ~zC = 0 and that ~zD > 0. We carry outthe same transformation on f 0(x) and de�ne a transformed Jacobian matrixJ(x) = T�1f 0(x)T�1: (4:2)11



With this transformation, x is regular if there is a vector p 2 IRn such that ~p = Tp satis�es~zTJ(x)~p > 0; ~pi � 0; i =2 N : (4:3)The following result is a direct consequence of this observation.Theorem 4.2 Assume that f : IRn 7! IRn is di�erentiable at x 2 IRn+ and let the matrixJ(x) be de�ned by (4.1) and (4.2). If [J(x)]E is an S-matrix for some index set E withD � E, then x is regular.Proof. If [J(x)]E is an S-matrix, then a computation shows that there is a vector ~p 2 IRnsuch that ~p > 0 and [J(x)~p]E > 0. Since ~zC = 0, ~zD > 0, and D � E , it is clear that ~psatis�es (4.3). Hence, x is regular. �Theorem 4.2 is easy to apply is speci�c cases. For example, if x > 0 and f(x) > 0, thenJ(x) = f 0(x), and thus Theorem 4.2 shows that x is regular if f 0(x) is an S-matrix. Weillustrate this remark with a nonlinear complementarity problem proposed by Kojima (see,for example, Dirkse and Ferris [10]) where f is de�ned byf(x) = 0BBBBB@ 3x21 + 2x1x2 + 2x22 + x3 + 3x4 � 62x21 + x1 + x22 + 3x3 + 2x4 � 23x21 + x1x2 + 2x22 + 2x3 + 3x4 � 1x21 + 3x22 + 2x3 + 3x4 � 3 1CCCCCA : (4:4)Xiao and Harker [47] noted that their damped Newton method converges to x�, withx� = (1:05; 1:33; 1:26; 0:0); f(x�) = (4:98; 6:86; 9:84; 5:99);if started from x0 = (1; 1; 1; 1). The damped Newton method fails at x� because the (linearcomplementarity) subproblem required by this method is infeasible. On the other hand, x�cannot be a limit point for the trust region Newton method that we propose in Section 5(or any reasonable algorithm based on the formulation (1.6)) because x� is regular. A fulljusti�cation of this remark is provided by the results in Section 5, but for now note thatf 0(x�) is an S-matrix, and thus Theorem 4.2 shows that x� is regular.Theorem 4.2 is also easy to apply if x > 0 and f(x) < 0. In this case J(x) = f 0(x), andthus Theorem 4.2 shows that x is regular if f 0(x) is an S-matrix. This remark applies tothe problem de�ned by (4.4), because for this problem f 0(x) is an S-matrix.Two special cases of Theorem 4.2 are of interest. For the following result note that thede�nition of a P -matrix implies that if D is any nonsingular diagonal matrix, then A is aP -matrix (P0-matrix) if and only if DAD is a P -matrix (P0-matrix).Corollary 4.3 If f : IRn 7! IRn is di�erentiable at x 2 IRn+ and [f 0(x)]D is a P -matrix,then x is regular. 12



Proof. The result follows from Theorem 4.2 because if [f 0(x)]D is a P -matrix, then [J(x)]Dis also a P -matrix, and thus an S-matrix. �Corollary 4.3 shows, in particular, that if f 0(x) is a positive de�nite matrix, an M -matrix, or an H-matrix with positive diagonal entries (f 0(x) is an H-matrix if f 0(x)D isstrictly diagonally dominant for some diagonal matrix D with positive diagonal entries),then x is regular.We now consider the positive semide�nite case in more detail. As mentioned in theintroduction, this case is of special interest because it covers the linear programming andconvex quadratic programming problems.Corollary 4.4 Assume that f : IRn 7! IRn is di�erentiable at x 2 IRn+ and that (x; y)is a stationary point of (1.6) for some y 2 IRn+. If [f 0(x)]D is positive semide�nite, thenJ(x) = f 0(x). If, in addition, [f 0(x)]E is an S-matrix for some index set E with D � E,then x is regular.Proof. We �rst show that if [f 0(x)]D is positive semide�nite, then P is empty. The proofuses results and notation established during the proof of Theorem 3.2. In particular, recallthat we have already shown that if P is not empty, then zP > 0.We prove that wP > 0 by noting that wi = y2i xi and xi > 0 for i 2 P and thatyi = zi + fi(x) > 0 for i 2 P . Now recall (3.5), (3.6), (3.7), and that the Kuhn-Tuckerconditions (3.4) imply that f 0(x)Tz + w = u with u � 0. Hence,zT f 0(x)z = zTDf 0(x)zD = uTRzR � wTPzP � �wTPzP < 0:This contradicts the assumption that [f 0(x)]D is positive semide�nite. Hence, P is empty,and thus J(x) = f 0(x).If we also assume that [f 0(x)]E is an S-matrix, then [J(x)]E is an S-matrix, and theresult follows from Theorem 4.2. �In this result we assumed that (x; y) is a stationary point of (1.6) for some y 2 IRn+.There is no loss of generality in assuming this because we are only interested in the regularityof points of attraction for an algorithm for (1.6).Corollary 4.4 shows that we can guarantee the regularity of x without imposing anynonsingularity assumptions on f 0(x). For example, if f 0(x) = u(x)u(x)T for any u(x) > 0,then f 0(x) is a positive semide�nite S-matrix. On the other hand, f 0(x) is clearly singular.Theorem 4.5 If f : IRn 7! IRn is di�erentiable at x 2 IRn+ and [f 0(x)]D is a nonsingularP0-matrix, then x is regular.Proof. Since [f 0(x)]D is a P0-matrix, [J(x)]D is also a P0-matrix, and thus an S0-matrix.Hence, there is a vector ~p 6= 0, with ~pC = 0 and ~pD � 0 such that [J(x)]D~pD � 0. Since13



~zC = 0 and ~zD > 0, we can fail to satisfy (4.3) only if [J(x)]D~pD = 0. However, this is notpossible because [J(x)]D is nonsingular and ~pD 6= 0. Hence, x is regular. �The main assumption used in the continuation approach of Kojima, Megiddo, and Noma[23] is that f is a P0-function. Under this assumption Mor�e and Rheinboldt [35] proved thatf 0(x) is a P0-matrix. Thus, Theorem 4.5 shows that if we restrict ourselves to P0-functions,then we need to assume that [f 0(x)]D is nonsingular to guarantee that an algorithm basedon the formulation (1.6) converges to a solution of (1.1).We now present a variation on the previous results that is closely related to the resultsof Pang and Gabriel [39], Gabriel and Pang [14], and Xiao and Harker [47, 48]. Recall thatif A 2 IRn�n is partitioned in the formA = 0@ A1;1 A1;2A2;1 A2;2 1A (4:5)and the matrix A1;1 is nonsingular, then AS = A2;2�A2;1A�11;1A1;2 is the Schur complementof A1;1 in A.Theorem 4.6 Let f : IRn 7! IRn be di�erentiable at x 2 IRn+. If [f 0(x)]N is nonsingularand the Schur complement of [f 0(x)]N in [J(x)]D is an S-matrix, then x is regular.Proof. Partition [J(x)]D into [J(x)]D = 0@ A1;1 A1;2A2;1 A2;2 1A ;where A1;1 = [f 0(x)]N . We want to show that there are vectors p1 and p2 such that0@ A1;1 A1;2A2;1 A2;2 1A0@ p1p2 1A = 0@ 0q 1A ; p2 > 0; q > 0:Since A1;1 is nonsingular, this system is equivalent to0@ A1;1 A1;20 AS 1A0@ p1p2 1A = 0@ 0q 1A ;where AS = A2;2�A2;1A�11;1A1;2 is the Schur complement of [f 0(x)]N in [J(x)]D. Since ASis an S-matrix, we can �nd a vector p2 > 0 such that ASp2 > 0, and since A1;1 = [f 0(x)]Nis nonsingular, we can solve A1;1p1 +A1;2p2 = 0 for p1. Hence,[J(x)]D ~pD = 0@ 0q 1A ; ~pD = 0@ p1p2 1A ;14



satis�es (4.3) because ~zC = 0 and �zD > 0. Hence, x is regular. �Corollary 4.6 is similar to a result of Pang and Gabriel [39] that guarantees s-regularity.In their Proposition 3, they assume that [f 0(x)]N is nonsingular and that the Schur com-plement of [f 0(x)]N in [f 0(x)]D is an S-matrix, but the de�nitions of the index sets N andD are di�erent. For example, in their resultD = fi : fi(x) < xi; xi � 0g ; N = fi : fi(x) < xi; xi > 0g :For additional details, see Pang and Gabriel [39].Corollary 4.6 is also related to the de�nition of regularity used by Ralph [40], Dirkseand Ferris [9], and Xiao and Harker [47, 48]. They require that [f 0(x)]K be nonsingular,where K = fi : xi > 0g ;and that the Schur complement of [f 0(x)]K in [f 0(x)]L be a P -matrix, whereL = fi : xi � 0g :These conditions imply that [f 0(x)]I is nonsingular for any index set I with K � I � L. Inparticular, [f 0(x)]L must be nonsingular.We cannot compare their results with ours because the assumptions are made on di�erentsubmatrices of the Jacobian matrix. The major di�erence seems to be that results basedon our regularity condition do not require explicit nonsingularity assumptions.5 Global ConvergenceWe now show that a trust region method for the solution of (1.6), where h : IR2n 7! IR2n isde�ned by (1.5), can be used to generate a sequence f(xk; yk)g such that if fxkg has a limitpoint x� that is regular, then x� is a solution to the nonlinear complementarity problem(1.1). We use the trust region method of Burke, Mor�e, and Toraldo [3] for the generalminimization problem min ff0(z) : z 2 
g ; (5:1)where 
 is a general closed convex set, but specialized to the case wheref0(z) = 12kh(z)k2; 
 = IR2n+ : (5:2)Other algorithms could have been used, for example, those of Bertsekas [2], Gay [16],Soares and J�udice [42], and Coleman and Li [5], but the rate of convergence theory ofthese algorithms does not cover degenerate minimization problems. For problem (5.1) with
 = IR2n+ , nondegeneracy means that[rf0(z�)]i 6= 0; 1 � i � 2n: (5:3)15



However, in our case f0 is given by (5.2), and h(z�) = 0 because z� is a solution of thenonlinear complementarity problem. Hence,rf0(z�) = h0(z�)Th(z�) = 0;so that the solution is degenerate. The rate of convergence theory for the algorithm ofConn, Gould, and Toint [6, 7] has been extended to the degenerate case by Lescrenier [27],but these results do not cover the projected searches that we are proposing. We discuss thispoint further in the next section.The trust region method generates a sequence fzkg, where zk = (xk; yk) and zk 2 IR2n+ .At each iteration we have a bound �k and a model  k : Rn ! R of the possible reductionf0(zk + w)� f0(zk) for kwk � �k . We use k(w) = 12 �kh(zk) + h0(zk)wk2 � kh(zk)k2� :The iterate zk and the bound �k are updated according to rules that are standard in trustregion methods for unconstrained minimization. Given a step sk such that zk + sk 2 IR2n+and  k(sk) < 0, these rules depend on the ratio�k = f0(zk + sk)� f0(zk) k(sk) = kh(zk + sk)k2 � kh(zk)k2kh(zk) + h0(zk)skk2 � kh(zk)k2 (5:4)of the actual reduction in the function to the predicted reduction in the model. Since thestep sk is chosen so that  k(sk) < 0, a step with �k > 0 yields a reduction in the function.Given �1 > 0, the iterate xk is updated by settingzk+1 = 8<: zk + sk if �k > �1zk if �k � �1The updating rules for �k depend on a constant �2 such that0 < �1 < �2 < 1;while the rate at which �k is either increased or decreased depend on constants �1; �2, and�3 such that 0 < �1 < �2 < 1 < �3:The trust region bound �k is updated by setting�k+1 2 [�1�k; �2�k] if �k � �1�k+1 2 [�1�k; �3�k] if �k 2 (�1; �2)�k+1 2 [�k; �3�k ] if �k � �216



We choose a step sk that gives as much reduction in the model  k as the Cauchy step sCkgenerated by the gradient projection method applied to the subproblemmin f k(w) : xk + w 2 
; kwk � �kg :The Cauchy step sCk is of the form sk(�k), where the function sk(�) is de�ned bysk(�) = [zk � �rf0(zk)]+ � zkand the scalar �k is chosen so that sk(�k) produces a su�cient reduction. We require that k(sk(�k)) � �0 �rf0(zk)Tsk(�k)� ; ksk(�k)k � �1�k ; (5:5)for constants �0 and �1 such that0 < �0 < 12 ; �1 > 0;and that there are positive constants 1 and 2 such that�k � 1 or �k � 2��k;where ��k > 0 satis�es k(sk(��k)) � (1� �0) �rf0(zk)Tsk(��k)� or ksk(��k)k � �1�k:The function de�ned by sk(�) de�nes a piecewise linear path on the feasible set, and thecomposite function  k(sk(�)) is a piecewise quadratic that is convex on each piece. The aboverequirements on �k require that  k(sk(�k)) achieve a su�cient reduction as compared withthe linear model and that the step sk(�k) not be too small. For more information on theabove requirements on �k , see Burke, Mor�e, and Toraldo [3].These requirements can be satis�ed by generating a decreasing sequence f�(l)k g of positivetrial values such that �(l+1)k 2 [�1�(l)k ; �2�(l)k ]; 0 < �1 < �2 < 1;with �(0)k bounded away from zero, and setting �k to the �rst trial value that satis�es thesu�cient decrease condition (5.5). An advantage of this procedure is that it produces anacceptable �k with a �nite number of evaluations of  k. For more details on this type ofsearch, see Section 4 of Mor�e and Toraldo [36].Given the Cauchy step sCk , we require that the step sk satisfy k(sk) � �0 k(sCk ); kskk � �1�k; zk + sk 2 IR2n+ : (5:6)This requirement is quite natural and can always be satis�ed by choosing sk = sCk . However,this choice is likely to lead to slow convergence, since the method would then reduce toa version of steepest descent. In the next section we explore other choices that lead tosuperlinear and quadratic convergence. 17



Theorem 5.1 Let f : IRn 7! IRn be continuously di�erentiable on IRn+, and let f(xk; yk)gbe the sequence generated by the trust region Newton method. Assume that fxkg is bounded,and let x� be a limit point of fxkg. If x� is regular, then x� is a solution to the nonlinearcomplementarity problem (1.1) and limk!+1 kh(xk; yk)k = 0:Proof. The trust region method generates a sequence fzkg such that fkh(zk)kg is decreas-ing. Since fxkg is bounded, andkf(xk)� ykk � kh(zk)k � kh(z0)k;the sequence fykg is bounded. Hence, fzkg is bounded. Theorem 5.4 of Burke, Mor�e, andToraldo [3] now implies that every limit point of fzkg is a stationary point of (1.6). Since x�is regular, Theorem 3.2 shows that x� solves the nonlinear complementarity problem (1.1).�6 Superlinear ConvergenceThe analysis of the rate of convergence for the trust region method is delicate because,as mentioned in the preceding section, the minimization problem (1.6) is degenerate at asolution of the nonlinear complementarity problem. In this section we show that we canstill obtain superlinear convergence if h0(z�) is nonsingular at a solution of (1.1).We have already explored in Section 5 conditions that guarantee that a limit point ofthe sequence generated by the trust region Newton method is a solution of the nonlinearcomplementarity problem (1.1). In this section we assume that x� is a solution of (1.1) withx� + f(x�) > 0 and that[f 0(x�)]B; B = fi : x�i > 0; fi(x�) = 0g ; (6:1)is nonsingular. These assumptions are reasonable because if we knew B, we would need tosolve the system of nonlinear equationsfi(x�B; 0) = 0; i 2 B;to determine x�B. The following result provides additional motivation for our assumptions.Theorem 6.1 If f : IRn 7! IRn be continuously di�erentiable on IRn+, and x� is a solution ofthe nonlinear complementarity problem (1.1), then h0(x�; y�) is nonsingular for y� = f(x�)if and only if (6.1) is nonsingular and x� + f(x�) > 0.18



Proof. If h0(x�; y�) is nonsingular, then we must have x�i + y�i > 0 for all i; otherwise a rowof h0(x�; y�) would be zero. Hence, x� + f(x�) > 0 when y� = f(x�). Also note that if u isany vector with ui = 0 for i =2 B, thenh0(x�; y�)0@ u0 1A = 0@ [f 0(x�)]BuB0 1A ;and since we have assumed that h0(x�; y�) is nonsingular, we must have [f 0(x�)]BuB 6= 0 foruB 6= 0. Hence, (6.1) is nonsingular.We now assume that (6.1) is nonsingular and that x� + f(x�) > 0, and we prove thath0(x�; y�) is nonsingular for y� = f(x�). Ifh0(x�; y�)0@ uv 1A = 0;for some vectors u and v, then the de�nition of h0 implies thatf 0(x�)u = v; y�i ui + x�i vi = 0:If i 2 B, then y�i = 0 and x�i > 0, and thus vi = 0. Moreover, if i =2 B, then y�i > 0 andx�i = 0, so that ui = 0. Hence, f 0(x�)u = v implies that [f 0(x�)]BuB = 0, and since weassumed nonsingularity of this submatrix, uB = 0. We have shown that u = 0, and thusv = f 0(x�)u = 0. This proves that h0(x�; y�) is nonsingular. �We want to use Theorem 6.1 to prove that if f(xk; yk)g is the sequence generated by thetrust region Newton method, and if x� is a limit point of fxkg that satis�es the assumptionsof Theorem 6.1, then the whole sequence converges to x�.Theorem 6.2 Let f : IRn 7! IRn be continuously di�erentiable on IRn+, and let f(xk; yk)gbe the sequence generated by the trust region Newton method. Assume that fxkg is bounded,and let x� be a limit point of fxkg. If x� is a solution to the nonlinear complementarityproblem (1.1) such that x� + f(x�) > 0 and (6.1) is nonsingular, then f(xk; yk)g convergesto (x�; y�) with y� = f(x�).Proof. The �rst step in the proof is to show that z� is a limit point of fzkg. This resultcan be established by noting that since Theorem 5.1 guarantees that fh(zk)g converges tozero, ff(xk)� ykg converges to zero. Thus, f(x�) is a limit point of fykg. This shows thatz� is a limit point of fzkg.For the rest of the proof we need to estimate the behavior of h near z�. Theorem 6.1guarantees that h0(z�) is nonsingular, and thus we can choose � > 0 so that h0(z) is nonsin-gular for kz � z�k � �. Let " > 0 be such that"kskk � kh0(z)skk (6:2)19



for kz � z�k � �. Moreover, since h(z�) = 0, we can also require that"kz � z�k � kh(z)k (6:3)whenever kz � z�k � �. Finally, choose an index k0 such that kzk0 � z�k � � andkh(zk0)k � 14"�: (6:4)This is possible because fh(zk)g converges to zero. We use an induction argument to showthat these estimates imply that kzk � z�k � � for all k � k0.The �rst step in the induction argument is satis�ed by the choice of the index k0. Assumethat kzk � z�k � � for some k � k0, and note that (6.3) and (6.4) imply that"kzk � z�k � kh(zk)k � kh(zk0)k � 14"�:Hence, kzk � z�k � 14�. We bound the size of sk by noting that since  k(sk) � 0,kh(zk) + h0(zk)skk � kh(zk)k;and thus kh0(zk)skk � 2kh(zk)k:This inequality, together with (6.2) and (6.4), implies that"kskk � kh0(zk)skk � 2kh(zk)k � 2kh(zk0)k � 12"�:Hence, kskk � 12�, and thus kzk+1 � z�k � �. This completes the induction argumentand shows that kzk � z�k � � for all k � k0. Convergence of fzkg to z� is then a directconsequence of (6.3) and the convergence of fh(zk)g to zero. �The rate of convergence of the sequence generated by the trust region method dependson the choice of sk. We base the computation of the step sk on the subproblemmin fqk(z) : zi = 0; i 2 A(zk;1)g ; (6:5)where zk;1 = zk + sCk , the quadratic qk : IRn 7! IR is de�ned byqk(z) = 12 h(zk) + h0(zk)(z � zk)2 ;and A(zk;1) is the active set at zk;1, that is, the constraints i such that [zk;1]i = 0.We can always choose sk = sCk , but it is usually desirable to reduce qk further. Thesubproblem (6.5) is an unconstrained linear least squares problem, so it is not di�cult tocompute a descent direction pk;1 with [pk;1]i = 0 for i 2 A(zk;1). We can then examine qkin the ray zk;1 + �pk;1, with � � 0, and choose �k;1 so that qk is minimized; if qk does nothave a minimum, choose �k;1 = +1. The minor iterate zk;2 = zk;1 + �k;1pk;1 may not be20



acceptable either because zk;2 is not feasible or because zk;2 does not satisfy the trust regionconstraint kzk;2� zkk � �k. Thus, if necessary, we modify �k;1 so that both constraints aresatis�ed.The descent direction pk;1 can be generated by either direct or iterative methods. Theuse of iterative methods is usually advised for large problems, while direct methods tend tobe more reliable for small and medium-sized problems.Instead of using a line search to determine zk;2 we could use a projected search alongthe path de�ned by [zk;1+�pk;1]+. The advantage of this approach is that we would be ableto add several constraints at once. In this case we would not insist on strict decrease of qkfrom zk;1 to zk;2 because this would require the determination of the �rst local minimizer.Instead we would require that the su�cient decrease conditionqk(zk;2) � qk(zk;1) + �0rqk(zk;1)T (zk;2 � zk;1)be satis�ed. This is precisely the same condition that we require for the computation ofthe Cauchy point. For additional details on projected searches, see Section 4 of Mor�e andToraldo [36].The process that we have outlined above can be repeated to generate a sequence of minoriterates zk;1; zk;2; : : : ; zk;l. Global convergence is obtained as long as the quadratic decreasesat each stage, but a superlinear rate of convergence requires a stronger requirement whichis discussed later.Calculation of step. Let zk;0 = zk , and compute l minor iterates zk;1; zk;2; : : : ; zk;l withzk;j 2 IR2n+ ; kzk;j � zkk � �1�k; zk;1 = zk + sCk ;and such that the su�cient decrease conditionqk(zk;j+1) � qk(zk;j) + �0rqk(zk;j)T (zk;j+1 � zk;j) (6:6)is satis�ed. The step is then de�ned by sk = zk;l � zk .We have assumed that we always compute a �xed number l of minor iterates zk;j . Thisonly imposes an upper bound on the number of minor iterates because we can always setzk;j+1 = zk;j .The conditions on the minor iterates are similar to those used by Lescrenier [27]. How-ever, Lescrenier assumed thatqk(zk;j+1) � qk(�zk;j+1 + (1� �)zk;j); � 2 [0; 1]: (6:7)This requirement can be satis�ed if a line search is used to choose the minor iterates, butit rules out the projected searches that we have proposed. Also note that our convergenceanalysis does not require Lescrenier's [27] assumption thatA(zk + sCk ) � A(zk + sk):21



This condition rules out, for example, choosing zk + sk in the interior of IRn+.An important observation is that assumption (6.7) on the minor iterates is stronger than(6.6) when qk is a quadratic. This observation can be veri�ed by proving that if � : IR 7! IRis a convex quadratic on [0; 1], and�(1) � �(�); � 2 [0; 1];then �(1) � �(0) + 12�0(0):Indeed, since �(1) � �(�) for � 2 [0; 1], we must have �0(1) � 0, and since � is a quadratic,2 (�(1)� �(0)) = �0(1) + �0(0):The result is now a direct consequence of these remarks.The rate of convergence results depend on showing that eventually the trust regionbound is not active. This result requires an estimate of the decrease of the quadratic qk .The estimates needed for this result are valid for a general strictly convex function.Lemma 6.3 Assume that � : IR 7! IR is twice di�erentiable on [0; 1] and that there is a" > 0 such that �00(�) � " on [0; 1]. If�(1) � �(0) + ��0(0) (6:8)for some � 2 (0; 12), then �(0)� �(1) � �2(1� �)":Proof. The mean value theorem shows that�(1) = �(0) + �0(0) + 12�00(�)for some � 2 (0; 1), and thus (6.8) implies that12�00(�) � (1� �)(��0(0)):Hence, �(0)� �(1) � �(��0(0)) � �2(1� �)�00(�) � �2(1� �)";as desired. �This result has immediate application to the analysis of the trust region method. If wede�ne �(�) = qk (�zk;j+1 + (1� �)zk;j)22



and assume that the sequence fzkg converges to z� = (x�; y�) with h0(x�; y�) nonsingular,then there is an " > 0 such that"kvk � kh0(zk)vk; v 2 IR2nfor all k � 0 su�ciently large. Hence, Lemma 6.3 implies thatqk(zk;j)� qk(zk;j+1) � "kzk;j+1 � zk;jk2: (6:9)We will need this estimate for our next result.Theorem 6.4 Let f : IRn 7! IRn be continuously di�erentiable on IRn+ with f 0 Lipschitzcontinuous in a neighborhood of x�, and let f(xk; yk)g be the sequence generated by thetrust region Newton method. Assume that fxkg converges to a solution x� of the nonlinearcomplementarity problem (1.1) such that x� + f(x�) > 0 and (6.1) is nonsingular. If thestep sk is calculated as speci�ed above, then the trust region bound �k is bounded away fromzero.Proof. In the proof we bound j�k � 1j, where �k is de�ned by (5.4), and show that thebounds converge to zero; the rules for updating �k then show that �k is bounded awayfrom zero. We begin by noting that�k � 1 = kh(zk + sk)k2 � kh(zk) + h0(zk)skk2 k(sk) :The denominator of this expression is estimated by proving that there is an "0 > 0 suchthat �  k(sk) � "0kskk2: (6:10)Since we have already established (6.9), we obtain that the decrease generated by sk satis�esqk(zk)� qk(zk + sk) � � lXj=1 kzk;j � zk;j�1k2 � " max1�j�lnkzk;j � zk;j�1k2o :On the other hand,kskk � lXj=1 kzk;j � zk;j�1k � l max1�j�l fkzk;j � zk;j�1kg :Hence, (6.10) holds with "0 = "=l. We estimate the numerator of the expression for �k � 1by ���kh(zk + sk)k2 � kh(zk) + h0(zk)skk2��� � �k h(zk + sk)� h(zk)� h0(zk)sk ;where �k = kh(zk + sk)k+ kh(zk) + h0(zk)skk;23



and bykh(zk + sk)� h(zk)� h0(zk)skk � sup0���1 �kh0(zk + �sk)� h0(zk)k	 kskk � �kskk2;where � is the Lipschitz constant for h0. For this last estimate we made use of the fact thatthe Lipschitz continuity of f 0 implies that h0 is also Lipschitz continuous near x�.These estimates show that j�k�1j � (�="0)�k , so that the our result will be establishedif we show that f�kg converges to zero. Since fzkg converges to z� with h(z�) = 0, weobtain that f�kg converges to zero if fskg converges to zero. Note that  k(sk) � 0, andthus kh(zk) + h0(zk)skk � kh(zk)k:Hence, the nonsingularity of h0(x�; y�) implies that"kskk � kh0(zk)skk � 2kh(zk)k:This estimate clearly shows that fskg converges to zero. �Theorem 6.4 requires that zk;j satisfy (6.6), and thus the Cauchy step sCk is acceptable.A superlinear rate of convergence requires that we impose further conditions on sk.When the iterate zk is far away from the solution, the step sk is usually determinedbecause the trust region bound kzk;j � zkk � �1�k is encountered during the computationof zk;j+1. However, as we converge, Theorem 6.4 shows that the trust region does notinterfere with the computation of the step, so that we are free to reduce qk further bysearching the feasible set. We propose to continue computing minor iterates until zk;l is anapproximate minimizer of qk on the current active set A(zk;l). If Pk is the projection intothe subspace nz 2 IR2n : zi = 0; i 2 A(zk;l)o ;then we require that QTk [h(zk) + h0(zk)sk ] � �k kh(zk)k ; (6:11)where Qk is the Jacobian matrix with respect to the free variables, that is,Qk = h0(zk)Pk:We can motivate this requirement by noting that if 	k(w) = qk (zk;l + Pkw) ; thenr	k(0) = QTk [h(zk) + h0(zk)sk]:In particular, if we choose �k = 0, then zk;l is a minimizer with respect to A(zk;l).We have already noted that the step sk is usually determined because the trust regionbound kzk;j � zkk � �1�k is encountered during the computation of zk;j+1. Thus, we onlyneed to assume that the step sk satis�es (6.11) if kskk � ���k for some �� < �1.24



Theorem 6.5 Let f : IRn 7! IRn be continuously di�erentiable on IRn+ with f 0 Lipschitzcontinuous in a neighborhood of x�, and let f(xk; yk)g be the sequence generated by thetrust region Newton method. Assume that fxkg converges to a solution x� of the nonlinearcomplementarity problem (1.1) such that x�+f(x�) > 0 and (6.1) is nonsingular. If the stepsk is calculated by the algorithm outlined above, and (6.11) holds whenever kskk � ���k forsome �� < �1, then fzkg converges Q-linearly to z� when �� is su�ciently small, where�� = lim supk!+1 �k:The rate of convergence is Q-superlinear when �� = 0, and Q-quadratic when�k � �kh(zk)kfor some constant � > 0.Proof. The main estimate that we need for this result is that" kzk+1 � z�k � QTk h(zk+1)+ "k kzk+1 � z�k (6:12)for some " > 0 and some sequence f"kg converging to zero. Note thatQTk h(zk+1) = QTk h0(zk)(zk+1 � z�) + QTk [h(zk+1)� h(z�)� h0(zk)(zk+1 � z�)];and thus standard estimates of the last term show thatQTk h0(zk)(zk+1 � z�) � QTk h(zk+1)+ "kkzk+1 � z�k;where f"kg converges to zero. We now note thatPk(zk+1 � z�) = zk+1 � z�;since A(zk+1) � A(z�), and thusQTk h0(zk)(zk+1 � z�) = QTkQk(zk+1 � z�) � " kzk+1 � z�k ;where " is a lower bound on the eigenvalues of h0(zk)Th0(zk). Hence, (6.12) holds.The result follows from (6.12) by standard arguments. SinceQTk h(zk+1) � QTk [h(zk+1)� h(zk)� h0(zk)sk]+ QTk [h(zk) + h0(zk)sk] ;we obtain that QTk h(zk+1) � �kskk2 + �k kh(zk)k ;where � is the Lipschitz constant for h0. We also know that there are constants �1 and �2such that kskk � �1kh(zk)k; kh(zk)k � �2kzk � z�k:25



The �rst inequality was established at the end of the proof of Theorem 6.4, while the secondinequality follows from the existence of h0(z�) with h(z�) = 0. Hence, (6.12) shows that" kzk+1 � z�k � �(�1�2)2 kzk � z�k2 + �2�k kzk � z�k+ "k kzk+1 � z�k : (6:13)This inequality shows that fzkg converges Q-linearly to z� if �2�� < ". Inequality (6.13)also shows that the rate of convergence is Q-superlinear when �� = 0, and Q-quadraticwhen �k � �kh(zk)k for some constant � > 0. �A weakness in our convergence analysis is that we are not able to prove Q-linear con-vergence for any �� < 1. This may not be possible since for degenerate problems the activeset A(zk) may not settle down; R-linear convergence seems to be possible.The convergence results of Pang and Gabriel [39], and Gabriel and Pang [14], requirethat the limit point x� be s-regular and b-regular. These regularity assumptions imply that(6.1) is nonsingular, but do not require our assumption that x� + f(x�) > 0.The algorithms proposed by Pang and Gabriel [39], Gabriel and Pang [14, 15], andMonteiro, Pang, and Wang [32] are quite di�erent from the trust region method. From acomputational viewpoint, an important di�erence is that each iteration of these algorithmsrequires the solution of a linear programming problem or a quadratic programming problem,while the trust region method requires the solution of systems of linear equations.Acknowledgments. A special thanks goes to Stephen Wright for his advice and sugges-tions during the preparation of this work. I am also grateful to Michael Ferris, StevenGabriel, and Danny Ralph for their remarks on the �nal version of this manuscript. GailPieper's gentle comments are appreciated, as well as her attempts to explain subtle di�er-ences in the meaning of words.References[1] B. H. Ahn, Computation of Market Equilibria for Policy Analysis: The Project Inde-pendence Evaluation Study (PIES) Approach, Garland, 1979.[2] D. P. Bertsekas, Projected Newton methods for optimization problems with simpleconstraints, SIAM J. Control Optim., 20 (1982), pp. 221{246.[3] J. V. Burke, J. J. Mor�e, and G. Toraldo, Convergence properties of trust regionmethods for linear and convex constraints, Math. Programming, 47 (1990), pp. 305{336.[4] B. Chen and P. T. Harker, A continuation method for monotone variational in-equalities, Preprint 90-10-02, University of Pennsylvania, Philadelphia, Pennsylvania,1990. Revised April 1993. 26
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